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Abstract

This work is devoted to the study of Bessel and Riesz systems of the type
{
Lγ f
}
γ∈Γ

obtained from the action of the left regular representation Lγ of a discrete non abelian
group Γ which is a semidirect product, on a function f ∈ `2(Γ). The main features about
these systems can be conveniently studied by means of a simple matrix-valued function
F(ξ). These systems allow to derive sampling results in principal Γ-invariant spaces, i.e.,
spaces obtained from the action of the group Γ on a element of a Hilbert space. Since
the systems

{
Lγ f
}
γ∈Γ

are closely related to convolution operators, a connection with C∗-

algebras is also established.

Keywords: Semidirect product of groups; left regular representation of a group; dual Riesz
bases; sampling expansions.
AMS: 42C15; 20H15; 94A20.

1 Introduction

This work is devoted to the study of a characterization as Riesz bases, together with some
sampling applications, of systems

{
Lγf
}
γ∈Γ

obtained from the left regular representation of

a discrete non abelian group Γ, that is, Lγf(η) := f(γ−1η), η, γ ∈ Γ, where f denotes a fixed
element in the Hilbert space `2(Γ). Throughout the paper the group Γ := N oσ H is the
semidirect product of two groups: a discrete abelian group N and a finite group H; the
subscript σ denotes the action of the group H on the group N . Some important examples of
non abelian groups such as dihedral groups, infinite dihedral group or crystallographic groups
are semidirect products with these characteristics.

In addition to the intrinsic importance of the left regular representation γ 7→ Lγ ∈ U
(
`2(Γ)

)
in representation theory of groups, the systems

{
Lγf
}
γ∈Γ

arising from the left regular repre-
sentation of Γ are relevant in applications; for instance they appear in sampling theory. In
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fact, in the present paper we deal with two types of samples where these systems have an
important role:

Firstly, given a unitary representation Γ 3 γ 7→ U(γ) ∈ U(H) of the group Γ on a separable
Hilbert space H, for a fixed ϕ ∈ H we consider the subspace of H

Aϕ =
{∑
γ∈Γ

a(γ)U(γ)ϕ : a = {a(γ)}γ∈Γ ∈ `2(Γ)
}

For a fixed ψ ∈ H, which does not necessarily belong to Aϕ, we can define for each f ∈ Aϕ its
samples

Lψf(γ) := 〈f, U(γ)ψ〉H , γ ∈ Γ .

These samples give average sampling in classical shift-invariant subspaces of L2(R) (see, for
instance, Refs. [1, 9, 11, 17]). As we will see in Section 4, there exists fψ ∈ `2(Γ) such that, for
each f ∈ Aϕ, we get Lψf(γ) = 〈a, Lγfψ〉`2(Γ), γ ∈ Γ, being a ∈ `2(Γ) the coefficients sequence
of f ∈ Aϕ.

Secondly, when H = L2(Rd), for a fixed point p ∈ Rd we consider, for any f ∈ Aϕ the
samples

Lpf(γ) :=
[
U(γ−1)f

]
(p) , γ ∈ Γ .

Again, there exists fp ∈ `2(Γ) such that, for each f ∈ Aϕ, we obtain the expression for these
samples Lpf(γ) = 〈a, Lγfp〉`2(Γ), γ ∈ Γ. This situation englobes the case when we are dealing
with pointwise samples in classical shift-invariant subspaces of L2(R) [11, 16, 17, 23, 27].

Needless to say that a feasible characterization of the system
{
Lγf
}
γ∈Γ

as a Riesz basis

for `2(Γ) along with the search of its dual Riesz basis will play a crucial role in obtaining
an interpolatory sampling formula allowing the recovery of any f ∈ Aϕ from the given data
sampling {Lψf(γ)}γ∈Γ or {Lpf(γ)}γ∈Γ. Some Γ-invariant spaces Aϕ of special relevance are
those appearing in composite wavelet theory. These wavelets allow many more locations, scales
and directions than the classical ones. They have been studied in the last few years; see, for
instance, Refs. [18, 19, 20, 21].

In order to get a suitable characterization of when the system
{
Lγf
}
γ∈Γ

is a Riesz basis

for `2(Γ), we briefly describe the mathematical techniques used in this paper. Since, for
a, f ∈ `2(Γ), we have∑

η∈Γ

a(η)Lηf = a ∗ f and 〈a, Lγf〉`2(Γ) =
(
a ∗ f∗

)
(γ) ,

where f∗ denotes the involution in `2(Γ) of f, we can use techniques of linear time-invariant
(LTI) systems. In fact, the given characterization will be described in terms of a matrix-valued
function F(ξ) which turns out to be the transfer matrix of a multi-input multi-output (MIMO)
system. Although, our group Γ = N oσ H is not abelian and a classical Fourier analysis is
not directly applicable, the MIMO system formalism will allow us to make use of the Fourier
transform on the locally compact abelian (LCA) group N ; in fact, F(ξ) is defined for ξ in N̂ ,
the dual group of characters ξ of N .

As the above equalities show, the study of the systems
{
Lγf
}
γ∈Γ

is related to convolution

algebras on Γ, and specially, to the representation of the group C∗-algebra of Γ, C∗(Γ), given
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in Ref. [25]. In the last section we show this relationship and, in so doing, we provide a
convolution C∗-algebra larger than C∗(Γ) and suitable for the present context.

The paper is organized as follows: Section 2 provides the mathematical setting needed
throughout the paper giving the keys for different approaches, together with some lemmata
used in the sequel. Section 3 includes the main theoretical results in the paper: A characteri-
zation of when

{
Lγf
}
γ∈Γ

is a Bessel sequence or a Riesz basis for `2(Γ) is respectively proved

in Theorems 5 and 6; in particular the orthonormal basis case is considered (Corollary 7). The
dual Riesz basis of

{
Lγf
}
γ∈Γ

, which has the same form
{
Lγg

}
γ∈Γ

, is also obtained (Corollary

8). Closing the section, an example of Riesz bases associated to the infinite dihedral group
D∞ is proposed. Section 4 is devoted to a sampling application of the results in Section 3;
thus, an abstract sampling result is obtained (Theorem 9) in a principal U -invariant subspace
of a Hilbert space H. An example using crystallographic groups illustrates the sampling re-
sults, where we consider pointwise samples as well as average samples. Finally, in Section 5 a
C∗-algebras connection is also exhibited.

