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Abstract

Nanomechanical resonators consisting in one-dimensional vibrating structures

have remarkable performance in detecting small adherent masses. The mass

sensing principle is based on the use of the resonant frequency shifts caused

by unknown attached masses. In spite of its importance in applications, few

studies are available on this inverse problem. Dilena et al. (2019) presented

a method for reconstructing a small mass distribution by using the first N

resonant frequencies of the free axial vibration of a nanorod under clamped

end conditions. In order to avoid trivial non-uniqueness when spectral data

belonging to a single spectrum are used, the mass variation was supposed to

be supported in half of the axis interval. In this paper, we remove this a priori

assumption on the mass support, and we show how to extend the method to

reconstruct a general mass distribution by adding to the input data the first

N lower eigenvalues of the nanorod under clamped-free end conditions. The

nanobeam is modelled using the modified strain gradient theory to account for

the microstructure and size effects. The reconstruction is based on an iterative

procedure which takes advantage of the closed-form solution available when the

mass change is small, and turns out to be convergent under this assumption. The

results of an extended series of numerical simulations support the theoretical

results.
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inverse problems, axial vibration.

1. Introduction

Nanosensors are gathering attention in the last decade due to the necessity

of measuring physical and chemical properties in industrial or biological sys-

tems at the sub-micron scale [1, 2]. One of the most representative examples

of down-scaling in sensoring systems is the nanomechanical resonator, which5

typically consists in a one-dimensional vibrating structure with remarkable per-

formance in detecting small adherent masses [3]. The mass sensing principle

for these systems is based on using the resonant frequency shifts caused by un-

known additional masses attached on the surface of the sensor as data for the

reconstruction of the mass variation.10

In spite of its importance in applications, few results are available on this

inverse problem. Actually, there are studies, although not numerous, on the

identification of small concentrated masses in classical beams and rectangular

plates, see, for example, [4] and [5]. For the sake of completeness, we also

mention the recent contributions [6], [7] in which the identification of an open15

crack in a vibrating rod or beam, respectively, is reduced to the identification

of a point mass placed at the cracked cross-section. Sufficient conditions for the

uniqueness of the solution to this inverse problem were established in [6], [7] by

using minimal resonant frequency data, without any a priori assumption on the

smallness of the attached mass and for beams with smooth variable profile.20

It should be noticed that the above works are based on classical elasticity

principles. Therefore, the corresponding mechanical models are not able to take

into account those microstructure and scale effects that are relevant in predicting

the dynamical response of nanostructures, commonly used as mass sensors, as

it has been shown through experimental results by different authors, see, for25
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instance, [8, 9, 10, 11].

Among the generalized continuum approaches, we cite here three main groups:

the microcontinuum theory [12] including micropolar, microstretch and micro-

morphic (3M) theories (Cosserat micropolar elasticity [13] should be considered

in this category as the simplest formulation among (3M) theories). Inside this30

group of theories, it is worth to cite the recent papers by Shaat [14] and Ansari

et al. [15]. The other two groups are the different versions of nonlocal contin-

uum mechanics theories and the strain gradient elasticity family. In the sequel,

some more details of the approaches belonging in this two last groups are given,

in view of their wide use in the last fifteen years to address problems related to35

the mechanical behaviour of nanostructures.

The origin of nonlocal continuum mechanics theories can be found in the

works by Kroner [16], Krumhansl [17], and Kunin [18]. They were later sim-

plified by Eringen and coworkers ([19, 20, 21, 22]), and formulated originally in

integral form for linear homogeneous isotropic elastic materials. In this model,40

called strain-driven formulation of the nonlocal elasticity, the stress at a point

of a solid depends on the strain at all points of the domain. This dependence

is represented by a convolution integral with a smoothing kernel. Eringen [22]

showed that, for a specific class of kernel functions, the nonlocal integral consti-

tutive equation can be transformed into a differential form, which fairly simplify45

the analysis. Exploiting this simplification, the differential approach has been

widely used to analyze the mechanical behaviour of nanostructures, see the re-

cent reviews by Eltaher et al. [23], Rafii-Tabar et al. [24], and Thai et al.

[25] which summarises the huge number of publications on the subject since

the pioneer work of Peddieson et al. [26]. Nevertheless, Romano et al. [27]50

clearly showed that, in the majorities of the cases, the fully nonlocal elasticity

theory (strain-driven) leads to problems that have to be considered as ill-posed,

with no solution in general. Therefore, this model is not feasible to assess scale

effects in nanostructures. To overcome these drawbacks, Romano et al. [28]
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proposed an alternative formulation of the pure nonlocal strain-driven elastic55

model. The new nonlocal model, called stress-driven, considers that elastic

strain at a point is represented by a convolution integral of the stress field and

a smoothing kernel. The approach leads to well-posed problems when it is ap-

plied to several kinds of nanostructures ([29, 30, 31, 32, 33]). The ill-posedness

of the pure strain-driven nonlocal problem can also be removed using the two-60

phase local/nonlocal strain-driven constitutive model, which was first proposed

by Eringen [19, 34] and later applied by different authors ([35], [36], [37], [38],

and [39]) to address several problems related to the statics and dynamics of

nanostructures. Moreover, the two-phase local/nonlocal stress-driven constitu-

tive model have been recently developed [40, 41].65

Other very popular approaches to analyse the mechanical behaviour of nanos-

tructures are the strain gradient elasticity family including the couple stress

theory [42, 43, 44], the first and second strain gradient theories of Mindlin

[45, 46], the modified couple stress theory [47] and the modified strain gradient

theory [9]. The last one [9] is a simplification of previous formulations due to70

