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Abstract

In this paper we propose a continuum membrane model for the

infinitesimal deformation of a spider web. The model is derived in

the simple context of axially-symmetric webs formed by radial

threads connected with circumferential threads belonging to

concentric circles. Under suitable assumption on the tensile

pre-stress acting in the referential configuration, the out-of-plane

static equilibrium and the free transverse and in-plane vibration of a

supported circular orb-web are studied in detail. The accuracy of the

model in describing a discrete spider web is numerically investigated.

Keywords : System modelling; spider orb-webs; continuous structured

membranes; small vibrations.

1 Introduction

The spider orb-web is a complex biological-mechanical system that has

attracted increasing interest in the scientific literature in the last four

decades. This web is a natural, lightweight, elegant structure with an

extreme strength to weight ratio that is rarely observed among other

structures, either natural or manmade. Its primary functions are for

catching prey and sensory information, and the study of the mechanisms

guiding the spider in prey capture and gathering information through web

vibration has been - and actually is - one of the main objectives of the
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research in this field. Interspecific and intraspecific variations in the

structure of orb-webs is widely documented [1, 2, 3]. Moreover, individual

spiders adapt the characteristics of the web to specific conditions such as

nutritional status, spider size, presence of parasites or predators, type of

prey available, weather conditions, or nutritional status [4]. Integrating

both biological and biomechanical approaches can help to uncover how web

architecture suits for vibratory sensing and prey catching under different

circumstances, and to identify selective pressures that have guided their

evolution. Basic questions posed by the researchers mainly concern: (i) how

spiders might discriminate between the large set of web-borne vibrations

and, particularly, between prey-produced signals and irrelevant vibrations

such as those generated by wind; and (ii) how exactly the spider adjusts the

web mechanics to the environmental conditions where the web is built, such

as, the pre-stress tensile forces to be assigned at specific locations of the

web, in order to improve its ability to prey capture. The answers to both

questions fall on the understanding of the different

physiological/behavioural processes. The use of modelling approaches could

help to uncover the consequences behind the biological adaptations and

evolutionary success of spiders.

In a series of papers published in the 80’s, Master and co-authors studied,

both experimentally and analytically, the vibration transmission through

the web. Signal amplitude was very low and simplified linear dynamic

models were used for the interpretation of the experiments. In [5] and [6] it

was assumed that the radial strands are the most important

vibration-conducting elements of the web. Accordingly, the types of
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vibrations propagating through the web were classified into longitudinal,

in-plane lateral and out-of-plane transverse. The conclusion was that, in an

empty web, longitudinal vibration is almost not attenuated and, then, it

plays a dominant role in the spider’s choice of the path to reach the

trapped prey. From the experiments emerged that the presence of a spider

at the hub of the web induces a significant attenuation of the longitudinal

vibration, and Masters [7] concluded that for prey detection and

recognition all types of vibrations may be equally important. The first

analytical estimates of resonant frequencies of spider orb-webs are due to

Frolich and Buskirk [8]. The authors used simple mechanical models with

lumped masses connected to crossing stretched threads. Landolfa and

Barth [9] used in their experiments transmission of natural and artificial

vibrations in webs to determine how spiders discriminate and locate the

stimuli. Using a multidisciplinary approach, Mortimer et al. [10] studied

vibrations in spider silks in comparison with other materials, identifying

evolutionary trade-offs between mechanical and signalling functions. All the

above analyses were strongly based on the one-dimensional character of the

wave propagation through the web, even if it was more or less explicitly

recognized in the literature the need of developing a vibration analysis of

the web described as a two-dimensional sheet of threads.

In parallel to investigations on signal transmissions on the web, there has

been an enormous increasing of research on bio-mechanical aspects of spider

orb-webs [2]. Vollrath et al. [11] investigated on the effect of environmental

and physiological variables, such as web support, wind, temperature,

humidity and silk supply, on web geometry [12]. Wirth and Barth [13]
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presented the first in situ measurement of the pre-stress forces in individual

threads of intact spider webs, and provided arguments supporting the

hypothesis of tension control by the spider. Gosline et al. [14] highlighted

the influence of the dissipative behavior of the silk in the energy absorption

capacity of the web, as compared to other constitutive behaviors. The

effect of increases in thread tension on prey-detection efficiency was

examined by Nakata [15]. Concerning the progress on the study of

mechanical characterization of the spider silk, the experiments carried out

by Ko and Jovicic [16] showed, among other aspects, that spider silk has

toughness properties significantly higher than that of the strongest

man-made fibers in tension, see also Harmer et al. [4]. The experiments

and simulations performed by Cranford et al. [17] allowed to identify the

nonlinear response of silk threads, and confirmed the superior resistance to

structural defects (i.e., broken threads) in the spider web compared to other

linear elastic or elasto-plastic materials. Hesselberg and Vollrath [18]

investigated the mechanical behavior of the non-sticky permanent spiral in

Nephila webs and, in particular, on the stress assigned by the spider to this

spiral during web building.

Upon reviewing the literature it emerges that several issues of the two main

questions i) and ii) posed at the beginning of this Introduction are still

open. One of the reasons is probably connected with the lack of

analytical/numerical studies on the mechanical behavior of the spider web

as whole two-dimensional structure. The recent development of highly

sophisticated numerical models of spider webs has partially overcome this

limitation. Finite element analysis and numerical methods have been
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identified and used by different authors as a valuable tool to integrate

detailed data on web structure and silk properties, allowing to understand

how silk biomechanics and web architectures interacted to influence spider

web evolution along different structural pathways

[19, 16, 20, 23, 4, 21, 22, 17, 26, 27, 28]. For example, the effect of damage

on the static and dynamic response of a web was numerically investigated

by Ko and Jovicic [16] and Alam et al. [23]; an analysis of high

performance spider silk was presented by Cranford et al. [17], Pugno et al.

[24], Qin et al. [25]; the role of aerodynamic drag in the dissipation of

prey’s energy and in reducing deterioration of the orb web was considered

by Zaera et al. [26]; the key effect of the secondary frame in avoiding

excessive stiffness in radials was analysed by Soler and Zaera [27]; links

between silk material properties and propagation of vibrations within webs

were studied in Mortimer et al. [28]. These models offer a remarkable

versatility and accuracy in reproducing the response of the web under wind

loads, prey impacts or vibratory excitation. However, theoretical models

often permit a deeper insight in the physical phenomena through the

analysis of the underlying mathematical structure of the governing

equations, which can be also written in nondimensional form to identify the

most relevant parameters that rule the response of the web. The first

two-dimensional model of spider web was proposed by Aoyanagi and

Okumura [29, 30]. The model consists of radial and circumferential threads,

and each thread is described as a stretched spring subject to pre-stress

tensile force in the referential configuration. The model was used to

determine the pre-stress state in an intact axially-symmetric web, and in a
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web damaged by removing some circumferential threads. For the intact

web, an infinitesimal homogeneous radial deformation was assigned from

the unstressed state, and an analytical solution was provided. An

approximate solution was proposed in case of damaged web. Numerical

simulations showed that when radial threads are sufficiently strong

compared to the circumferential threads, the damaged web is free of stress

concentration, in contrast with what occurs in common materials. The

model by Aoyanagi and Okumura was purely static, and its possible use for

the study of either in-plane or out-of-plane response was not investigated,

not even under the hypothesis of small deformations of the web.

In this paper we present a continuous mechanical model for small

deformations of a spider orb-web. The actual discrete web, formed by a

finite number of radial and circumferential threads, is approximated by a

continuous elastic membrane on the assumption that the spacing between

threads is small enough. The continuous membrane has a specific fibrous

structure which is inherited from the original discrete web, and it is subject

to tensile pre-stress in the referential configuration. Although the model

can be adapted to reproduce general geometries, for simplicity here we

restrict the attention to circular-shaped webs in which the circumferential

threads belong to concentric circles. Furthermore, we study in detail the

static and dynamic response of the web supported at the external boundary.

