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Abstract10

Classical continuum models are unable to capture the response of a mi-
crostructured solid when the scale effect is relevant. In vibration analysis,
this limitation appears when the solid undergoes vibrations of wavelength
that approaches the characteristic length of the microstructure. A discrete
model may be formulated to account for this effect, but this comes at the
expenses of high computational costs. For example, scale effects are relevant
in strings employed in sensing applications which often rely on information
gathered in the nonlinear dynamic regime. In this work, we study the dy-
namic behavior of a taut string modeled as a lattice of particles linked to
first neighbors by linear springs. We develop an inertia-gradient generalized
continuum model of the chain, which undergoes nonlinear vibrations. Un-
like the corresponding classical continuum model, enrichment of the kinetic
energy density with the characteristic length of the microstructure permits
the model to capture short-wavelength vibrations. Comparison of the re-
sponse predicted by the continuum models highlights that the generalized
model provides better estimations of the dynamic response of the considered
microstructured string in the nonlinear regime and at short wavelengths.
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1. Introduction1

Classical continuum models of solids permit a faithful representation of2

their mechanical behavior. This statement is true when the characteristic3

dimensions of the underlying microstructure is significantly smaller than the4

scale of observation. This is the case of common problems in engineering such5

as in the civil or mechanical industries. In contrast, there are other engineer-6

ing fields where the scale of observation is of the order of the microstruc-7

ture. This is the case of nano-(micro-)electronics [1, 2], nano-biotechnology8

[3, 4, 5], nano-thermodynamics [6, 7], or in problems involving granular and9

particulate media [8].10

In recent years, the interest in the nonlinear regime of these nano-/micro-11

scale structures has been spanned by sensing applications, where the non-12

linear behavior of nano-structures has the potential to enhance the infor-13

mation that can be obtained from the sensor. For example, Jeong et al.14

[9] have shown that when geometric nonlinearity is considered, nano- or15

micro-mechanical resonators can overcome the narrow bandwidth limitation16

of linear dynamic systems. Bouchaala [10] used a nonlinear formulation of a17

nano-electromechanical resonator for mass sensing while Atalaya et al. [11]18

have shown how nano-size graphene membranes can be used in the non-19

linear regime for the determination of the mass and position of an added20

particle. While the above studies consider beam-type and membrane-type21

components, studies on nano-strings include the work of Verbridge et al. [12]22

who presented how the resonant frequency of nano-strings allow to measuring23

mass with sensitivity approaching a zeptogram. Leiman et al. [13] developed24

a device based on a nano-string for the detection of terahertz electromagnetic25

radiation. Other studies related to the use of nano-strings have been devel-26

oped by Qin et al. [14] and Kudaibergenov et al. [15]. In these examples,27

as the nano-string deflects transversely, its length, and therefore its tension,28

increases. Hence, nonlinear terms are required to account for stretching in29

the equations of motion (Nayfeh et al. [16, 17]). In these cases, classical con-30

tinuum models might offer an acceptable approximation of the response of31

the string for long-wavelength vibrations [18]. However, once the wavelength32

becomes comparable to the characteristic dimensions of the underlying mi-33

crostructure, classical continuum models are not appropriate to take scale34

effects into consideration. In nano-structures such as nano-strings, consid-35

ered here as a structure where the scale effect appears due to discreteness,36

the formulation of appropriate models is needed. Zhang et al. [19] account37
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for size effects by considering the string as a 1D lattice. However, this formu-1

lation has a high computational cost. In this respect, generalized continuum2

models turns out to be attractive [19].3

In this paper we start from a lattice model of a taut string and propose4

an inertia-gradient generalized continuum model with the aim of obtaining5

an accurate response for nonlinear vibrations at wavelengths comparable to6

the microstructural length. For the development of this continuum model,7

the methodology previously employed by Vila et al. to study the nonlin-8

ear vibrations of 1D structured solids, namely rods [20] and beams [21], is9

now applied to a different structural typology such as the taut string. The10

model will be called axiomatic and it will be derived from postulated forms11

of both kinetic and potential energies. In contrast to the classical continuum12

model, the enriched one takes scale effects into consideration and permits13

to recover the response of the classical one when the scale effects are ne-14

glected. A comparison of the equations of the generalized model with those15

derived through a non-standard continualization of the discrete equations of16

the lattice model permits to establish a relation between the corresponding17

parameters. Moreover, the axiomatic continuum model considers axial and18

transverse displacements leading to geometric nonlinearities. Also, analytical19

solutions are given for the response of the nonlinear string. A comparison20

between the responses of the different continuum models with the reference21

discrete one is presented to validate the proposed approach. Finally, results22

for short wavelengths are presented to illustrate the range of validity of the23

proposed model.24

The paper is organized as follows. Section 1 provides a brief introduction25

and Section 2 formulates the discrete problem. Section 3 describes the formu-26

lation of a non-standard continualization to the discrete problem. Section 427

develops the axiomatic continuum model and Section 5 compares the disper-28

sion curves of the linearized models. Section 6 describes the methodologies29

used for deriving the solution of the different models considered in this work,30

both discrete and continuum. Section 7 illustrates the comparison between31

the discrete, classical continuum and axiomatic continuum models. Finally,32

Section 8 summarizes the results of the work.33

2. Formulation of the discrete problem34

In this section we extend the lattice model of the linear taut string with35

microstructure developed by Zhang et al. [19] to the nonlinear behavior and36
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considering both axial and transverse vibration. The discrete system consists1

of a pinned-pinned chain of N + 2 identical particles of mass M equally2

spaced at distance d, considered as the characteristic length of the underlying3

microstructure. Hence, the total length of the chain is L = (N + 1)d. The4

reference position of n-th particle is Xn = (n − 1)d and Zn = 0, with n =5

1, 2, ..., N + 2, in X and Z directions, respectively. Particles are linked to6

first neighbors by linear springs of stiffness K and are allowed to move in7

both axial and transverse directions (see Fig. 1). The taut chain has tension8

P0 in the reference position.9

Let us denote the axial and transverse displacements for n-th particle at10

time t as un(t) and wn(t), respectively. Boundary conditions are defined by11

u1 = uN+2 = w1 = wN+2 = 0. Also, the following initial conditions are12

imposed to the chain:13

un(0) = U0(Xn), u̇n(0) = 0, wn(0) = W0(Xn), ẇn(0) = 0, (1)

U0 and W0 being functions of the discrete values Xn that satisfy fixed bound-14

ary conditions at the ends.15

Figure 1: Sketch of the discrete model in reference and deformed position.

The kinetic energy T(n) of the n-th particle and potential energy W(n) of16

the n-th spring are defined by17

T(n)
disc =

1

2
Mu̇2

n +
1

2
Mẇ2

n, (2)

W(n)
disc =

1

2
K∆L2

n + P0∆Ln, (3)
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where ˙(•) represents time-derivative, while ∆Ln is the elongation of the n-th1

spring (see Fig. 1), defined as2

∆Ln =
√

(un+1 − un + d)2 + (wn+1 − wn)2 − d. (4)

The Lagrangian of the finite discrete model can be written as3

LD =
∑
n

T(n)
disc −

∑
n

W(n)
disc. (5)

The stability of the equilibrium at the reference position can be demonstrated4

from the definition of the total potential energy (in absence of external loads)5

Πe =
∑
n

W(n)
disc, (6)

since its first variation δΠe is zero and the second variation δ2Πe is strictly6

positive.7

Moreover, applying Hamilton’s Principle and the Fundamental Lemma of8

Variational Calculus leads to the following system of equations of motion for9

the particles10

Mün + (K∆Ln−1 + P0)
d+ un − un−1

d+ ∆Ln−1

− (K∆Ln + P0)
d+ un+1 − un
d+ ∆Ln

= 0,

(7)

Mẅn + (K∆Ln−1 + P0)
wn − wn−1

d+ ∆Ln−1

− (K∆Ln + P0)
wn+1 − wn
d+ ∆Ln

= 0. (8)

3. Non-standard continualization of the discrete problem11

In this section we develop a non-standard continualization of the dis-12

crete system based on pseudo-differential operators [22, 23]. To this aim, we13

introduce the shift operator14

ed∂X = 1 + d∂X +
d2

2
∂2
X +O(d3) (9)

which relates the displacements between neighboring particles as un+1 =15

ed∂Xun and wn+1 = ed∂Xwn (∂X ≡ ∂
∂X

). Let us define two variables u(X, t),16

w(X, t) as follows17

∂u

∂X
=
un+1 − un

d
,

∂w

∂X
≡ w′ =

wn+1 − wn
d

. (10)
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Variables u(X, t) and w(X, t) represent the continuum axial and transverse1

displacements at position X and time t, respectively. Then, a relation be-2

tween the discrete and continuum variables can be established via Eqs. (9,10)3

as [23]4

un = Qu, wn = Qw (11)

with

Q(∂X) =
d∂X

ed∂X − 1
= 1− d

2
∂X +

d2

12
∂2
X +O(d4).