Mindlin [46] and Fleck and Hutchinson [48], and requires new additional equi-

librium equations to govern the behavior of higher-order stresses. Only three

non-classical constants for isotropic linear elastic materials are needed in this

theory. Regarding the use of this theory to model the mechanical behaviour

of nanobeams it is necessary to mention the works by Kong et al. [49] who75

studied the static and dynamic bending behavior of Euler-Bernoulli beams, and

of Wang et al. [50] dealing with the problem of Timoshenko beams. Further

Akgoz and Civalek [51, 52] derived analytical solutions for the buckling prob-

lem of axially loaded nano-sized beams. Besides the previous analytical works,

and in the context of the modified strain gradient theory, Kahrobaiyan et al.80

[53] and Zhang et al. [54] developed an Euler-Bernoulli and Timoshenko finite

beam elements, respectively for the study of static bending, free vibration and

buckling behavior of microbeams. The interested reader can see the very re-
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cent review by Thai et al. [25] for relevant applications to the analysis of the

mechanical response of different kinds of nanostructures. Moreover, it is worth85

to note that the modified strain gradient formulation is more general than the

couple stress theory. In fact, this last theory can be considered a special case of

the proposed one by Lam et al. [9]. The classical continuum theory can be also

recovered cancelling the scale parameters present in the strain gradient theory.

Lim et al. [55] combine in a unique theory both the pure nonlocal elasticity90

theory of Eringen and the strain gradient elasticity. The resulting theory, called

nonlocal strain gradient theory, contains two non-classical material parameters,

the nonlocal parameter and the gradient coefficient. Since then, a large number

of papers have been published applying this theory to nanostructures. Here we

only quote a few examples ([56, 57, 58, 59, 60, 61, 62, 63]). The application of95

the theory to bounded domains implies the need to fulfil both classical and non-

classical (higher-order) boundary conditions, as well as the inherent boundary

conditions imposed by the nonlocal constitutive equations (constitutive bound-

ary conditions). However, the above works did not consider all the boundary

conditions (classical, non-classical and constitutive) in the analysis. In fact,100

Zaera et al. [64] shown that, in general, is not possible to accomplish simulta-

neously the boundary conditions, which are all mandatory in the framework of

the nonlocal strain gradient elasticity, and therefore, the problems formulated

through this theory have no solution.

Finally, we refer here some approaches combining the strain gradient elas-105

ticity and the surface elasticity, proposed by Gurtin and Murdoch ([65, 66]), in

order to explain the size effects present in nanostructures. In this respect we

quote the recent papers by Mirkalantari et al. [67] and Fu et al. [68], among

others.

The modified strain gradient theory seems to be an attractive formulation110

accounting for the scale effect present in nanostructures. The size dependence

of deformation behavior in the micron scale observed in metals [48] and poly-
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mers [9], could be explained by the strain gradient-based constitutive equations

considered in this formulation. Moreover, within the modified strain gradient

theory proposed in [9], the identification of a single point mass was previously115

considered in [69] and [70] for nanobeams under longitudinal or bending vi-

brations, respectively, and in [71] for the case of rectangular simply-supported

Kirchhoff-Love nanoplates.

Although the majority of the research efforts have been focused until now

on the identification of concentrated masses attached to a baseline nanosystem,120

a distributed mass representing the adsorbed analyte seems to be more real-

istic in several applications. Hanay et al. [72] proposed an inertial imaging

method to determine the first N moments of the unknown mass distribution in

terms of the shifts in the first N resonant frequencies, under the assumption of

small global mass change. The analysis is applied to the transverse vibration125

of a clamped-clamped nanobeam, but, however, the formulation relies on the

classical elasticity theory. Using the modified strain gradient framework [9] to

account for size effects, the inverse problem of determining the mass distribu-

tion of a nanorod from the knowledge of the first N resonant frequencies of the

free axial vibration under clamped ends was originally addressed in [73]. Let130

us recall that the free axial vibration of a nanorod is governed by a differential

operator with fourth order leading term, instead of a second-order operator, as

it occurs for classical beams. Assuming that the mass coefficient is a priori

known on half of the nanorod, and that the added mass is a small perturbation

of the total mass of the nanosensor, the reconstruction procedure produces an135

approximation of the unknown mass density as a generalized Fourier partial sum

of order N , whose coefficients are calculated from the first N eigenvalues. The

approach corresponds to a mixed formulation of the inverse eigenvalue problem

with finite data, see, for example, the interesting paper by Barnes [74] and the

introductory section in [73] for an overview of the main mathematical features140

of this class of problems.
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In this paper we continue the line of research initiated in [73] and we consider

the more general inverse problem of determining a mass variation not necessar-

ily supported in half of the nanorod interval axis. More precisely, we propose a

reconstruction method based on the knowledge of a finite number of lower res-145

onant frequencies belonging to two spectra corresponding to clamped-clamped

and clamped-free end conditions. It can be shown that the recourse to a second

partial spectrum is necessary in order to avoid trivial non uniqueness of the so-

lution to the inverse problem. Roughly speaking, the information coming from

one spectrum was replaced in [73] by the a priori knowledge of the mass distri-150

bution on one half of the nanobeam axis. Under the assumption that the added

mass is small with respect to the global mass of the referential nanorod, we show

that the first-order frequency shifts can be used to determine a set of generalized

Fourier coefficients of the unknown mass variation on a suitable set of functions.

In case of uniform unperturbed nanorod, the procedure allows for a closed form155

solution of the linearized inverse problem. An iterative reconstruction proce-

dure based on first-order Taylor approximation of the eigenvalues is proposed

and implemented to solve the inverse problem. The reconstruction procedure

is shown to be convergent, provided that the eigenvalues of the unperturbed

nanobeam are close enough to the corresponding target eigenvalues.160

The method has been tested on a large class of mass variations, including

smooth (e.g., continuous) and discontinuous added mass distributions. Numer-

ical reconstruction shows good accuracy in the smooth cases. Precise pointwise

approximations are obtained even when only the first N = 9, 12 eigenfrequencies

of both spectra are used in identification. It should be noticed that the high qual-165

ity of the reconstruction obtained in these cases is rather unexpected, since the

general mathematical results available in the literature for fourth-order Euler-

Bernoulli’s-like differential operators are more pessimistic, see, among other

contributions, [75], [76], [77]. The reconstruction of discontinuous coefficients

turns out to be less accurate, and the identified mass coefficient exhibits appre-170
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ciable oscillations near the jumps.

