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Abstract—A non-standard Schwarz Domain Decomposition
Method is proposed as finite element mesh truncation for the
analysis of infinite arrays. The proposed methodology provides
an (asymptotic) numerically exact radiation condition regardless
the distance to the sources of the problem and without disturbing
the original sparsity of the finite element matrices. Furthermore,
it works as a multi Floquet mode (propagating and evanescent)
absorbing boundary condition. Numerical results illustrating
main features of the proposed methodology are shown.

Index Terms—Infinite array, finite element method, mesh
truncation, Schwarz domain decomposition method

I. INTRODUCTION

THE electromagnetic analysis of periodic structures is of
great importance in modern radar and communication

systems. Accurate prediction of their electromagnetic behavior
using numerical methods not only reduces the development
cost and design timeline but also provides invaluable physical
insight to design engineers.

The use of numerical methods for the electromagnetic
analysis of large finite structures together with the use of
higher working frequencies makes the computation, despite
the constant enhancements in computer power, a challenge
due to the large electrical sizes of these structures. One way
to approach the electromagnetic analysis of large arrays is to
solve the full problem using a pure numerical technique such
as the Method of Moment (MoM) [1], [2] or the Finite Element
Method (FEM) [3], [4]. It is worth to note that acceleration
techniques such as the Fast Multipole Method (FMM) [5] are
also widely used in the analysis of large structures. However,
since these methods try to solve the full problem, their memory
requirements are prohibitive and make the simulation a great
challenge.

Another family of approaches make use of the infinite
structure analysis, and apply post-processing techniques to
correct the border effects of the structure. This type of analysis
helps to understand the behavior of elements in the central
region of an electrically large array, since they have similar
active impedance characteristics as that of an element in an
infinite array. Also, the infinite array results are used to predict
the mutual coupling between the elements in an array envi-
ronment or the embedded element pattern that includes mutual
coupling effects. Although the infinite array results obtained
do not correspond strictly speaking to a physically realistic
problem, the infinite array analysis provides a reasonable good

Fig. 1. Infinite periodic array in the xy-plane

approximation with a less computing requirement than the
analysis of the full problem. Furthermore, fast techniques
approaches such as Macro Basis Functions or Characteristic
Basis Functions [6], [7] and others use the infinite array
solution as the basis brick for their approaches. Thus, the use
of these infinite array solutions when analyzing electrically
large antenna arrays seems an appropriate choice for fast
simulations.

In the case of antenna arrays considered in this paper, the
infinite periodic structure has a two-dimensional periodicity
(xy-plane). In order to truncate the computational domain
along the x and y directions, a boundary condition, where
the field at one face of the unit cell is related to the field at
the opposite face through a simple phase shift, is considered.
These boundary conditions are the so-called Periodic Bound-
ary Conditions (PBCs) [8]. Thus, the analysis of the infinite
structure is reduced to the analysis of a unit cell with PBCs
assigned on the boundary surfaces of the x and y directions.

A radiation type boundary condition must be enforced on
the horizontal faces to truncate the problem domain (and its
discretization representation in terms of a mesh) on the z-
direction. In some cases, the boundary condition associated
to the horizontal face at the bottom may be different; e.g., a
perfect electric conductor condition for antennas on ground
plane. Figure 1 shows an example of an infinite periodic array
where a unit cell is placed repeatedly in the xy-plane. The
scan angle and the propagation direction, which are related to
the phase shift between opposed vertical faces of the unit cell,
are colored in blue.



2

In this paper, a non-standard Schwarz Domain Decompo-
sition Method (DDM) is proposed as finite element mesh
truncation for the analysis of infinite arrays. It shares the
same approach as the mesh truncation for wave propagation
open region problems called Finite Element - Iterative Integral
Equation Evaluation (FE-IIEE, [9], [10]) developed by the
authors and originally used in the context of hybrid methods
(mainly FEM with asymptotic high frequency techniques),
[11], [12]. The paper is focused on arrays but the proposed
methodology is also suitable for the analysis of other infinitely
periodic structures; e.g., characterization of artificial engi-
neered materials as those composed of finite Electronic Band
Gap (EBG), Photonic Band Gap (PBG), Frequency Selective
Surfaces (FSS) and so on.

The proposed methodology provides an (asymptotic) nu-
merically exact radiation condition regardless the distance to
the sources of the problem and without disturbing the original
sparse matrices corresponding to the FEM analysis on the unit
cell.