2 The mathematical setting

The aim of this section is twofold: Firstly, to provide a brief on the needed mathematical
preliminaries and, secondly, to establish the mathematical setting which will give us the keys
and tools to get the main aim in the paper, i.e., a suitable characterization of the system{
Lγf
}
γ∈Γ

as a Riesz basis for `2(Γ).

We begin stating the main facts concerning the group Γ as a semidirect product of groups.
Let (N,+) be a discrete abelian group, (H, ·) a finite group of order κ, and a homomorphism
σ : H 7→ Aut(N) referred as the action of the group H on the group N . Its semidirect product
Γ := N oσ H is the group whose elements are the pairs (n, h) ∈ N × H with multiplication
rule

(n, h)(m, l) :=
(
n + σ(h)(m), h l

)
, n,m ∈ N and h, l ∈ H .

In particular, the identity element in Γ is eΓ = (0N , 1H) and (n, h)−1 =
(
− σ(h−1)(n), h−1

)
,

(n, h) ∈ Γ. Notice that, unless σ(h) equals the identity for h ∈ H, the group Γ is not abelian.

An important example of semidirect product of groups that will be used in this paper is the
crystallographic group ΓM,H =MZd oσ H, where M is a non-singular d× d matrix and H is
a finite subgroup of O(d), the orthogonal group of order d, such that A(MZd) =MZd for all
A ∈ H. Here σ(A)x = Ax for A ∈ H and x ∈ Rd. The infinite dihedral group D∞ := Zoσ Z2,
where σ(1)(n) = n and σ(−1)(n) = −n for each n ∈ Z, is a unidimensional crystallographic
group.

Throughout the paper we denote by greek letters γ, η, . . . or as (n, h), (m, l), . . . the elements
in Γ. The left regular representation of the group Γ on `2(Γ) is given by

Lγf(η) := f(γ−1η), η, γ ∈ Γ and f ∈ `2(Γ).

Note that, for each f ∈ `2(Γ), the synthesis operator Λf of the system
{
Lγf
}
γ∈Γ

is a convolution

operator. Indeed, for any a ∈ `2(Γ)

Λfa(γ) :=
∑
η∈Γ

a(η)Lηf(γ) =
∑
η∈Γ

a(η)f(η−1γ) =
(
a ∗ f

)
(γ) , γ ∈ Γ .
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Recall that the above definition gives a bounded linear operator Λf : `2(Γ) 7→ `2(Γ) if and only
if the system

{
Lγf
}
γ∈Γ

is a Bessel sequence [8, Theorem 3.2.3] (see also Theorem 5 infra).
Our study is based on the following representation of Λfa:

Lemma 1. Given f, a ∈ `2(Γ), Λfa is represented as:

Λfa(n, h) =
∑
l∈H

(
al ∗N fh,l

)
(n) , (n, h) ∈ Γ , (1)

where al(n) := a(n, l), fh,l(n) := f[(0, l)−1(n, h)], and ∗N denotes the convolution on the abelian
group N , i.e.,

(
a ∗N b

)
(n) :=

∑
m∈N a(m) b(n−m).

Proof. Having in mind that (m, l)−1 = (0, l)−1(−m, 1), we get

Λfa(n, h) =
∑
l∈H

∑
m∈N

a(m, l) f[(m, l)−1(n, h)] =
∑
l∈H

∑
m∈N

a(m, l) f[(0, l)−1(n−m,h)],

and representation (1) holds.

According to expression (1), the operator Λf can be seen as a linear time-invariant system:

[al]l∈H ∈ `2κ(N) 7−→
[∑
l∈H

al ∗N fh,l

]
h∈H

(2)

where `2κ(N) := `2(N)×· · ·×`2(N) (κ times). In signal processing jargon this type of system is
called a multi-input, multi-output (MIMO) linear time-invariant system; it can be effectively
analyzed by using the Fourier transform.

Since N is a discrete abelian group, we can use the Fourier transform on N defined by

â(ξ) =
∑
n∈N

a(n)〈−n, ξ〉, ξ ∈ N̂ ,

for any a ∈ `1(N), and extended to `2(N) as a unitary operator between `2(N) and L2(N̂)
where N̂ denotes the dual group of characters (see, for instance, Ref.[10] for the details).

Next lemma will be needed in taking the Fourier transform in Eq. (1). It also gives a
condition so that the output in (2) belongs to `2κ(N).

Lemma 2. Let a, b ∈ `2(N) such that the product â(ξ) b̂(ξ) ∈ L2(N̂). Then the convolution
a ∗N b ∈ `2(N) and (

â ∗N b
)
(ξ) = â(ξ) b̂(ξ), a.e. ξ ∈ N̂ .

Proof. By using Plancherel theorem [10, Theorem 4.25] and denoting b̃(n) = b(−n), we obtain

(
a ∗N b

)
(n) =

∑
m∈N

a(m) b(n−m) =
〈
a, b̃(· − n)

〉
`2(N)

=
〈
â,

̂
b̃(· − n)

〉
`2(N̂)

=

∫
N̂
â(ξ)

̂̃
b(ξ) 〈−n, ξ〉dµ

N̂
(ξ) =

∫
N̂
â(ξ) b̂(ξ) 〈−n, ξ〉dµ

N̂
(ξ) .
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Since
{
〈−n, ξ〉

}
n∈N is an orthonormal basis for L2(N̂) [10, Theorem 4.26] and we have assumed

that â(ξ) b̂(ξ) ∈ L2(N̂), we obtain that a ∗N b ∈ `2(N) and

â(ξ) b̂(ξ) =
∑
n∈N

(
a ∗N b

)
(n)〈−n, ξ〉, a.e. ξ ∈ N̂ .

