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Abstract

In this paper we analyze for the first time the bending vibration of a nanoplate

with an attached mass using the strain gradient elasticity theory for homo-

geneous Lamé material, under Kirchhoff-Love’s kinematical assumptions. The

exact eigenvalues of the nanoplate vibrating with an attached mass are obtained

for a general case, and an approximate closed form expression is provided if the

intensity of the mass is small with respect to the total mass of the nanoplate.

The inverse problem of identifying a point mass attached on a simply supported

rectangular nanoplate from a selected minimal set of resonant frequency data is

also considered. We show that if the point mass is small, then the position of the

point mass and mass size can be determined by means of closed form expressions

in terms of the changes induced by the point mass on the first three resonant

frequencies. The identification procedure has been tested on an extended se-

ries of numerical simulations, varying the scale parameter of the nanoplate’s

material and the position and size of the point mass.
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nanosensors, transverse vibration, mass identification, inverse problems.

1. Introduction

Nanosensors are gathering attention in the last years due to the necessity of

measuring physical and chemical properties in industrial or biological systems

in the submicron scale. In the last decade, the improvement in manufactur-

ing techniques gave rise to a size reduction of nano-electro-mechanical systems5

(NEMS), resulting in remarkable advances in fabrication costs, power consump-

tion and integration. The reduced dimensions of these transducers lead to novel

sensing concepts and to an enhanced performance with a great impact on a

diversity of applications [1, 2].

One of the most representative examples of the advantages of downscaling in10

sensoring systems is the nanomechanical resonator, which consists in a vibrating

structure (nanowire, nanocantilever, nanoplate) with remarkable perfomance in

detecting small adherent masses which produce slight changes in the resonant

frequencies of the system [3]. These label-free sensors show high sensitivity and

measurement precission for several reasons: low mass, high quality factor, and15

high signal-to-noise ratios. Miniaturization of these resonators has moved the

resolution of mass detection from the picogram to the zeptogram range in less

than a decade [4].

Derived from atomic force microscopy techniques, the nanocantilever-based

sensor is the most common structural typology used for mass detection. The20

benefits of these types of sensors rely on their tiny work area, low fabrication

cost, simple integration with electronics, and the possibility to fabricate arrays of

tens to thousands of cantilever beams [5]. From its beginnings, cantilevers have

been used for the detection of micro-sized particles [6], cells and fungal spores
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[7, 8], DNA molecules [9], and even atoms [10, 11]. Up to now, nanocantilevers25

are still the major player in sensing applications [1].

Although less prevalent than cantilevers, some recent studies have investi-

gated the suitability of 2D resonators for sensing uses. Membranes and plates

show, with respect to cantilevers, a much higher quality factor (Q-factor) in

fluid media, thus having better signal-to-noise ratio and resolution and making30

them a great candidate for the development of in-situ biosensors [12, 13, 14, 15].

Moreover, plates are stiffer than cantilevers of the same mechanical properties

and length similar to that of the edges of the plate, which increases robustness

as a relevant feature for manufacturing and functionalization, as well as mass

sensitivity [16]. Nanoplate resonating structures with high Q-factor in air and35

prominent mass sensitivity have been fabricated by Bhaswara et al. [16].

A key feature of the nanostructures is the need of considering size effects

when modeling its mechanical response, since their dimensions become com-

parable to the characteristic microstructural distances. To that aim, molecular

dynamic formulations have been used but these are time consuming, and require40

the definition of complex interaction potentials. Thus, continuum approaches

present advantages in terms of computational cost. Classical –scale free– con-

tinuum solid mechanics theories may fail when the characteristic lengths of the

studied phenomena are comparable to the size of microstructure. In contrast,

generalized continuum models succeed in capturing the effects of microstructure45

and size effects [17, 18, 19, 20, 21, 22].