Our derivation of the continuum model follows a direct approach, namely,

it is based on some a priori assumptions on the possible deformation of the

membrane and on the internal contact forces acting in the radial and

circumferential threads, see Tottenham and Williams [31] for a study of a
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cable net in large-deflection membrane theory. For the sake of

completeness, it should be recalled that important contributions to the

understanding of the mechanical behavior of nets formed by cords have

been done in the past, starting from the classical works by Rivlin and

Pipkin (see, among others, the papers by Rivlin [32] and Pipkin [33]) to

more recent results, see, for example, [34]. Much of the theory and nearly

all of the applications developed in this area have been concerned with

plane deformations of bodies reinforced throughout with two families of

initially parallel, but not necessarily straight, fibers; we refer to Davini and

Governatori [35] for a study of nets with hexagonal cell structure. The

spider orb-web does not fall within this class of nets, since the geometrical

structure naturally provides for an intensification of the density of radial

threads towards the center of the web. In particular, a singularity in the

model arises exactly at the center of the web (e.g., a stiffness coefficient

diverges at that point), and this peculiar feature characterizes the static

and dynamic behavior of the whole structure.

The paper is organized as follows. The mechanical model is derived in

Section 2, and it is applied in Section 3 and Section 4 to describe the

out-of-plane static equilibrium and the transverse free vibrations,

respectively. Section 5 is devoted to the in-plane mechanical behavior of the

web. A numerical study on the static and dynamic response of the model,

and a comparison with a discrete web model are presented and discussed in

Section 6 and 7. Section 8 presents the main outcomes of this work.
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2 The mechanical model

2.1 Kinematics

We consider a spider web as a network formed by two intersecting families

of threads which, in a referential configuration BK, coincide with radial

directions passing through the origin O of a two-dimensional Cartesian

coordinate system (radial threads), and with coaxial circles centered at O

(circumferential threads) and having radius ranging from 0 to R.

The threads of each family are supposed to be close enough to each other so

that the web can be treated as a two-dimensional continuous membrane.

We define every material line tangent either to the radial or to the

circumferential threads as radial fibre and circumferential fibre, respectively.

Moreover, we assume that during deformation no slippage occurs between

fibers of the two different families, so that each given particle has the same

two fibres passing through it at each stage of the deformation.

Let us denote by X the referential placement of the particle X in BK. With

reference to polar coordinate representation (see Figure 1), we have

X = X(ϑ1, ϑ2) = ϑ1(cosϑ2E1 + sin ϑ2E2), (1)

ϑ1 = ρ, ϑ2 = ϑ, ϑ1 ∈ [0, R], ϑ2 ∈ [0, 2π], (2)

where {E1,E2,E1 ×E2 = E3} is the canonical basis of R3, that is

Ei · Ej = δij , where δij = 0 if i 6= j and δij = 1 if i = j, i, j = 1, 2, 3. Here,

”×” and ·” denote the vector and scalar product in R
3, respectively. The

two families of continuous threads coincide with the coordinate curves

ϑα = const, α = 1, 2, on the reference configuration BK. The unit tangent

vector to the threads of the αth family is Aα

|Aα|
, where Aα = X,α, α = 1, 2.
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Here, {A1,A2,A3 =
A1×A2

|A1×A2|
} is the covariant basis in a point X and

{A1,A2,A3 = A3} is the contravariant basis at the same point, with

Aα ·Aβ = δαβ , where δ
α
β = 1 if α = β and δαβ = 0 is α 6= β, α, β = 1, 2. The

comma notation is used to indicate partial derivatives, i.e., X,α=
∂X
∂ϑα

,

α = 1, 2. Greek indices assume values of 1, 2, and summation of the index

is explicitly indicated.

The theory is restricted to infinitesimal deformations from the referential

configuration BK. A typical particle X ∈ BK moves to the actual placement

x = X+ u(X), where the displacement vector field is given by the smooth

function u : BK → R
3 represented as

u =
2∑

α=1

uαAα + u3A3, (3)

in which uα, α = 1, 2, u3 are the contravariant components of u. The

assumption of infinitesimal deformations is implemented by requiring

max

( |u(X)|
R

+ |∂u(X)

∂X
|
)
< ǫ, X ∈ BK, (4)

where ǫ is a given number belonging to (0, 1), and by neglecting all the

quantities of order O(ǫτ) with τ > 1. We shall denote by aα

|aα|
the unit

tangent vector to the threads of the αth family in the actual configuration

B of the membrane, namely

aα = x,α , α = 1, 2. (5)

2.2 Internal contact forces and static equilibrium

We postulate that the internal force on an element of section along a

coordinate curve in the actual configuration B is a tensile force acting in the
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tangent plane to the deformed surface and, specifically, that the internal

force on the αth family of threads corresponds to a tensile force in the

”direction” of the αth coordinate curve (i.e., parallel to aα

|aα|
). We denote by

n

(
x,

aα

|aα|

)
(6)

the force per unit length acting on an arc of the actual surface B having

unit normal aα

|aα|
, α = 1, 2. Hereinafter, the contravariant basis {a1, a2, a3}

in a point of B is defined as aα · aβ = δαβ , a
3 = a3, see Figure 2.

The external force field acting on the deformed membrane is given by

p =
2∑

α=1

pαaα + p3a3, (7)

where pα, p3 are assumed to be continuous functions of x, α = 1, 2. By the

Cauchy’s Lemma, for every unit vector ν belonging to the tangent plane to

the surface B at x, there exists a unique stress tensor field N = N(x) such

that

n(x, ν) = N(x)ν, (8)

where

N =
2∑

α=1

Nα ⊗ aα, (9)

Nα = n

(
x,

aα

|aα|

)
|aα| ≡

2∑

β=1

Nαβaβ, α = 1, 2. (10)

In particular, on the arc element of surface having normal a2

|a2|
a force

parallel to a2 is acting and, similarly, on the arc element of surface of

normal a
1

|a1|
a force parallel to a1 is acting. Then

n

(
x,

aα

|aα|

)
= dαTα, α = 1, 2, (11)
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where Tα is the traction on a single thread belonging to the αth coordinate

curve (force vector parallel to aα), and dα is the number of threads per unit

length on the coordinate curve ϑα = const with direction coinciding with

the vector aα (i.e., [dα] =
# threads

unit length
).

The threads have zero shear/bending rigidity and the magnitude of the

force Tα depends only on the elongation in the direction of the αth

coordinate curve. More precisely, we assume

Tα = (T α +Aασα)
aα

|aα|
, α = 1, 2, (12)

where T α > 0 is the tensile pre-stress force acting on the referential

configuration BK; Aα is the area of the cross-section of a single thread

belonging to the αth family; and σα is the normal stress caused by the

deformation on the thread. By (10)–(12) we have

Nα = dα(T α +Aασα)
|aα|
|aα|

aα, α = 1, 2, (13)

or, in controvariant components,

N11 = d1(T 1 +A1σ1)
|a11| 12
|a11|

1

2

, (14)

N22 = d2(T 2 +A2σ2)
|a22| 12
|a22|

1

2

, (15)

N12 = N21 = 0, (16)

where aαα = aα · aα and aαα = aα · aα, α = 1, 2.

Under the assumption of elastic material, we have

σα = Eαǫα, α = 1, 2, (17)

where Eα > 0 is the Young’s modulus of the material and ǫα is the

elongation measure of the threads belonging to the αth family. By the
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assumption (3) on the displacement field and after neglecting higher order

terms, the linearized version of ǫα is

ǫα =
uα|α
Aαα

, α = 1, 2, (18)

where Aαα = Aα ·Aα and the covariant derivative of the covariant

component uα with respect to ϑα has the expression

uα|α = uα,α−
2∑

δ=1

Γ
δ

ααuδ, α = 1, 2. (19)

Hereinafter, we denote by Γ
δ

αβ the Christoffel symbol defined on the

referential configuration BK, i.e., Γ
δ

αβ = Aα,β ·Aδ, for α, β, δ = 1, 2. In

particular, we have

u1|1 = u1,1 , (20)

u2|2 = u2,2+ρu1. (21)

A direct calculation shows that the factors appearing on the right hand side

of (14), (15) are given by

|a11| 12
|a11|

1

2

= 1− 2u1,1 , (22)

|a22| 12
|a22|

1

2

=
1

ρ2

(
1− 2

(
u2,2+

u1

ρ

))
. (23)