The plan of the paper is as follows. The formulation of the mass identifica-

tion problem is presented in Section 2. Section 3 describes the reconstruction

method. The evaluation of the performance of the reconstruction method is

illustrated in Section 4. This section includes results corresponding to both175

continuous (Section 4.2) and discontinuous mass distributions (Section 4.3).

The robustness of the proposed methodology is tested by using noisy resonant

frequencies belonging to the two spectra (Section 4.4). Finally, some concluding

remarks are collected in Section 5.

2. Formulation of the inverse problem180

The spatial variation of the infinitesimal free axial vibration at radian fre-

quency
√
λ of the unperturbed uniform nanorod, of length L and under clamped

end conditions, is governed within the modified strain gradient theory by the

following eigenvalue problem [78, 69]
bvIV − av′′ = λρ0v, x ∈ (0, L), (1)

v(0) = 0, v′′(0) = 0, (2)

v(L) = 0, v′′(L) = 0, (3)

where λ is the eigenvalue and v = v(x) is the corresponding eigenfunction. The

coefficient ρ0 = const., ρ0 > 0, is the unperturbed mass density per unit length.

The coefficient a = const., a > 0, is the axial stiffness of the nanorod, and

it can be expressed as a = EA, with E, E > 0, being the Young’s modulus,

and A being a geometrical parameter that may be set to correspond with the

cross-sectional area of the nanorod [78]. The coefficient b = const., b > 0, is

determined as

b = GA

(
2l20 +

4

5
l21

)
, (4)

where G = E/(2(1 + ν)) is the shear modulus defined in terms of E and of

Poisson ratio ν, ν > 0, and l0 > 0, l1 > 0 are length scale parameters [9, 78, 69].
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The eigenpairs {λCn , vCn (x)}∞n=1 of (1)–(3) are

λCn =
(nπ
L

)2 [ 1

ρ0

(
a+ b

(nπ
L

)2)]
, (5)

vCn (x) =

√
2

ρ0L
sin
(nπx
L

)
, (6)

where the eigenfunctions are mass-normalized such that∫ L

0

ρ0(vCn (x))2 = 1, n ≥ 1. (7)

If in (1)–(3) the boundary conditions (3) are replaced by

v′(L) = 0, v′′′(L) = 0, (8)

then the nanorod is said to be under clamped-free end conditions, and the eigen-

values of (1), (2), (8) are

λFn =

(
(2n− 1)π

2L

)2
[

1

ρ0

(
a+ b

(
(2n− 1)π

2L

)2
)]

, (9)

vFn (x) =

√
2

ρ0L
sin

(
(2n− 1)πx

2L

)
, (10)

with
∫ L
0
ρ0(vFn (x))2 = 1 for every n ≥ 1.

Let us assume that the mass density changes, and denote by

ρ(x) = ρ0 + rε(x), x ∈ [0, L], (11)

the mass density per unit length of the perturbed nanorod. The mass change rε

is such that (
1

L

∫ L

0

(rε(x))2dx

) 1
2

= ερ0, (12)

rε(x) ∈ L∞([0, L]), (13)

0 < ρ− ≤ ρ(x) ≤ ρ+, x ∈ [0, L], (14)

9



where ε, 0 < ε ≤ ε̂ρ, for a given small number ε̂ρ, and ρ−, ρ+ are given

constants (with ρ+ ≥ ρ0 + ‖rε‖∞) independent of ε. Hereinafter, L∞([0, L])185

is the space of (Lebesgue measurable) functions f : [0, L] → R such that

‖f‖∞ = ess supx∈[0,L]|f(x)| < ∞ almost everywhere in [0, L]. Moreover,

L2(0, L) is the space of (Lebesgue measurable) functions f : [0, L] → R such

that ‖f‖2 =
(∫ L

0
f2(x)dx

)1/2
<∞.

Let us denote by {λCn (ρ), vCn (x; ρ)}∞n=1, {λFn (ρ), vFn (x; ρ)}∞n=1 the eigenpairs190

of the problems (1)–(3) and (1), (2), (8), respectively, when ρ0 is replaced by

ρ(x).

In this paper we wish to construct an approximation to ρ(x) (or, equiva-

lently, to rε(x)) using a finite amount of spectral data belonging to the clamped-

clamped and clamped-free spectra, namely, the set

{λCn (ρ)}Nn=1

⋃
{λFm(ρ)}Mm=1, (15)

where N , M are given integers.

Our main result is the development of a reconstruction procedure that, under

suitable assumptions on the smallness of the mass variation and on the small-195

ness of the eigenvalues shifts between unperturbed and perturbed eigenvalues,

converges to a mass density function which has the wished spectral properties.

3. The reconstruction method

Our reconstruction method is obtained as a generalization of the method

presented in [73], and it is based on a sequence of linearizations of the inverse200

problem with finite data. We first present the linearization in a neighborhood

of the unperturbed nanorod. Next, we shall introduce the iterative version of

the identification procedure.

A key mathematical tool in our analysis is the explicit expression of the first

order change with respect to the smallness parameter ε of an eigenvalue of the
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nanorod. With reference to the initial uniform nanorod, we have

δλCn ≡ 1− λCn (ρ)

λCn
=

∫ L

0

rε(x)ΦCn (x)dx, (16)

δλFm ≡ 1− λFm(ρ)

λFm
=

∫ L

0

rε(x)ΦFm(x)dx, (17)

where ΦCn (x) ≡ (vCn (x))2, ΦFm(x) ≡ (vFm(x))2, n = 1, . . . , N , m = 1, . . . ,M .