Later on, Eringen postulated [23, 24] an integral nonlocal constitutive re-

lation for microstructured materials. From this earlier nonlocal theories, he

derived a differential version [25]. This model has been widely used to address

problems related to different kind of structural elements (see the recent reviews50

by Eltaher et al. [26], and Rafii-Tabar et al. [27] on this last topic). However,

some paradoxical results derived from the nonlocal model have been found both

in static [28] and dynamic [29] conditions. Romano et al. [30] recenty shown
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that, in the majorities of the cases, the integral formulation of the fully nonlo-

cal elasticity theory leads to problems that have to be considered as ill-posed,55

having no solution in general. Thus, previous attempts to overcome the quoted

paradoxical results [31, 32] have proven to be inadequate, all of this putting

the focus on other generalized continuum theories, such as mixed local/nonlocal

[33, 34] or gradient formulations.

The development of efficient methods for the identification of concentrated60

masses in nanostructures is essential for their use as sensors. Particularly, for

nanoplates and graphene sheets, techniques have been recently proposed by

different authors [35, 36, 37, 38, 39, 40, 41]. However, the above developments

are based on the Eringen fully nonlocal theory that, as stated above, leads to

ill-posed problems [30]. Thus, alternative theories have to be considered for the65

proposal of identification methods in 2D nanosensors.

Among the different strain gradient theories, the one proposed by Lam et

al. [42] has been used by different authors to model the mechanical behaviour

of nanostructures. Known as the modified strain gradient elasticity theory,

this model is based on previous developments by Mindlin [22] and Fleck and70

Hutchinson [43]. The application of the principle of virtual work (see Germain

[44], for instance) leads to additional balance equations, and the number of

length-scale parameters is reduced from five (in the original model by Mindlin

for isotropic center-symmetric materials) to three. The modified strain gradient

theory has been used for the analysis of static and vibrational behaviour of75

Euler-Bernoulli beams [45], Timoshenko beams [46], and Kirchhoff plates [47],

as well as for the study of buckling behaviour of Euler-Bernoulli beams [48] and

shear deformable beams [49]. Recently, Zhang et al. [50] applied this theory

to model the static bending, buckling and free vibration of a size-dependent

Kirchhoff micro-plate resting on elastic medium. Likewise, Morassi et al. [51]80

analyzed the axial vibrational behaviour of a nanorod carrying a concentrated

mass through its span using the modified strain gradient theory. Moreover, for
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the case of small intensity of the concentrated mass, a first order perturbative

technique was derived to compute the natural frequencies of the nanorod. In

fact, from the properties of the eigenvalue perturbative theory, the identification85

of a single point mass in a uniform nanorod (mass intensity and position) by

minimal frequency data can be performed. Later on, Dilena et al. [52] extended

this analysis to describe the bending behaviour of a nanoresonator modelled as

a Euler-Bernoulli beam carrying a single point mass, likewise using the modified

strain gradient theory, and developed a method for the identification of the point90

mass from minimal eigenfrequency data.

In this paper we obtain the natural frequencies for the bending vibration of

a nanoplate with an attached mass within the modified strain gradient constitu-

tive framework [42]. To that aim we use the corresponding model proposed by

Wang et al. [47] for the Kirchhoff plate behaviour, accounting for lenght-scale95

effects. Moreover we also consider the inverse problem of determining the in-

tensity and position of a point mass attached to a simply supported rectangular

nanoplate from minimal natural frequency data. For the case of small intensity

of the concentrated mass, and adopting the approach derived by Rubio et al.

[53] for plates following classical elasticity, we show that the inverse problem can100

be formulated and solved in closed form in terms of the changes induced by the

point-mass on the first three natural frequencies. The novelty of the article lies

in the analysis of the bending vibration of a nanoplate with an attached mass

using the modified strain gradient theory. To the best of our knowledge, both

the study of the direct problem and the inverse problem are addressed here for105

the first time. Moreover, even the key mathematical tool for formulating and

solving the inverse problem, namely the explicit expression of the sensitivity

of the resonant frequencies to the point mass, see equation (44), is a relevant

element of originality of the present work that had not previously appeared in

the literature.110

The paper is organized as follows. The problem of the free bending vibration
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of the nanoplate is presented in section 2, while sections 3 and 4 are devoted to

the analysis of the effect of the presence of an attached point mass. In section 3

the exact natural frequencies are obtained, and in section 4 an approximate solu-

tion for the eigenvalues of the nanoplate are derived, provided that the intensity115

of the point mass is small. Section 5 addresses the inverse problem of identifying

the intensity and position of the small point mass from eigenfrequency shifts.

