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Metastructures made of spring-mass resonators use to1

present a band gap at the natural frequency of the res-2

onator. This rule cannot be generalized for more com-3

plex resonators. This work analyses the case of a metas-4

tructure composed by a periodic arrangement of vertical5

beams rigidly joined to a horizontal beam. The vertical6

beams work as resonators, and their natural frequencies7

play a strong role on the band structure of the whole8

system, however, different to the case with spring-mass9

resonators. Since this metastructure can be considered10

as a lattice, Bloch’s theorem is applied to the unit cell11

and a numerical procedure based on the Finite Element12

Method permits to obtain the dispersion curves. Illus-13

trative results show the influence of the natural frequen-14

cies of the horizontal and vertical beams on the band15

structure.16

1 Introduction17

In the past decade, the study of metamaterials18

based on periodic structures has drastically increased in19

the wave propagation field. The ability of these metas-20

tructures in the formation of band gaps and the location21

of them at the required frequency has caught the atten-22

tion of many researchers [1, 2].23

Among the great variety of metastructures, systems24

composed by a substrate (plate or beam) and an array25

of spring-mass resonators periodically joined to it have26

been commonly investigated [3–5]. Moreover, studies27

related to systems with beams working as resonators28

instead of the spring-mass ones have been developed by29

several authors [2, 6–9].30

A metastructure composed by a plate as substrate31

and a square arrangement of spring-mass resonators32

joined to it, considered as a lattice structure, was stud-33

ied by Xiao et al. [3]. The authors showed the evidence34

of a band gap around the resonant frequency when they35

vibrate perpendicularly to the plate. Additionally, Sug-36

ino et al. [5] stated that the width of this band gap37

is related to the ratio of the mass of the resonator to 38

the mass of the portion of plate corresponding to the 39

unit cell. A honeycomb arrangement of these spring- 40

mass resonators was studied by Torrent et al. [10]. In 41

this work it was found that the frequency at which the 42

Dirac cone appears depends on their resonant frequency. 43

Hsu [11] studied a plate arranged with stubs working as 44

resonators. The band gaps show up due to the combi- 45

nation of Bragg scattering and resonances of the stubs 46

mechanisms. 47

A metastructure composed by a beam as substrate 48

of a periodic arrangement of spring-mass resonators was 49

studied by Sugino et al. [4]. In this work, they evidenced 50

again a band gap whose mean value is close to their res- 51

onant frequency and its width is related to the ratio of 52

the mass of the resonator to the mass of the portion of 53

beam corresponding to the unit cell. Huang et al. [12] 54

studied a beam with an arrangement of more complex 55

resonators made of inclined trusses joined to conven- 56

tional spring-mass resonators. Despite of the complex- 57

ity, the band gaps still appeared around the spring-mass 58

natural frequencies. 59

In summary, the above works concluded that the 60

band gaps generated by metastructures with spring- 61

mass resonators always exist and appear at the natural 62

frequency of the resonators. However, these represent a 63

idealization slightly away from reality. A real resonator 64

has mass and stiffness distributed along its length and 65

its deformation could not be exclusively transversal to 66

the substrate when the system vibrates. Hence, it is 67

convenient to study a type of resonator that better cov- 68

ers these effects. The metastructure presented in this 69

paper is composed by a beam as substrate and an ar- 70

rangement of other beams joined to it, working as res- 71

onators. Similarly to metastructures with spring-mass 72

attachments, they should show band gaps at the nat- 73

ural frequencies of a clamped-free beam. However, for 74

this kind of resonators the rule stated above cannot be 75



generalized. Xiao et al. [13] showed this exception for76

a system composed by a beam as substrate of an array77

of beam-like resonators. The authors suggest that the78

resonant frequency of the resonators does not necessar-79

ily lie in a band gap. Serrano et al. [2] also showed this80

behavior for a system composed by a plate as substrate81

and different arrangements of beam-resonators joined to82

it. In the cited work, the band gaps do not appear at the83

natural frequencies of the beams working under bending84

vibration. A brief remark of this singularity on the band85