Finally, the equations of equilibrium can be derived by writing the

Euler-Cauchy balance force equation for any portion of the actual

configuration B, using Cauchy’s Lemma (8) and applying the Divergence

Theorem. Under the assumption of smooth tensor and vector fields, we have

2∑

α=1

Nγα|α + pγ = 0, in B, γ = 1, 2, (24)
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2∑

α,β=1

Nβαbβα + p3 = 0, in B, (25)

where

Nγα|α = Nγα,α +

2∑

δ=1

NγδΓα
δα +

2∑

δ=1

N δαΓγ
δα, (26)

Γγ
αβ = aα,β · aγ , (27)

bβα =

2∑

γ=1

bγαaγβ, aγβ = aγ · aβ, bγα = −a3,α · aγ. (28)

2.3 Fiber densities

We assume that the radial threads in BK are equally spaced in the plane

angle 2π, and we also assume that the circumferential threads are equally

spaced along the radial direction. Then, denoting by d1, d2 the thread

densities in BK, we have

d1 =
Cρ

ρ
, (29)

d2 = Cϑ, (30)

where the two positive constants Cρ, Cϑ are the number #ρ of radial

threads per unit plane angle and the number #ϑ of circumferential threads

per unit length along the radial direction, respectively. With reference to

Figure 3, the definition (29) guarantees that the number of threads crossing

the two arcs A1B1 (of radius ρ1) and A2B2 (of radius ρ2) coincide, i.e.

#ρ(A1B1) = d1(A1B1) · ρ1ϕ = Cρϕ,

#ρ(A2B2) = d2(A2B2) · ρ2ϕ = Cρϕ. (31)

where the angle ϕ is expressed in radians.

The expression of the fiber densities d1, d2 in the actual configuration B can

be obtained by postulating the conservation of the number of threads
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crossing a material fiber lying on a coordinate curve in BK and those

crossing its image after the deformation. Then, we have

d1 = d1

(
A22

a22

) 1

2

, (32)

d2 = d2

(
A11

a11

) 1

2

, (33)

and, within the approximation of infinitesimal deformations and recalling

(29)–(30),

d1 = d1

(
1−

(
u2,2+

u1

ρ

))
, (34)

d2 = d2
(
1− u1,1

)
. (35)

Finally, by inserting (34)–(35) in (14)–(15), and taking into account

(17)–(23), we obtain the linearized constitutive equations of the membrane

stresses:

N11 = d1T 1 − d1T 1

(
2u1,1+u

2,2+
u1

ρ

)
+ d1A1E1u1,1 , (36)

N22 =
d2T 2

ρ2
− d2T 2

ρ2

(
u1,1 +2u2,2+2

u1

ρ

)
+
d2A2E2(u2,2+ρu1)

ρ4
. (37)

2.4 Pre-stress state

For vanishing displacement field, expressions (36)–(37) reduce to the

membrane pre-stress state acting on the referential configuration BK:

N
11

= d1T 1, (38)

N
22

=
d2T 2

ρ2
, (N

12
= N

21
= 0). (39)

The pre-stress field N
αβ

is self-equilibrated, that is
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



∑2
α=1N

γα|α = 0, in BK, (γ = 1, 2)

∑2
α,β=1N

βα
bβα = 0, in BK,

(40)

(41)

where the numbers bβα, α, β = 1, 2, are the entries of the second

fundamental form of the web surface evaluated in the referential

configuration BK. Since all the bβα’s vanish in BK, the equilibrium equation

(41) is identically satisfied. Equations (40) become




N
ρρ
,ρ +

1
ρ
N

ρρ − ρN
ϑϑ

= 0, in BK,

N
ϑϑ
,ϑ = 0, in BK,

(42)

(43)

where we have denoted N
ρρ

= N
11
, N

ϑϑ
= N

22
. Let T ρ = T 1, T ϑ = T 2 and

set (·),ρ= ∂(·)
∂ρ

, (·),ϑ= ∂(·)
∂ϑ

. Equation (43) implies

T ϑ = T ϑ(ρ). (44)

Replacing (44) in (42) we obtain

T ρ,ρ = ξT ϑ(ρ), (45)

where

ξ =
Cϑ

Cρ

. (46)

Hereinafter, we assume that the radial pre-stress is given at the boundary

of the web as

T ρ(R, ϑ) = σ = constant > 0, ϑ ∈ [0, 2π], (47)

where σ is the tensile force applied on a single radial thread. By the

symmetry of BK we have

T ρ = T ρ(ρ) (48)

and the equilibrium problem in the radial direction reduces to
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



T
′

ρ(ρ) = ξT ϑ(ρ), ρ ∈ (0, R),

T ρ(R) = σ,

(49)

(50)

where T
′

ρ(ρ) =
dT ρ(ρ)

dρ
. Problem (49)–(50) is underdetermined, since it

involves two unknown functions in a single differential equation.

In order to introduce suitable a priori assumptions on the initial pre-stress,

it is convenient to briefly recall the main steps of the process followed by

spiders in creating their webs. The early stage of orb web construction,

when anchor, frame and initial radii are laid, does not follow a fixed

behavioral pattern [36]. Rather, the spider reacts in a flexible manner to

adapt to a highly variable environment until the scaffold threads, made of

major ampullate silk, stay in place. The second stage is made relying on a

fixed behavioural pattern: the spider adds an auxiliary - or preliminary -

spiral. This configuration is called unfinished web. Subsequently, the spider

starts adding the threads of the catching - or sticky - spiral while, at the

same time, removes the auxiliary spiral. This last configuration is the

finished web.

As observed by Wirth and Barth [13], the pre-stress forces acting in the

unfinished web differ greatly from those in the finished web. In particular,

the measurements made by these authors along the radii and in the

auxiliary spiral of webs of Araneus diadematus before the spiders added the

catching spiral support the hypothesis of proportionality between T ϑ and

T ρ, namely

T ϑ(ρ) = kT ρ(ρ), k > 0 constant. (51)

In fact, by replacing (51) into (49)–(50), the traction on a single radial

thread increases exponentially from the center to the boundary of the web,
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namely

T ρ(ρ) = T̂ exp(kξρ), ρ ∈ [0, R], (52)

where the radial pre-stress at the center of the web is given by

T̂ = σ exp(−kξR) > 0. (53)

Equation (52) reproduces well the behavior of the radial pre-stress

measured by Wirth and Barth [13] in the unfinished web.

After the removal of the auxiliary spiral, part of the internal tensile

pre-stress is taken up by the catching spiral. Due to the high extensibility

of the catching spiral relative to that of frame threads and radii, the tensile

pre-stress forces remain small in the catching spiral of the finished web.

Wirth and Barth [13] proposed an indirect method for estimating the

pretensional forces in the catching spiral by repeated force measurements at

the same segment of a radius before and after cutting a spiral thread.

Taking into account of the lack of direct measurement both of the tensile

spiral pre-stress and of the gradient radial tension, we shall assume uniform

tensile pre-stress in the circumferential threads of the finished web, namely

T ϑ(ρ) = T = constant, ρ ∈ [0, R]. (54)

By (49)–(50) we obtain

T ρ(ρ) = T̂ + ξT ρ, (55)

where the radial pre-stress at the center of the web T̂ is assumed to satisfy

the condition

T̂ = σ − ξT R > 0. (56)
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In the following sections we shall consider the mechanical behavior of the

web both under the pre-stress state defined by (51)–(53) (unfinished web)

and by (54)–(56) (finished web).

3 Out-of-plane static equilibrium

By replacing the expressions (36)–(37) of N11, N22 in equation (25), and

after linearization, we obtain the partial differential equation (with u3

replaced by w) governing the out-of-plane equilibrium of the membrane:

Cρ

ρ
T ρw,ρρ+Cϑ

T ϑ

ρ2
(w,ϑϑ+ρw,ρ ) + p3 = 0, (ϑ, ρ) ∈ (0, 2π)× (0, R). (57)

In the sequel, we shall consider in detail the axially-symmetric load

condition

p3 = p(ρ), p ∈ C0([0, R]), (58)

for a circular membrane of radius R supported at the boundary, i.e.,

w(R) = 0. (59)

Looking for a solution w = w(ρ) and using (45), we obtain the self-adjoint

equation

(T ρw
′)′ = −pρ

Cρ

, ρ ∈ (0, R). (60)

The boundary condition at ρ = 0 can be derived by imposing the balance of

the out-of-plane component of forces acting on the portion of surface B

obtained as deformation of the small disk Dǫ in BK centered at the origin O

and having radius ǫ. Taking the limit of the balance force equation as

ǫ→ 0, we obtain the homogeneous Neumann end condition

T̂w′(0) = 0. (61)
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Equation (60), together with end conditions (59) and (61), admits the

closed-form solution

w(ρ) =
1

Cρ

∫ R

ρ

1

T ρ(s)

(∫ s

0

tp(t)dt

)
ds. (62)

It should be noticed that the boundary condition (61) continues to hold

even for less regular axially-symmetric loads, such as square summable p,

i.e.,
∫ R

0
p2(ρ)dρ < +∞.