It is worth noting that the use of Perfect Matched Layer
(PML) [13] provides also theoretically (at the continuous
label) an exact radiation boundary condition and is capable
of absorbing multi Floquet modes. However, at the discrete
level, these properties can be seriously compromised which is
not the case with the non-standard Schwarz DDM truncation
technique proposed in the paper.

The rest of the paper is organized as follows. The proposed
methodology for mesh truncation of the unit cell is described
in Section II. Numerical results of several infinite antenna
arrays are shown in Section III. Benchmark tests illustrating
the main features of the proposed mesh truncation technique
are also shown in Section III. Finally, conclusions are given
in Section IV.

II. NON-STANDARD SCHWARZ DDM TRUNCATION

The non-standard Schwarz DDM truncation technique pre-
sented on this paper divides the unit cell in two overlapping
domains: one finite domain (ΩFEM) bounded by surface S and
the infinite domain exterior to the auxiliary boundary S

′
[9],

[11], [12], [14]. Thus, the overlapping region is limited by
S

′
and S (see Fig. 2) The method makes use of an integral

equation representation of the field exterior to S
′

obtaining
the solution through an iterative process in which the residual
of the radiation boundary condition on the mesh truncation
boundary is updated. As in any iterative methodology, conver-
gence is a key parameter to take into account. In the case
of the proposed mesh truncation technique, convergence is
assured by using convex exterior boundaries being the rate of
convergence faster when the overlapping between the interior

TABLE I
FORMULATION MAGNITUDES AND PARAMETERS

V ¯̄fr ¯̄gr h O L ΓD ΓN
Form. E E ¯̄µr ¯̄εr η J M ΓPEC ΓPMC
Form. H H ¯̄εr ¯̄µr

1
η

M −J ΓPMC ΓPEC

EXTERIOR DOMAIN (WEXT)

PMC

PEC

PEC

FEM DOMAIN (WFEM)

MEDIUM 1

e1 m1

MEDIUM 2

e2 m2

Jeq

Meq

M J

S

S 

Ŝ n

Ŝ n

PBC PBC

S

Ŝ n

Fig. 2. Non-standard Schwarz DDM typical setup for infinite structure

and exterior domains is larger. Studies of convergence for both
2D and 3D cases can be found in [15], [16], [9].

The truncation method starts performing an initial FEM
analysis of the unit cell using a Cauchy (Robin) boundary
condition over the unbounded third non-periodic direction
(labeled as S on Fig. 2). Regarding this Cauchy (Robin)
boundary condition, the method supports the use of the well-
known first-order absorbing boundary condition (ABC) or a
modified version of the latter condition able to absorb waves
out-coming from a different direction of the normal. The
system of equations of this initial FEM analysis may be
expressed in partitioned form as follows:[

KII KIS

KSI KSS

] [
gI
gS

]
=

[
bI
bΨ

]
(1)

where the sub-indexes S and I refer to the degrees of freedom
g associated to the surface S and those associated to nodes in
the interior of S, respectively.

K =

ˆ
Ω

∇× F ·
(

¯̄fr
−1

∇×V
)
dv − k2

0

ˆ
Ω

F ¯̄gr Vdv︸ ︷︷ ︸
KII ,KSI ,KIS

+ γ

¨
ΓC

(n̂× F) · (n̂×V) dS︸ ︷︷ ︸
KSS

(2)

b =

ˆ
Ω

F · q dv︸ ︷︷ ︸
bI

−
ˆ

ΓC

F ·Ψ dS︸ ︷︷ ︸
bΨ

(3)

q = −j k0 η0 O−∇×
(

¯̄fr
−1

L
)

(4)

with

F := {A ∈ H(curl,Ω), n̂×A = 0 on ΓD} (5)

and H(curl) being the space of square integrable vector
functions with square integrable curl. Further details can be
found in [17].
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The discretization of the above variational formulation is
achieved by using our own versions of higher-order isopara-
metric curl-conforming basis functions that constitute a rigor-
ous implementation of Nédélec first family of finite elements
[18]. Specifically, second order basis functions are used in
this case. It is important to remark that the basis functions are
obtained in the reference finite element and then, transformed
to the real one using the inverse of the Jacobian matrix. The
reader may refer to [19]–[21].

The right hand side term {bI} corresponds to the interior
current sources J and M and the inward waves impressed at
the ports. The term {bΨ} is related to the residual Ψ of the
boundary condition at the truncating boundary S; that is, the
first-order ABC or its modified version. In order to help the
reader to understand the iterative process described next, the
expression of the first-order ABC is introduced now, which is
particularized for the upper truncation surface of a unit cell

ẑ×
(

¯̄fr
−1

∇×V
)

+ j k (ẑ× ẑ×V) = Ψ (6)

where k typically is the vacuum wavenumber. The value
of Ψ in (3) is the result of evaluating the first two terms
of the previous equation with V = Vinc being Vinc the
incident electric/magnetic field (see table I for details about
the magnitudes involved in the calculation).