This result has been proved in [73] for clamped end conditions and can be

generalized to clamped-free end conditions. A simple calculation shows that

(up to an inessential multiplicative constant)

{ΦCn (x),ΦFm(x)}∞n,m=1 = {1− cos(kπx/L)}∞k=1, (18)

which is a basis of L2(0, L). This property enables us to introduce the repre-

sentation

rε(x) =
∞∑
k=1

βCk ΦCk (x) + βFk ΦFk (x), (19)

where the coefficients {βCk , βFk }∞k=1 play the role of Generalized Fourier Coeffi-

cients of the mass variation rε(x). Replacing the above series expansion of rε(x)

in (16) and (17), and taking the finite approximation of order (N +M) of rε(x)

in (19), we obtain the (N +M)× (N +M) linear system

Aβ = δλ, (20)

or, more explicitly,

AC−C11 · · · AC−C1N AC−F11 · · · AC−F1M

· · · · · · · · · · · ·

AC−CN1 · · · AC−CNN AC−FN1 · · · AC−FNM

AF−C11 · · · AF−C1N AF−F11 · · · AF−F1M

· · · · · · · · · · · ·

AF−CM1 · · · AF−CMN AF−FM1 · · · AF−FMM





βC1

· · ·

βCN

βF1

· · ·

βFM


=



δλC1

· · ·

δλCN

δλF1

· · ·

δλFM


, (21)
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with

AC−Cnk =

∫ L

0

ΦCn (x)ΦCk (x)dx, n, k = 1, · · ·N, (22)

AC−Fnk =

∫ L

0

ΦCn (x)ΦFk (x)dx, n = 1, · · ·N, k = 1, · · ·M, (23)

AF−Cmk =

∫ L

0

ΦCk (x)ΦFm(x)dx, k = 1, · · ·N, m = 1, · · · ,M, (24)

AF−Fmk =

∫ L

0

ΦFm(x)ΦFk (x)dx, m, k = 1, · · · ,M. (25)

A direct calculation based on the explicit expressions of the eigenfunctions (6)

and (10), shows that the entries of the matrix A are given by

Amn =
1

ρ20L
for m 6= n, Ann =

3

2ρ20L
, (26)

m,n = 1, · · · ,M +N , and

det(A) = (2M + 2N + 1)

(
1

2ρ20L

)M+N

, (27)

(A)−1mn = −(2ρ20L)
2

2M + 2N + 1
for m 6= n, (A)−1nn = (2ρ20L)

2M + 2N − 1

2M + 2N + 1
,

(28)

m,n = 1, · · · ,M+N . Therefore, the unknown vector β in (21) has the following

expression

βCn =
2ρ20L

2M + 2N + 1

(2M + 2N − 1)δλCn − 2

 N∑
k=1,k 6=n

δλCk +
M∑
j=1

δλFj

 ,

(29)

βFm =
2ρ20L

2M + 2N + 1

(2M + 2N − 1)δλFm − 2

 M∑
k=1,k 6=m

δλFk +
N∑
j=1

δλCj


(30)

12



n = 1, ..., N , m = 1, ...,M , and the first-order mass variation can be obtained

by means of equation (19) (truncated series).205

The accuracy in the determination of rε(x) can be improved by iterating the

above procedure as follows. Let us denote by {λC(exp)
n }Nn=1, {λF (exp)

m }Mm=1 the

measured (or target) values of the eigenvalues {λCn (ρ)}Nn=1, {λFm(ρ)}Mm=1 of the

perturbed nanorod with mass density ρ(x) = ρ0 + rε(x). The function ρ(x) is

determined in [0, L] by the iterative process

ρ(j+1)(x) = ρ(j)(x) + r(j)(x), j ≥ 0, (31)

with ρ(0)(x) ≡ ρ0. Note that the subscript ε has been omitted to simplify the

notation. The increment

r(j)(x) =
N∑
k=1

β
C(j)
k Φ

C(j)
k (x) +

M∑
k=1

β
F (j)
k Φ

F (j)
k (x) (32)

is evaluated by solving the (N +M)× (N +M) linear system

A(j)β(j) = δλ(j), (33)

in which δλ(j) = (δλ
C(j)
1 , · · · , δλC(j)

N , δλ
F (j)
1 , · · · , δλC(j)

M ), with

δλC(j)
n ≡ 1− λ

C(exp)
n

λCn (ρ(j))
, n = 1, · · · , N, (34)

δλF (j)
m ≡ 1− λ

F (exp)
m

λFm(ρ(j))
, m = 1, · · · ,M. (35)

The entries of the matrix A(j) are as in (22)–(25), with the functions ΦCn (x),

ΦFm(x) replaced by Φ
C(j)
n (x) = (vCn (x; ρ(j)))2, Φ

F (j)
m (x) = (vFm(x; ρ(j)))2, n =

1, · · · , N , m = 1, · · · ,M . Here, {λCn (ρ(j)), vCn (x; ρ(j))}, {λFm(ρ(j)), vFm(x; ρ(j))}

are the nth and mth (mass normalized) eigenpairs of the clamped and clamped-

free nanobeam with mass density ρ(j)(x), respectively. By solving (33) and

using (31), (32), one has

ρ(j+1)(x) = ρ0 +

j∑
i=0

r(i)(x), j ≥ 0, (36)
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and the iterations are stopped when the condition

e ≡ 1

N

 N∑
n=1

(
λ
C(exp)
n − λCn (ρ(j))

λ
C(exp)
n

)2
 1

2

+
1

M

 M∑
m=1

(
λ
F (exp)
m − λFm(ρ(j))

λ
F (exp)
m

)2
 1

2

< γ

(37)

is satisfied for a small given number γ.