We conclude the section by highlighting a characteristic feature of our

mechanical model of spider orb-web, namely, the ability to sustain a

transverse concentrated force acting at the center O of the membrane. To

show this property, let us model the concentrated force as a two-dimensional

Dirac’s delta function supported at O and with intensity −P , i.e., −Pδ(O).

The distribution −Pδ(O) can be obtained as limit (in a suitable sense, see

[37] for details) of the family of axially-symmetric loads p3ǫ (ρ) given by

p3ǫ(ρ) =





− P
πǫ2
, ρ ∈ (0, ǫ),

0, ρ ∈ (ǫ, R).

(63)

(64)

Then, by imposing the equilibrium of the out-of-plane component of the

forces acting on the image (under the deformation) of the small disk Dǫ in

BK centered at the origin O and with radius ǫ, and taking the limit as

ǫ→ 0, we obtain the non-homogeneous Neumann condition

2πCρT̂w
′(0) = −P. (65)

Under the above assumptions on the coefficients, the transverse

displacement of the membrane supported at the boundary ρ = R and under

the concentrated force at the origin is given by
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w(ρ) =





P
2πCρkξσ

(exp(kξ(R− ρ))− 1) (unfinished web),

P
2πCρξT

ln
(

σ
σ+ξT (ρ−R)

)
(finished web),

(66)

(67)

where ρ ∈ [0, R]. It is not difficult to see that the center of the web is the

only point of the web able to sustain a transverse concentrated force.

4 Transverse free vibrations

In this section we shall investigate on the infinitesimal transverse free

vibrations of the web. It can be shown that the equation governing the free,

undamped transverse motion u3 = u3(ρ, ϑ, t), where t is the time variable,

can be obtained by assuming the function p3 in (57) coinciding with the

surface density of the out-of-plane transverse inertia forces. Denoting by mρ

and mϑ the (time-invariant) linear mass density of the radial and

circumferential threads, respectively, we can argue as in Section 2.3 in order

to obtain the expression of the surface mass density γ of the continuum

model. It turns out that

γ =
Cρ

ρ
mρ + Cϑmϑ. (68)

For the sake of simplicity, we shall assume mρ = constant, mϑ = constant

in the sequel. Then, the equation of motion is

Cρ

ρ
T ρu

3,ρρ +Cϑ

T ϑ

ρ2
(u3,ϑϑ +ρu

3,ρ )−γ(ρ)u3,tt = 0, (ϑ, ρ, t) ∈ (0, 2π)×(0, R)×(0,∞).

(69)

Setting

u3(ρ, ϑ, t) = w(ρ, ϑ)y(t), (70)
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we can separate the spatial variables (ρ, ϑ) from the time variable t,

obtaining

y′′ + λy = 0, t > 0, (71)

and

Cρ

ρ
T ρw,ρρ+Cϑ

T ϑ

ρ2
(w,ϑϑ+ρw,ρ ) + λγ(ρ)w = 0, (ϑ, ρ) ∈ (0, 2π)× (0, R),

(72)

where λ ∈ R
+ is the eigenvalue to be determined. Looking for a solution to

(72) of the form

w(ρ, ϑ) = u(ρ)Θ(ϑ), (73)

we obtain two uncoupled second-order differential equations in the

unknown functions Θ(ϑ) and u(ρ):

Θ′′ + ν2Θ = 0, ϑ ∈ (0, 2π), (74)

(T ρu
′)′ + λ(mρ + ξmϑρ)u =

ν2

ρ
gu, ρ ∈ (0, R), (75)

where the (strictly positive) function g = g(ρ) is given by

g(ρ) =





kξT ρ (unfinished web),

ξT (finished web).

(76)

(77)

Since w(ρ, ϑ), and hence Θ(ϑ), must be periodic function of ϑ with period

2π, it follows that Θ(ϑ) is a non-trivial solution to the eigenvalue problem




Θ′′ + ν2Θ = 0, ϑ ∈ (0, 2π),

Θ(0) = Θ(2π),

Θ′(0) = Θ′(2π).

(78)

(79)

(80)
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Then, there exists an infinite sequence of eigenpairs to (78)–(80), that is

ν2n = n2, Θn(ϑ) = A cos(nϑ) +B sin(nϑ), n = 0, 1, 2, ... (81)

If ν0 = 0, then Θ0(ϑ) = constant( 6= 0) and the corresponding eigenfunctions

w are axially-symmetric functions in the variable ρ. In particular, for n = 0

the singular term in the right hand-side of equation (75) disappears and we

have the classical Sturm-Liouville problem




(T ρu
′
0)

′ + λ0(mρ + ξmϑρ)u0 = 0, ρ ∈ (0, R),

u0(R) = 0, (supported end condition)

u′0(0) = 0.

(82)

(83)

(84)

The last condition at ρ = 0 follows from the axially-symmetry of the

eigenfunction w and from the absence of concentrated transverse inertia

force acting at the origin O (see also the last part of Section 3). Therefore,

under our assumptions, the eigenvalue problem (82)–(84) has an infinite

sequence of real simple eigenvalues

0 < λ0,1< λ0,2< ...., with lim
m→∞

λ0,m= ∞, (85)

and a corresponding infinite sequence of eigenfunctions {u0,m (ρ)}∞m=1,

which form an Hilbertian basis of the space of admissible deformations of

the web.

If n ≥ 1 in (81), then a singular term occurs at ρ = 0 (see equation (75)).

The strain energy stored during the transversal deformation u = u(ρ) is

(apart the factor 1
2
)

E(u, u′) =
∫ R

0

T ρ(ρ)(u
′)2dρ+

∫ R

0

n2

ρ
gu2dρ (86)
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and the second integral takes finite values only if the function u vanishes at

ρ = 0. Therefore, the eigenvalue problem for n ≥ 1 is




(T ρu
′)′ + λ(mρ + ξmϑρ)u = n2

ρ
gu, ρ ∈ (0, R),

u(0) = 0,

u(R) = 0.

(87)

(88)

(89)

In order to investigate on this singular Sturm-Liouville eigenvalue problem

with Coulomb-like potential, it is convenient to reduce the problem to

Sturm-Liouville canonical form. Without going into details, it can be shown

that by applying two Sturm-Liouville transformations in sequence, first the

equation (87) is reduced to the so-called ”impedance form”, and then to the

”standard canonical form”

y′′(x) +G2λy(x) = (q̃(x) + V (x))y(x), x ∈ (0, 1), (90)

where G =
∫ R

0

(
mρ+ξmϑρ

T ρ(ρ)

) 1

2

dρ, q̃ is a regular function in [0, 1] and the

potential V (x) contains the singularity, namely |V (x)| ≤ K
x
in [0, 1] for

some positive constant K. At this stage, the results by Carlson [38] show

that, for every n ≥ 1, our eigenvalue problem (87)–(89) has an infinite

countable sequence of eigenpairs. Asymptotic estimates of the eigenpairs

are also provided in [38].

Once the eigenvalue problem associated to the transverse free vibrations is

solved, the transverse forced vibration problem can be addressed by

expanding the transverse motion on the basis of the eigenfunctions and,

then, using standard modal analysis methods.