Once the system of equations is obtained, the iterative pro-
cess in which the residual of the radiation boundary condition
is updated begins. This process is summarized next:

• Step 1: An initial value of Ψ, denoted as Ψ0, is assumed.
Specifically, Ψ0 is zero for radiation problems and Ψ0 =
Ψinc for scattering problems. Then, the initial right hand
side term b0Ψ is obtained.

• Step 2: The FEM system of equations (1) is now solved.
After that, electric and magnetic fields on S

′
are cal-

culated in order to compute the corresponding current
densities Jeq and Meq of the equivalent exterior problem.

• Step 3: The scattering field, and its curl, over S radiated
by the equivalent currents Jeq and Meq are calculated.
The fields radiated by the FEM region, VFE-IIEE and their
curl (∇ × V)FE-IIEE, are computed using the integral
expressions

VFE-IIEE =

‹
S′

(Leq ×∇Gp) dS
′

− jkh
‹
S′

[
Oeq

(
Gp +

1

k2
∇∇Gp

)]
dS

′
(7)

(∇×V)FE-IIEE = jkh

‹
S′

(Oeq ×∇Gp) dS
′

−
‹
S′

[
Leq
(
k2 Gp + ∇∇Gp

)]
dS

′
(8)

where h is the immittance of the homogeneous medium
(see table I), and Gp denotes the periodic Green’s func-
tion for a homogeneous medium. It is worth mentioning
that an accurate and efficient evaluation of the periodic
Green’s function is of fundamental importance for the

Fig. 3. Standard first-order absorbing boundary condition values for waves
propagating in different (θs, φs) directions

analysis of structures using the previous integral equa-
tions. Details about the periodic Green’s function and its
convergence rate are given in a later subsection.

• Step 4: A new value of Ψ, (Ψi+1 in general) is computed
by introducing the values of the fields VFE-IIEE and
(∇×V)FE-IIEE in equation (6) where i means the iteration
number.

• Step 5: The error between Ψi+1 and Ψi is calculated.
If the error is greater than an error threshold, the method
will start again for step 2 (using Ψi+1 as the new residual
function); otherwise the iteration process finishes. The
error in Ψ is measured in a weighted L2-norm

errori =

∥∥Ψi −Ψi−1
∥∥

2

‖Ψi‖2
(9)

Thus, a (numerically) exact radiation boundary condition
is imposed absorbing any out-coming wave avoiding that
undesired reflexions come back to the computational domain.
The proposed numerical technique also allows the external
boundary to be placed close to the sources, while the sparsity
of the FEM matrices is retained. It is worth noting that the
numerical cost of the second and subsequent iterations is
very small since the factorization of the FEM matrix must
be performed only once at the first iteration (if direct solvers
are used).

A. Standard first-order absorbing boundary condition

As aforementioned, one of the Cauchy (Robin) boundary
condition supported by the proposed truncation method is
the well-known first-order ABC. The implementation of this
boundary condition in a finite element formulation is straight-
forward. However, as it is well-known, this condition is only
satisfied for waves propagating along the z-direction (i.e.,
only absorbs waves propagating along θs = 0), and it has a
significant reflection for waves propagating in other directions.
Thus, this reflection may produce disturbances when analyzing
infinite periodic structures in which the solution contains
significant wave components traveling in other directions
different from the z-direction.

Figure 3 shows the residual of equation (6) for waves propa-
gating along different directions ranging from 0◦ ≤ φs ≤ 360◦

and from 0◦ ≤ θs ≤ 90◦. The incident frequency is 100 MHz
and (0, 0, 1) is the observation point where equation (6) is
evaluated.
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Fig. 4. Modified first-order absorbing boundary condition values for waves
propagating in different (θs, φs) directions

The figure shows clearly how the condition absorbs the
waves propagating along the z-direction (values in blue in the
figure) and how, as the angle θs increases, the condition does
not absorb the incident waves (values changing from blue to
red in the figure). Thus, when using this boundary condition
over the surface S and the propagating direction of the array is
different the initial solution will contain reflections that has to
be canceled with the proposed iterative truncation method. In
this case, the number of iterations required by the truncation
method is high since the standard ABC is not helping to absorb
any initial out-coming wave. A numerical experiment proving
this behavior is illustrated in the numerical result section.