The kinetic energy defined in Eq. (2) can now be expressed in terms of u5

and w by using the following relations proposed by Rosenau [23]6

u̇2
n = (Qu̇,Qu̇) =

∫
u̇Q∗Qu̇dX = u̇2 +

d2

12
(u̇′)2 +O(d4), (12)

ẇ2
n = (Qẇ,Qẇ) =

∫
ẇQ∗QẇdX = ẇ2 +

d2

12
(ẇ′)2 +O(d4), (13)

where Q∗ = Q(−∂X), while (•)′ denotes derivative with respect to X. Then,7

by keeping terms up to order 2 in d, we obtain the approximate continuum8

Lagrangian9

LNS =

∫
L

(
Tcont −Wcont

)
dX, (14)

where10

Tcont =
1

2

M

d

[
u̇2 +

d2

12
(u̇′)2 + ẇ2 +

d2

12
(ẇ′)2

]
, (15)

Wcont =
1

2
Kd(

√
(u′ + 1)2 + w′2 − 1)2 + P0(

√
(u′ + 1)2 + w′2 − 1). (16)

Developing a Taylor-based asymptotic expansion to Wcont up to fourth power11

terms of the derivatives, and applying Hamilton’s Principle along with the12

Fundamental Lemma of Variational Calculus, leads to the continualized equa-13

tions of motion of the discrete system14

ü− d2

12
ü′′ − Kd2

M
u′′ −

(Kd2

M
− P0d

M

) ∂

∂X

[
w′2
(1

2
− u′

)]
= 0, (17)

ẅ − d2

12
ẅ′′ − P0d

M
w′′ −

(Kd2

M
− P0d

M

) ∂

∂X

[
w′(u′ − u′2 +

1

2
w′2)

]
= 0, (18)
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and the essential boundary conditions u = 0 and w = 0 at the ends.1

In the next section, the governing equations of the axiomatic continuum2

model of a structured taut string will be compared with Eqs. (17,18) to3

establish a relation between the parameters of the discrete and axiomatic4

models.5

4. Axiomatic continuum model6

As stated before, classical continuum models are unable to capture the7

behavior of discrete problems when working with wavelengths of the order of8

the characteristic length of the underlying microstructure.9

In this section a generalized continuum model of a taut string is pre-10

sented. The model is formulated with a Mindlin-based kinetic energy [24]11

and a classical potential energy based on Biot strain and stress tensors [25].12

The Mindlin micro-inertia term is expected to capture well wave dispersion13

phenomena in solids with microstructure, as stated by Mindlin [24] and Ger-14

main [26]. More recent literature related to this subject can be found in the15

works of Askes and Aifantis [27, 28] and Papargyri-Beskou et al. [29]. The16

potential energy is postulated by considering Biot strain which leads to strain17

expressions employed by other authors (Anand [18], Nayfeh et al. [16, 17] and18

Leissa et al. [30]) to obtain the governing equations of the classical nonlinear19

string. To this end, we first define X and x(X, t) as the position vectors of20

a particle of the solid in the initial and current configurations, respectively.21

Then, the displacement vector U(X, t) can be obtained as22

U(X, t) = x(X, t)−X. (19)

The deformation gradient F can be written as follows23

F = ∇[X + U(X, t)] = I +∇[U(X, t)], (20)

where ∇ is the gradient operator with respect to X, and I is the identity24

tensor.25

The Biot strain tensor e [25] is defined as26

e(X, t) =
√
FTF− I. (21)

The kinetic and potential energy densities are now postulated. The kinetic27

energy density is based on the Mindlin theory [24] which employs a scale28
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parameter χ, whose physical dimension is length, that accounts for the micro-1

inertia and the gradient of the velocities2

Taxiom =
1

2
ρ
[∂U
∂t
· ∂U
∂t

+ χ2∂(∇U)

∂t
:
∂(∇U)

∂t

]
(22)

where ρ is the volumetric density. Also, “·” and “:” denote the scalar product3

and the inner product, respectively. The typical values of χ are of the order4

of the characteristic dimension of the microstructure.5

The potential energy density is based on the Biot strain tensor [25] and the6

potential energy introduced by the tension in the reference position through7

T08

Waxiom =
1

2
Λ(tre)2 + µe : e + T0 : e (23)

with Lamé constants Λ and µ. Then, the Biot stress tensor including the9

stress component in the reference position is defined as10

T(X, t) =
∂W

∂e(X, t)
= Λ(tre(X, t))I + 2µe(X, t) + T0. (24)

For the case of a unidimensional string undergoing axial and transverse dis-11

placements U = [u(X, t) w(X, t)]T , and the Biot strain is obtained by ne-12

glecting undesired deformation terms [31]13

e =
√

(1 + u′)2 + w′2 − 1. (25)

If the string cross-section A is considered to remain undeformed (Poisson’s14

ratio ν = 0) and the stress in the reference position is T0 = P0/A, the kinetic15

T and potential W energy densities of the axiomatic continuum model are16

given by17

Taxiom =
1

2
ρ
[
u̇2 + ẇ2 + χ2(u̇′2 + ẇ′2)

]
, (26)

Waxiom =
1

2
Ee2 +

P0

A
e (27)

with Young modulus E. As for the discrete model, it can be shown that the18

reference position is in stable equilibrium.19

The Lagrangian of the axiomatic continuum model is obtained from20

LAX =

∫
L

Taxiom −WaxiomdX. (28)
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Developing a Taylor-based asymptotic expansion to Waxiom up to fourth order1

and applying Hamilton’s principle yields the governing equations for the axial2

and transverse displacements u and w3

ü− χ2ü′′ − c2
1u
′′ −

(
c2

1 − c2
2

) ∂
∂x

[
w′2
(1

2
− u′

)]
= 0, (29)

ẅ − χ2ẅ′′ − c2
2w
′′ −

(
c2

1 − c2
2

) ∂
∂x

[
w′(u′ − u′2 +

1

2
w′2)

]
= 0, (30)

where c2
1 = E

ρ
, c2

2 = P0

ρA
, with essential boundary conditions u = 0 and w = 04

at the ends. For χ = 0, the classical nonlinear continuum equations of a5

nonlinear taut string are recovered (Nayfeh et al. [16]). It is important to6

highlight that the classical nonlinear continuum equations can be obtained7

from a Taylor-based continualization of Eqs. (7,8). This suggests that the8

considered lattice model is representative of the dynamic behavior of the9

string.10

Let us compare continualized (17, 18) and axiomatic (29, 30) equations.11

It is straightforward to see that these equations are identical when12

Kd2

M
=
E

ρ
,

M

d
= ρA,

d2

12
= χ2. (31)

Therefore, these relations establish the link between the discrete and contin-13

uum parameters. In particular, the scale parameter χ can be obtained from14

the physical characteristics of the discrete system. Anand et al. [18] and15

Nayfeh et al. [17] have shown the existence of interactions between axial and16

transverse modes of vibration. The i-th axial mode interacts with the j-th17

transverse one when ic1 ≈ 2jc2. For the case of c2
2/c

2
1 << 1 that is when the18

stiffness of the string EA is much higher than the tension P0 in the reference19

position, and assuming lower-order transverse modes, this interaction is not20

present and the axial inertia ü (and ü′′) is therefore negligible (Nayfeh et al.21

[17]). Hence Eq. (29) can be approximated to22

u′′ = − ∂

∂X

[
w′2
(1

2
− u′

)]
. (32)

Integrating Eq. (32) twice by considering w′2 << 1 and u(0, t) = u(L, t) = 0,23

gives24

u =
X

2L

∫ L

0

w′2dX − 1

2

∫ X

0

w′2dX. (33)

9



Finally, substituting Eq. (33) into Eq. (30), neglecting c2
2 compared to c2

11

and keeping cubic terms of w leads to the equation for transverse motion in2

the following form3

ẅ − χ2ẅ′′ − c2
2w
′′ − c2

1

2L
w′′
∫ L

0

w′2dX = 0. (34)

Note that Eq. (34) takes the scale effect under consideration. For χ = 0,4

the corresponding nonlinear classical continuum equation after applying the5

above-mentioned assumptions is recovered [16, 17, 18].6

5. Comparison of linear models7

In this section we analyze the dispersion curves of the linear versions of8

the discrete, classical continuum and axiomatic continuum models. Even9

though the linear regime is here considered, the comparison between them10

provides an insight useful for the nonlinear regime.11

The governing equations for the linear discrete model are12

Mün −K(un+1 − 2un + un−1) = 0, (35)

Mẅn −
P0

d
(wn+1 − 2wn + wn−1) = 0, (36)

which are obtained by considering un − un−1 << d and wn − wn−1 << d13

in Eqs. (7,8). By imposing a plane wave solution with wavenumber κ and14

angular frequency ω in Eqs. (35,36), the dispersion relations are15

ω2
axial =

2K

M
[1− cos(κd)], (37)

ω2
trans =

2P0

Md
[1− cos(κd)]. (38)

The governing equations of the classical continuum are obtained from a Tay-16

lor expansion of un±1 and wn±117

un±1 = u± du′ + 1

2
d2u′′ +O(d3), (39)

wn±1 = w ± dw′ + 1

2
d2w′′ +O(d3) (40)
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in Eqs. (35,36), leading to1

ü− c2
1u
′′ = 0, (41)

ẅ − c2
2w
′′ = 0. (42)

If a plane wave solution is imposed to Eqs. (41,42), the dispersion relations2

are3

ω2
axial = c2

1κ
2, (43)

ω2
trans = c2

2κ
2. (44)

The linear axiomatic continuum model is obtained by keeping the linear4

terms of Eqs. (29,30). Then, the governing equations are5

ü− χ2ü′′ − c2
1u
′′ = 0, (45)

ẅ − χ2ẅ′′ − c2
2w
′′ = 0. (46)

By imposing a plane wave solution, we reach to the following dispersion6

relations7

ω2
axial =

c2
1κ

2

1 + χ2κ2
, (47)

ω2
trans =

c2
2κ

2

1 + χ2κ2
. (48)
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Figure 2: Linearized models: (a) Dispersion curves, (b) Difference in frequency between
continuum and discrete models.