By taking the N -Fourier transform in the second term of expression (1) we obtain the so
called transfer matrix of the MIMO system (2). This motivates the following definition:

Definition 1. For each f ∈ `2(Γ) we introduce its associated transfer matrix as the κ × κ
matrix-valued function F defined on N̂ as

F(ξ) =
[
f̂h,l(ξ)

]
h,l∈H where fh,l(n) = f[(0, l)−1(n, h)] , n ∈ N . (3)

The involution in `2(Γ) and in `2(N) are denoted, respectively, by

f∗(γ) = f(γ−1) , γ ∈ Γ and f̃h,l(n) = fh,l(−n) , n ∈ N .

The role of the conjugate transpose matrix-valued function F∗(ξ) is also well understood
realizing that it is the transfer matrix of the system

[al]l∈H 7−→
[∑
l∈H

al ∗N f̃l,h

]
h∈H

which represents the analysis operator of the sequence
{
Lγf
}
γ∈Γ

. Namely, for f, a in `2(Γ), we
have

Af(n, h) :=
〈
a, L(n,h)f

〉
`2(Γ)

=
(
a ∗ f∗

)
(n, h) =

∑
l∈H

(
al ∗N f̃l,h

)
(n) . (4)

Indeed, equality∑
l∈H

∑
m∈N

a(m, l)f[(n, h)−1(m, l)] =
∑
l∈H

∑
m∈N

a(m, l)f[(0, h)−1(m− n, l)]

yields (4). Recall that the analysis operator is the adjoint operator of the synthesis operator
[8, Lemma 3.2.1]; in other words, whenever the system {Lγf}γ∈Γ is a Bessel sequence for `2(Γ),
operator Af in (4) is the adjoint operator of Λf , i.e., Af = Λ∗f .

In our context, we will need the transform TΓ given in the following lemma, where L2
κ(N̂)

denotes the product Hilbert space L2(N̂)× · · · × L2(N̂) (κ times):

Lemma 3. The linear map TΓ : `2(Γ) → L2
κ(N̂) defined by TΓa := [ âh ]h∈H , where ah(n) =

a(n, h), (n, h) ∈ Γ, is a unitary operator.

Proof. The map TΓ is surjective since the N -Fourier transform is a unitary operator between
`2(N) and L2(N̂). It is also an isometry since, for each a, b ∈ `2(Γ), we have

〈a, b〉`2(Γ) =
∑
h∈H
〈ah, bh〉`2(N) =

∑
h∈H
〈 âh, b̂h 〉L2(N̂)

=
〈
TΓa , TΓb

〉
L2
κ(N̂)

.
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The above lemma, related to the abstract version of the Zak transform (see, for instance,
Refs.[3, 12]), says that any a ∈ `2(Γ) is completely determined by the Fourier transform of its
κ phases ah, h ∈ H.

With a view to built the matrix-valued function F(ξ) and the vector-valued function TΓa(ξ),
indexed by the elements of H, we order the κ elements of H such that the first element is
1H , the identity element of H. Thus the first column of F(ξ) is TΓf(ξ). Notice also that its
l-column is TΓL(0N ,l)f(ξ). Hence, for ξ ∈ N̂ matrix F(ξ) is a redundant matrix, similar to what
happens with the modulation matrix in wavelet or in filter bank theory.

In next result, we obtain a representation for the analysis and synthesis operators, Eqs.
(1) and (4) respectively, in the TΓ domain:

Theorem 4. Assume that f, a ∈ `2(N) and that the products âl(ξ) f̂h,h′(ξ) ∈ L2(N̂) for all
l, h, h′ ∈ H. Then

TΓΛfa(ξ) = F(ξ) TΓa(ξ) and TΓAfa(ξ) = F∗(ξ) TΓa(ξ), a.e. ξ ∈ N̂ .

Besides, on the assumption that b = a ∗ f then

B(ξ) = F(ξ)A(ξ), a.e. ξ ∈ N̂ , (5)

where A(ξ) and B(ξ) are the transfer matrices associated to a and b defined in (3).

Proof. By taking the N -Fourier transform in equalities (1) and (4), and having in mind Lemma
2 we obtain that TΓΛfa(ξ) = F(ξ) TΓa(ξ) and TΓAfa(ξ) = F∗(ξ) TΓa(ξ) . Concerning the
second part, the l-column of A(ξ) is TΓ(L(0N ,l)a) and the l-column of B(ξ) is

TΓ(L(0N ,l)b)(ξ) = TΓ(L(0N ,l)[a ∗ f])(ξ) = TΓ([L(0N ,l)a] ∗ f)(ξ) = F(ξ)TΓ(L(0N ,l)a)(ξ) ,

that is, the l-column of F(ξ)A(ξ).

A similar formula to (5) is obtained in Ref. [25] for functions in the C∗-algebra of the group
Γ, even for a non discrete group N ; see Section 5 below. It can be also found in Ref. [21] for
functions in `1(Γ), being Γ a crystallographic group.

3 Riesz bases for `2(Γ) generated by the left regular represen-
tation of Γ

In what follows we will assume that the non abelian group Γ is the semidirect product NoσH,
where (N,+) is a discrete abelian group and (H, ·) is a finite group of order κ. For a fixed
f ∈ `2(Γ), this section is devoted to give a characterization of the sequence

{
Lγf
}
γ∈Γ

as a

Riesz basis for `2(Γ) in terms of the associated matrix-valued function F(ξ) introduced in (3).