B. Modified first-order absorbing boundary condition

Another boundary condition supported by our non-standard
Schwarz DDM truncation technique is a modified ABC that
can absorb plane waves propagating in any (θs, φs) direction.
Following the procedure described in [3, Section 9.1.2], the
expression of this modified first-order ABC is given by

ẑ×
(

¯̄fr
−1

∇×V
)

+ j k cos θs (ẑ× ẑ×V)

− jk

cos θs
kst (kst ·V)−Ψinc

θs,φs
= 0 (10)

where k typically is the vacuum wavenumber, kst =
sin θs cosφs x̂ + sin θs sinφs ŷ with (θs, φs) being the scan
angles of the array and Ψinc

θs,φs
is the result of evaluating the

first three terms of equation (10) with V = Vinc being Vinc

the incident electric/magnetic field.
Figure 4 shows the residual of equation (10) for the waves

propagating in the same directions than the previous figure.
The frequency of the plane waves and the observation point
where the equation is evaluated are also the same than the
previous case. The figure shows how the modified condition
absorbs perfectly any plane wave propagating in the (θs, φs)
direction (except waves propagating along θs = 90◦ where
a indetermination in one term of the equation is found).
However, it is worth to note that, although being able to absorb
perfectly any plane wave propagating in the (θs, φs) direction,
this modified ABC is not able to absorb two different plane
waves (or Floquet modes) propagating in two different (θs, φs)
directions at the same time.

When using this boundary condition over the surface S and
the propagating direction (θs, φs) of the array is selected to be

absorbed, the initial solution will contain small reflections (or
even none). Thus, only one or two iterations are required by
the truncation method to absorb all the out-coming waves. A
numerical experiment proving this behavior is also illustrated
in the numerical result section.

C. Periodic Green’s Function

As commented in the step 3 of the iterative truncation
algorithm, the periodic Green’s function for an homogeneous
medium is used to calculate the radiated fields over the external
boundary S (first and second derivatives are also required).
First of all, let us assume a periodic structure in the xy-plane
as the one shown in Fig. 1. The (m,n) cell of the structure is
obtained by shifting the (0, 0) cell through the relation

ρmn = mDx x̂+ nDy ŷ (11)

where Dx and Dy are the periodic distances in the x- and y-
directions. Thus, the periodic Green’s function Gp(r, rs) in
the spatial domain has the form

Gp (r, rs) =
∞∑

m=−∞

∞∑
n=−∞

e−j(kxmDx+kynDy)
e−jk0Rmn

4πRmn
(12)

where

kx = k0 sin θs cosφs ky = k0 sin θs sinφs (13)

with θs and φs as the scan angles that determinate the phase-
shift between the different adjacent cells and Rmn is the
distance between the source in the corresponding cell and the
observation point.

The main constraint of these series is their slow convergence
rate for the free space case. Equation (12) is extremely slow to
converge (for arbitrary d, the number of terms having magni-
tude 10−d is of order 10+2d) making the numerical evaluation
of the series difficult and computationally expensive.

Many techniques exist for accelerating slowly-convergent
series such as the Euler Transformation [22, Equation 3.6.27],
the Shank Transformation [23], the Poisson Transformation,
the Ewald Transformation [24], [25] or the Kummer Trans-
formation [22, Equation 13.1.27]. A survey of them and
their use in evaluating periodic sums of three-dimensional
points sources is given in [26]. Among these techniques,
the one chosen to accelerate the series in the present paper
has been the Ewald’s transformation. This transformation has
been considered in the literature as the reference method for
the efficient numerical calculation of the periodic Green’s
function. Details about our implementation of the Ewald’s
transformation can be found on [27], [28].

D. Convergence

As iterative methodology, the convergence of the method
is a key parameter to take into account. The convergence of
the proposed non-standard Schwarz DDM truncation method
is assured in the case of a sphere (circle in 2D) is used as
truncation boundary of “large enough” radius [15], [16]. It
is shown empirically that convergence is obtained for any
arbitrary convex truncation boundary [9]. It is worth noting
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that previous works make use of the conventional free space
Green’s function in order to calculate the scattering fields
required in the truncation. However, the proposed method-
ology makes uses of the periodic Green’s function when
truncating the non-periodic direction in the unit cell. This
difference produces changes in the convergence properties of
the solver that are included in the numerical results confirming
empirically the above claims.