Section 6 reports and discusses the results of numerical simulations, both of the

direct and the inverse eigenvalue problem. Section 7 presents the concluding

remarks of this work.120

2. Modified strain gradient model for the bending vibration of a

nanoplate

The modified strain gradient theory was presented by Lam et al. [42] as a

simplification of a previous formulation by Mindlin [22]. The application of the

principle of virtual work (see Germain [44], for instance) to this approach leads125

to additional balance equations related to the higher-order stress and strain

gradients considered, and for isotropic materials contains three non-classical

material parameters in addition to the conventional Lame moduli. Brief resumes

of the theory can be found in papers by Kong et al. [45], Akgoz and Civalek

[48], Morassi et al. [51] and Wang et al. [47], among others.130

Based in the cited theory, let us formulate the transverse free vibration

problem for a simply supported nanoplate with rectangular mid-plane Ω =

{(x, y) ∈ R2|0 < x < a, 0 < y < b} and equivalent uniform thickness h >

0. Assuming the kinematic hypothesis of Kirchhoff-Love’s plate theory, the

equation governing the transverse displacement U(x, y, t) of the nanoplate reads

as, see [47] for details,

ρÜ(x, y, t)− p143U(x, y, t) + p242U(x, y, t) = 0, (1)

where Ü(x, y, t) indicates the second partial derivative of U with respect to t,
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t > 0, and 4 is the Laplacian operator, e.g., 4 ≡ ∂2

∂x2 + ∂2

∂y2 .

In the above equation, the surface mass density is denoted by ρ = γh (γ is

the volume mass density), and the quantities p1, p2 are given by

p1 = µI(2`20 +
4

5
`21), (2)

p2 = µh(2`20 +
8

15
`21 + `22) +

E

1− σ2
I, (3)

where I = h3

12 , µ > 0 is the elastic shear modulus, E > 0 is the Young’s

modulus, σ is the Poisson’s coefficient of the material, and the scale parameters

are denoted by `0, `1, `2.135

Using the classical separation of variables method, the transverse displace-

ment of the nanoplate U(x, y, t) can be expressed as

U(x, y, t) = u(x, y) exp iωt, (4)

u(x, y) being the amplitude of the normal vibration mode (eigenfunction) asso-

ciated to the natural (radian) frequency of the motion ω, and i is the imaginary

unit. Therefore, from (1) and (4), the free undamped infinitesimal transverse

vibration u = u(x, y) of the nanoplate consists in finding u ∈ H6(Ω) \ {0},

λ ∈ R+, solution to140 

L[u] ≡ p2∆2u− p1∆3u = λρu, in Ω,

u = 0, on ∂Ω,

u,νν = 0, on ∂Ω,

P1u,νν −P4u,νννν = 0, on ∂Ω,

(5)

(6)

(7)

(8)

where λ = ω2 and ν is the unit outer normal to ∂Ω. Hereinafter, for m integer

and m ≥ 1, Hm(Ω) denotes the usual Sobolev space of Lebesgue measurable

functions f : Ω → R with square-summable weak derivative Dαf up to the

order m, e.g., Hm(Ω) = {f : Ω → R|
∫

Ω
|f |2 +

∑m
|α|=1 |Dαf |2 < +∞}, where145
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α = (α1, ..., αn), αi ≥ 0 integer, |α| = α1 + ...+αn, Di = ∂
∂xi

, Dα = Dα1
1 ...Dαn

n ,

n = 2.