gap formation is made on [2, 13]. Thus, in the current86

work, we give a extended analysis focusing on the role of87

resonator natural frequencies on the band structure of88

the whole system. In the following sections, we present89

a study showing a high influence of the resonant fre-90

quencies on the appearance, location, and width of the91

band gaps in the dispersion curves of the metastruc-92

ture. For some cases, the beam-like resonators enforce93

the formation of band gaps at their natural frequencies94

but, for others, these frequencies just limit the width95

of the band gaps. The results will show the ability of96

beam-like resonators to create band gaps due to bend-97

ing and axial vibration, in contrast to the spring-mass98

resonators in which the band gap is only created by the99

axial vibration of the resonator.100

The paper is organized as follows. Section 1 pro-101

vides a brief introduction and Section 2 describes the102

problem considered in the study. Section 3 provides103

the methodology used to apply Bloch’s theorem to the104

FEM model of the unit cell. Section 4 presents the wave105

propagation characteristics of the metastructure and the106

band gap evolution influenced by the resonant frequen-107

cies of the beams within the unit cell. Finally, Section108

5 summarizes the main results of the work.109

2 Problem formulation110

Let us consider a system consisting of an infinite111

beam parallel to the X axis, and a periodic array of112

beams perpendicular to the first one and with their113

lower ends rigidly joined to it. Both the length of the114

vertical beams and distance between them is equal to L.115

A scheme of the metastructure is depicted in Fig. 1a.116

The beams are considered to be slender, thus permitting117

to use Euler-Bernoulli theory, neglecting the effect of118

shear strains. Same Young’s modulus E and volumetric119

density ρ are considered for both vertical and horizon-120

tal beams. Circular cross-section with distinct diameter121

for vertical (DV ) and horizontal (DH) beams is selected.122

The degrees of freedom of the system are u, w, θ for the123

horizontal and vertical beams, which can be identified124

in the representative unit cell, Fig. 1b, u,w being the125

displacements in X and Z direction, respectively, and θ,126

the rotation around the out-of-plane axis.127

The plane-wave propagation characteristics of the128

defined metastructure are analyzed in the following sec-129

tions.130

(a)

(b)

Fig. 1: Lattice structure: (a) Scheme of the metastruc-
ture, (b) Unit cell i with degrees of freedom of boundary
(left and right) and internal points, and lattice vector e.

3 Numerical Analysis 131

We are going to apply Bloch’s theorem [1,2] to the 132

representative unit cell (Fig. 1b) which defines the lat- 133

tice structure. The intrinsic periodicity allows to ana- 134

lyze a single unit cell in order to obtain the dispersive 135

properties of the whole lattice. We have followed an ap- 136

proach based on the FEM model of the unit cell, which 137

has been modeled as two perpendicular beams rigidly 138

joined at the middle point of the horizontal one. Stiff- 139

ness and mass matrices are built for a two-node Euler- 140

Bernoulli beam element in the classical way [14]. As- 141

suming a plane-wave solution, the equation of motion 142

leads to the following eigenvalue problem written in ma- 143

trix form as 144

(K−ω2M)u= 0, (1)

where K and M are the global stiffness and mass ma- 145

trices, respectively, and u contains the displacements 146

and rotations of the unit-cell nodes. These can be ei- 147

ther internal nodes or boundary nodes, shared with the 148

neighboring cells. Bloch’s theorem states a constraint 149

condition between the displacements and rotations of 150

the boundary nodes. Let uri and uli be the displacements 151

and rotations of the right and left boundary nodes (Fig. 152



1b), respectively, defined by153

uri =

uri
wr
i

θri

 , uli =

uli
wl
i

θli

 . (2)

Then, in accordance to Bloch’s theorem, uri and uli154

have the following relationship155

uri = eik·euli = eiκuli, (3)

where k is the wavevector and e is the lattice vector de-156

fined in Fig. 1b. Focusing the analysis just for wavevec-157

tors within the First Brillouin Zone [1], κ = k ·e ∈ [0,π].158

Hence, the vector u can be expressed as a function of uli159

and uIi (of size 3N×1, being N the number of internal160

nodes) by161

u=


uri
uli
uIi

= TuR;T=

 eiκI3 03,3N
I3 03,3N

03N,3 I3N

 ;uR =

{
uli
uIi

}
, (4)

where Im is the identity matrix of order m and 0m,n is162

the zero matrix of size m×n. Introducing Eq. (4) into163

Eq. (1), and premultiplying by TH (Hermitian transpose164

of T), we get165

TH(K−ω2M)TuR = 0. (5)