The convergence of the iterative procedure described above can be studied

by extending the methods shown in [73], where finite eigenvalue data coming

from a single spectrum only were used. Referring the interested reader to the

paper [73] for the mathematical details of the convergence proof, here we recall210

the main result for the present reconstruction method in case of smooth mass

variations. There exists a positive number ε̂ρ, ε̂ρ only depending on the a priori

data of the inverse problem, such that if ε ≤ ε̂ρ, then the iterative procedure of

identification converges uniformly to a continuous function in [0, L], provided

that |δλ(0)| < 1, where |δλ(0)| is the Euclidean norm of the vector δλ(0). The215

convergence result clearly has local character, since its proof holds on the as-

sumption that the mass variation is a small perturbation of the total mass of

the unperturbed nanorod. It should be noticed, in addition, that the local char-

acter is also reflected on the condition |δλ(0)| < 1, which requires that the first

N , M eigenvalues of the unperturbed nanorod under clamped and clamped-free220

end conditions, respectively, must be close enough to the corresponding target

eigenvalues.

4. Applications

4.1. Numerical setting and test specimen

In order to evaluate the performance of the reconstruction method, we have225

used an extended version of the numerical code originally developed in [73].

The code is based on a finite element model of the nanobeam, with third-degree

polynomial spline approximation of the axial displacement in each finite element.
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The spatial mesh consists of Ne equally spaced finite elements, and the mass

coefficient is approximated by a continuous, piecewise linear function on each230

finite element. Most of the simulations have been performed taking Ne = 200

and using the same number of frequencies from both spectra, e.g., M = N ,

with N up to 15. Local mass and stiffness matrices were evaluated in exact

form, and the entries of the matrix A were determined by a trapezoidal rule of

integration. The entire procedure, both for the direct and the inverse problem,235

was built in Scilab environment (version 5.5.2). The computation time needed

for a single iteration of the identification algorithm (for Ne = 200 and with

N = M = 15) was about 1 second. We refer to [73] (Section 5.2) for more

details on the numerical procedure.

Concerning the test specimen, reference is made to the geometrical and240

material properties of the nanorod used in [49] and [73]. The radius R of the

circular equivalent cross-section is equal to 50 µm and the length L is taken

equal to 40R; the material length scale parameters are assumed to be equal, and

`0 = `1 = 17.6 µm; the Young’s modulus E is equal to 1.44 GPa; the Poisson’s

coefficient is ν = 0.38; and the volume mass density is equal to ρvol = 1000245

kg/m
3
. The coefficients a, b, ρ0 corresponding to the above parameters take the

value a = 11.310 N, b = 3.554 · 10−9 Nm2, ρ0 = ρvol · πR2 = 7.854 · 10−6 kg/m.

The method has been tested on an extended series of simulations, by varying,

among other parameters, the number M , N of the first eigenfrequencies and

the geometry of the mass variation (e.g., position, intensity, regularity). In250

particular, two main classes of mass variations will be considered hereinafter,

namely, smooth or discontinuous mass functions rε(x), see Figure 1. The results

of identification for free-error data are presented first, that is, only errors due

to numerical approximation are included in the following analysis.

Before presenting the results, we recall that a preliminary series of tests were255

carried out in order to select a suitable mesh size for the numerical solution of

the direct and inverse eigenvalue problem. The analysis suggests to assume a

15



mesh with Ne = 200 equally spaced finite elements, which turns out to be a

good compromise between accuracy (maximum error on the first N = M = 15

eigenvalues less than 6.4 ·10−5 percent) and computational cost for all the cases260

studied, including the reconstruction procedure. Moreover, preliminary tests

suggest to choose γ = 10−5 in the stopping criterion (37).

4.2. Identification of smooth mass coefficients

The identification of smooth coefficients (e.g., continuous mass distribution)

leads to good results. Figures 2-4 show typical reconstructions of the mass

density

ρ(x) = ρ0 + ρ0t cos2
(
π(x− s)

c

)
χ[s− c

2 ,s+
c
2 ]
, (38)

where χ[L1,L2] is the characteristic function of the interval [L1, L2], s is the

central point of the support of the mass variation, c is the length of the support,265

ρ0t is the maximum amplitude of variation, see Figure 1(a). For the sake of

completeness, let us recall that the characteristic function χI : R → R of the

closed interval I, I ⊂ R, is defined as χI(x) = 1 if x ∈ I, χI(x) = 0 if x ∈ R \ I.

The results for the two challenging cases corresponding to small mass increase

and large mass increase, both supported in a small interval, (e.g., s/L = 0.35,270

c/L = 0.1, t = 0.1 and s/L = 0.35, c/L = 0.1, t = 1, respectively) are presented

for N = M in Figure 2 and 3. The global mass change ranges from 0.5% to

5.0% of the initial mass ρ0L, for ( cL = 0.10, t = 0.10) and ( cL = 0.10, t = 1.0),

respectively.

We see that, in the first case, the identified coefficient agrees well with the ex-275

act one, and accuracy of reconstruction rapidly improves as N increases. Similar

properties hold for the second case, apart from the oscillatory character of the

reconstructed coefficient around the actual mass value, which is more evident

for N = 9, whereas it becomes almost negligible when N = 15. Few iterations

are sufficient to satisfy the convergence criterion (37) with γ = 10−5, e.g., less280

than five in the present cases. For the sake of completeness, it should be noted
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that part of our results involve not necessarily small mass variations, see, for

example, Figure 4, with mass change equal to 15 per cent of the initial mass

ρ0L. This would suggest that the proposed reconstruction method has some

unexpected potential, in spite of the fact that the convergence of the identifica-285

tion procedure has local character and requires to work in a sufficiently small

neighborhood of the referential nanorod.