We conclude this section with a couple of remarks. The first one concerns

with the possibility to include a concentrated mass M (i.e., a
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two-dimensional Dirac’s delta point mass) at the center O of the web in the

analysis of the transverse free vibration problem. Arguing as in Section 2

(second part), it can be shown that the eigenpairs corresponding to index

n ≥ 1 are not affected by the point mass at ρ = 0, and continue to satisfy

the eigenvalue problem (87)–(89). On the contrary, all the eigenpairs

corresponding to n = 0 are sensitive to the point mass M at ρ = 0, and

they are solutions of the eigenvalue problem (82)–(84) with the boundary

condition (84) replaced by

2πCρT̂ u
′
0(0) = −λ0Mu0(0). (91)

Clearly, the addition of the point mass M decreases the eigenvalues, namely

λ0,m(M) < λ0,m(M = 0) for every m ≥ 1. Finally, recalling that the mass of

the spider is (even more than) three orders of magnitude greater of the

total mass of the web and also neglecting the dimensions of the spider

mass, the orb-web model carrying a point mass as described above can be

used to approximate the free transverse vibration of the web with the

spider located at the center of the orb-web. Within the limits of this

approximation, it is interesting to notice that the spider located at the

center turns out to be not affected (actually, slightly affected) by the

vibrations associated to the principal modes corresponding to n ≥ 1, since

all of them vanish at ρ = 0. Therefore, only the contribution of the

axially-symmetric principal modes (i.e., those corresponding to n = 0) can

be appreciated by the spider when it is located at ρ = 0.

The second remark is related to the boundary condition at ρ = R. In the

above analysis, a supported (Dirichlet) boundary condition has been

assumed at ρ = R. Real conditions may be different and may involve a
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complicated interaction between the external part of the web and the frame

and mooring threads. As a first attempt to include a more realistic

boundary condition in our model, we can assume that frame and mooring

threads globally act as an elastic suspension system that contrasts the

transverse motion of the web by means of a continuum set of linearly elastic

transversal springs located at the external boundary. Assuming, as a first

approximation, that all the springs share the same elastic stiffness µ (per

unit length), µ = constant > 0, it can be shown that the whole previous

treatment continues to hold by simply replacing the Dirichlet boundary

condition u(R) = 0 by the elastically restrained end condition

σu′(R) + µu(R) = 0. (92)

5 In-plane mechanical behavior

The mechanical response to transverse forces is probably the most

significant type of response in a spider web. However, there are situations

in which also the in-plane behavior can be activated by external stimuli.

This occurs when, for example, the pressure exerted by the wind is not

exactly perpendicular to the web surface, or when an oblique impact of a

prey induces in-plane waves which travel along the thread’s axis or

perpendicularly to the thread axis and in the plane of the web. The present

section is devoted to a brief description of the in-plane behavior of the web.

The equations governing the in-plane static equilibrium are obtained by

inserting the constitutive equations of the stresses N11, N22 within the

equilibrium equations (24), and taking into account that the pre-stress field
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N
αβ

satisfies the system (40). After neglecting high order terms and

putting uρ = u1, uϑ = u2, we have




Cρ

ρ
AρEρu

ρ,ρρ −Cϑ

ρ2
AϑEϑ(ρu

ϑ,ϑ +u
ρ)+

+Cϑ

ρ2
T ϑ(u

ρ,ϑϑ −ρuϑ,ϑ ) + pρ = 0,

Cϑ

ρ3
AϑEϑ(ρu

ϑ,ϑϑ +u
ρ,ϑ ) +

Cϑ

ρ2
T ϑ(ρu

ϑ,ρ +
1
ρ
uρ,ϑ )+

+Cρ

ρ
T ρ(u

ϑ,ρρ +
2
ρ
uϑ,ρ ) + pϑ = 0,

(93)

(94)

for (ϑ, ρ) ∈ (0, 2π)× (0, R). Hereinafter, we find convenient to introduce the

notation AρEρ = A1E1, AϑEϑ = A2E2. Postponing the analysis of the

solutions to the general problem (93)–(94) to future work, in the sequel we

shall consider in detail a couple of special cases.

Case i). Axially-symmetric load. We consider the load

pρ = pρ(ρ) ∈ C0([0, R]), pϑ ≡ 0 (95)

acting on a circular membrane supported at the boundary. By symmetry,

we look for a solution

uρ = uρ(ρ), uϑ ≡ 0. (96)

Equation (94) is identically satisfied and equation (93) becomes

AρEρ(u
ρ)′′ − ξ

ρ
AϑEϑu

ρ = −ρp
ρ

Cρ

, ρ ∈ (0, R), (97)

with end conditions

uρ(0) = 0, uρ(R) = 0. (98)

Equations (97)–(98) describe the longitudinal deformation of a supported

rod with axial stiffness AρEρ resting on an elastic Winkler soil foundation

with subgrade coefficient ξ

ρ
AϑEϑ, and subject to a longitudinal force field
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ρpρ

Cρ
. One can show that there exists a unique solution uρ ∈ C2(0, R) to

(97)–(98).

Case ii). Circumferential load. Let us assume

pρ ≡ 0, pϑ = pϑ(ρ) ∈ C0([0, R]) (99)

and

uρ ≡ 0, uϑ = uϑ(ρ). (100)

Under the above assumptions, equation (93) is identically satisfied, whereas

equation (94) can be written as

(uϑ)′′ = −f(ρ)− (uϑ)′

(
T

′

ρ

T ρ

+
2

ρ

)
, ρ ∈ (0, R), (101)

where

f(ρ) =
ρpϑ

CρT ρ

. (102)

To solve (101) it is convenient to introduce the covariant component uϑ of

the circumferential displacement, which is related to the contravariant

component as

uϑ = uϑρ2. (103)

Solving (101) with respect to uϑ and imposing the boundary conditions

uϑ(0) = 0 = uϑ(R), one can determine the closed-form expression

uϑ(ρ) = G(ρ)− G(0) ·
ln
(

T ρ(ρ)

σ

)

ln
(

T ρ(0)
σ

) , (104)

where

G(ρ) = −
∫ ρ

R

s2
(∫ s

0

tpϑ(t)

CρT ρ(t)
dt

)
ds. (105)
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We conclude the section with the analysis of the axially-symmetric in-plane

free vibration problem. By using the surface mass density γ as in (68) and

assuming free vibrations, with radian frequency
√
λ, of the form

uϑ(ρ, ϑ, t) ≡ 0, uρ(ρ, ϑ, t) = u(ρ) cos(
√
λt), (106)

the eigenvalue problem for u = u(ρ) is




AρEρu
′′ − ξ

ρ
AϑEϑu+ λ(mρ + ξmϑρ)u = 0, ρ ∈ (0, R),

u(0) = 0,

u(R) = 0.

(107)

(108)

(109)

This problem is analogous to the Sturm-Liouville singular eigenvalue

problem (87)–(89) governing the out-of-plane free vibrations of the

membrane with n ≥ 1. It should be noted that the eigenvalues of

(107)–(109) are not influenced by the pre-stress state.

6 Numerical simulations

Goal of this section is two-fold. The first objective is concerned with

estimating the solution of out-of-plane and in-plane free vibration of our

two-dimensional membrane model via finite element solution. The second

one refers to the ability of the continuous membrane model in predicting the

statical and low-frequency dynamic response of a ”real” discrete spider web.
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6.1 Finite element solution of the continuous

eigenvalue problem

In this section we present a finite element solution of the eigenvalue

problem associated to the free transverse vibrations of the web. The results

and numerical simulations refer to supported condition on the external

boundary. Other type of boundary conditions, such as, for example, the

concentrated mass at the center (91), or the elastically restrained boundary

condition (92), can be analyzed analogously.

We first consider the problem (87)–(89) corresponding to νn = n2, with

n ≥ 1.

Let us denote by H1
0 (0, R) the Hilbert space formed by the functions

f : (0, R) → R such that the H1-norm of f is finite, i.e.,

||f ||H1 =
(∫ R

0
(f 2 + (f ′)2)

) 1

2

<∞, and the trace of f both at ρ = 0 and

ρ = R vanishes, i.e., f(0) = f(R) = 0. Here, f ′ is the weak derivative of f .