Fig. 2 shows the dispersion results obtained from the three linear models.1

Fig. 2a shows the dispersion curves for both axial and transverse displace-2

ments where frequency and wavenumber have been nondimensionalized as3

ω = ω/ω0 κ = κd (49)

where ω0 stands for the corresponding reference frequencies4

ω0,axial =

√
4K

M
=

2c1

d
, ω0,trans =

√
4P0

Md
=

2c2

d
. (50)

Fig. 2b presents the relative difference in frequency between the contin-5

uum and discrete models calculated as6

E =
ωContinuum − ωDiscrete

ωDiscrete

× 100. (51)

12



As expected, the classical continuum is able to capture long-wavelength1

vibrations. As κ increases, the difference in frequency with the discrete2

model starts to be significant. For example, for a dimensionless wavenumber3

κ = π/2, E ≈ 11%. Moreover, the axiomatic continuum model faithfully4

captures the discrete curve up to κ = π/2 (E ≈ 1%). From this point on,5

the axiomatic model gives a considerable better approximation of the dis-6

crete model as compared to the classical one. Despite the good results given7

by the axiomatic continuum model, it is important to emphasize that these8

results are characteristics of the linear problems and, although there can be9

similarities, they may not translate to nonlinear regime.10

6. Numerical solution of nonlinear discrete and continuum models11

This section presents the methodologies for the solution of the discrete12

and axiomatic continuum model equations. The discrete model is solved us-13

ing the Velocity Verlet algorithm [32], while the axiomatic model employs14

Galerkin Method. The time-response of the Galerkin solution is obtained15

with two methods: the first one, based on Jacobi’s elliptical functions, per-16

mits to obtain an analytical solution, while the second, based on perturbation17

methods, leads to a closed-form solution.18

Let us introduce the following nondimensional variables in Eqs. (33,34)

ε =
c2

2

c2
1

� 1, u =
u

εL
, w =

w

εL
, ξ =

X

L
, τ = ω0t, ω0 =

c2

L
, h =

χ

L
.

and consider from this point on ˙(•) ≡ ∂
∂τ

and (•)′ ≡ ∂
∂ξ

. Eq. (34) transforms19

into20

ẅ − h2ẅ
′′ − w′′ − εw

′′

2

∫ 1

0

w′2dξ = 0, (52)

with boundary conditions21

w(0, τ) = w(1, τ) = 0, (53)

and initial conditions22

w(ξ, 0) = w0(ξ), ẇ(ξ, 0) = 0, (54)

where w0(ξ) corresponds to the nondimensional expression of the continual-23

ized initial transverse displacement of the discrete model (Eq. (1)).24

13



The proposed solution is1

w(ξ, τ) =
∑
j

qj(τ)φj(ξ), (55)

where qj(τ) are the unknown time-dependent functions to be determined and2

φj(ξ) are the comparison functions, here chosen as3

φj(ξ) = sin(Ωjξ), (56)

with Ωj = jπ (j = 1, 2, 3, ...). Application of Galerkin method in Eq. (52)4

(1 + h2Ω2
j)q̈j + Ω2

j(1 + ε
Ω2
j

4

∑
h

q2
h)qj = 0, (57)

with initial conditions5

qj(0) = 2

∫ 1

0

w0(ξ)φj(ξ)dξ (58)

and q̇j(0) = 0.6

In case that the initial displacement condition w0(ξ) is monochromatic7

and its wavenumber corresponds to a specific Ωc = cπ,8

w0(ξ) = q0 sin (cπξ) (59)

with amplitude q0, the vector of initial conditions defined in Eq. (58) is zero9

except for j = c. Hence, the system (57) reduces to the single equation10

q̈ + αq + ε
αΩ2

4
q3 = 0 (60)

with11

α =
Ω2

1 + h2Ω2
(61)

and initial conditions q(0) = q0 and q̇(0) = 0, where subscripts c have been12

removed.13

Eq. (60) corresponds to the undamped and unforced Duffing equation14

and an analytical solution via Jacobi’s elliptical functions can be obtained15

[33]. Moreover, a perturbation method is used to solve Eq. (60) in order16

14



to get a closed-form solution. The solution corresponding to the classical1

nonlinear model can be obtained for h = 0.2

The analytical solution of the Duffing equation, Eq. (60) and initial3

conditions q(0) = q0 and q̇(0) = 0, makes use of Jacobi’s elliptical function4

and is formulated as [33]5

q(τ) = q0cn

(√
α + βq2

0τ,

√
βq2

0

2(α + βq2
0)

)
(62)

with β = εαΩ2

4
and α + βq2

0 6= 0. Function cn is Jacobi’s elliptical cosine-6

function defined by [34]7

cn(η,m) = cosϕ, (63)

where8

η =

∫ ϕ

0

dθ√
1−m2 sin2 θ

. (64)

The dimensionless frequency ω of q(τ) is obtained by9

ω = 2π/T , (65)

where the period T is10

T =
4√

α + βq2
0

∫ π/4

0

dθ√
1−m2 sin2 θ

. (66)

The influence of the dimensionless length-scale parameter h on the temporal11

evolution of function q, as well as on the dimensionless frequency ω, is pre-12

sented in Fig. 3 for Ω = π, ε = 0.002, and q0 = 0.05. Fig. 3a shows that13

as h increases, the semi-period of the time-response also increases, which de-14

creases ω (Fig. 3b). Note that the time-response solution for h = 0 in Fig.15

3a corresponds to the classical continuum model.16

15
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Figure 3: Analytical solution of the proposed axiomatic continuum model. Influence
of the parameter h: (a) Time-dependent function q versus non-dimensional time τ , (b)
Dimensionless frequency ω vs parameter h.

A closed-form solution of the Duffing Eq. (60) and initial conditions1

q(0) = q0 and q̇(0) = 0 is now obtained employing the Multiple Scales method2

[35]. We seek a solution in the form3

q = q0 + εq1 +O(ε2). (67)

16



The time variable is expanded as τ 0 = τ and τ 1 = ετ . Introducing these1

expansions in Eq. (60), keeping terms up to O(ε), and neglecting secular2

terms gives3

q(τ) = â cos(ωτ + b̂0) + ε
â3Ω2

128
cos(3ωτ + 3b̂0), (68)

with dimensionless frequency ω and constant parameters â and b̂0. For the4

considered initial conditions, â = q0 and b̂0 = 0, hence,5

q(τ) = q0 cos(ωτ) + ε
q3

0Ω2

128
cos(3ωτ), (69)

with6

ω =
√
α
(

1 + ε
3Ω2

32
q2

0

)
. (70)

The nondimensional form of Eq. (33) is7

u(ξ, τ) =
ε

2
ξ

∫ 1

0

w′2dξ − ε

2

∫ ξ

0

w′2dξ (71)

which corresponds to the governing equation of the dimensionless axial dis-8

placement which is driven by the transverse one. For9

w(ξ, τ) = q(τ) sin (Ωξ), (72)

the dimensionless axial displacement (Saad et al. [36], Leissa et al. [30])10

reduces to11

u(ξ, τ) = −Ω

8
εq(τ)2

(
sin (2Ωξ)− ξ sin (2Ω)

)
. (73)

In Eq. (73), q(τ) corresponds to the expression obtained with the Jacobi’s12

elliptical functions (Eq. (62)) or through the perturbation method (Eq.(69)).13

Thus, for the discrete system, the initial condition in un should be consistent14

with the following expressions15

u0(ξ) = u(ξ, 0) = −Ω

8
εq2

0

(
sin (2Ωξ)− ξ sin (2Ω)

)
, u̇(ξ, 0) = 0. (74)

17



7. Analysis of results1

In this section we will compare the results obtained from three different2

approaches: classical and axiomatic continuum, and discrete model consid-3

ered as the reference. We analyze the nonlinear vibration of a long chain of4

identical particles of mass M separated by a distance d and connected by5

linear springs with stiffness K. We consider as initial condition a sinusoidal6

transverse displacement with wavelength λ, which is varied to study its in-7

fluence on the chain response. The initial axial displacement in Eq. (74) is8

considered.9

Instead of the whole chain, we will solve a fully equivalent problem with10

a reduced number of particles. Then if a multiple of the semi-wavelength11

equals the distance between two given particles in the reference position12 (
mλ

2
= (N + 1)d

)
the considered problem is equivalent to a chain of length13

L = (N + 1)d, corresponding to N + 2 particles with fixed ends (defined in14

Section 2).15

With the aim of reaching values of wavenumber κ close to π, we will con-16

sider an equivalent chain with L = 3λ
2
, thus m = 3. Therefore, modifying17

the number of particles in the considered model, the wavelength λ and the18

dimensionless length-scale parameter h can be varied. A large number of par-19

ticles would be representative of a problem with weak influence of the length20

scale, while a small number permits to study sharp size effects. Additionally,21

the amplitude of the initial displacement is increased to show the influence22

of the nonlinearity in the response.23

Summarizing, the study is performed for the following values: N =24

[23, 11, 5, 3] (see Fig. 4), q0 = [0.05, 0.5, 1, 1.5, 2, 2.5], and ε = 0.002. The25

considered initial transverse conditions for the discrete model are26

wn(0) = W0(Xn) = εLq0 sin
(3π

L
Xn

)
, ẇn(0) = 0, (75)

which is paired with the following initial axial conditions27

un(0) = U0(Xn) = −3π

8
ε2Lq2

0 sin
(6π

L
Xn

)
, u̇n(0) = 0. (76)