The classical, (6) and (7), and nonclassical, (8), boundary conditions corre-

spond to a simply supported nanoplate [47]. The coefficients appearing on the

boundary conditions (8) are given by

P1 = c1h+ c2I, (9)

P4 = c7I, (10)

with

c1 = µ(2`20 +
8

15
`21 + `22), (11)

c2 =
E

1− σ2
, (12)

c7 = p1/I. (13)

To find the weak formulation of the problem (5)–(8), let us introduce the set of

admissible deformations H:

H = {ϕ : Ω→ R| ϕ ∈ H3(Ω), ϕ = ϕ,νν = 0 on ∂Ω}. (14)

Multiplying (5) by any ϕ ∈ H, we obtain

(L[u], ϕ) =

∫
Ω

p2(∆2u)ϕ−
∫

Ω

p1(∆3u)ϕ ≡ (L2[u], ϕ)− (L1[u], ϕ). (15)

Let us consider (L2[u], ϕ). Integrating by parts twice, recalling that ϕ = 0 on

∂Ω and observing that (by (6) and (7)) ∆u = 0 on ∂Ω, we have

(L2[u], ϕ) =

∫
Ω

p2∆u∆ϕ. (16)

Analogous calculations can be repeated for the second term of (15), obtaining

(L1[u], ϕ) = −
∫
∂Ω

p1(∆2u)∇ϕ · ν +

∫
Ω

(∆2u)∆ϕ, (17)
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where · denotes the scalar product in R2. Now, from (6), (7) and (8), we have

∆2u = 0 on ∂Ω and the first term in (17) vanishes. Integrating by parts once

again, and observing that, by definition, ∆ϕ = 0 on ∂Ω, we have

(L1[u], ϕ) = −
∫

Ω

p1∇(∆u) · ∇(∆ϕ). (18)

Therefore, inserting (16) and (18) in (15), we obtain that, if (u ∈ H6(Ω)\{0}, λ)

is an eigenpair to (5)–(8), then (u, λ) is also a solution of the weak formulation

of the eigenvalue problem: to determine (u ∈ H3(Ω) \ {0}, λ) such that∫
Ω

p2∆u∆ϕ+ p1∇(∆u) · ∇(∆ϕ) = λ

∫
Ω

ρuϕ, for every ϕ ∈ H. (19)

Conversely, it is possible to prove that if (u, λ) is an eigensolution to (19), and

u ∈ H6(Ω), then (u, λ) solves also (5)–(8), and the equivalence between the

strong and the weak formulation is proved.150

We now determine the eigensolutions to (5)–(8). By direct inspection, the

pairs

λmn =
1

ρ
(C1(m,n)p1 + C2(m,n)p2) , (20)

umn(x, y) =

√
4

ρab
sin
(mπx

a

)
sin
(nπy

b

)
, (21)

m = 1, 2, ..., n = 1, 2..., are eigensolutions to (5)–(8), with

C1(m,n) =

((mπ
a

)2

+
(nπ
b

)2
)3

, (22)

C2(m,n) =

((mπ
a

)2

+
(nπ
b

)2
)2

. (23)

Actually, it is possible to prove that (20), (21) are all the possible eigensolutions

to (5)–(8). To see this, let us proceed by contradiction and assume there exists

another eigenfunction v, v ∈ H6(Ω) \ {0}, associated to the eigenvalue λ, with

λ 6= λmn for every m,n = 1, 2, .... By writing the weak formulation (19) for the

eigenpairs (umn, λmn) and (v, λ), and subtracting term by term, we have∫
Ω

ρvumn = 0, for every m,n ≥ 1. (24)
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Since {umn}∞m,n=1 is a complete family in L2(Ω), from (24) we have v ≡ 0 in Ω,

which is a contradiction.

3. Free transverse vibration of a nanoplate with an attached point

mass

In this section we shall assume that a point mass M is attached to the155

plate at the point P0 = (x0, y0) ∈ Ω. The strong formulation of the eigenvalue

problem, analogous to (5)–(8), is

L[ũ] = λ̃(ρ+MδP0
)ũ, in Ω,

ũ = 0, on ∂Ω,

ũ,νν = 0, on ∂Ω,

P1ũ,νν −P4ũ,νννν = 0, on ∂Ω,

(25)

(26)

(27)

(28)

where (ũ, λ̃) is the eigenpair, ũ ∈ H6(Ω \ {P0}) ∩H2(Ω) \ {0}, λ̃ ∈ R and δP0

denotes the Dirac’s delta with support at P0 ∈ Ω. The weak formulation of

(25)–(28) consists in determining (ũ ∈ H3(Ω \ {P0})∩H2(Ω) \ {0}, λ̃ ∈ R) such

that∫
Ω

p2∆ũ∆ϕ+p1∇(∆ũ)·∇(∆ϕ) = λ

(
Mũ(P0)ϕ(P0) +

∫
Ω

ρũϕ

)
, for every ϕ ∈ H.