In Table 1 some synthetic information concerning the sequence of iterations

is reported. At most four iterations are required to fulfill the convergence crite-

rion in all the cases considered. The quantity e defined as the average difference290

between identified and target eigenvalues, see equation (37), is reduced at each

step of 1 − 2 orders of magnitude. The L2 and L∞ errors on the mass co-

efficient estimate are both reduced through the iterations. In particular, for

M = N = 15 the relative errors in L2 and L∞ norm are less than 7% and

5% of the initial values, respectively, confirming the accuracy in reconstruct-295

ing smooth mass distributions. It should be also pointed out that the matrix

A(j) is always well conditioned during the iterations, with condition number

κ(A(j)) = ‖A(j)‖ ‖(A(j))−1‖ ranging between 30 and 200 in all the cases stud-

ied. Here, ‖A(j)‖ = max|y|=1 |A(j)y|, where |y| = √y · y is the Euclidean norm

of the vector y ∈ RN+M .300

We briefly discuss the results of the reconstruction when a different number

of resonant frequencies belonging to the two spectra is chosen. The closed-form

solution of the inverse linearized problem in the neighborhood of the uniform

nanorod presented above shows that, in the extreme case in which the frequency

data belong to the single spectrum under clamped end conditions, only the305

even generalized Fourier coefficients of the first-order mass variation can be

determined. As a consequence, the reconstructed mass variation is symmetric

with respect to the mid-point x = L/2 and shows an appreciable increase of

the mass density exactly inside the actual region of the interval [0, L/2] affected

by the mass change, see, for instance, Figure 5. The estimate of the mass310
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density amplitude, however, is rather inaccurate, showing an underestimate of

about 50%. This indeterminacy is typical of the identification in symmetrical

systems by eigenvalue data only, and it has been found also in other contexts,

see, for example, the identification of damage in full-scale beams performed in

[79] (see Figure 9 of this reference). When, on the other hand, only the resonant315

frequencies of the clamped-free spectrum are used, our numerical simulations

show that the graph of the mass variation is approximately odd with respect

to x = L/2. Therefore, in case of positive mass variations (i.e., rε(x) ≥ 0),

this implies a significant difference between identified and exact coefficient, as

it is shown in Figure 6. Finally, significant discrepancy was also found in the320

intermediate cases in which N 6= M , primarily since some generalized Fourier

coefficients are missing in the expression of rε(x), see Figure 7. Basing on the

above considerations and results, our experience suggests that it is preferable to

use the same number of first frequencies in both spectra. It can be shown that

similar conclusions can be drawn in determining discontinuous mass variations.325

4.3. Identification of discontinuous mass coefficients

The determination of discontinuous mass coefficients is more problematic,

since it is expected that the reconstruction may fail near the jump discontinu-

ities. Some representative results are shown for the coefficient

ρ(x) = ρ0 + ρ0t · χ[s− c
2 ,s+

c
2 ]
, (39)

where s, c, t have the same meaning as in the previous section, see Figure

1(b). These cases correspond to perturbation located near the left end of the

nanorod (s/L = 0.15) and with small support (c/L = 0.1), but having either

small (t = 0.1, case i)) or large (t = 1.0, case ii)) intensity, respectively. In330

case i) (see Figure 8), the results are accurate enough for N = 12− 15, whereas

oscillations of the identified mass coefficient have appreciable amplitude in case

ii) (see Figure 9), and propagate in the remaining part of the interval. As it
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was expected, pointwise estimates of the mass change fail near the jumps. The

support of the mass perturbation is slightly overestimated, whereas it turns out335

that the mean value of the mass change is estimated with good accuracy.

Numerical results also show that the reconstruction of large mass variations

is accurate enough, see Figure 10, although a large number of frequencies (e.g.,

M = N = 20−25 with Ne = 400) and more iterations (less than 10) are needed

to reduce the oscillatory character of the identified mass profile, see Figure340

11. Regarding this point, we recall that when the present method is combined

with the physical a priori information that the mass variation is positive, the

reconstruction of discontinuous distributions may further be improved, leading

to better uniform approximation of the actual solution. We refer to [73] (Section

5.3.4) for more details and applications.345

4.4. Application to noisy data

In order to test the robustness of the method, the identification was carried

out by perturbing the target noise-free resonant frequencies belonging to the

two spectra
√
λexpn as follows√

λexp−errn =
√
λexpn + τn. (40)

Here, τn is a random Gaussian variable with vanishing mean and standard

deviation σ such that 3σ = 2πΠ, where Π is the maximum admitted error

in the frequency measurements. The effect of errors was evaluated both for

smooth and discontinuous mass distributions, by considering different profile of350

the coefficient and by varying the number N = M of the first eigenfrequencies

used in identification, for increasing values of Π ranging from 100 Hz to 5000 Hz.

A selected, though representative, set of results is shown in Figures 12 and 13,

for smooth and discontinuous mass coefficients, respectively. For each position

along the nanorod axis, and besides the exact mass coefficient, every subfigure355

contains three curves: the curve of the mean value and the two curves obtained
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by adding ±3σ to the mean value. One thousand of simulations was performed

for each case. It turns out that the three curves are almost indistinguishable

for Π = 100 Hz. Appreciable discrepancy occurs for Π = 1000 Hz, and for Π

greater than 3000 Hz the quality of the reconstruction is poor. In particular, for360

Π less than 2000 Hz, the effect of errors makes it possible to discriminate the

presence of even minor variations of mass, either regular or discontinuous, and

for which the influence of errors on the data is expected to be more significant.

It should be noted that Π = 2000 Hz corresponds to percentage errors ranging

approximately from 0.05 (high frequency) to 0.65 (low frequency) per cent of the365

unperturbed first fifteen resonant frequencies. Finally, the convergence speed

of the iterative method is not significantly affected by the random noise, and

the number of iterations needed to get convergence is slightly bigger than in the

error-free case.

5. Conclusions370

In this paper we have studied the problem of identifying a general distributed

mass added to a nanorod by using the variations produced on a suitable set

of lower resonant frequencies of the longitudinal vibration. In the previous

work [73], it was shown that the mass coefficient can be determined under the

hypothesis that the added mass is small with respect to the total mass of the375

nanosensor, and the first N frequencies under clamped boundary conditions are

known. The result obtained in [73] holds only when it is a priori known that

the support of the mass variation belongs to a half of the nanorod interval.