Consistently, the initial conditions for the continuum models are28

w0(ξ) = w(ξ, 0) = q0 sin(3πξ), ẇ(ξ, 0) = 0, (77)

u0(ξ) = u(ξ, 0) = −3π

8
εq2

0 sin (6πξ), u̇(ξ, 0) = 0. (78)

18



thus Ω = 3π. The time-responses of the discrete and continuum models are1

obtained following the methodology explained in Section 6. The analytical2

solution given by Eq. (62) is used for the response of the continuum models.3

The perturbation solution, which provides valuable closed-form expressions,4

shows equivalent results, thus it will not be presented in the Figures. The5

analysis focuses on the transverse displacements, nevertheless a brief discus-6

sion about the results of the axial displacement is also provided.7

(a) (b)

(c) (d)

Figure 4: Discrete model. Sketch with equivalent problems and initial transverse displace-
ments: (a) N = 23, (b) N = 11, (c) N = 5, and (d) N = 3. Central particle in black and
neighboring particle on the right in gray.

7.1. Analysis of the transverse displacement8

Figs. 5-8 compare, for different values of N , the time evolution of the9

dimensionless transverse displacement corresponding to the central particle10

(n = N+3
2

, see Fig. 4) of the discrete model, which is the point at ξ = 1/2 in11

the continuum models.12

Fig. 5 shows the results for N = 23 for different values of the amplitude of13

the initial displacement q0. This study corresponds to wavenumber κ = π/814

and scale parameter h = 0.012. As expected, the classical model is able to15

capture the response of the discrete one for this case of long-wavelength and16

small scale effect. For larger values of N , the scale effect becomes irrelevant17

and no differences are found among the different models.18

19



Figs. 6-8 shows the dimensionless displacement for N = [11, 5, 3] which1

correspond to κ = [π/4, π/2, 3π/4] and h = [0.024, 0.048, 0.072], respectively.2

As N decreases, the wavelength becomes shorter and the scale effect starts3

to play a relevant role. For N = 11 (Fig. 6) differences between the classical4

model and the discrete start to be noticeable. However, the axiomatic model5

is able to capture the response of the discrete model. For N = 5 (Fig. 7)6

significant differences appear between the dimensionless displacement of the7

classical model and the discrete one. A good approximation is obtained with8

the axiomatic model, showing a better accuracy for any value of q0. For9

N = 3, κ = 3π/4 (Fig. 8) none of the continuum models is able to capture10

the response of the discrete model. However, the axiomatic one provides a11

much better approximation than the classical continuum model.12

Fig. 9 shows the dimensionless frequency ω of the corresponding trans-13

verse displacement versus q0. The frequency of the discrete response is ob-14

tained from the Fast Fourier Transformation of transverse displacement of a15

particle. Eqs. (66,70) are used to obtain the frequencies of the continuum16

model from analytical, Eq. (66), and perturbation, Eq. (70), approaches.17

The figure shows that frequency increases with increasing values of q0. For18

small values of q0, the curve tends to be horizontal and the model reproduces19

the linear regime. As N decreases, the frequency of the responses of the dis-20

crete and axiomatic models decreases, meanwhile the frequency of classical21

model remains constant. This is the result of the absence of the length-scale22

parameter in the classical formulation. For N = 23 and N = 11, Figs.23

9a-9b respectively, the axiomatic model faithfully captures the response of24

the discrete model while significant differences with the classical one start to25

appear. For a large number of particles, these differences are not present.26

As the wavelength becomes of the order of the microstructural dimension27

(Figs. 9c-9d), the axiomatic model gives a much better approximation to the28

discrete response than the classical model.29
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Figure 5: Discrete and continuum models. Dimensionless transverse displacement of cen-
tral particle in the discrete model and w(1/2, τ) in the continuum models for N = 23,
κ = π/8, h = 0.012 (axiom.), and: (a) q0 = 0.05, (b) q0 = 1.5, and (c) q0 = 2.5.
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Figure 6: Discrete and continuum models. Dimensionless transverse displacement of cen-
tral particle in the discrete model and w(1/2, τ) in the continuum models for N = 11,
κ = π/4, h = 0.024 (axiom.), and: (a) q0 = 0.05, (b) q0 = 1.5, and (c) q0 = 2.5.

22



0 0.2 0.4 0.6
-0.05

0

0.05
Discrete

Classical

Axiomatic

(a)

0 0.2 0.4 0.6

-1

0

1

2 Discrete

Classical

Axiomatic

(b)

0 0.2 0.4 0.6

-2

0

2

4 Discrete

Classical

Axiomatic

(c)

Figure 7: Discrete and continuum models. Dimensionless transverse displacement of cen-
tral particle in the discrete model and w(1/2, τ) in the continuum models for N = 5,
κ = π/2, h = 0.048 (axiom.), and: (a) q0 = 0.05, (b) q0 = 1.5, and (c) q0 = 2.5.
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Figure 8: Discrete and continuum models. Dimensionless transverse displacement of cen-
tral particle in the discrete model and w(1/2, τ) in the continuum models for N = 3,
κ = 3π/4, h = 0.072 (axiom.), and: (a) q0 = 0.05, (b) q0 = 1.5, and (c) q0 = 2.5.
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Figure 9: Discrete and continuum models. Dimensionless frequencies for: (a) κ = π/8 and
N = 23, (b) κ = π/4 and N = 11, (c) κ = π/2 and N = 5, and (d) κ = 3π/4 and N = 3.
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7.2. Analysis of the axial displacement1

Fig. 10 compares, for q0 = 1 and different values of N = [23, 11, 3],2

the time evolution of the dimensionless axial displacement of the neighbor3

particle on the right of the central one (n = N+3
2

+1, see Fig. 4) of the discrete4

model, which corresponds to the point ξ = 1/2+1/(N+1) for the continuum5

models. The figure shows that for a large number of particles (Fig. 10a) the6

continuum models capture the response of the discrete model. For N = 117

(Fig. 10b), both classical and axiomatic models give a proper approximation8

of the discrete response, despite the presence of high-frequency harmonics in9

the discrete response. For N = 3 (Fig. 10c), the axial displacement of the10

discrete model is not captured by any of the continuum models. The reason11

is that the hypothesis of negligible axial acceleration is no longer valid, and12

thus Eq. (32) is not adequate to reproduce the axial behavior of the string.13

It is important to highlight that the axial displacement is three orders of14

magnitude lower than the corresponding transverse one. Moreover, imposing15

an initial condition in the axial displacement different than the one given by16

Eq. (74) does not modify the transverse response as far as the amplitude17

of u is small, as it has been verified by additional calculations with the18

discrete model. Thus, the axiomatic model permits to capture the transverse19

displacement of the discrete regardless of the characteristics of the axial one.20
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Figure 10: Discrete and continuum models. Dimensionless axial displacement of neighbor
particle of the central one in the discrete model and u(1/2+1/(N+1), τ) in the continuum
models for q0 = 1 and: (a) κ = π/8 andN = 23, (b) κ = π/4 andN = 11, and (c) κ = 3π/4
and N = 3.
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8. Conclusions1

In this paper, an axiomatic continuum model has been developed to pre-2

dict the response of a taut string with microstructure submitted to nonlinear3

axial and transverse vibrations. The model stems from an enrichment of4

the classical kinetic energy based on a inertia-gradient formulation and a5

classical potential energy. Starting from a non-standard continualization of6

the discrete problem, which accounts for scale effects, a relation between7

the parameters of the axiomatic and discrete models was established. A mi-8

crostructure parameter was obtained, which permitted to take the scale effect9

into consideration. For a nil value of this parameter, the classical nonlinear10

continuum model was recovered. A comparison between the responses of the11

continuum models with that of the reference discrete one is provided to val-12

idate the proposed approach. This comparison shows the superiority of the13

axiomatic model over the classical one in capturing the scale effect. These14

have been the main findings:15

• The axiomatic continuum model is able to reproduce the behavior of16

discrete model submitted to vibrations whose wavelength is of the or-17

der of the microstructural dimension. In these cases, the scale effect18

becomes relevant and the classical model is not suitable.19

• The axiomatic continuum model always improves the results obtained20

using the classical one. The range of validity of this last model is ap-21

proximately up to wavenumber κ = π/8. The axiomatic continuum22

model obtains results equivalent to the discrete model up to κ = π/2.23

Above this value, the axiomatic model gives a much better approxima-24

tion than the classical continuum one.25

• In the discrete and continuum models, higher initial amplitude leads26

to nonlinear behavior which leads to an increase in the frequency of27

the response with amplitude. However, an increase in the length-scale28

parameter plays the opposite role, leading to a marked decrease in29

frequency. While the proposed axiomatic model properly captures the30

influence of both amplitude and length scale, the classical model is not31

able to reproduce the second.32

• The perturbation method provides closed-form equations for the time-33

response and frequency of the solution, obtaining a proper approxima-34

28



tion to the analytical solution. Hence, it is an accurate straightforward1

solution for the time-response of the structured taut string.2
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Abstract