(29)

The eigenpairs of (25)–(28) or, equivalently, of (29) do not have explicit closed

form as in the case M = 0. However, we can provide an explicit expression for

the frequency equation of the supported nanoplate with a point mass M at P0.

Let us rewrite (25) as

L[ũ]− λ̃ρũ = f, in Ω, (30)

with

f = λ̃MδP0
ũ, (31)

and define

ũ(x, y) =
∞∑

m,n=1

cmn sin
(mπx

a

)
sin
(nπy

b

)
, (32)
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where the series is assumed to be uniformly convergent in Ω together with high

order partial derivatives. Replacing (32) in (30), multiplying by sin
(
kπx
a

)
sin
(
jπy
b

)
,

with k, j, k, j ≥ 1, and integrating in Ω, we obtain

cmn =
4

ab
λ̃M

ũ(x0, y0) sin
(
mπx0

a

)
sin
(
nπy0
b

)
p2 C2(m,n) + p1C1(m,n)− λ̃ρ

, (33)

for every m,n ≥ 1. Evaluating (32) at (x, y) = (x0, y0), using (33), we have

1 =
4

ab
λ̃M

∞∑
m,n=1

sin2
(
mπx0

a

)
sin2

(
nπy0
b

)
p2 C2(m,n) + p1C1(m,n)− λ̃ρ

, (34)

which is the exact (series expression of the) frequency equation of the nanoplate

with the point mass. The roots of (34) are the eigenvalues of the perturbed160

plate.

4. Perturbation analysis

Let us assume that the eigenvalues of the plate without point mass are

simple. In this respect, it should be noticed that since we only need to consider

the first three eigenfrequencies in our analysis, and the first eigenvalue is always165

simple, then this assumption is not particularly restrictive. We refer to [53]

(Section 2.3) for a detailed analysis of the case of multiple eigenvalues in a

simply supported plate in classical elasticity.

By general perturbation results, we know that the eigenpairs of the plate

with the attached point mass M , with M small enough, depend analytically on

the perturbation parameter M , i.e., there exists M̂ > 0 such that the eigenvalue

as function of M , λ = λ(M), is an holomorphic function of M for 0 < M < M̂ .

We shall derive an explicit expression of the first-order change of the eigenvalues

with respect to M . Given a function f of the parameter M , we define the

following forward-difference operator

δhf(M) =
f(M + h)− f(M)

h
, (35)
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for every h > 0 and every M > 0. Let us recall the weak formulation (29) of

the eigenvalue problem of the nanoplate with the point mass at P0 = (x0, y0) of

magnitude M + h and M , respectively:∫
Ω

p2∆u(M + h)∆ϕ+ p1∇(∆u(M + h)) · ∇(∆ϕ) =

= λ(M + h)

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω

ρu(M + h)ϕ

)
, (36)

∫
Ω

p2∆u(M)∆ϕ+ p1∇(∆u(M)) · ∇(∆ϕ) =

= λ(M)

(
Mu(P0;M)ϕ(P0) +

∫
Ω

ρu(M)ϕ

)
, (37)

where, to simplify the notation, we have denoted by u, instead of ũ, the eigen-

function of the perturbed problem and we have defined u(x, y;M) = u(M),170

u(x0, y0;M) = u(P0;M). Note that, in the expressions above, ϕ is a function

not depending on M .