III. NUMERICAL RESULTS

To illustrate the capabilities of the proposed non-standard
Schwarz DDM truncation technique five different examples
have been analyzed. The first example has consisted on the
analysis of an infinite ground plane. It is worth mentioning that
this example may be used as validation test since the result of
this analysis may be compared with an analytic solution. The
second example has consisted of the analysis of a microstrip
patch phased array. The results of this analysis have been
compared with those given by the MoM simulation for both 11
x 11 and 22 x 22 finite arrays. The third example has consisted
of the analysis of a cross-shaped frequency selective surface
(FSS) using three different configurations; 6 x 6, 12 x 12 and
24 x 24 elements. In the fourth example, the broadside analysis
of a multilayer aperture antenna has been carried out. The
results using the infinite approach have been compared with
those given by the finite analysis of an 8 x 8 array. Finally,
the last example has consisted of the analysis of an infinite
phased array based on Vivaldi antennas. The analysis has been
performed for both broadside and oblique scan angles.

A. Analysis of infinite ground plane

This first example has consisted on the analysis of an infinite
ground plane illuminated by a plane wave under different
angles (normal and oblique incidence). As aforementioned,
the accuracy and the capabilities of the proposed truncation
technique have been checked comparing the results with an
analytic solution.

1) Normal incidence: In this first test, the infinite ground
plane has been illuminated by a plane wave with φ = 0◦ and
θ = 0◦ as incident angles. The plane wave has been polarized
in both φ- and θ-components and the working frequency has
been set to 300 MHz. The unit cell considered for this test has
been an hexahedron with 0.25 m long by 0.25 m wide by 0.5
m high. The ground plane has been placed in the xy-plane.
Note that the solution to this problem is a standing wave (SW)
with a wavelength of 0.5 m. Thus, it is easy to see if the results
given by the analysis are correct, since a complete period of
the SW should be appreciated along the z-axis of the unit cell.
Figure 5 shows the unit cell model used in this test.

A first-order ABC has been assigned over the surface S
in the non-periodic direction (z-axis) . The expression of
the modified ABC for the scan angle θs = 0◦ matches
with the first-order ABC. Thereby, only the conventional
ABC has been used over the surface S during this analysis.
Figure 6 shows the magnitude of the E-field (|E|) after the
first iteration of the proposed iterative truncation method is
completed. As expected, a complete period of the standing

Fig. 5. Unit cell model for infinite ground plane

wave is appreciated, since the ABC condition is able to absorb
completely the initial out-coming wave with no reflection.
The number of iterations employed by the iterative truncation
method was one, obtaining in this iteration a relative error
of 5.23 · 10−8. Therefore, this first test confirms the expected
behavior of the truncation method when using a first-order
ABC and the waves are out-coming in the normal direction.

2) Oblique incidence: In this case, the infinite ground plane
has been illuminated by a plane wave coming from φ = 20◦

and θ = 60◦. The plane wave has been polarized in the φ-
component and the working frequency has been set to 300
MHz. The unit cell considered for this test has been the same
than the previous example. The solution to this problem is
another SW but with a wavelength of 1.0 m, instead of 0.5
m. Thus, a half period of the SW should be appreciated along
the z-axis of the unit cell.

The first boundary condition considered is the modified
ABC. Figure 7 shows the magnitude of the E-field after
the first iteration of the truncation process is completed. As
expected (concluded from the previous test), if the boundary
condition over the surface S can absorb completely the initial
out-coming wave with no reflection, the iterative truncation
method needs just one iteration to obtain a numerical exact
radiation boundary condition (relative error of 1.09 · 10−8 in
this case).

However, if the original first-order ABC is used over the
surface S, the absorbing condition is not satisfied for the plane
wave used in this example (φ = 20◦ and θ = 60◦) and signifi-
cant reflections appear. Figure 8(a) shows the magnitude of the
E-field after the first iteration is completed, where a substantial

Fig. 6. |E| after first iteration for normal incidence.
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Fig. 7. |E| after first iteration for oblique incidence using the modified ABC
as absorbing boundary condition.

reduction on the maximum of the SW is appreciated due to the
reflection produced in the truncation boundary. In this case, the
iterative truncation method continues updating the radiation
boundary condition and it is able to cancel all the undesired
reflexions up to an arbitrary low predetermined relative error.
Considering a relative error of 10−8, the truncation method
reaches the solution after 14 iterations. Figure 8(b) shows the
magnitude of the E-field after 14 iterations. Comparing this
result with the SW illustrated on Fig. 7, one can see how the
iterative truncation method reaches the same solution.