Classical continuum models are unable to capture the response of a mi-
crostructured solid when the scale effect is relevant. In vibration analysis,
this limitation appears when the solid undergoes vibrations of wavelength
that approaches the characteristic length of the microstructure. A discrete
model may be formulated to account for this effect, but this comes at the
expenses of high computational costs. For example, scale effects are relevant
in strings employed in sensing applications which often rely on information
gathered in the nonlinear dynamic regime. In this work, we study the dy-
namic behavior of a taut string modeled as a lattice of particles linked to
first neighbors by linear springs. We develop an inertia-gradient generalized
continuum model of the chain, which undergoes nonlinear vibrations. Un-
like the corresponding classical continuum model, enrichment of the kinetic
energy density with the characteristic length of the microstructure permits
the model to capture short-wavelength vibrations. Comparison of the re-
sponse predicted by the continuum models highlights that the generalized
model provides better estimations of the dynamic response of the considered
microstructured string in the nonlinear regime and at short wavelengths.
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1. Introduction

Classical continuum models of solids permit a faithful representation of
their mechanical behavior. This statement is true when the characteristic
dimensions of the underlying microstructure is significantly smaller than the
scale of observation. This is the case of common problems in engineering such
as in the civil or mechanical industries. In contrast, there are other engineer-
ing fields where the scale of observation is of the order of the microstruc-
ture. This is the case of nano-(micro-)electronics [1, 2], nano-biotechnology
[3, 4, 5], nano-thermodynamics [6, 7], or in problems involving granular and
particulate media [8].

In recent years, the interest in the nonlinear regime of these nano-/micro-
scale structures has been spanned by sensing applications, where the non-
linear behavior of nano-structures has the potential to enhance the infor-
mation that can be obtained from the sensor. For example, Jeong et al.
[9] have shown that when geometric nonlinearity is considered, nano- or
micro-mechanical resonators can overcome the narrow bandwidth limitation
of linear dynamic systems. Bouchaala [10] used a nonlinear formulation of a
nano-electromechanical resonator for mass sensing while Atalaya et al. [11]
have shown how nano-size graphene membranes can be used in the non-
linear regime for the determination of the mass and position of an added
particle. While the above studies consider beam-type and membrane-type
components, studies on nano-strings include the work of Verbridge et al. [12]
who presented how the resonant frequency of nano-strings allow to measuring
mass with sensitivity approaching a zeptogram. Leiman et al. [13] developed
a device based on a nano-string for the detection of terahertz electromagnetic
radiation. Other studies related to the use of nano-strings have been devel-
oped by Qin et al. [14] and Kudaibergenov et al. [15]. In these examples,
as the nano-string deflects transversely, its length, and therefore its tension,
increases. Hence, nonlinear terms are required to account for stretching in
the equations of motion (Nayfeh et al. [16, 17]). In these cases, classical con-
tinuum models might offer an acceptable approximation of the response of
the string for long-wavelength vibrations [18]. However, once the wavelength
becomes comparable to the characteristic dimensions of the underlying mi-
crostructure, classical continuum models are not appropriate to take scale
effects into consideration. In nano-structures such as nano-strings, consid-
ered here as a structure where the scale effect appears due to discreteness,
the formulation of appropriate models is needed. Zhang et al. [19] account
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for size effects by considering the string as a 1D lattice. However, this formu-
lation has a high computational cost. In this respect, generalized continuum
models turns out to be attractive [19].

In this paper we start from a lattice model of a taut string and propose
an inertia-gradient generalized continuum model with the aim of obtaining
an accurate response for nonlinear vibrations at wavelengths comparable to
the microstructural length. For the development of this continuum model,
the methodology previously employed by Vila et al. to study the nonlin-
ear vibrations of 1D structured solids, namely rods [20] and beams [21], is
now applied to a different structural typology such as the taut string. The
model will be called axiomatic and it will be derived from postulated forms
of both kinetic and potential energies. In contrast to the classical continuum
model, the enriched one takes scale effects into consideration and permits
to recover the response of the classical one when the scale effects are ne-
glected. A comparison of the equations of the generalized model with those
derived through a non-standard continualization of the discrete equations of
the lattice model permits to establish a relation between the corresponding
parameters. Moreover, the axiomatic continuum model considers axial and
transverse displacements leading to geometric nonlinearities. Also, analytical
solutions are given for the response of the nonlinear string. A comparison
between the responses of the different continuum models with the reference
discrete one is presented to validate the proposed approach. Finally, results
for short wavelengths are presented to illustrate the range of validity of the
proposed model.

The paper is organized as follows. Section 1 provides a brief introduction
and Section 2 formulates the discrete problem. Section 3 describes the formu-
lation of a non-standard continualization to the discrete problem. Section 4
develops the axiomatic continuum model and Section 5 compares the disper-
sion curves of the linearized models. Section 6 describes the methodologies
used for deriving the solution of the different models considered in this work,
both discrete and continuum. Section 7 illustrates the comparison between
the discrete, classical continuum and axiomatic continuum models. Finally,
Section 8 summarizes the results of the work.

2. Formulation of the discrete problem

In this section we extend the lattice model of the linear taut string with
microstructure developed by Zhang et al. [19] to the nonlinear behavior and

3



considering both axial and transverse vibration. The discrete system consists
of a pinned-pinned chain of N + 2 identical particles of mass M equally
spaced at distance d, considered as the characteristic length of the underlying
microstructure. Hence, the total length of the chain is L = (N + 1)d. The
reference position of n-th particle is Xn = (n − 1)d and Zn = 0, with n =
1, 2, ..., N + 2, in X and Z directions, respectively. Particles are linked to
first neighbors by linear springs of stiffness K and are allowed to move in
both axial and transverse directions (see Fig. 1). The taut chain has tension
P0 in the reference position.

Let us denote the axial and transverse displacements for n-th particle at
time t as un(t) and wn(t), respectively. Boundary conditions are defined by
u1 = uN+2 = w1 = wN+2 = 0. Also, the following initial conditions are
imposed to the chain:

un(0) = U0(Xn), u̇n(0) = 0, wn(0) = W0(Xn), ẇn(0) = 0, (1)

U0 and W0 being functions of the discrete values Xn that satisfy fixed bound-
ary conditions at the ends.

Figure 1: Sketch of the discrete model in reference and deformed position.

The kinetic energy T(n) of the n-th particle and potential energy W(n) of
the n-th spring are defined by

T(n)
disc =

1

2
Mu̇2

n +
1

2
Mẇ2

n, (2)

W(n)
disc =

1

2
K∆L2

n + P0∆Ln, (3)
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where ˙(•) represents time-derivative, while ∆Ln is the elongation of the n-th
spring (see Fig. 1), defined as

∆Ln =
√

(un+1 − un + d)2 + (wn+1 − wn)2 − d. (4)

The Lagrangian of the finite discrete model can be written as

LD =
∑
n

T(n)
disc −

∑
n

W(n)
disc. (5)

The stability of the equilibrium at the reference position can be demonstrated
from the definition of the total potential energy (in absence of external loads)

Πe =
∑
n

W(n)
disc, (6)

since its first variation δΠe is zero and the second variation δ2Πe is strictly
positive.

Moreover, applying Hamilton’s Principle and the Fundamental Lemma of
Variational Calculus leads to the following system of equations of motion for
the particles

Mün + (K∆Ln−1 + P0)
d+ un − un−1

d+ ∆Ln−1

− (K∆Ln + P0)
d+ un+1 − un
d+ ∆Ln

= 0,

(7)

Mẅn + (K∆Ln−1 + P0)
wn − wn−1

d+ ∆Ln−1

− (K∆Ln + P0)
wn+1 − wn
d+ ∆Ln

= 0. (8)

3. Non-standard continualization of the discrete problem

In this section we develop a non-standard continualization of the dis-
crete system based on pseudo-differential operators [22, 23]. To this aim, we
introduce the shift operator

ed∂X = 1 + d∂X +
d2

2
∂2
X +O(d3) (9)

which relates the displacements between neighboring particles as un+1 =
ed∂Xun and wn+1 = ed∂Xwn (∂X ≡ ∂

∂X
). Let us define two variables u(X, t),

w(X, t) as follows

∂u

∂X
=
un+1 − un

d
,

∂w

∂X
≡ w′ =

wn+1 − wn
d

. (10)
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Variables u(X, t) and w(X, t) represent the continuum axial and transverse
displacements at position X and time t, respectively. Then, a relation be-
tween the discrete and continuum variables can be established via Eqs. (9,10)
as [23]

un = Qu, wn = Qw (11)

with

Q(∂X) =
d∂X

ed∂X − 1
= 1− d

2
∂X +

d2

12
∂2
X +O(d4).