Subtracting (37) to (36), and dividing by 1
h , the left hand side (l.h.s.) be-

comes

l.h.s. of ((37)-(36))=∫
Ω

p2∆(δhu(M))∆ϕ+ p1∇(∆(δhu(M))) · ∇(∆ϕ), for every ϕ ∈ H, (38)

whereas the right hand side (r.h.s.) is175

r.h.s. of ((37)-(36))=

λ(M + h)

h

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω

ρu(M + h)ϕ

)
−

− λ(M)

h

(
Mu(P0;M)ϕ(P0) +

∫
Ω

ρu(M)ϕ

)
, for every ϕ ∈ H. (39)

It is convenient to add and subtract to (39) the quantity

λ(M)
h

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω
ρu(M + h)ϕ

)
.

Further elaborating (39) we obtain
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r.h.s. of ((37)-(36))=

λ(M + h)

h

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω

ρu(M + h)ϕ

)
−

− λ(M)

h

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω

ρu(M + h)ϕ

)
+

+
λ(M)

h

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω

ρu(M + h)ϕ

)
−

− λ(M)

h

(
Mu(P0;M)ϕ(P0) +

∫
Ω

ρu(M)ϕ

)
=

= δhλ

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω

ρu(M + h)ϕ

)
+

+λ(M)

(
(M + h)u(P0;M + h)−Mu(P0;M + h) +Mu(P0;M + h)− u(P0;M)

h
ϕ(P0) +

∫
Ω

ρ(δhu)ϕ

)
=

= δhλ

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω

ρu(M + h)ϕ

)
+

+ λ(M)

(
u(P0;M + h)ϕ(P0) +Mδhu(P0;M)ϕ(P0) +

∫
Ω

ρ(δhu(M))ϕ

)
. (40)

By (38) and (40), we have∫
Ω

p2∆(δhu(M))∆ϕ+ p1∇(∆(δhu(M))) · ∇(∆ϕ) =

= δhλ

(
(M + h)u(P0;M + h)ϕ(P0) +

∫
Ω

ρu(M + h)ϕ

)
+

+ λ(M)

(
u(P0;M + h)ϕ(P0) +Mδhu(P0;M)ϕ(P0) +

∫
Ω

ρ(δhu(M))ϕ

)
, (41)

for every ϕ ∈ H. Now, we take ϕ = u(M) and we notice that δhu(M) belongs to

the admissible set of test functions H for the weak formulation of the eigenvalue

problem (29). Then, the left hand side of (41) simplifies with the fourth and

fifth terms of the r.h.s., and (41) becomes

0 = δhλ

(
(M + h)u(P0;M + h)u(P0;M) +

∫
Ω

ρu(M + h)u(M)

)
+

+ λ(M)u(P0;M + h)u(P0;M), for every h > 0. (42)

Finally, letting h → 0+ and assuming continuity of the eigenfunctions with

respect to the parameter h as h→ 0+, we get

∂λ(M)

∂M
|M+ = −λ(M)

u2(P0;M)

Mu2(P0;M) +
∫

Ω
u2(M)

. (43)
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The left derivative is equal to the right derivative, and we have proved

∂λ(M)

∂M
|M = −λ(M)

u2(P0;M)

Mu2(P0;M) +
∫

Ω
u2(M)

. (44)

From (44), we can conclude that the following Taylor’s expansion holds true in

a small neighborhood of the unperturbed plate (e.g., near M = 0)

δλn ≡ λ̃n − λn = −Mλnu
2
n(P0) +O(M2), (45)

for normalized unperturbed eigenfunction un, e.g.,
∫

Ω
ρu2

n = 1. Note that, in

(45), λn and λ̃n denote the nth eigenvalue of the unperturbed and perturbed180

plate, respectively.

5. Identification of a point mass from minimal eigenfrequency data

Under the assumption of simple eigenvalues, let us introduce the quantities

S = cos

(
2πx0

a

)
, T = cos

(
2πy0

b

)
, (46)

where (x0, y0) is the position of the point mass of intensity M . Denote as

δλ11, δλ12, δλ21 (47)

the first-order changes evaluated via (45), and let

Cij = − δλij(
4
ρab

)
λij

, (48)

(i, j) = (1, 1), (1, 2), (2, 1). Then, by adapting the arguments shown in [53], we

have

T =
C12

2C11
− 1, (49)

S =
C21

2C11
− 1, (50)

M =
4C11

(1− T )(1− S)
. (51)
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It should be noticed that the mass size M is uniquely determined, whereas, as

expected by symmetry considerations, the position (x0, y0) is determined up to

symmetric positions with respect to the axes x = a
2 and y = b

2 . Let us also notice185

that the key point of the identification procedure is that the first eigenfunction

u11 never vanishes inside Ω. This implies that the fundamental eigenvalue λ11

is always sensitive to the addition of the point mass, that is C11 > 0 for every

position (x0, y0) of the point mass inside Ω.