Finally, the dispersive behavior of the lattice expressed166

as ω = ω(κ) can be derived from the solution of the167

eigenvalue problem given by Eq. (5).168

4 Analysis of results169

Band structure and mode shapes, derived from170

the solution of Eq. (5), will be presented for spe-171

cific mechanical properties. These correspond to steel172

(Young’s modulus E = 2.1 · 1011 N/m2, mass density173

ρ = 7800 kg/m3). The length of the beams is L = 1 m,174

and the diameters of horizontal and vertical beams are175

DH = 0.1 m and DV = 0.15 m, respectively, for the first176

analysis that will be presented. Later on, these diame-177

ters will be modified in order to analyze their influence178

on the band structure. In both analyses, the natural179

frequencies of a beam of length l and diameter d work-180

ing under clamped-free (hereinafter C−F) or clamped-181

pinned (hereinafter C−P) boundary conditions are in-182

cluded to clarify their influence in the band structure of183

the metastructure. The parameters l and d take the cor-184

responding values of the horizontal and vertical beams.185

4.1 Dispersion curves and mode shapes186

Dispersion curves (Fig. 2a) and shape of modes187

3, 4, and 5 at certain wavenumbers (Figs. 2b-2f) are188

presented.189

For mode 3 at κ = 0, the transverse displacement 190

of the vertical beam, shown in Fig. 2b, fits the first 191

bending mode shape of a C−F beam (leaving aside the 192

rigid-body motion due to the displacement and rotation 193

at the join with the horizontal beam). For the mode 194

5 at κ = π, the deformation of the vertical beam in Z 195

direction corresponds to the first axial mode shape of 196

a C−F beam (Fig. 2f); regarding the horizontal beam, 197

each half shows transverse displacement which fits the 198

first bending mode of a C−P beam. These evidences 199

suggest the influence of the corresponding natural fre- 200

quencies on the dispersion curves. It can be verified that 201

frequencies of mode 3 at κ= 0 and mode 5 at κ= π at the 202

dispersion curves take the frequency values of the cor- 203

responding natural modes discussed above. Hence, Fig. 204

2a includes the first axial and bending natural frequen- 205

cies of a C−F beam (l= L, d=DV ) and the first bending 206

natural frequency of a C−P beam (l = L/2, d = DH) in 207

order to show their influence on the dispersion curves. 208

Additionally, the shape of modes surrounding the band 209

gap (modes 3 and 4) at κ = 0 and κ = π are shown in 210

Figs. 2b-2e for completeness of the analysis. 211
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Fig. 2: (a) Dispersion curves (solid lines) and band gaps
(gray zones) for DV = 0.15 m, DH = 0.1 m, and L= 1.0 m
and natural frequencies of C−F beam and C−P beam:
×: ωC−F

1,axial(d = DV , l = L), ◦: ωC−F
1,bending(d = DV , l = L),

�: ωC−F
2,bending(d = DV , l = L), •: ωC−P

1,bending(d = DH , l =
L/2), (b) Shape of mode 3 at κ = 0, (c) Shape of mode
3 at κ = π, (d) Shape of mode 4 at κ = 0, (e) Shape of
mode 4 at κ = π, (f) Shape of mode 5 at κ = π.