Theorem 5. For f ∈ `2(Γ), let F(ξ) be its associated transfer matrix defined in (3). Then, the
system

{
Lγf
}
γ∈Γ

is a Bessel sequence for `2(Γ) if and only if the entries of the matrix-valued

function F(ξ) belong to L∞(N̂). In this case the optimal Bessel bound is given by

Bf := ess sup
ξ∈N̂

λmax[F
∗(ξ)F(ξ)] ,

where λmax denotes the largest eigenvalue of F∗(ξ)F(ξ).
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Proof. Having in mind the equivalence between the spectral and the Frobenius norms for
matrices [14], we deduce that Bf <∞ if and only if the entries f̂h,l of F(ξ) belong to L∞(N̂).

Whenever a ∈ `2(N) with âl(ξ) f̂h,h′(ξ) ∈ L2(N̂), l, h, h′ ∈ H, by using Lemma 3 and
Theorem 4 we obtain that∥∥∥∑

γ∈Γ

a(γ)Lγf
∥∥∥2

`2(Γ)
=
∥∥Λfa

∥∥2

`2(Γ)
=
∥∥TΓΛfa

∥∥2

L2
κ(N̂)

=
∥∥∥F(·) TΓa(·)

∥∥∥2

L2
κ(N̂)

,

and then, ∥∥∥∑
γ∈Γ

a(γ)Lγf
∥∥∥2

`2(Γ)
=

∫
N̂

[TΓa(ξ)]∗F∗(ξ)F(ξ)TΓa(ξ)dµ
N̂

(ξ) . (6)

Hence, using Lemma 3, we obtain that, whenever a ∈ `2(N) and f̂h,l(ξ) ∈ L∞(N̂), l, h ∈ H,
we have ∥∥∥∑

γ∈Γ

a(γ)Lγf(γ)
∥∥∥2

`2(Γ)
≤
∫
N̂
λmax[F∗(ξ)F(ξ)] ‖TΓa(ξ)‖2dξ

≤ Bf

∫
N̂
‖TΓa(ξ)‖2dξ = Bf ‖TΓa‖2L2

κ(N̂)
= Bf ‖a‖2`2(Γ) .

Consequently, if f̂h,l(ξ) ∈ L∞(N̂), h, l ∈ H, or equivalently Bf <∞, then
{
Lγf
}
γ∈Γ

is a Bessel
sequence with bound Bf .

For any number J < Bf , there exists a subset Ω ⊂ N̂ with positive measure such that
λmax[F∗(ξ)F(ξ)] > J for ξ ∈ Ω. Let a ∈ `2(Γ) such that TΓa(ξ) is equal to 0 when ξ /∈ Ω, and it
is equal to a unitary eigenvector of F∗(ξ)F(ξ) corresponding to the eigenvalue λmax[F∗(ξ)F(ξ)]
when ξ ∈ Ω. By using (6) we obtain∥∥∥∑

γ∈Γ

a(γ)Lγf(γ)
∥∥∥2

`2(Γ)
=

∫
N̂
λmax[F∗(ξ)F(ξ)]‖TΓa(ξ)‖2dξ ≥ J

∫
N̂
‖TΓa(ξ)‖2dξ = J‖a‖2`2(Γ) .

Therefore, if
{
Lγf
}
γ∈Γ

is Bessel sequence then Bf < ∞, or equivalently f̂h,l(ξ) ∈ L∞(N̂),
h, l ∈ H. Moreover, the constant Bf is the optimal Bessel bound.

Theorem 6. Consider f ∈ `2(Γ) and its associated transfer matrix F(ξ) given in (3). The
following statements are equivalent:

(a) The system
{
Lγf
}
γ∈Γ

is a Riesz basis for `2(Γ).

(b) The entries of the matrix-valued function F(ξ) belongs to L∞(N̂), and ess inf
ξ∈N̂

|det F(ξ)| > 0.

In this case the optimal Riesz bounds are given by

Af := ess inf
ξ∈N̂

λmin[F∗(ξ)F(ξ)] and Bf := ess sup
ξ∈N̂

λmax[F
∗(ξ)F(ξ)] .

Moreover, its dual Riesz basis is
{
Lγg

}
γ∈Γ

where g is the unique element in `2(Γ) satisfying

F∗(ξ)TΓg(ξ) =
[
1 0 . . . 0

]>
, a.e. ξ ∈ N̂ , (7)

where TΓ is defined in Lemma 3. Equivalently, G(ξ) = (F∗(ξ))−1, a.e. ξ ∈ N̂ where G(ξ) is
the transfer matrix associated to g.
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Proof. First of all, note that for any κ× κ hermitian matrix M we have that

λκmin(M) ≤ det M = λmin(M) · · · · λmax(M) ≤ λmin(M)λκ−1
max(M) .

Using these inequalities for M = F∗(ξ)F(ξ) we obtain that

Aκf ≤ ess inf
ξ∈N̂

|det F(ξ)|2 ≤ AfB
κ−1
f . (8)

(a) ⇒ (b). If (a) holds
{
Lγf
}
γ∈Γ

is a Bessel system; thus, having in mind Theorem 5, the

entries of the matrix-valued function F(ξ) belong to L∞(N̂). Using the Rayleigh-Ritz theorem
[14] and Lemma 3, for any a ∈ `2(N) we obtain that∥∥∥∑

γ∈Γ

a(γ)Lγf
∥∥∥2

`2(Γ)
=

∫
N̂

[TΓa(ξ)]∗F∗(ξ)F(ξ)TΓa(ξ)dµ
N̂

(ξ)

≥
∫
N̂
λmin[F∗(ξ)F(ξ)] ‖TΓa(ξ)‖2dξ

≥ Af

∫
N̂
‖TΓa(ξ)‖2dξ = Af ‖TΓa‖2L2

κ(N̂)
= Af ‖a‖2`2(Γ).