Figure 9 shows the convergence rate of the truncation
method for this oblique incidence case. The number of it-
erations extends to 40 in order to check when the trunca-
tion method using the conventional ABC provides the same
residual error than using the modified ABC. Typically, one
can consider residual errors below 10−6 a numerically exact
radiation condition. As aforementioned, the iterative truncation
method provides residual errors below 10−8 from the first iter-
ation using the modified ABC. In the case of the conventional
ABC, the iterative truncation method requires 14 iteration to
reach the same residual error than the first iteration of the
modified ABC (marked in green in the figure). This example
demonstrates that, even when the initial FEM simulation
presents undesired reflections, the iterative truncation method
presented in this paper is able to absorb them no matter
the absorbing boundary condition employed on the external
boundary.

As mentioned in the previous section, the use of the periodic
Green’s function in the proposed truncation method changes
the convergence properties of the method with respect to the

(a) after first iteration (b) after 14 iterations

Fig. 8. Comparison of the |E| for the second test
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Fig. 9. Convergence plot of the iterative method for oblique case

case of using the conventional free space Green’s function. In
order to investigate this issue, the simulation of a finite ground
plane is carried out increasing its dimensions each time. In this
way, as the finite ground plane increases, the behavior of the
free space Green’s function tends to be similar to the periodic
Green’s function. Figure 10 shows again the magnitude of the
E-field (in the center of the plane with the same dimensions
as the unit cell) when the side of the finite ground plane goes
from 0.75 meters to 5 meters long. One can see how, as the
size of the finite plane increases, the half period of the standing
wave appears more clearly confirming the correctness of the
solution.

Figure 11 shows the comparison of the convergence rate
of the truncation method using the periodic Green’s function
(blue line) versus the free space Green’s function for three
different finite sizes of the ground plane, specifically of side

(a) using 0.75 meters plane long (b) using 1.75 meters plane long

(c) using 3.25 meters plane long (d) using 5 meters plane long

Fig. 10. Comparison of the |E| for finite ground plane with different sizes
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Fig. 11. Comparison of the convergence rate for different Green’s functions
in the oblique case

lengths equal to 0.75, 3.25 and 5.0 meters. As the size of
the finite plane increases, the number of elements employed
in the calculation of the scattering field is larger, tending to
the values given by the periodic Green’s function. However,
the convergence rate when incresing the finite ground plane
is getting slower than the one given by the infinite ap-
proach (using periodic Green’s function). Thus, the proposed
truncation method presents a faster convergence rate than
the original truncation method that employs the free space
Green’s function.

B. Microstrip patch phased array

A microstrip patch phased array has been analyzed in this
example using the infinite array approach proposed in the
paper. The array is printed on a substrate εr = 2.67 and is
housed in a 520 mm x 580 mm x 7 mm cavity in a ground
plane [29] as illustrated in Fig. 12. The dimensions of each
patch element are 30 mm x 35.6 mm and the gaps between
any two neighbor elements are 14 mm along both length and
width directions.

SUBSTRATE

PATCH

X

Y

Fig. 12. Perspective view of the 11 x 11 microstrip patch array

(a) Comparison for 11 x 11 array

(b) Comparison for 22 x 22 array

Fig. 13. Comparison of radiation pattern cut (φ = 90◦) for microstrip array

Once the electromagnetic field in the unit cell is obtained
(and hence currents on the unit cell boundaries) the radiated
field of a finite array using a given number of elements as those
of the unit cell may be obtained by simply multiplying the
radiated field of the unit cell by the array factor. The radiation
patters so obtained are shown in Fig. 13 for two configurations:
11 x 11 and 22 x 22. The FEM results obtained in this test
have been compared with the ones given by the commercial
software HOBBIES [30] that is based on MoM.

HOBBIES has been used to analyze the whole arrays
directly without using any approximation technique. The dis-
tance between elements used in the FEM analysis has been
set to 0.37λ. Figure 13 shows the comparison of a radiation
pattern cut (φ = 90◦) for both configurations. The results
present a very good agreement for all the angles except for
those close to grazing angles to the structure (|θ| ≥ 75◦) where
the border-effect is most relevant. It is worth noting that, as the
number of elements of the finite array increases, the discordant
angles are closer to θ = ±90◦ as it is observed by comparison
of Fig.13(a) and Fig.13(b).

C. Cross-shaped Frequency Selective Surface

The next example consists of the analysis of a cross-shaped
FSS printed on a layer of thin dielectric substrate. As the



8

Fig. 14. Perspective view of the cross-shaped FSS unit cell

previous example, the FEM results obtained using the infinite
approach have been compared with the results obtained by
analyzing the whole finite structure with HOBBIES. Three
different array configurations in terms of number of cells have
been considered (6 x 6, 12 x 12 and 24 x 24). Thus, the border-
effect can also be investigated in this case.