The weak formulation of (87)–(89) consists in determining a non-trivial

function u ∈ H1
0 (0, R) such that

a(u, ψ) = λb(u, ψ), for every ψ ∈ H1
0 (0, R), (110)

where the real, symmetric, continuous bilinear forms

a(·, ·) : H1
0 (0, R)×H1

0 (0, R) → R, b(·, ·) : H1
0 (0, R)×H1

0 (0, R) → R are

defined as

a(u, ψ) =

∫ R

0

T ρu
′ψ′dρ+ n2

∫ R

0

1

ρ
guψdρ, (111)

b(u, ψ) =

∫ R

0

(mρ + ξmϑρ)uψdρ (112)

and the function g = g(ρ) is defined in (76)–(77). It should be recalled that

the function g is identically equal to the positive constant ξT in case of
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finished web, and g = kξT ρ, g ∈ C2([0, R]) and g > 0 in [0, R], for the

unfinished web.

To find a discrete version of (110), we look for an approximation of the

eigenpair (λ, u) in the subspace H1
0(J)(0, R) of H

1
0 (0, R) formed by the linear

combinations of the piecewise-linear spline functions {ψj(ρ)} defined as

ψj(ρ) =





ρ−ρj−1

ρj−ρj−1
, ρj−1 ≤ ρ ≤ ρj ,

ρj+1−ρ

ρj+1−ρj
, ρj ≤ ρ ≤ ρj+1,

(113)

(114)

j = 1, ..., J , where ρ0 = 0 < ρ1 < ρ2 < ... < ρJ < ρJ+1 = R. Let

u(J)(ρ) =
J∑

j=1

ûjψj(ρ) (115)

be the approximation of the eigenfunction u. Replacing (115) in (110) and

taking ψ = ψi, i = 1, ..., J , the vector û = (û1, ..., ûJ) ∈ R
J satisfies the

J-dimensional eigenvalue problem

K(J)û = λ(J)M(J)û, (116)

where the (i, j)-entry of the stiffness and inertia matrices is given by

K(J)i,j = a(ψi, ψj), M(J)i,j = b(ψi, ψj), (117)

and λ(J) is an approximation of the eigenvalue λ. The solution of the

algebraic eigenvalue problem (117) permits to determine an approximation

of the eigenpairs of the continuum web model.

The analysis of both the axially-symmetric vibrations (82)–(84) with ν20 = 0

and the in-plane vibrations (problem (107)–(109)) can be carried out

analogously. For the axially-symmetric case, in particular, it is enough to
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replace the set of admissible deformations H1
0 (0, R) with the larger set

H1
(R)(0, R) = {f : (0, R) → R| ||f ||H1 <∞, f(R) = 0}.

In all cases, the number of intermediate nodes for the finite element

solution of the continuous eigenvalue problem has been assumed equal to

J = 40. This value is the minimum one permitting to satisfy a criterion for

the convergence up to the 10th eigenfrequency (maximum eigenfrequency

considered in the analysis), which guarantees that the incremental difference

in the eigenfrequency values for an additional node would be lower than 1%.

6.2 Reference discrete model and equivalence with

continuum model

Let us consider an axially-symmetric discrete web composed, in the

reference configuration BK, of nρ radial threads of length R, and nϑ regular

polygons with nρ sides, see Figure 4. This reference geometry resembles the

arrangement of radials and spirals in the capture area of the orb web.

Radial threads are intersected by polygons at equal distances, leading to

nϑ + 1 segments of length ∆ρ = R/ (nϑ + 1). The angular distance between

radials is ∆ϑ = 2π/nρ.

Let φρ and φϑ be the diameters of radial and circumferential threads,

respectively. The geometric and inertial equivalence between the discrete

web and its continuum counterpart, described in previous sections, is

established through the following relations:
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Cϑ = 1
∆ϑ
,

Cρ =
1
∆ρ
,

mρ = π
φ2
ρ

4
̺S,

mϑ = π
φ2
ϑ

4
̺S,

(118)

(119)

(120)

(121)

̺S being the constant volume mass density of the silk. The selected

geometrical and mechanical parameters of the web are shown in Table 1.

Regarding the pre-stress field, equivalence between discrete and continuum

models is established by imposing, in the reference configuration, the

following tensile force in each radial segment i (i = 1, ..., nϑ + 1)

T
i

ρ = T̂
exp(kξ (i− 1)∆ρ) + exp(kξi∆ρ)

2
(122)

for the exponential pre-stress profile, and

T
i

ρ = T̂ + ξT ∆ρ

(
i− 1

2

)
(123)

for the linear radial pre-stress profile. Self-equilibrium at the joints between

radial and circumferential threads is achieved by imposing the following

tensile forces in all the segments of each polygon j (j = 1, ..., nϑ)

T
j

ϑ =
1

2 sin (∆ϑ/2)

(
T

j+1

ρ − T
j

ρ

)
. (124)

The values of the geometric parameters have been selected aiming at

reproducing the capture area of a web built by an Araneus diadematus,

following the characteristic dimensions presented in [11], and in agreement

with the models proposed by other authors, see, for example, [23] and [26].

The mass density of the silk threads ̺S was taken from [16], and the

diameter of circumferential and radial threads from [26]. The parameters T̂ ,
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and η or T , defining the pre-stress state acting on the referential

configuration, have been defined consistently with the experimental results

provided by Wirth and Barth [13] for auxiliary and catching spirals. Table

2 shows the selected values of the above parameters.

The model has been implemented in the finite element code

ABAQUS/Standard (version 6.14− 2) using linear truss elements for silk

threads, with a characteristic element length equal to 0.45 mm. This

permitted to evaluate natural frequencies, mode shapes, and quasi-static

deformations of the discrete web.

7 Comparison between continuous and

discrete models

7.1 Non-dimensional equations

The results obtained with discrete and continuum models will be presented

and compared in nondimensional form. To that aim, we define the following

nondimensional variables

ρ̃ =
ρ

R
, ũ =

u

R
, w̃ =

w

R
, T̃ρ =

T ρ

T̂
, (125)

and nondimensional parameters

ξ̃ = ξR, κ =
mϑ

mρ

, Υ =
AϑEϑ

AρEρ

, p̃ =
pR2

T̂
, P̃ =

P

T̂
, (126)

χ =
ξRT
T̂

, k̃ = kξR, (127)

permitting to derive nondimensional expressions for the governing

equations or, if available, for their closed-form solutions.
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The nondimensional version of equation (75), governing the transverse free

vibration, is

(T̃ρũ
′)′ + Λt

(
1 + ξ̃κρ̃

)
=
ν2R

T̂ ρ̃
gũ, ρ̃ ∈ (0, 1), (128)

where the nondimensional eigenvalue has the expression

Λt =
R2mρ

T̂
λ. (129)

Then, the dimensional eigenfrequency ω and its nondimensional

counterpart Ω are related by

ω =
1

R

√
T̂

mρ

Ω. (130)

For the reference discrete model defined by the parameters in Tables 1–2,

the factor multiplying Ω in equation (130) takes the value 303 Hz for the

auxiliary spiral, and 906 Hz for the catching spiral.

Likewise, the nondimensional equation for in-plane free vibration (107)

becomes

ũ′′ + Λρ

(
1 + ξ̃κρ̃

)
=
ξ̃Υ

ρ̃
ũ, ρ̃ ∈ (0, 1), (131)

where we identify by

Λρ =
R2mρ

AρEρ

λ (132)

the nondimensional eigenvalue stating the relation between dimensional, ω,

and nondimensional, Ω, eigenfrequencies:

ω =
1

R

√
AρEρ

mρ

Ω. (133)

For the reference discrete model, the factor multiplying Ω in equation (133)

takes the value 26376 Hz and it does not depend on the pre-stress state.
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7.2 Out-of-plane static equilibrium

The effect of a uniformly distributed load and of a point load concentrated

at the origin, applied to the web either with auxiliary or catching spiral,

has been evaluated using continuum and discrete models. The values of

point and distributed loads considered in simulations are p̃ = 0.1 and

P̃ = 0.1, which permitted to fulfill the hypothesis of small deformations due

to their low magnitude.

Figures 5 and 6 show the comparison of transverse displacement along a

radius, for webs with auxiliary and catching spirals, respectively. As it can

be observed, the continuum model faithfully reproduces the deformation of

the discrete web. It is worth noting that the average gradient of pre-stress

along a radial thread is two orders of magnitude higher when the auxiliary

spiral is present, as compared to the web with catching spiral, thus leading

to a sharper increase in the deformation close to ρ = 0 when a concentrated

point force is applied.