The kinetic energy defined in Eq. (2) can now be expressed in terms of u
and w by using the following relations proposed by Rosenau [23]

u̇2
n = (Qu̇,Qu̇) =

∫
u̇Q∗Qu̇dX = u̇2 +

d2

12
(u̇′)2 +O(d4), (12)

ẇ2
n = (Qẇ,Qẇ) =

∫
ẇQ∗QẇdX = ẇ2 +

d2

12
(ẇ′)2 +O(d4), (13)

where Q∗ = Q(−∂X), while (•)′ denotes derivative with respect to X. Then,
by keeping terms up to order 2 in d, we obtain the approximate continuum
Lagrangian

LNS =

∫
L

(
Tcont −Wcont

)
dX, (14)

where

Tcont =
1

2

M

d

[
u̇2 +

d2

12
(u̇′)2 + ẇ2 +

d2

12
(ẇ′)2

]
, (15)

Wcont =
1

2
Kd(

√
(u′ + 1)2 + w′2 − 1)2 + P0(

√
(u′ + 1)2 + w′2 − 1). (16)

Developing a Taylor-based asymptotic expansion to Wcont up to fourth power
terms of the derivatives, and applying Hamilton’s Principle along with the
Fundamental Lemma of Variational Calculus, leads to the continualized equa-
tions of motion of the discrete system

ü− d2

12
ü′′ − Kd2

M
u′′ −

(Kd2

M
− P0d

M

) ∂

∂X

[
w′2
(1

2
− u′

)]
= 0, (17)

ẅ − d2

12
ẅ′′ − P0d

M
w′′ −

(Kd2

M
− P0d

M

) ∂

∂X

[
w′(u′ − u′2 +

1

2
w′2)

]
= 0, (18)
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and the essential boundary conditions u = 0 and w = 0 at the ends.
In the next section, the governing equations of the axiomatic continuum

model of a structured taut string will be compared with Eqs. (17,18) to
establish a relation between the parameters of the discrete and axiomatic
models.

4. Axiomatic continuum model

As stated before, classical continuum models are unable to capture the
behavior of discrete problems when working with wavelengths of the order of
the characteristic length of the underlying microstructure.

In this section a generalized continuum model of a taut string is pre-
sented. The model is formulated with a Mindlin-based kinetic energy [24]
and a classical potential energy based on Biot strain and stress tensors [25].
The Mindlin micro-inertia term is expected to capture well wave dispersion
phenomena in solids with microstructure, as stated by Mindlin [24] and Ger-
main [26]. More recent literature related to this subject can be found in the
works of Askes and Aifantis [27, 28] and Papargyri-Beskou et al. [29]. The
potential energy is postulated by considering Biot strain which leads to strain
expressions employed by other authors (Anand [18], Nayfeh et al. [16, 17] and
Leissa et al. [30]) to obtain the governing equations of the classical nonlinear
string. To this end, we first define X and x(X, t) as the position vectors of
a particle of the solid in the initial and current configurations, respectively.
Then, the displacement vector U(X, t) can be obtained as

U(X, t) = x(X, t)−X. (19)

The deformation gradient F can be written as follows

F = ∇[X + U(X, t)] = I +∇[U(X, t)], (20)

where ∇ is the gradient operator with respect to X, and I is the identity
tensor.

The Biot strain tensor e [25] is defined as

e(X, t) =
√
FTF− I. (21)

The kinetic and potential energy densities are now postulated. The kinetic
energy density is based on the Mindlin theory [24] which employs a scale
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parameter χ, whose physical dimension is length, that accounts for the micro-
inertia and the gradient of the velocities

Taxiom =
1

2
ρ
[∂U
∂t
· ∂U
∂t

+ χ2∂(∇U)

∂t
:
∂(∇U)

∂t

]
(22)

where ρ is the volumetric density. Also, “·” and “:” denote the scalar product
and the inner product, respectively. The typical values of χ are of the order
of the characteristic dimension of the microstructure.

The potential energy density is based on the Biot strain tensor [25] and the
potential energy introduced by the tension in the reference position through
T0

Waxiom =
1

2
Λ(tre)2 + µe : e + T0 : e (23)

with Lamé constants Λ and µ. Then, the Biot stress tensor including the
stress component in the reference position is defined as

T(X, t) =
∂W

∂e(X, t)
= Λ(tre(X, t))I + 2µe(X, t) + T0. (24)

For the case of a unidimensional string undergoing axial and transverse dis-
placements U = [u(X, t) w(X, t)]T , and the Biot strain is obtained by ne-
glecting undesired deformation terms [31]

e =
√

(1 + u′)2 + w′2 − 1. (25)

If the string cross-section A is considered to remain undeformed (Poisson’s
ratio ν = 0) and the stress in the reference position is T0 = P0/A, the kinetic
T and potential W energy densities of the axiomatic continuum model are
given by

Taxiom =
1

2
ρ
[
u̇2 + ẇ2 + χ2(u̇′2 + ẇ′2)

]
, (26)

Waxiom =
1

2
Ee2 +

P0

A
e (27)

with Young modulus E. As for the discrete model, it can be shown that the
reference position is in stable equilibrium.

The Lagrangian of the axiomatic continuum model is obtained from

LAX =

∫
L

Taxiom −WaxiomdX. (28)
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Developing a Taylor-based asymptotic expansion to Waxiom up to fourth order
and applying Hamilton’s principle yields the governing equations for the axial
and transverse displacements u and w

ü− χ2ü′′ − c2
1u
′′ −

(
c2

1 − c2
2

) ∂
∂x

[
w′2
(1

2
− u′

)]
= 0, (29)

ẅ − χ2ẅ′′ − c2
2w
′′ −

(
c2

1 − c2
2

) ∂
∂x

[
w′(u′ − u′2 +

1

2
w′2)

]
= 0, (30)

where c2
1 = E

ρ
, c2

2 = P0

ρA
, with essential boundary conditions u = 0 and w = 0

at the ends. For χ = 0, the classical nonlinear continuum equations of a
nonlinear taut string are recovered (Nayfeh et al. [16]). It is important to
highlight that the classical nonlinear continuum equations can be obtained
from a Taylor-based continualization of Eqs. (7,8). This suggests that the
considered lattice model is representative of the dynamic behavior of the
string.

Let us compare continualized (17, 18) and axiomatic (29, 30) equations.
It is straightforward to see that these equations are identical when

Kd2

M
=
E

ρ
,

M

d
= ρA,

d2

12
= χ2. (31)

Therefore, these relations establish the link between the discrete and contin-
uum parameters. In particular, the scale parameter χ can be obtained from
the physical characteristics of the discrete system. Anand et al. [18] and
Nayfeh et al. [17] have shown the existence of interactions between axial and
transverse modes of vibration. The i-th axial mode interacts with the j-th
transverse one when ic1 ≈ 2jc2. For the case of c2

2/c
2
1 << 1 that is when the

stiffness of the string EA is much higher than the tension P0 in the reference
position, and assuming lower-order transverse modes, this interaction is not
present and the axial inertia ü (and ü′′) is therefore negligible (Nayfeh et al.
[17]). Hence Eq. (29) can be approximated to

u′′ = − ∂

∂X

[
w′2
(1

2
− u′

)]
. (32)

Integrating Eq. (32) twice by considering w′2 << 1 and u(0, t) = u(L, t) = 0,
gives

u =
X

2L

∫ L

0

w′2dX − 1

2

∫ X

0

w′2dX. (33)
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Finally, substituting Eq. (33) into Eq. (30), neglecting c2
2 compared to c2

1

and keeping cubic terms of w leads to the equation for transverse motion in
the following form

ẅ − χ2ẅ′′ − c2
2w
′′ − c2

1

2L
w′′
∫ L

0

w′2dX = 0. (34)

Note that Eq. (34) takes the scale effect under consideration. For χ = 0,
the corresponding nonlinear classical continuum equation after applying the
above-mentioned assumptions is recovered [16, 17, 18].

5. Comparison of linear models

In this section we analyze the dispersion curves of the linear versions of
the discrete, classical continuum and axiomatic continuum models. Even
though the linear regime is here considered, the comparison between them
provides an insight useful for the nonlinear regime.

The governing equations for the linear discrete model are

Mün −K(un+1 − 2un + un−1) = 0, (35)

Mẅn −
P0

d
(wn+1 − 2wn + wn−1) = 0, (36)

which are obtained by considering un − un−1 << d and wn − wn−1 << d
in Eqs. (7,8). By imposing a plane wave solution with wavenumber κ and
angular frequency ω in Eqs. (35,36), the dispersion relations are

ω2
axial =

2K

M
[1− cos(κd)], (37)

ω2
trans =

2P0

Md
[1− cos(κd)]. (38)

The governing equations of the classical continuum are obtained from a Tay-
lor expansion of un±1 and wn±1

un±1 = u± du′ + 1

2
d2u′′ +O(d3), (39)

wn±1 = w ± dw′ + 1

2
d2w′′ +O(d3) (40)
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in Eqs. (35,36), leading to

ü− c2
1u
′′ = 0, (41)

ẅ − c2
2w
′′ = 0. (42)

If a plane wave solution is imposed to Eqs. (41,42), the dispersion relations
are

ω2
axial = c2

1κ
2, (43)

ω2
trans = c2

2κ
2. (44)

The linear axiomatic continuum model is obtained by keeping the linear
terms of Eqs. (29,30). Then, the governing equations are

ü− χ2ü′′ − c2
1u
′′ = 0, (45)

ẅ − χ2ẅ′′ − c2
2w
′′ = 0. (46)

By imposing a plane wave solution, we reach to the following dispersion
relations

ω2
axial =

c2
1κ

2

1 + χ2κ2
, (47)

ω2
trans =

c2
2κ

2

1 + χ2κ2
. (48)
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Figure 2: Linearized models: (a) Dispersion curves, (b) Difference in frequency between
continuum and discrete models.