The FSS consists of a cross-shaped metal patch array printed
on a layer of thin dielectric substrate [31] (ε = 4.0 and h = 1
mm). The unit cell of the FSS has a length of 50 mm by
50 mm where the dimensions of one arm of the cross are 10
mm by 15 mm. The absorbing boundary condition is placed at
0.125 λ from the structure. Figure 14 illustrates the geometry
of the unit cell of the FSS. This structure is illuminated by
an incident plane wave at 3.0 GHz in the broadside direction
(φ = 0◦, θ = 0◦).

Figure 15 shows the comparison of a scattering cut (φ =
90◦) where again a very good agreement is appreciated except
for those angles where the border-effect is more relevant. As
the number of elements of the finite FSS increases, the starting
discordant angle moves to angles closer to θ = ±90◦. In this
particular case from θ = ±30◦ (Fig. 15(a)) to θ = ±45◦

(Fig. 15(c)). Thus, this demonstrates that the difference in the
results is due to approximating a finite structure with an infinite
approach.

The convergence of the iterative method for this example
is shown in Fig. 16. The convergence rate depends on the
distance between the structure and the absorbing boundary
condition. The figure shows the convergence rate using three
different distance (0.4 λ, 0.25 λ and 0.125 λ). In this way, the
convergence rate of the method is also investigated concluding
that the convergence behavior with the use of the periodic
Green’s function is qualitatively the same than with the free
space Green’s function. Nevertheless, as it was shown in
Section III-A2, the convergence with the infinite approach is
faster than when analyzing the equivalent whole finite structure
as the electrical size of the problem domain under analysis is
much smaller.

D. Multilayer aperture coupled antenna

In this fourth example, the infinite analysis of a 8 x 8
multilayer aperture coupled antenna array is carried out. The
antenna elements work at 4 GHz and are placed periodically
along the xy-plane with a distance between elements of 0.6 λ.

(a) Comparison for 6 x 6 FSS array

(b) Comparison for 12 x 12 FSS array

(c) Comparison for 24 x 24 FSS array

Fig. 15. Comparison of scattering cut (φ = 90◦) for cross-shaped FSS array

Their design was taken from the antenna elements published in
[32]. Figure 17 shows the different views for the three layers
that form the antenna; director, driver and reflector layer. The
dimensions of the elements of the antenna are marked in the
figure. Both driver and director layers are printed on a substrate
with εr = 2.2 and h = 0.524 mm.

Figure 18 shows the comparison of a radiation pattern cut
(φ = 0◦) where, as in the previous examples, a very good
agreement is appreciated except for grazing observation angles
where the border-effect is more relevant.
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Fig. 16. Convergence plot of the iterative method for cross-shaped FSS

The convergence of the iterative method for different dis-
tances between the structure and the absorbing boundary con-
dition is shown Fig. 19. As previous cases, shorter distances
produce larger convergence rates.

E. Vivaldi antenna phased array

A phased antenna array based on a Vivaldi element, as the
one shown in Fig. 20, is considered in this example [3]. A
dielectric substrate (εr = 6) with a conducting surface on one
side is positioned normal to the ground plane. The dimensions
of the unit cell are Tx = 36 mm and Ty = 34 mm, and the
height of the substrate is 33.3 mm with a thickness of 1.27 mm.
The coaxial waveguide is empty with the radii of the inner and
outer conductors equal to 0.375 and 0.875 mm, respectively.

The results obtained with the proposed truncation technique
has been compared in this case with the commercial software
HFSS [33]. The particularity of this example resides on the
sharp peak occurring at 4.6 GHz when the array is configured
for broadside radiation. The peak is reported in the literature to
be caused by mutual coupling between antenna elements due
to presence of surface waves on the dielectric. As a result, there

(a) Top view of driver layer (b) Bottom view of driver layer

(c) Top view of director layer (d) 3D view of antenna element

Fig. 17. Multilayer aperture couple antenna unit cell

Fig. 18. Comparison of radiation pattern cut (φ = 0◦) for 8 x 8 aperture
coupled antenna array

Fig. 19. Convergence plot of the iterative method for aperture antenna array

is a situation of “scan blindness” in the array at that particular
frequency and scan angle. Figure 21 shows the results of the
reflexion coefficient (S11) for the broadside scanning (φs =
0◦, θs = 0◦) and the oblique scanning (φs = 135◦, θs = 45◦)
where a good agreement is appreciated between both FEM
analysis. As the figure shows, our FEM analysis catches the
mentioned sharp peak perfectly indicating the infinite approach
simulation is correct and, in consequent, the mesh truncation
technique is successfully implemented.