7.3 Transverse free vibrations

The unfinished web is characterized by low value of the pre-stress at the

center and by high radial pre-stress gradient, leading to taut radial and

circumferential threads in the whole web except in the close vicinity of the

center. In the finished web, conversely, the tensile pre-stress in the

circumferential threads keep at a fairly low (constant) value in the whole

web, whereas radial threads attain high pre-stress value along their entire

length. As reported below, these peculiarities of the pre-stress field are

responsible of different transverse vibrational responses of the web.
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Tables 3 and 4 show the first ten nondimensional frequencies corresponding

to the free transverse vibration of the unfinished web, for n = 0 to n = 3.

The relative error in the prediction of the continuum model is very low for

the first modes, and keeps rather small value even for higher modes.

Likewise, the mode shapes predicted by the discrete model are properly

captured by the continuum model, as it can be seen from Figures 7 and 8.

The accuracy of the continuum approach can be further seen in Figure 9, in

which the transverse displacement ũ(ρ̃) of the first four modes of the family

n = 0 is depicted.

A comparison between the values of the first low eigenfrequencies of the

transverse vibrations of the finished web estimated by the continuous and

discrete model is shown in Table 5. Differences are appreciable and starting

from the fourth mode the discrepancy is more than 35% for some radial

class n = 0− 3. The corresponding mode shapes also deviate significantly,

as it is shown in Figure 10 (radial direction) and in Figure 11

(three-dimensional views). This latter figure, in particular, shows that large

transverse vibrations occur in the few external circumferential threads of

the web, starting from the fourth mode of the discrete model.

A detailed inspection of Figure 11 shows that the transverse deformation of

each external circumferential thread resembles to the fundamental mode

shape of the thread under fixed supports. A possible explanation for this

behavior, and for the appearance of vibration modes having local character,

may be due to the proximity between the frequency of the fourth ’global’

vibration mode of the discrete model (Ω = 1.044, 1.092, 1.098, 1.107, for

n = 0, 1, 2, 3, respectively) and the fundamental frequency of the external
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circumferential thread between two contiguous radial threads (Ω = 1.129).

If the two natural frequencies were exactly equal, then any combination of

the corresponding vibration modes would be an eigenfunction of the web.

Actually, the two frequencies are very close, even if they do not exactly

coincide, and therefore it is quite expectable that the global mode shape

can be affected by the local character of the external circumferential

thread’s vibration. This behavior does not occur in the case of the auxiliary

spiral, since the fundamental frequency of a single circumferential thread

close to the boundary is much larger than the natural frequency of the

global vibration modes belonging to this frequency range. It should be also

noticed that these local effects on the vibration modes are gradually

reduced as we move towards the center of the web, since the fundamental

frequency of each circumferential thread between two successive radial

threads moves away from the global frequency range.

The above mentioned local effects make the identification and classification

of the eigenfunctions of the transverse vibrations of the finished web rather

complicated, also because the eigenfunctions become more and more

complex and wavy as the natural frequency increases. Following a common

practice in other contexts of Structural Dynamics, it has been checked that

the local behavior is considerably reduced if the mass of the circumferential

wires is lumped at the thread intersections, that is, assigned to the degree

of freedom of the node located at the joints between radial and spiral

threads. As shown in Table 5 (sixth column) and in Figures 10 and 11, a

very good agreement between the discrete model and the continuum model

is obtained for the first four eigenpairs of the radial classes n = 0− 3. It
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should be remarked that the eigenfrequency error is less than 6.5% up to

the first ten natural frequencies of the classes n = 0− 3. For the sake of

completeness, we also notice that the additional lumping of the mass of the

radial threads does not produce appreciable changes in the eigenfrequency

values and in corresponding eigenfunctions.

7.4 In-plane free vibrations

We conclude the comparison of results between discrete and continuous

model by investigating the axially-symmetric in-plane free vibration of the

finished web. It should be recalled that the corresponding eigenpairs are

not influenced by the pre-stress state, but they depend on fiber densities.

As shown in Table 6, the prediction of the eigenfrequencies by the

continuum model is highly accurate and the error keeps below 5% even for

the tenth mode. First four principal vibration modes are shown in Figure

12, revealing the ability of the continuum model to capture the dynamic

in-plane deformation of the web.

8 Conclusions

The arrival of novel experimental and bio-modelling techniques has

provoked a shift to the quantitative side in studies aiming at understanding

biological systems, opening a doorway to a more complex and detailed

reality. Specifically, models can help to uncover new phenomena, set up a

framework for interpreting data, or guide experimental designs.

The principal goal of this work is to provide a continuum model for the
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analysis of the mechanical behavior of spider orb-webs, suitable for small

deformations, through which deeper insights can be gained. The model

overcomes the limitations of previous theoretical approaches, by inheriting

the fibrous structure of the discrete web. The governing equations have

been derived using a direct approach based on appropriate assumptions on

the internal contact forces. Webs built by spiders exhibit considerable

interspecific in various aspects. Moreover, spiders alter details of individual

webs in response to both their internal physiology and the external

environment. Since the continuum model has been formulated in a general

framework, one of its main characteristics is the possibility to describe the

static and dynamic behavior of webs exhibiting a wide variability, as is the

case with real spider webs. Thus, the stiffness and inertial properties of the

silk, the density of radial and spiral threads, or the pre-tensile field, all of

which are under control by the spider upon silk spun and web construction,

can be modified in order to analyze their effect in both the static and the

dynamic response.

The resulting partial differential equations are tractable and, assuming

uniform properties of the radial and circumferential threads, have been

solved for certain classes of static and dynamic problems. The accuracy of

the continuous model in reproducing the mechanical response of a discrete

orb-web has been tested by comparison with the results of the numerical

model of a web composed of threads.

The model presented herein represents a first step in the development of a

simulation tool for understanding the design of the orb web as a catching

structure that also has sensory functions. The model is especially suited for
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the analysis of the propagation of waves throughout the web and

connections with the ability of the spider to locate and discriminate

between subtle vibratory signals generated by prey, predators or mates. To

that aim, applications of the present theory to topics of on-going research

are the determination of the in-plane and out-of-plane dynamic response of

the web under a generic load condition, and the study of the inverse

problem consisting in determining the prestress state by measurements of

the natural frequencies of the out-of-plane free motions of the web.
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Table Captions

Table 1. Parameters defining the web geometry for auxiliary and catching

spirals.

Table 2. Parameters defining the pre-stress state of the web, after

completion of the auxiliary and catching spiral. Values consistent with the

results provided by Wirth and Barth [13].

Table 3. Free transverse vibration of the orb-web with the auxiliary spiral.

First ten nondimensional frequencies for n = 0 and n = 1.

Table 4. Free transverse vibration of the orb-web with the auxiliary spiral.

First ten nondimensional frequencies for n = 2 and n = 3.

Table 5. Free transverse vibration of the orb-web with the catching spiral.

First 4 nondimensional frequencies for n = 0 to n = 3. ΩSL
D represents the

frequency obtained with the discrete model with masses of spiral silk

lumped at the thread intersections. ΩSRL
D represents the frequency obtained

with the discrete model with masses of both spiral and radial silk lumped

at the thread intersections.

Table 6. Free in-plane vibration of the orb-web with the catching spiral.

First ten nondimensional frequencies.
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Figure Captions

Figure 1. Referential placement in polar coordinate representation on

covariant basis.

Figure 2. Actual configuration, covariant and contravariant basis, and

internal force assumption.

Figure 3. Radial fiber density in referential configuration.

Figure 4. Sketch of the discrete models for the web with auxiliary and

catching spirals.

Figure 5. Nondimensional transverse displacement vs. nondimensional

radial position. Web with auxiliary spiral submitted to out-of-plane static

point (P̄ = 0.1) and uniformly distributed (p̄ = 0.1) loads.

Figure 6. Nondimensional transverse displacement vs. nondimensional

radial position. Web with catching spiral submitted to out-of-plane static

point (P̄ = 0.1) and uniformly distributed (p̄ = 0.1) loads.

Figure 7. Discrete model of the orb-web with the auxiliary spiral. First

two transverse vibration modes for n = 0 to n = 3.

Figure 8. Continuum model of the orb-web with the auxiliary spiral. First

two transverse vibration modes for n = 0 to n = 3.