(9)

For any number J > Af , there exist a subset Ω ⊂ N̂ with positive measure such that
λmin[F∗(ξ)F(ξ)] < J for ξ ∈ Ω. Let a ∈ `2(Γ) such that TΓa(ξ) is equal to 0 when ξ /∈ Ω, and it
is equal to a unitary eigenvector of F∗(ξ)F(ξ) corresponding to the eigenvalue λmin[F∗(ξ)F(ξ)]
when ξ ∈ Ω. Then, using (6), we obtain∥∥∥∑

γ∈Γ

a(γ)Lγf(γ)
∥∥∥2

`2(Γ)
=

∫
N̂
λmin[F∗(ξ)F(ξ)]‖TΓa(ξ)‖2dξ ≤ J

∫
N̂
‖TΓa(ξ)‖2dξ = J‖a‖2`2(Γ).

Therefore, if
{
Lγf
}
γ∈Γ

is a Riesz basis then Af > 0 which, having in mind (8), implies

ess inf
ξ∈N̂

|det F(ξ)| > 0. Besides, the optimal lower Riesz bound is Af .

(b) ⇒ (a). Since the entries of F(ξ) ∈ L∞(N̂), using Theorem 5 we deduce that Bf < ∞.
Since ess inf

ξ∈N̂
| det F(ξ)| > 0, using (8) we obtain Af > 0. As a consequence of Theorem 5 and

inequality (9) we deduce that the system
{
Lγf
}
γ∈Γ

is a Riesz basis for `2(Γ).

Next, we find its dual Riesz basis. Since ess inf
ξ∈N̂ |det F(ξ)| > 0, and the entries of F∗(ξ)

belongs to L∞(N̂), the entries of the matrix-valued function [F∗(ξ)]−1 belong to `2(N̂). By
Lemma 3, there exist a unique g ∈ `2(Γ) such that TΓg is the first column of [F∗(ξ)]−1, or
equivalently, a unique g ∈ `2(Γ) satisfying (7). From Theorem 4 we get

TΓ

[
〈g, Lγf〉

]
γ∈Γ

(ξ) = TΓ(Afg)(ξ) = F∗(ξ)TΓg(ξ) =
[
1 0 . . . 0

]>
Hence 〈g, Lγf〉 = δ(γ), and the system

{
Lγg

}
γ∈Γ

is the dual Riesz basis to
{
Lγf
}
γ∈Γ

. Besides,

we have that g ∗ f∗(γ) = 〈g, Lγf〉 = δ(γ). Applying (5), having in mind that the matrices

corresponding to δ and f∗ are
[
δ̂h,l

]
h,l∈H = Iκ and

[
f̂∗h,l
]
h,l∈H = F∗ we get that F∗(ξ)G(ξ) =

Iκ, a.e. ξ ∈ N̂ .

8



Corollary 7. The system
{
Lγf
}
γ∈Γ

is an orthonormal basis for `2(Γ) if and only if the matrix-

valued function F(ξ) is unitary a.e. ξ ∈ N̂ , or equivalently, if F∗(ξ)TΓf(ξ) =
[
1 0 . . . 0

]>
a.e. ξ ∈ N̂ .

Proof. The Riesz basis
{
Lγf
}
γ∈Γ

is an ortonormal basis if and only if the generator of the dual
Riesz basis g = f, or equivalently, if G = F. Thus, the result follows from Theorem 6.

Corollary 8. Consider f, g ∈ `2(Γ) and their associated transfer matrices F(ξ), G(ξ) defined
in (3). Assume that the entries of F(ξ) and G(ξ) belong to L∞(N̂). Then, the systems{
Lγf
}
γ∈Γ

and
{
Lγg

}
γ∈Γ

form a pair of dual Riesz bases if and only if G(ξ) =
[
F∗(ξ)

]−1
a.e.

ξ ∈ N̂ .

Proof. Since the entries of G(ξ) belong to L∞(N̂), if G(ξ)F∗(ξ) = Iκ we have that

ess inf
ξ∈N̂

|det F(ξ)| = ess inf
ξ∈N̂

(
| det G(ξ)|−1

)
=
(

ess sup
ξ∈N̂

| det G(ξ)|
)−1

> 0.

Hence, the result is easily obtained from Theorem 6.

3.1 Remarks

• Whenever the generator f belongs to `1(Γ), the matrix-valued function F(ξ) has continuous
entries in the compact N̂ (recall that N is discrete). Thus, from Theorem 5 the system{
Lγf
}
γ∈Γ

is always a Bessel sequence for `2(Γ). From Theorem 6 it is a Riesz basis for `2(Γ)

if and only if the matrix-valued function F(ξ) is non-singular for all ξ ∈ N̂ . Finally, from
Corollary 7 it is an orthonormal basis if and only if F(ξ) is unitary for all ξ ∈ N̂ .

• Theorems 5 and 6, and Corollary 7 can be restated in terms of the convolution operator.
Namely (see [8, Lemma 3.2.1 and Proposition 3.6.8]),

a. The expression Λfa =
∑

η∈Γ a(η)Lηf = a ∗ f defines a bounded linear operator Λf : `2(Γ)→
`2(Γ) if and only if the entries of the matrix-valued function F(ξ) belong to L∞(N̂). In this

case, ‖Λf‖ = B
1/2
f .

b. Assume that the entries of the matrix-valued function F(ξ) belong to L∞(N̂). Then, Λf is

an invertible operator if and only if ess inf
ξ∈N̂ | det F(ξ)| > 0. In this case, ‖Λ−1

f ‖ = A
−1/2
f

and the condition number of Λf is ‖Λf‖ ‖Λ−1
f ‖ = (Bf/Af)

1/2. Besides, there exists a unique
h ∈ `2(Γ) such that f ∗ h = δ, and satisfying

H(ξ)F(ξ) = Iκ , a.e. ξ ∈ N̂ ,

where H(ξ) is the transfer matrix associated to h. Besides, h = g∗ where g is the function
defined in Theorem 6.

c. The linear map Λf defines a unitary operator if and only if F(ξ) is unitary a.e. ξ ∈ N̂ .
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3.2 Riesz bases examples associated to the infinite dihedral group D∞