This structure and the correct capture of its “scan blindness”
effect is used next to illustrate one the features of the proposed
methodology with respect to a conventional ABC. Consider
Fig. 22 in which the reflection coefficient (S11) for the
broadside scanning (φs = 0◦, θs = 0◦) is shown again as
in Fig. 21(a). The figure shows the magnitude of S11 when
an ABC is used to truncate the problem at a distance from
the antenna equal to 0.5λ and equal to 0.1λ. It is very
clear that conventional ABC simply does not work for the
0.1λ case and it does require a distance equal to 0.5λ in
order to capture the blindness effect. In contrast, the proposed
methodology works with a distance equal to 0.1λ. Actually,
it works even with shorter distances; it is just a matter of a
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Fig. 20. Unit cell of an infinite phased array of Vivaldi antennas where the
distance to the truncation surface is d = 0.5λ

few extra iterations of the method. Thus, the reliability and
level of accuracy of the results obtained with the proposed
methodology is assured, even in the case the user does not set
up the truncation boundary far enough for the specific structure
under analysis and level of accuracy demanded.

Fig. 23 shows the convergence of the iterative method when
the problem is truncated at a distance of 0.5λ, 0.3λ and
0.1λ. It is worth noting that the aforementioned behavior
may be appreciate, where shorter distances, although produce
smaller problem sizes, imply higher number of iterations of
the method.

(a) Broadside scanning (φs = 0◦, θs = 0◦)

(b) Oblique scanning (φs = 135◦, θs = 45◦)

Fig. 21. Comparison of |S11| parameter for a Vivaldi phased array

Fig. 22. Effect of the distance of the mesh truncation boundary with conven-
tional ABC and the proposed methodology on the magnitude of S11 parameter
for the Vivaldi phased array under broadside situation (φs = 0◦, θs = 0◦).

Finally, a comparison on the computational time between
HFSS and the proposed method for one frequency simulation
(4.6 GHz) is given. The benchmark is performed on a desktop
computer with an Intel(R) Core(TM) i7-4790 CPU @ 3.60
GHz and 16.0 GB of RAM. The problem is truncated at
0.5λ in both cases. The mesh size in both softwares is fixed
to be 0.05λ obtaining a final mesh of 35,409 tetrahedron
for HFSS and 31,500 elements for our FEM. The total time
employed by HFSS in this simulation is 45 seconds (only
counting the simulation time of the last adaptive step with
35,409 tetrahedron), while the total time used by the proposed
technique is 51 seconds. As one can see, the proposed tech-
nique is little bit slower than HFSS, however HFSS required
1.93 GB of memory to perform the simulation meanwhile the
proposed technique only requires 1.6 GB. It is worth noting
that, using the proposed truncation technique, the external
boundary can be placed at 0.1λ reducing the finite elements
in the mesh up to 20,432. This implies a reduction in the
memory used in the simulation (requiring now only 1.02 GB),
but an increment in the computational time due to the higher
number of iterations of the method (121 seconds). Thus, it is
proof that the performance of the proposed mesh truncation
technique are competitive in comparison with commercial
softwares like HFSS.

Fig. 23. Convergence of the iterative method for Vivaldi phased array
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IV. CONCLUSION

A non-standard Schwarz Domain Decomposition Method
truncation technique for the analysis of infinite arrays has been
presented. The proposed methodology provides an (asymp-
totic) numerically exact radiation condition regardless the
distance to the sources of the problem and without disturbing
the original sparse matrices corresponding to the FEM analysis
on the unit cell. The paper is focused on arrays but the
proposed methodology is also suitable for the analysis of other
infinitely periodic structures; e.g., characterization of artificial
engineered materials as those composed of finite Electronic
Band Gap (EBG), Photonic Band Gap (PBG), Frequency
Selective Surfaces (FSS) and so on. Numerical examples
have demonstrated the performance and capabilities of the
proposed truncation method when analyzing antenna arrays.
The reliability and level of accuracy of the results obtained
with the proposed methodology is assured, even in the case
the user does not set up the truncation boundary far enough
for the specific structure under analysis and level of accuracy
demanded.
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conforming finite element,” IEEE Transactions on Magnetics, vol. 38,
no. 5, pp. 2370–2372, Sep. 2002.

[21] A. Amor, L. Emilio Garcia-Castillo, and D. Garcı́a Doñoro, “Second-
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