Fig. 2 shows the dispersion results obtained from the three linear models.
Fig. 2a shows the dispersion curves for both axial and transverse displace-
ments where frequency and wavenumber have been nondimensionalized as

ω = ω/ω0 κ = κd (49)

where ω0 stands for the corresponding reference frequencies

ω0,axial =

√
4K

M
=

2c1

d
, ω0,trans =

√
4P0

Md
=

2c2

d
. (50)

Fig. 2b presents the relative difference in frequency between the contin-
uum and discrete models calculated as

E =
ωContinuum − ωDiscrete

ωDiscrete

× 100. (51)
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As expected, the classical continuum is able to capture long-wavelength
vibrations. As κ increases, the difference in frequency with the discrete
model starts to be significant. For example, for a dimensionless wavenumber
κ = π/2, E ≈ 11%. Moreover, the axiomatic continuum model faithfully
captures the discrete curve up to κ = π/2 (E ≈ 1%). From this point on,
the axiomatic model gives a considerable better approximation of the dis-
crete model as compared to the classical one. Despite the good results given
by the axiomatic continuum model, it is important to emphasize that these
results are characteristics of the linear problems and, although there can be
similarities, they may not translate to nonlinear regime.

6. Numerical solution of nonlinear discrete and continuum models

This section presents the methodologies for the solution of the discrete
and axiomatic continuum model equations. The discrete model is solved us-
ing the Velocity Verlet algorithm [32], while the axiomatic model employs
Galerkin Method. The time-response of the Galerkin solution is obtained
with two methods: the first one, based on Jacobi’s elliptical functions, per-
mits to obtain an analytical solution, while the second, based on perturbation
methods, leads to a closed-form solution.

Let us introduce the following nondimensional variables in Eqs. (33,34)

ε =
c2

2

c2
1

� 1, u =
u

εL
, w =

w

εL
, ξ =

X

L
, τ = ω0t, ω0 =

c2

L
, h =

χ

L
.

and consider from this point on ˙(•) ≡ ∂
∂τ

and (•)′ ≡ ∂
∂ξ

. Eq. (34) transforms
into

ẅ − h2ẅ
′′ − w′′ − εw

′′

2

∫ 1

0

w′2dξ = 0, (52)

with boundary conditions

w(0, τ) = w(1, τ) = 0, (53)

and initial conditions

w(ξ, 0) = w0(ξ), ẇ(ξ, 0) = 0, (54)

where w0(ξ) corresponds to the nondimensional expression of the continual-
ized initial transverse displacement of the discrete model (Eq. (1)).
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The proposed solution is

w(ξ, τ) =
∑
j

qj(τ)φj(ξ), (55)

where qj(τ) are the unknown time-dependent functions to be determined and
φj(ξ) are the comparison functions, here chosen as

φj(ξ) = sin(Ωjξ), (56)

with Ωj = jπ (j = 1, 2, 3, ...). Application of Galerkin method in Eq. (52)

(1 + h2Ω2
j)q̈j + Ω2

j(1 + ε
Ω2
j

4

∑
h

q2
h)qj = 0, (57)

with initial conditions

qj(0) = 2

∫ 1

0

w0(ξ)φj(ξ)dξ (58)

and q̇j(0) = 0.
In case that the initial displacement condition w0(ξ) is monochromatic

and its wavenumber corresponds to a specific Ωc = cπ,

w0(ξ) = q0 sin (cπξ) (59)

with amplitude q0, the vector of initial conditions defined in Eq. (58) is zero
except for j = c. Hence, the system (57) reduces to the single equation

q̈ + αq + ε
αΩ2

4
q3 = 0 (60)

with

α =
Ω2

1 + h2Ω2
(61)

and initial conditions q(0) = q0 and q̇(0) = 0, where subscripts c have been
removed.

Eq. (60) corresponds to the undamped and unforced Duffing equation
and an analytical solution via Jacobi’s elliptical functions can be obtained
[33]. Moreover, a perturbation method is used to solve Eq. (60) in order
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to get a closed-form solution. The solution corresponding to the classical
nonlinear model can be obtained for h = 0.

The analytical solution of the Duffing equation, Eq. (60) and initial
conditions q(0) = q0 and q̇(0) = 0, makes use of Jacobi’s elliptical function
and is formulated as [33]

q(τ) = q0cn

(√
α + βq2

0τ,

√
βq2

0

2(α + βq2
0)

)
(62)

with β = εαΩ2

4
and α + βq2

0 6= 0. Function cn is Jacobi’s elliptical cosine-
function defined by [34]

cn(η,m) = cosϕ, (63)

where

η =

∫ ϕ

0

dθ√
1−m2 sin2 θ

. (64)

The dimensionless frequency ω of q(τ) is obtained by

ω = 2π/T , (65)

where the period T is

T =
4√

α + βq2
0

∫ π/4

0

dθ√
1−m2 sin2 θ

. (66)

The influence of the dimensionless length-scale parameter h on the temporal
evolution of function q, as well as on the dimensionless frequency ω, is pre-
sented in Fig. 3 for Ω = π, ε = 0.002, and q0 = 0.05. Fig. 3a shows that
as h increases, the semi-period of the time-response also increases, which de-
creases ω (Fig. 3b). Note that the time-response solution for h = 0 in Fig.
3a corresponds to the classical continuum model.
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Figure 3: Analytical solution of the proposed axiomatic continuum model. Influence
of the parameter h: (a) Time-dependent function q versus non-dimensional time τ , (b)
Dimensionless frequency ω vs parameter h.

A closed-form solution of the Duffing Eq. (60) and initial conditions
q(0) = q0 and q̇(0) = 0 is now obtained employing the Multiple Scales method
[35]. We seek a solution in the form

q = q0 + εq1 +O(ε2). (67)
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The time variable is expanded as τ 0 = τ and τ 1 = ετ . Introducing these
expansions in Eq. (60), keeping terms up to O(ε), and neglecting secular
terms gives

q(τ) = â cos(ωτ + b̂0) + ε
â3Ω2

128
cos(3ωτ + 3b̂0), (68)

with dimensionless frequency ω and constant parameters â and b̂0. For the
considered initial conditions, â = q0 and b̂0 = 0, hence,

q(τ) = q0 cos(ωτ) + ε
q3

0Ω2

128
cos(3ωτ), (69)

with

ω =
√
α
(

1 + ε
3Ω2

32
q2

0

)
. (70)

The nondimensional form of Eq. (33) is

u(ξ, τ) =
ε

2
ξ

∫ 1

0

w′2dξ − ε

2

∫ ξ

0

w′2dξ (71)

which corresponds to the governing equation of the dimensionless axial dis-
placement which is driven by the transverse one. For

w(ξ, τ) = q(τ) sin (Ωξ), (72)

the dimensionless axial displacement (Saad et al. [36], Leissa et al. [30])
reduces to

u(ξ, τ) = −Ω

8
εq(τ)2

(
sin (2Ωξ)− ξ sin (2Ω)

)
. (73)

In Eq. (73), q(τ) corresponds to the expression obtained with the Jacobi’s
elliptical functions (Eq. (62)) or through the perturbation method (Eq.(69)).
Thus, for the discrete system, the initial condition in un should be consistent
with the following expressions

u0(ξ) = u(ξ, 0) = −Ω

8
εq2

0

(
sin (2Ωξ)− ξ sin (2Ω)

)
, u̇(ξ, 0) = 0. (74)
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7. Analysis of results

In this section we will compare the results obtained from three different
approaches: classical and axiomatic continuum, and discrete model consid-
ered as the reference. We analyze the nonlinear vibration of a long chain of
identical particles of mass M separated by a distance d and connected by
linear springs with stiffness K. We consider as initial condition a sinusoidal
transverse displacement with wavelength λ, which is varied to study its in-
fluence on the chain response. The initial axial displacement in Eq. (74) is
considered.

Instead of the whole chain, we will solve a fully equivalent problem with
a reduced number of particles. Then if a multiple of the semi-wavelength
equals the distance between two given particles in the reference position(
mλ

2
= (N + 1)d

)
the considered problem is equivalent to a chain of length

L = (N + 1)d, corresponding to N + 2 particles with fixed ends (defined in
Section 2).