In this paper, this a priori assumption has been removed and a constructive

procedure for determining general mass coefficients has been proposed. More380

precisely, the a priori information on the support location of the mass variation

is replaced by the knowledge of the first M resonant frequencies of the nanorod

under clamped-free boundary conditions. Under these assumptions, and always

retaining the assumption of small mass variation, we construct an approximation
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of the unknown mass distribution by means of a generalized Fourier sum of385

order (N + M), whose coefficients are calculated in terms of the variations of

the eigenvalues belonging to the two partial spectra.

The mathematical aspects related to the convergence of the iterative identi-

fication method have been comprehensively treated in [73], and have not been

repeated here. Rather, we focused on applications. The results obtained in an390

extended series of numerical simulations show that good accuracy is reached for

N = M . In particular, if the mass coefficient is regular, then even a suitable

number of frequencies, say N less than 10, is sufficient to obtain an accurate

uniform approximation. In case of rough coefficients (e.g., discontinuous), a

larger number of information is necessary to capture the real behavior, say395

N = 15− 20.

Most frequently, inertial imaging methods used with nanomechanical sys-

tems use classical elasticity theories to model the dynamic behavior of the sensor.

However, the identification method herein presented is capable of accounting for

size effects experimentally observed at the micron scale. This makes this tech-400

nique particularly suitable for nanosensors using axial vibration behavior for

ultrasensitive detection of analytes in chemical or biological applications.

Finally, it is interesting to note that, despite the great mathematical diffi-

culties typical of this class of inverse eigenvalue problems with finite data, the

results of numerical simulations are unexpectedly good, even for added masses405

that are not necessarily small and also in the presence of errors in the data.

These results encourage to deepen the study of this class of inverse problems

from at least two points of view. On the one hand, it would be important to

quantify the convergence rate of the iterative procedure, and study the conver-

gence as the number of frequencies considered as input data increases. On the410

other hand, the theory we have developed is probably mature to include the

much more complex and challenging problem of the determination of mass vari-

ations in nanobeams from finite number of resonant frequencies of the bending
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vibration. Both the issues are currently under study by the authors, and some

preliminary results are rather promising.415
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Table Captions

Table 1. Some results of the reconstruction of smooth mass changes as645

in (38) versus iteration number j (up to convergence), with (a): s
L = 0.35,

c
L = 0.10, t = 0.10 (Figure 2); (b): s

L = 0.35, c
L = 0.10, t = 1.00 (Figure

3); (c): s
L = 0.35, c

L = 0.30, t = 1.00 (Figure 4), using the first N = 6

(columns 2 − 5), N = 15 (columns 6 − 9) eigenfrequencies. The quantity e is

defined in (37); eL2 =
‖ρident−ρexact‖L2

‖ρexact‖L2
, eL∞ = ‖ρident−ρexact‖L∞

‖ρexact‖L∞ , where ρident =650

ρident(x), ρexact = ρexact(x) are the identified and the exact mass density per

unit length, respectively. κ(A(j)) is the condition number of the matrix A(j).

The unperturbed nanorod corresponds to j = 0.
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Figure Captions

Figure 1. Mass density per unit length ρ = ρ(x) to be identified in [0, L].655

(a) Smooth mass changes as in (38); (b) discontinuous mass changes as in (39).

Figure 2. Reconstruction of smooth mass changes as in (38), with s
L = 0.35,

c
L = 0.10, t = 0.10, using the first N = M = 6, 9, 12, 15 eigenfrequencies of both

spectra.

Figure 3. Reconstruction of smooth mass changes as in (38), with s
L = 0.35,660

c
L = 0.10, t = 1.00, using the first N = M = 6, 9, 12, 15 eigenfrequencies of both

spectra.

Figure 4. Reconstruction of smooth mass changes as in (38), with s
L = 0.35,

c
L = 0.30, t = 1.00, using the first N = M = 6, 9, 12, 15 eigenfrequencies of both

spectra.665

Figure 5. Reconstruction of smooth mass changes as in (38), with s
L = 0.35,

c
L = 0.30, t = 1.00, using only the first N = 6, 9, 12, 15 eigenfrequencies of the

clamped nanorod.

Figure 6. Reconstruction of smooth mass changes as in (38), with s
L = 0.35,

c
L = 0.30, t = 1.00, using only the first M = 6, 9, 12, 15 eigenfrequencies of the670

clamped-free nanorod.

Figure 7. Reconstruction of smooth mass changes as in (38), with s
L = 0.35,

c
L = 0.30, t = 1.00, using the first (M,N) = (3, 15), (M,N) = (9, 15), (M,N) =

(15, 3), (M,N) = (15, 9) eigenfrequencies of the two spectra.

Figure 8. Reconstruction of discontinuous mass changes as in (39), with675

s
L = 0.15, c

L = 0.10, t = 0.10, using only the first N = M = 6, 9, 12, 15

eigenfrequencies of both spectra.
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Figure 9. Reconstruction of discontinuous mass changes as in (39), with s
L =

0.15, c
L = 0.10, t = 1.00, using the first N = M = 6, 9, 12, 15 eigenfrequencies

of both spectra.680

Figure 10. Reconstruction of discontinuous mass changes as in (39), with

s
L = 0.35, c

L = 0.30, t = 1.00, using the first N = M = 6, 9, 12, 15 eigenfrequen-

cies of both spectra.

Figure 11. Reconstruction of discontinuous mass changes as in (39), with

s
L = 0.35, c

L = 0.30, t = 1.00, using the first N = M = 20, 25 eigenfrequencies.685

Figure 12. Noise effects on identification of smooth mass changes. Upper

row: mass changes as in (38), with s
L = 0.35, c

L = 0.10, t = 0.10. Lower row:

mass changes as in (38), with s
L = 0.35, c

L = 0.30, t = 1.00.

Figure 13. Noise effects on identification of discontinuous mass changes.