6. Applications190

6.1. The specimen

For the numerical calculations we consider a simply supported rectangu-

lar nanoplate with in-plane dimensions a × b and thickness h. The mate-

rial properties are assumed as in [45]: γ = 1000 kg
m3 , E = 1.44 GPa, and

ν = 0.38. We also assume that the three scale parameters are equal [45], i.e.,

`0 = `1 = `2 = ` = 17.6 µm. The dimensional analysis dictates that the eigen-

value λ̃mn corresponding to bending vibration of the nanoplate with a point

mass located in x0, y0 can be written as

λ̃mn =
D

ρa4
Λ̃

(
m,n;

x0

a
,
y0

b
,
a

b
,
`

h
,
a

h
,
M

ρab

)
, (52)

with D = E
1−σ2 I.

In the sequel we present results corresponding to a
b = 0.8, a

h = 50, and for

several values of the dimensionless parameters `
h and M

ρab .

6.2. Numerical perturbation analysis195

Fig. 1 shows the difference between the first three eigenvalues λ̃11, λ̃12, λ̃21,

calculated as roots of Eq. (34) (exact solution), and those obtained from

the perturbative methodology using Eq. (45) neglecting the high order term

(λ̃∗11, λ̃
∗
12, λ̃

∗
21). The difference has been calculated as emn =

λ̃mn−λ̃∗
mn

λ̃mn
× 100.
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To solve (34), as it was done in previous works [54, 53], truncated series for200

m = 6 and n = 5 was considered. Numerical simulations have been carried out

by dividing both sides of the plate into 50 equally sized intervals, for a total of

2500 nodes, and the mass M was alternatively located at all nodes of the mesh.

The presented results correspond to a
h = 50, `

h = 1, and M
ρab = {0.005, 0.01}.

The relative differences between exact eigenvalues and eigenvalues estimated via205

the perturbative solution have been represented by means of contour curves. In

all the cases considered, the differences are very small and typically less than

0.25%. However, as it will be shown in the next section, discrepancies are large

enough to introduce significant errors in the mass size when the point mass is

located near the edges of the plate.210

6.3. Identification results

In this section we present some results related to the identification method-

ology explained in section 5. For each mass position, the normalized spatial

variables u = x0

a , v = y0
b and the intensity of the mass M were evaluated using

Eqs. (49)-(51) and Eq. (46) (note that the first eight eigenvalues of the plate215

are simple for the present case).

The mass was located in 2500 different points as explained in the previous

section, and the percentage errors between the estimated and actual values were

obtained for a
h = 50, three different mass sizes M

ρab = {0.0025, 0.0050, 0.0100}),

and two values of the scale parameter `
h = { 1

10 , 1}. The results are summarized220

in Fig. 2 (mass size), Figs. 3 and 4 (position u and v, respectively). The

percentage error in the estimation of the mass intensity was obtained as eM =

(Mest−M)
M × 100, while the percentage errors for the position, eu and ev, were

calculated as follows: eu = (uest − u) × 100, and ev = (vest − v) × 100 (note

that (u, v) represents the normalized position of the mass with respect to the225

edges size, a and b, respectively). The maximum percentage error for M was

obtained for `
h = 1, and it was equal to 15, 26, and 64 percent for M

ρab =
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{0.0025, 0.0050, 0.0100}, respectively. Results have been obtained also for `
h =

1
20 and a

h = 75, considering the same three values for the mass. The calculated

percentage errors are similar to the previous cases, being the mass intensity the230

truly influential factor. The largest errors in mass identification were found for

positions u, and v approximately belonging to the region u+ v ≤ 0.5.