We illustrate the above results of this section in the case of the infinite dihedral group D∞ =
Z o {1,−1}. Recall that Ẑ ∼= T, with 〈n, z〉 = zn, z ∈ T, and consequently the Fourier
transform of the sequence {a(n)}n∈Z is the z-transform â(z) =

∑
n∈Z a(n)z−n (see, for instance,

[10, Theorem 4.5]).
For any f ∈ `2(D∞), the first column of F(z), is formed by the z-transforms of f1(n) =

f(n, 1) and f−1(n) = f(n,−1), n ∈ Z. The second column is formed by the z-transforms of
f1,−1(n) = f−1(−n) and f−1,−1(n) = f1(−n), n ∈ Z; that is

F(z) =

[
f̂1(z) f̂−1(z−1)

f̂−1(z) f̂1(z−1)

]
, z ∈ T . (10)

Firstly, according to Corollary 7, the sequence {Lγf}γ∈D∞ is an orthonormal basis for

`2(D∞) if and only if F∗(z)TΓf(z) =
[
1 0

]>
, or equivalently

|̂f1(z)|2 + |̂f−1(z)|2 = 1 and f̂1(z)̂f−1(z−1) + f̂−1(z)̂f1(z−1) = 0 , a.e. z ∈ T .

These equations are satisfied, for example, when f̂−1(z) = 0 and |̂f1(z)| = 1. In signal pro-
cessing jargon, complex transfer functions satisfying |f(z)| = 1 in T are called allpass filters;
expressions for rational allpass filter, their properties, as well as efficient ways to compute the
∗N -convolutions in (1) and (4), can be found in Ref. [26, Section 3.4]. The simplest allpass
filter f̂1(z) = zk yields to the canonical basis {Lγδ}γ∈D∞ . Other interesting solutions of the
above equations are

f̂1(eiw) =

{
1, |w| ≤ a
0, |w| > a

; f̂−1(eiw) =

{
0, |w| ≤ a
1, |w| > a

for a fixed a ∈ (0, π).

Secondly, according to Theorem 6, the sequence {Lγf}γ∈D∞ is a Riesz basis for `2(D∞) if
and only if

ess inf
z∈T

|det F(z)| = ess inf
z∈T

∣∣̂f1(z)̂f1(z−1)− f̂−1(z)̂f−1(z−1)
∣∣ > 0 .

In this case, by solving F∗(z)
[
ĝ1(z) ĝ−1(z)

]>
=
[
1 0

]>
, we obtain

ĝ1(z) =
f̂1(z)

det F∗(z)
; ĝ−1(z) =

−f̂−1(z)

det F∗(z)
, (11)

which provides the generator g of its dual Riesz basis {Lγg}γ∈D∞ . Whether f is real, we have

that f̂1(z−1) = f̂1(z) and f̂−1(z−1) = f̂−1(z), from which it is straightforward to deduce that
the optimal Riesz bounds are

Af := ess inf
z∈T

λmin[F∗(z)F(z)] = ess inf
w∈[−π,π]

(
|̂f1(eiw)| − |̂f−1(eiw)|

)2
,

Bf := ess sup
z∈T

λmax[F∗(z)F(z)] = ess sup
w∈[−π,π]

(
|̂f1(eiw)|+ |̂f−1(eiw)|

)2
.

(12)
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Closing this section we exhibit a simple example. The generators f and g are finitely
supported whenever f̂1 and f̂−1 are Laurent polynomials such that det F(z) = f̂1(z)̂f1(z−1) −
f̂−1(z)̂f−1(z−1) = azk for some k ∈ Z, a 6= 0. For instance, for f̂1(z) = 3/8 and f̂−1(z) = z/8
we obtain ĝ1(z) = 3 and ĝ−1(z) = −z; thus the dual generators f and g have both support of
size 2. From (12), the optimal Riesz bounds of

{
Lγf
}
γ∈Γ

are Af = 1/4 and Bf = 1/2.

4 A sampling application

Let Γ 3 γ 7−→ U(γ) ∈ U(H) be a unitary representation of the group Γ in a separable Hilbert
space H, i.e., a homomorphism between Γ and U(H). We are interested in the study of
sampling in the principal U -invariant space Aϕ := span{U(γ)ϕ}γ∈Γ of H, where ϕ denotes a
fixed element of H. In case the sequence {U(γ)ϕ}γ∈Γ is a Riesz sequence for H (one can find
necessary and sufficient conditions in Refs. [2, 21]) the subspace Aϕ can be expressed as

Aϕ =
{∑
γ∈Γ

a(γ)U(γ)ϕ : a = {a(γ)}γ∈Γ ∈ `2(Γ)
}

The goal here is the stable recovery of any f ∈ Aϕ from the data {Lψf(γ)}γ∈Γ given by

Lψf(γ) :=
〈
f, U(γ)ψ

〉
H , γ ∈ Γ , (13)

where ψ ∈ H is a fixed element which does not belong necessarily to Aϕ. First, we express the
samples in a more suitable manner; for each f =

∑
γ∈Γ a(γ)U(γ)ϕ in Aϕ we have

Lψf(γ) =
〈∑
η∈Γ

a(η)U(η)ϕ,U(γ)ψ
〉
H

=
∑
η∈Γ

a(η)
〈
ϕ,U(η−1γ)ψ

〉
H

=
∑
η∈Γ

a(η)f(γ−1η) =
∑
η∈Γ

a(η)Lγf(η) =
〈
a, Lγfψ

〉
`2(Γ)

, γ ∈ Γ ,

where fψ(η) := 〈ϕ,U(η−1)ψ〉H for η ∈ Γ, and a = {a(γ)}γ∈Γ. Notice that fψ belongs to `2(Γ).
In the light of Theorem 6, assume that {Lγfψ}`2(Γ) is a Riesz basis for `2(Γ) with dual Riesz
basis {Lγgψ}`2(Γ). Thus, for any a ∈ `2(Γ) we have

a =
∑
γ∈Γ

〈a, Lγfψ〉`2(Γ) Lγgψ =
∑
γ∈Γ

Lψf(γ)Lγgψ in `2(Γ) . (14)

In order to derive a sampling formula in Aϕ compatible with its structure, we consider the
natural isomorphism TU,ϕ : `2(Γ) → Aϕ which maps the usual orthonormal basis {δγ}γ∈Γ

for `2(Γ) onto the Riesz basis {U(γ)ϕ}γ∈Γ for Aϕ. This isomorphism satisfies the following
shifting property:

TU,ϕ
(
Lγf
)

= U(γ)TU,ϕf for each f ∈ `2(Γ) and γ ∈ Γ .