Upper row: mass changes as in (39), with s
L = 0.15, c

L = 0.10, t = 0.10. Lower690

row: mass changes as in (39), with s
L = 0.35, c

L = 0.30, t = 1.00.
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Table1:Someresultsofthereconstructionofsmoothmasschangesasin(38)versusiteration

numberj(uptoconvergence),with(a): s
L
=0.35, c

L
=0.10,t=0.10(Figure2);(b):

s
L
=0.35, c

L
=0.10,t= 1.00(Figure3);(c): s

L
=0.35, c

L
=0.30,t= 1.00(Figure

4),usingthefirstN =6(columns2 5),N =15(columns6 9)eigenfrequencies. The

quantityeisdefinedin(37);eL2 =
ρident−ρexact

L2

ρexact
L2

,eL∞ =
ρident−ρexact L∞

ρexact L∞
,where

ρident=ρident(x),ρexact=ρexact(x)aretheidentifiedandtheexactmassdensityperunit

length,respectively.κ(A(j))istheconditionnumberofthematrixA(j). Theunperturbed

nanorodcorrespondstoj=0.

(a)

j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 1.69·10−3 2.50·10+1 1.92·10−2 9.09·10−2 1.01·10−3 6.10·10+1 1.92·10−2 9.09·10−2

1 2.50·10−5 2.50·10+1 1.01·10−2 3.84·10−2 2.69·10−5 6.10·10+1 1.66·10−3 5.57·10−3

2 4.27·10−8 2.75·10+1 1.01·10−2 3.74·10−2 2.32·10−7 7.42·10+1 1.39·10−3 4.24·10−3

(b)

j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 1.63·10−2 2.50·10+1 1.81·10−1 5.00·10−1 9.03·10−3 6.10·10+1 1.81·10−1 5.00·10−1

1 1.89·10−3 2.50·10+1 9.86·10−2 2.45·10−1 1.53·10−3 6.10·10+1 5.89·10−2 1.55·10−1

2 9.03·10−5 5.34·10+1 9.40·10−2 1.95·10−1 1.95·10−4 1.93·10+2 1.30·10−2 2.52·10−2

3 4.19·10−7 6.27·10+1 9.40·10−2 1.95·10−1 6.09·10−6 3.17·10+2 8.40·10−3 1.53·10−2

(c)

j e κ(A(j)) eL2 eL∞ e κ(A(j)) eL2 eL∞

0 4.46·10−2 2.50·10+1 2.82·10−1 5.00·10−1 2.56·10−2 6.10·10+1 2.82·10−1 5.00·10−1

1 8.44·10−3 2.50·10+1 1.01·10−1 1.92·10−1 4.73·10−3 6.10·10+1 1.02·10−1 1.97·10−1

2 8.70·10−4 5.25·10+1 1.99·10−2 3.38·10−2 5.20·10−4 1.29·10+2 1.91·10−2 3.80·10−2

3 2.90·10−5 7.91·10+1 1.05·10−2 1.68·10−2 1.85·10−5 1.95·10+2 2.16·10−3 3.15·10−3

4 7.49·10−8 8.17·10+1 1.05·10−2 1.65·10−2 8.27·10−8 2.03·10+2 2.05·10−3 2.92·10−3
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Figure 1: Mass density per unit length ρ = ρ(x) to be identified in [0, L]. (a) Smooth mass

changes as in (38); (b) discontinuous mass changes as in (39).
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Figure 2: Reconstruction of smooth mass changes as in (38), with s
L

= 0.35, c
L

= 0.10,

t = 0.10, using the first N = M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 3: Reconstruction of smooth mass changes as in (38), with s
L

= 0.35, c
L

= 0.10,

t = 1.00, using the first N = M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 4: Reconstruction of smooth mass changes as in (38), with s
L

= 0.35, c
L

= 0.30,

t = 1.00, using the first N = M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 5: Reconstruction of smooth mass changes as in (38), with s
L

= 0.35, c
L

= 0.30,

t = 1.00, using only the first N = 6, 9, 12, 15 eigenfrequencies of the clamped nanorod.
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Figure 6: Reconstruction of smooth mass changes as in (38), with s
L

= 0.35, c
L

= 0.30,

t = 1.00, using only the first M = 6, 9, 12, 15 eigenfrequencies of the clamped-free nanorod.
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Figure 7: Reconstruction of smooth mass changes as in (38), with s
L

= 0.35, c
L

= 0.30,

t = 1.00, using the first (M,N) = (3, 15), (M,N) = (9, 15), (M,N) = (15, 3), (M,N) = (15, 9)

eigenfrequencies of the two spectra.
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Figure 8: Reconstruction of discontinuous mass changes as in (39), with s
L

= 0.15, c
L

= 0.10,

t = 0.10, using only the first N = M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 9: Reconstruction of discontinuous mass changes as in (39), with s
L

= 0.15, c
L

= 0.10,

t = 1.00, using the first N = M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 10: Reconstruction of discontinuous mass changes as in (39), with s
L

= 0.35, c
L

= 0.30,

t = 1.00, using the first N = M = 6, 9, 12, 15 eigenfrequencies of both spectra.
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Figure 11: Reconstruction of discontinuous mass changes as in (39), with s
L

= 0.35, c
L

= 0.30,

t = 1.00, using the first N = M = 20, 25 eigenfrequencies.
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Figure 12: Noise effects on identification of smooth mass changes. Upper row: mass changes

as in (38), with s
L

= 0.35, c
L

= 0.10, t = 0.10. Lower row: mass changes as in (38), with

s
L

= 0.35, c
L

= 0.30, t = 1.00.
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Figure 13: Noise effects on identification of discontinuous mass changes. Upper row: mass

changes as in (39), with s
L

= 0.15, c
L

= 0.10, t = 0.10. Lower row: mass changes as in (39),

with s
L

= 0.35, c
L

= 0.30, t = 1.00.
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