Regarding the localization of the point mass, it is worth noting that the

discrepancies on u and v are noticeably lower, and the maximum was found for

u < 0.20 and v < 0.20.235

7. Conclusions

The identification of added masses employing resonant based nanosensors

is based on the fact that the eigenfrequencies have specific sensitivity to the

added masses. The key issue is in extracting quantitative information on the

mass intensity and its spatial distribution from a finite number of eigenfrequency240

data.

In this paper we analyze for the first time the bending vibration of a nanoplate

with an attached mass using the strain gradient elasticity theory for homoge-

neous Lamé material, under Kirchhoff-Love’s kinematical assumptions.

The direct problem is solved showing the effect of the attached mass in the245

natural frequencies of the nanoplate. The exact eigenvalues are obtained for

a general case, and an approximate closed form expression is provided if the

intensity of the mass is small.

The inverse problem of identifying an unknown point mass attached to a sim-

ply supported rectangular nanoplate from a minimal set of resonant frequency250

data has been also considered. For mass size small with respect to the total

mass of the nanoplate, a perturbation approach based on an explicit expres-

sion of the eigenfrequency sensitivity to the point mass has been used to obtain

closed-form expressions for the mass size and the two position variables in terms

17



of the first three resonant frequencies. Numerical results are in agreement with255

the theory and show that the mass size estimate is generally less accurate than

the two position variables.

To the best of our knowledge, both the study of the direct free vibration

problem and the inverse problem of determining the attached point mass from

minimal eigenfrequency data have been addressed here for the first time.260

The present contribution is a first step of a long-term research program aimed

at the detection of more general mass distributions in nanoplates, such as mass

per unit length concentrated along planar curves or mass per unit area assigned

on two-dimensional subsets of the nanoplate. Significant work, both from the

theoretical and experimental/numerical point of view, will be necessary to deal265

with this class of inverse problems, since, as it is well known, inverse eigenvalue

problems with finite data pose challenging questions even in the more simple

context of classical elasticity [55].
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Figure Captions

Figure 1. Differences in the three first eigenvalues emn =
(λ̃mn−λ̃∗

mn)
λ̃mn

× 100

for M
ρab = 0.005 and M

ρab = 0.010.

Figure 2. Error in the estimation of the point mass intensity, eM = (Mest−M)
M ×430

100, for two different values of the length scale parameter ( lh = 1
10 , l

h = 1),

and three different values of the point mass ( Mρab = 0.0025, M
ρab = 0.0050,

M
ρab = 0.0100).

Figure 3. Error in the estimation of the position u, eu = (uest − u)×100, for

two different values of the length scale parameter ( lh = 1
10 , l

h = 1), and three435

different values of the point mass ( Mρab = 0.0025, M
ρab = 0.0050, M

ρab = 0.0100).

Figure 4. Error in the estimation of the position v, ev = (vest − v)×100, for

two different values of the length scale parameter ( lh = 1
10 , l

h = 1), and three

different values of the point mass ( Mρab = 0.0025, M
ρab = 0.0050, M

ρab = 0.0100).
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Figure 1: Differences in the three first eigenvalues emn =
(λ̃mn−λ̃∗

mn)
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× 100 for M
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Figure 2: Error in the estimation of the point mass intensity, eM =
(Mest−M)

M
× 100, for two

different values of the length scale parameter ( l
h
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, l
h
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the point mass ( M
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= 0.0025, M
ρab

= 0.0050, M
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Figure 3: Error in the estimation of the position u, eu = (uest − u) × 100, for two different

values of the length scale parameter ( l
h

= 1
10

, l
h

= 1), and three different values of the point

mass ( M
ρab

= 0.0025, M
ρab

= 0.0050, M
ρab

= 0.0100).
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Figure 4: Error in the estimation of the position v, ev = (vest − v) × 100, for two different

values of the length scale parameter ( l
h

= 1
10

, l
h

= 1), and three different values of the point

mass ( M
ρab

= 0.0025, M
ρab

= 0.0050, M
ρab

= 0.0100).
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