Indeed, we have that Lγδη = δγη for γ, η ∈ Γ. As a consequence, TU,ϕ
(
Lγδη

)
= TU,ϕδγη =

U(γ)U(η)ϕ = U(γ)TU,ϕ
(
δη
)
. From a continuity argument the result becomes true for any

f ∈ `2(Γ).
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Now, consider f = TU,ϕ(a) in Aϕ; applying the isomorphism TU,ϕ in expansion (14) and
using the above shifting property we obtain for each f ∈ Aϕ the sampling formula

f = TU,ϕ(a) =
∑
γ∈Γ

Lψf(γ) TU,ϕ
(
Lγgψ

)
=
∑
γ∈Γ

Lψf(γ)U(γ)TU,ϕ(gψ) in H . (15)

Notice that TU,ϕ(gψ) =
∑

γ∈Γ gψ(γ)U(γ)ϕ ∈ Aϕ. Moreover, since TU,ϕ is an isomorphism, the
sequence {U(γ)TU,ϕ(gψ)}γ∈Γ is a Riesz basis for Aϕ. In fact, the following sampling theorem
in Aϕ holds:

Theorem 9. For a given ψ ∈ H, consider fψ ∈ `2(Γ) such that fψ(η) := 〈ϕ,U(η−1)ψ〉H for
η ∈ Γ. Assume that all the entries of its associated κ× κ matrix-valued function F(ξ) defined
in (3) belong to L∞(N̂). The following statements are equivalent:

(a) ess inf
ξ∈N̂

|det F(ξ)| > 0.

(b) There exists a unique gψ ∈ `2(Γ) such that its associate matrix-valued function G(ξ)

defined in (3) has entries in L∞(N̂), and it satisfies G(ξ)F∗(ξ) = Iκ, a.e. ξ ∈ N̂ .

(c) There exists a unique Φψ ∈ Aϕ such that the sequence {U(γ)Φψ}γ∈Γ is a Riesz basis for
Aϕ and the sampling formula

f =
∑
γ∈Γ

Lψf(γ)U(γ)Φψ in H (16)

holds for each f ∈ Aϕ.

In case the equivalent conditions are satisfied, necessarily Φψ = TU,ϕ(gψ) where gψ ∈ `2(Γ)
satisfies conditions in (b). Moreover, the interpolation property LψΦψ(γ) = δγ,eΓ, γ ∈ Γ,
holds.

Proof. (a)⇒ (b). The sequence {Lγfψ}`2(Γ) is a Riesz basis for `2(Γ). Having in mind Theorem

6, its dual Riesz basis has the form {Lγgψ}`2(Γ) with G(ξ)F∗(ξ) = Iκ, a.e. ξ ∈ N̂ .
(b)⇒ (c). According with Corollary 8, the sequences {Lγfψ}`2(Γ) and {Lγgψ}`2(Γ) form a pair
of dual Riesz bases for `2(Γ). Thus we have (14) and, consequently, (15) proves (c).
(c)⇒ (a). Applying the isomorphism T −1

U,ϕ, the sequence
{
T −1
U,ϕ

(
U(γ)Φ

)}
γ∈Γ

is a Riesz sequence

for `2(Γ), and for each a ∈ `2(Γ) we get

a =
∑
γ∈Γ

〈a, Lγfψ〉`2(Γ) T −1
U,ϕ

(
U(γ)Φψ

)
in `2(Γ) .

The sequence {Lγfψ}`2(Γ) is a Bessel sequence biorthogonal to
{
T −1
U,ϕ

(
U(γ)Φψ

)}
γ∈Γ

, and hence

it is a Riesz basis for `2(Γ) [8, Theorem 3.6.7]; from Theorem 6, ess inf
ξ∈N̂

|det F(ξ)| > 0.

The uniqueness of the coefficients in a Riesz basis expansion gives the interpolation property
LψΦψ(γ) = δγ,eΓ , γ ∈ Γ.
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4.1 The crystallographic group case

The euclidean motion group E(d) is the semidirect product Rd oσ O(d) corresponding to the
homomorphism σ : O(d) → Aut(Rd) given by σ(A)(x) = Ax, where A ∈ O(d) and x ∈ Rd.
The composition law on E(d) = Rd oσ O(d) reads (x,A) · (x′, A′) = (x+Ax′, AA′).

LetM be a non-singular d×d matrix and H a finite subgroup of O(d) of order κ such that
A(MZd) =MZd for each A ∈ H. We consider the crystallographic group ΓM,H :=MZdoσH
and its quasi regular representation (see, for instance, Ref. [2]) on L2(Rd)

U(n,A)f(t) = f [A>(t− n)] , n ∈MZd, A ∈ H and f ∈ L2(Rd) .