As mentioned above, other works [4] stated that a212

band gap appears at the natural frequency of the res-213

onators, which were composed by a spring of stiffness k214

and a mass m (natural frequency ω =
√
k/m), vibrating215

perpendicularly to the beam. Here, as it can be ob-216

served in Fig. 2a, the band gaps do not appear around217

the natural frequencies of a C−F beam nor C−P beam.218

In this case, when κ tends to π, modes 2 and 5 trend219

towards these natural frequencies. Frequency of mode220

3 at κ = 0, which shows a bending C−F mode shape of221

the vertical beam, matches with the first bending fre-222

quency of a C−F beam. Frequency of mode 5 at κ = π,223

which shows an axial C−F mode shape of the vertical224

beam and a bending C−P mode shape of the horizontal225

beam, is limited by the first axial frequency of a C−F226

beam and the first bending frequency of a C−P beam.227

From the results, it is clear to see that the natural228

frequencies play a role in the dispersive behavior. They229

evidence that the band gaps do not appear around the230

natural frequencies of the beam-like resonator, at least,231

for the selected set of mechanical properties.232

4.2 Evolution of band structures with the diameter of233

the resonator234

In order to know how the natural frequencies of235

the resonators, or of the horizontal beam, interfere in236

the band structure of the system, as found in Fig. 2a237

for specific mechanical properties, we have performed238

a parametric analysis varying the diameter of vertical239

beams DV , thus inducing changes in both area and in-240

ertia of the vertical beam. These modify the bending241

natural frequencies of the resonator, while keeping the242

axial ones unchanged. Then the analysis consists in de-243

riving the band structure as a function of DV , and it244

has been done for DV ranging from 0.01 m to 0.3 m,245

and DH = 0.1 m.246

Fig. 3 shows the evolution of the band structures247

for DH = 0.1 m. The gray zones represent the ampli-248

tude of the band gaps at a certain DV/DH . The first249

axial and bending natural frequencies of a C−F beam250

of length l and diameter d, and the first bending natural251

frequencies of a C−P beam of length l and diameter d252

are included in both figures for the mechanical proper-253

ties specified above.254

From Fig. 3 it can be noticed that the axial and255

bending natural frequencies of a C−F beam and a C−P256

beam develop a decisive role in the formation of band257

gaps. For values of DV close to the lower limit, the bend-258

ing natural frequencies of a C−F beam pass through the259

band gaps. This agrees with the hypothesis that a band260

gap exists at the natural frequency of the resonator, sim-261

ilarly to the behavior of spring-mass resonators attached262

to a horizontal beam [4]. As DV increases, the natural263

frequencies move from creating band gaps around them264

to limiting their width. The transition of this effect ap-265

pears around DV/DH = 1. For values of DV smaller than266

DH , the resonators create band gaps at their bending267

0 1 2 3
0

3·103

6·103

9·103

12·103

15·103

18·103

Fig. 3: Evolution of band gaps with DV/DH (DH = 0.1
m, and L = 1.0 m). ◦: ωC−F

1,axial(d = DV , l = L), �:
ωC−F
1,axial(d =DH , l = L/2), ∗: ωC−P

1,bending(d =DH , l = L/2),
×: ωC−F

1,bending(d = DV , l = L), ♢: ωC−F
2,bending(d = DV , l =

L), +: ωC−F
3,bending(d = DV , l = L), ◃: ωC−F

4,bending(d =

DV , l = L).

natural frequencies under C−F boundary conditions. In 268

contrast to this, for values of DV higher than DH , the ax- 269

ial natural frequencies under C−F boundary conditions 270

together with the bending ones with C−F and C−P 271

boundary conditions constitute the borders of the band 272

gaps. 273

5 Conclusions 274

In this work a metastructure composed by an ar- 275

rangement of vertical beams rigidly joined to a horizon- 276

tal beam has been studied. The aim of this work was to 277

analyze the influence of the natural frequencies of the 278

resonators on the formation of band gaps in beams with 279

periodic arrangement of beam-like resonators. 280

A numerical analysis based on FEM has been done 281

through the application of Bloch’s theorem to the unit 282

cell of the metastructure considered as a lattice. 283

The main finding of the work is that beam-like res- 284

onators, in contrast to spring-mass resonators, do not 285

always create band gaps at their natural frequencies, 286

but just for certain values of their mechanical properties. 287

Hence, the rule cannot be generalized. In fact, depend- 288

ing on the ratio of mass and stiffness of the horizontal 289

and vertical beam, the band structure is differently in- 290

fluenced by the natural frequencies of the resonators. 291

For DV/DH < 1, they create band gaps at their bending 292

natural frequencies under C−F boundary conditions. In 293

contrast, for DV/DH > 1, natural frequencies due to ax- 294

ial and bending vibration limit the width of the band 295

gaps. For this diameter ratio, bending modes related to 296

the horizontal beam also contribute to this limit. 297
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