Figure 9. Web with auxiliary spiral. Transverse vibration modes 1 to 4 for

n = 0 (normalized for max|ũ| = 1). Comparison between continuum and

discrete models.
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Figure 10. Web with catching spiral. Transverse vibration modes 1 to 4

for n = 0 (normalized for max|ũ| = 1). Comparison between continuum

and discrete models. Differences between results from the discrete model

with spiral mass lumped, and from the discrete model with both spiral and

radial mass lumped, are visually imperceptible.

Figure 11. Mode shapes 3 and 4 corresponding to n = 0 for the orb-web

with the catching spiral, calculated with the continuum and discrete

(uniform mass distribution and lumped mass) models. Differences between

results from the discrete model with spiral mass lumped, and from the

discrete model with both spiral and radial mass lumped, are visually

imperceptible.

Figure 12. In-plane vibration modes 1 to 4 (normalized for max|ũ| = 1).

Comparison between continuum and discrete models.
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Table 1: Parameters defining the web geometry for auxiliary and catching

spirals.

Parameter Auxiliary Catching

R 0.12 m 0.12 m

Cϑ 100 m−1 308 m−1

Cρ 32/ (2π) 32/ (2π)

φϑ 2.3 µm 2.3 µm

φρ 3.5 µm 3.5 µm

̺S 1098 kg/m3 1098 kg/m3

Eρ 11.0 GPa 11.0 GPa

Eϑ 50.0 MPa
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Table 2: Parameters defining the pre-stress state of the web, after comple-

tion of the auxiliary and catching spiral. Values consistent with the results

provided by Wirth and Barth [13].

Parameter Auxiliary Catching

T̂ 14 125 µN

kξ 32.2 m−1 -

T - 10 µN
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Table 3: Free transverse vibration of the orb-web with the auxiliary spiral.

First ten nondimensional frequencies for n = 0 and n = 1.

n Mode
Discrete Continuum Relative

ΩD ΩC
ΩD−ΩC

ΩD
(%)

0

1 0.711 0.707 0.558

2 1.598 1.592 0.378

3 2.533 2.531 0.070

4 3.482 3.496 -0.386

5 4.433 4.478 -1.013

6 5.366 5.476 -2.041

7 6.257 6.490 -3.710

8 7.113 7.521 -5.731

9 8.217 8.571 -4.310

10 9.233 9.641 -4.425

1

1 1.462 1.453 0.638

2 2.296 2.287 0.394

3 3.188 3.188 0.002

4 4.105 4.128 -0.573

5 5.027 5.095 -1.354

6 5.954 6.084 -2.185

7 6.925 7.094 -2.445

8 7.772 8.124 -4.538

9 8.413 9.177 -9.078

10 9.829 10.251 -4.293
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Table 4: Free transverse vibration of the orb-web with the auxiliary spiral.

First ten nondimensional frequencies for n = 2 and n = 3.

n Mode
Discrete Continuum Relative

ΩD ΩC
ΩD−ΩC

ΩD
(%)

2

1 2.193 2.195 -0.120

2 2.901 2.909 -0.299

3 3.680 3.705 -0.684

4 4.504 4.563 -1.317

5 5.348 5.468 -2.245

6 6.202 6.408 -3.316

7 7.128 7.379 -3.524

8 7.982 8.378 -4.969

9 8.680 9.404 -8.348

10 10.061 10.457 -3.940

3

1 2.989 3.037 -1.603

2 3.628 3.691 -1.736

3 4.316 4.409 -2.159

4 5.041 5.190 -2.943

5 5.782 6.025 -4.203

6 6.555 6.907 -5.369

7 7.440 7.828 -5.209

8 8.342 8.784 -5.297

9 9.104 9.773 -7.349

10 10.414 10.794 -3.646
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Table 5: Free transverse vibration of the orb-web with the catching spiral.

First 4 nondimensional frequencies for n = 0 to n = 3. ΩSL
D represents the

frequency obtained with the discrete model with masses of spiral silk lumped

at the thread intersections. ΩSRL
D represents the frequency obtained with

the discrete model with masses of both spiral and radial silk lumped at the

thread intersections.

n Mode

Discrete Continuum Relative Relative Relative

model model error error error

ΩD ΩC
ΩD−ΩC

ΩD
(%)

ΩSL
D

−ΩC

ΩSL
D

(%)
ΩSRL

D
−ΩC

ΩSRL
D

(%)

0

1 0.213 0.213 -0.119 0.048 0.017

2 0.546 0.561 -2.769 -0.027 0.049

3 0.843 0.920 -9.170 -0.188 -0.327

4 1.044 1.282 -22.862 -0.432 -0.685

1

1 0.370 0.373 -0.889 0.012 -0.024

2 0.699 0.734 -5.126 -0.106 -0.200

3 0.958 1.097 -14.556 -0.208 -0.497

4 1.092 1.463 -34.019 -0.595 -0.916

2

1 0.418 0.421 -0.819 -0.128 -0.162

2 0.734 0.772 -5.219 -0.167 -0.258

3 0.980 1.129 -15.119 -0.343 -0.530

4 1.098 1.490 -35.652 -0.617 -0.933

3

1 0.480 0.483 -0.828 -0.532 -0.566

2 0.784 0.827 -5.488 -0.397 -0.484

3 1.013 1.176 -16.221 -0.487 -0.667

4 1.107 1.532 -38.474 -0.714 -1.02954



Table 6: Free in-plane vibration of the orb-web with the catching spiral. First

ten nondimensional frequencies.

Mode
Discrete model Continuum model Relative difference

ΩD ΩC
ΩD−ΩC

ΩD
(%)

1 0.310 0.310 -0.079

2 0.629 0.630 -0.209

3 0.947 0.951 -0.425

4 1.263 1.272 -0.732

5 1.578 1.596 -1.131

6 1.891 1.922 -1.623

7 2.203 2.252 -2.208

8 2.513 2.585 -2.889

9 2.820 2.923 -3.669

10 3.124 3.266 -4.551
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Figure 5: Nondimensional transverse displacement vs. nondimensional radial

position. Web with auxiliary spiral submitted to out-of-plane static point

(P̄ = 0.1) and uniformly distributed (p̄ = 0.1) loads.
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Figure 6: Nondimensional transverse displacement vs. nondimensional radial

position. Web with catching spiral submitted to out-of-plane static point

(P̄ = 0.1) and uniformly distributed (p̄ = 0.1) loads.
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n=0. Mode 1 n=0. Mode 2

n=1. Mode 1 n=1. Mode 2

n=2. Mode 1 n=2. Mode 2

n=3. Mode 1 n=3. Mode 2

Figure 7: Discrete model of the orb-web with the auxiliary spiral. First two

transverse vibration modes for n = 0 to n = 3.
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n=0. Mode 1 n=0. Mode 2

n=1. Mode 1 n=1. Mode 2

n=2. Mode 1 n=2. Mode 2

n=3. Mode 1 n=3. Mode 2

Figure 8: Continuum model of the orb-web with the auxiliary spiral. First

two transverse vibration modes for n = 0 to n = 3.
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Figure 9: Web with auxiliary spiral. Transverse vibration modes 1 to 4 for

n = 0 (normalized for max|ũ| = 1). Comparison between continuum and

discrete models.
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Figure 10: Web with catching spiral. Transverse vibration modes 1 to 4 for

n = 0 (normalized for max|ũ| = 1). Comparison between continuum and

discrete models. Differences between results from the discrete model with

spiral mass lumped, and from the discrete model with both spiral and radial

mass lumped, are visually imperceptible.
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Mode 3. Continuum model Mode 4. Continuum model

Mode 3. Discrete model Mode 4. Discrete model

Mode 3. Discrete model (lumped) Mode 4. Discrete model (lumped)

Figure 11: Mode shapes 3 and 4 corresponding to n = 0 for the orb-web with

the catching spiral, calculated with the continuum and discrete (uniform mass

distribution and lumped mass) models. Differences between results from the

discrete model with spiral mass lumped, and from the discrete model with

both spiral and radial mass lumped, are visually imperceptible.
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Figure 12: In-plane vibration modes 1 to 4 (normalized for max|ũ| = 1).

Comparison between continuum and discrete models.
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