With the aim of reaching values of wavenumber κ close to π, we will con-
sider an equivalent chain with L = 3λ

2
, thus m = 3. Therefore, modifying

the number of particles in the considered model, the wavelength λ and the
dimensionless length-scale parameter h can be varied. A large number of par-
ticles would be representative of a problem with weak influence of the length
scale, while a small number permits to study sharp size effects. Additionally,
the amplitude of the initial displacement is increased to show the influence
of the nonlinearity in the response.

Summarizing, the study is performed for the following values: N =
[23, 11, 5, 3] (see Fig. 4), q0 = [0.05, 0.5, 1, 1.5, 2, 2.5], and ε = 0.002. The
considered initial transverse conditions for the discrete model are

wn(0) = W0(Xn) = εLq0 sin
(3π

L
Xn

)
, ẇn(0) = 0, (75)

which is paired with the following initial axial conditions

un(0) = U0(Xn) = −3π

8
ε2Lq2

0 sin
(6π

L
Xn

)
, u̇n(0) = 0. (76)

Consistently, the initial conditions for the continuum models are

w0(ξ) = w(ξ, 0) = q0 sin(3πξ), ẇ(ξ, 0) = 0, (77)

u0(ξ) = u(ξ, 0) = −3π

8
εq2

0 sin (6πξ), u̇(ξ, 0) = 0. (78)
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thus Ω = 3π. The time-responses of the discrete and continuum models are
obtained following the methodology explained in Section 6. The analytical
solution given by Eq. (62) is used for the response of the continuum models.
The perturbation solution, which provides valuable closed-form expressions,
shows equivalent results, thus it will not be presented in the Figures. The
analysis focuses on the transverse displacements, nevertheless a brief discus-
sion about the results of the axial displacement is also provided.

(a) (b)

(c) (d)

Figure 4: Discrete model. Sketch with equivalent problems and initial transverse displace-
ments: (a) N = 23, (b) N = 11, (c) N = 5, and (d) N = 3. Central particle in black and
neighboring particle on the right in gray.

7.1. Analysis of the transverse displacement

Figs. 5-8 compare, for different values of N , the time evolution of the
dimensionless transverse displacement corresponding to the central particle
(n = N+3

2
, see Fig. 4) of the discrete model, which is the point at ξ = 1/2 in

the continuum models.
Fig. 5 shows the results for N = 23 for different values of the amplitude of

the initial displacement q0. This study corresponds to wavenumber κ = π/8
and scale parameter h = 0.012. As expected, the classical model is able to
capture the response of the discrete one for this case of long-wavelength and
small scale effect. For larger values of N , the scale effect becomes irrelevant
and no differences are found among the different models.
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Figs. 6-8 shows the dimensionless displacement for N = [11, 5, 3] which
correspond to κ = [π/4, π/2, 3π/4] and h = [0.024, 0.048, 0.072], respectively.
As N decreases, the wavelength becomes shorter and the scale effect starts
to play a relevant role. For N = 11 (Fig. 6) differences between the classical
model and the discrete start to be noticeable. However, the axiomatic model
is able to capture the response of the discrete model. For N = 5 (Fig. 7)
significant differences appear between the dimensionless displacement of the
classical model and the discrete one. A good approximation is obtained with
the axiomatic model, showing a better accuracy for any value of q0. For
N = 3, κ = 3π/4 (Fig. 8) none of the continuum models is able to capture
the response of the discrete model. However, the axiomatic one provides a
much better approximation than the classical continuum model.

Fig. 9 shows the dimensionless frequency ω of the corresponding trans-
verse displacement versus q0. The frequency of the discrete response is ob-
tained from the Fast Fourier Transformation of transverse displacement of a
particle. Eqs. (66,70) are used to obtain the frequencies of the continuum
model from analytical, Eq. (66), and perturbation, Eq. (70), approaches.
The figure shows that frequency increases with increasing values of q0. For
small values of q0, the curve tends to be horizontal and the model reproduces
the linear regime. As N decreases, the frequency of the responses of the dis-
crete and axiomatic models decreases, meanwhile the frequency of classical
model remains constant. This is the result of the absence of the length-scale
parameter in the classical formulation. For N = 23 and N = 11, Figs.
9a-9b respectively, the axiomatic model faithfully captures the response of
the discrete model while significant differences with the classical one start to
appear. For a large number of particles, these differences are not present.
As the wavelength becomes of the order of the microstructural dimension
(Figs. 9c-9d), the axiomatic model gives a much better approximation to the
discrete response than the classical model.
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Figure 5: Discrete and continuum models. Dimensionless transverse displacement of cen-
tral particle in the discrete model and w(1/2, τ) in the continuum models for N = 23,
κ = π/8, h = 0.012 (axiom.), and: (a) q0 = 0.05, (b) q0 = 1.5, and (c) q0 = 2.5.
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Figure 6: Discrete and continuum models. Dimensionless transverse displacement of cen-
tral particle in the discrete model and w(1/2, τ) in the continuum models for N = 11,
κ = π/4, h = 0.024 (axiom.), and: (a) q0 = 0.05, (b) q0 = 1.5, and (c) q0 = 2.5.
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Figure 7: Discrete and continuum models. Dimensionless transverse displacement of cen-
tral particle in the discrete model and w(1/2, τ) in the continuum models for N = 5,
κ = π/2, h = 0.048 (axiom.), and: (a) q0 = 0.05, (b) q0 = 1.5, and (c) q0 = 2.5.
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Figure 8: Discrete and continuum models. Dimensionless transverse displacement of cen-
tral particle in the discrete model and w(1/2, τ) in the continuum models for N = 3,
κ = 3π/4, h = 0.072 (axiom.), and: (a) q0 = 0.05, (b) q0 = 1.5, and (c) q0 = 2.5.
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Figure 9: Discrete and continuum models. Dimensionless frequencies for: (a) κ = π/8 and
N = 23, (b) κ = π/4 and N = 11, (c) κ = π/2 and N = 5, and (d) κ = 3π/4 and N = 3.
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7.2. Analysis of the axial displacement

Fig. 10 compares, for q0 = 1 and different values of N = [23, 11, 3],
the time evolution of the dimensionless axial displacement of the neighbor
particle on the right of the central one (n = N+3

2
+1, see Fig. 4) of the discrete

model, which corresponds to the point ξ = 1/2+1/(N+1) for the continuum
models. The figure shows that for a large number of particles (Fig. 10a) the
continuum models capture the response of the discrete model. For N = 11
(Fig. 10b), both classical and axiomatic models give a proper approximation
of the discrete response, despite the presence of high-frequency harmonics in
the discrete response. For N = 3 (Fig. 10c), the axial displacement of the
discrete model is not captured by any of the continuum models. The reason
is that the hypothesis of negligible axial acceleration is no longer valid, and
thus Eq. (32) is not adequate to reproduce the axial behavior of the string.

It is important to highlight that the axial displacement is three orders of
magnitude lower than the corresponding transverse one. Moreover, imposing
an initial condition in the axial displacement different than the one given by
Eq. (74) does not modify the transverse response as far as the amplitude
of u is small, as it has been verified by additional calculations with the
discrete model. Thus, the axiomatic model permits to capture the transverse
displacement of the discrete regardless of the characteristics of the axial one.
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Figure 10: Discrete and continuum models. Dimensionless axial displacement of neighbor
particle of the central one in the discrete model and u(1/2+1/(N+1), τ) in the continuum
models for q0 = 1 and: (a) κ = π/8 andN = 23, (b) κ = π/4 andN = 11, and (c) κ = 3π/4
and N = 3.
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8. Conclusions

In this paper, an axiomatic continuum model has been developed to pre-
dict the response of a taut string with microstructure submitted to nonlinear
axial and transverse vibrations. The model stems from an enrichment of
the classical kinetic energy based on a inertia-gradient formulation and a
classical potential energy. Starting from a non-standard continualization of
the discrete problem, which accounts for scale effects, a relation between
the parameters of the axiomatic and discrete models was established. A mi-
crostructure parameter was obtained, which permitted to take the scale effect
into consideration. For a nil value of this parameter, the classical nonlinear
continuum model was recovered. A comparison between the responses of the
continuum models with that of the reference discrete one is provided to val-
idate the proposed approach. This comparison shows the superiority of the
axiomatic model over the classical one in capturing the scale effect. These
have been the main findings:

• The axiomatic continuum model is able to reproduce the behavior of
discrete model submitted to vibrations whose wavelength is of the or-
der of the microstructural dimension. In these cases, the scale effect
becomes relevant and the classical model is not suitable.

• The axiomatic continuum model always improves the results obtained
using the classical one. The range of validity of this last model is ap-
proximately up to wavenumber κ = π/8. The axiomatic continuum
model obtains results equivalent to the discrete model up to κ = π/2.
Above this value, the axiomatic model gives a much better approxima-
tion than the classical continuum one.

• In the discrete and continuum models, higher initial amplitude leads
to nonlinear behavior which leads to an increase in the frequency of
the response with amplitude. However, an increase in the length-scale
parameter plays the opposite role, leading to a marked decrease in
frequency. While the proposed axiomatic model properly captures the
influence of both amplitude and length scale, the classical model is not
able to reproduce the second.

• The perturbation method provides closed-form equations for the time-
response and frequency of the solution, obtaining a proper approxima-

28



tion to the analytical solution. Hence, it is an accurate straightforward
solution for the time-response of the structured taut string.
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