For a fixed ϕ ∈ L2(Rd) such that the sequence
{
U(n,A)ϕ

}
(n,A)∈ΓM,H

is a Riesz sequence for

L2(Rd) (see, for instance, Refs.[7, 15]) we consider the U -invariant subspace in L2(Rd)

Aϕ =
{ ∑

(n,A)∈ΓM,H

α(n,A)ϕ[A>(t− n)] : {α(n,A)} ∈ `2(ΓM,H)
}

For a fixed ψ ∈ L2(Rd) non necessarily in Aϕ we consider the average samples of any f ∈ Aϕ

Lψf(n,A) =
〈
f, U(n,A)ψ

〉
L2(Rd)

=
〈
f, ψ[A>(· − n)]

〉
L2(Rd)

, (n,A) ∈ ΓM,H .

Under the hypotheses in Theorem 9, there exists a function Φψ ∈ Aϕ such that the sequence{
Φψ[A>(t−n)]

}
(n,A)∈ΓM,H

is a Riesz basis for Aϕ, and for each f ∈ Aϕ we have the sampling

expansion

f(t) =
∑

(n,A)∈ΓM,H

〈
f, ψ[A>(· − n)]

〉
L2(Rd)

Φψ[A>(t− n)] in L2(Rd) . (17)

If the generator ϕ ∈ C(Rd) and the function t 7→
∑

(n,A) |ϕ[A>(t − n)]|2 is bounded on Rd, a
standard argument shows that Aϕ is a reproducing kernel Hilbert space (RKHS) of continuous
bounded functions in L2(Rd). As a consequence, convergence in L2(Rd)-norm implies pointwise
convergence which is absolute and uniform on Rd.

4.2 The pointwise samples case

Let {U(γ)}γ∈Γ be a unitary representation of the group Γ = N oσ H on the Hilbert space
H = L2(Rd). If the generator ϕ ∈ L2(Rd) satisfies that, for each γ ∈ Γ, the function U(γ)ϕ is
continuous on Rd, and the condition

sup
t∈Rd

∑
γ∈Γ

∣∣[U(γ)ϕ](t)
∣∣2 < +∞ , (18)

then the subspace Aϕ is a RKHS of continuous bounded functions in L2(Rd). In fact, the
following result holds:

Lemma 10. For any {a(γ)}γ∈Γ ∈ `2(Γ) the series
∑

γ a(γ) [U(γ)ϕ](t) converges pointwise to
a continuous bounded function if and only if for each γ ∈ Γ, the function U(γ)ϕ is continuous
on Rd, and condition (18) holds.
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Proof. Cauchy-Schwarz inequality and Weierstrass M-test prove the sufficient condition. To
prove the necessary condition we follow the arguments in [27]. Indeed, notice first that choosing
the delta sequences in `2(Γ) we deduce that each function U(γ)ϕ is continuous on Rd.

For each fixed t ∈ Rd, since the series
∑

γ∈Γ a(γ) [U(γ)ϕ](t) converges for any {a(γ)}γ∈Γ

in `2(Γ), we obtain that
∑

γ∈Γ

∣∣[U(γ)ϕ](t)
∣∣2 < +∞. Moreover, the functional Ωt : `2(Γ) → C

defined as Ωta :=
∑

γ∈Γ a(γ) [U(γ)ϕ](t) is bounded with norm ‖Ωt‖2 =
∑

γ∈Γ

∣∣[U(γ)ϕ](t)
∣∣2

(see, for instance, [13, p.145]). Next, for fixed a = {a(γ)}γ∈Γ ∈ `2(Γ) we consider its asso-
ciated function fa(t) :=

∑
γ∈Γ a(γ) [U(γ)ϕ](t), t ∈ Rd. Since fa is bounded on Rd, we get

supt∈Rd |Ωta| = supt∈Rd |fa(t)| < +∞. Hence, Banach-Steinhaus theorem concludes that

sup
t∈Rd
‖Ωt‖ = sup

t∈Rd

(∑
γ∈Γ

∣∣[U(γ)ϕ](t)
∣∣2)1/2 < +∞ .

Now for a fixed point p ∈ Rd we consider, for each f ∈ Aϕ, the new samples given by

Lpf(γ) :=
[
U(γ−1)f

]
(p) , γ ∈ Γ . (19)

For each f =
∑

η∈Γ a(η)U(η)ϕ in Aϕ we get

Lpf(γ) =
[∑
η∈Γ

a(η)U(γ−1η)ϕ
]
(p) =

∑
η∈Γ

a(η)
[
U(γ−1η)ϕ

]
(p)

=
∑
η∈Γ

a(η)fp(γ−1η) =
〈
a, Lγfp

〉
`2(Γ)

, γ ∈ Γ ,

where fp(η) :=
[
U(η)ϕ

]
(p), η ∈ Γ; notice that fp belongs to `2(Γ). As a consequence, under

the hypotheses in Theorem 9 on this new fp ∈ `2(Γ), a sampling formula as (16) holds for the
data sequence

{
Lpf(γ)

}
γ∈Γ

.

In the particular case of the quasi regular representation of a crystallographic group
ΓM,H =MZd oσ H, for each f ∈ Aϕ its samples (19) are the pointwise samples

Lpf(n,A) =
[
U [(n,A)−1]f

]
(p) =

[
U(−A>n,A>)f

]
(p) = f(Ap+ n) , (n,A) ∈ Γ .

Thus (under hypotheses in Theorem 9), there exists a unique function Φp ∈ Aϕ such that for
each f ∈ Aϕ the sampling formula

f(t) =
∑

(n,A)∈Γ

f(Ap+ n) Φp[A
>(t− n)] , t ∈ Rd (20)

holds. The convergence of the series in L2(Rd)-norm implies pointwise convergence which is
absolute and uniform on Rd. The interpolating function Φp = TU,ϕ(gp) where gp is the genera-
tor of the dual Riesz basis (see Theorem 6). Coefficients in the expansion f =

∑
γ∈Γ a(γ)U(γ)ϕ

can be computed from samples as

a =
∑
γ∈Γ

f(Ap+ n)Lγgp (21)
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4.3 An example involving the infinite dihedral group D∞

To illustrate the results in this section we consider group Γ = D∞, a unidimensional crystal-
lographic group, and a real generator ϕ ∈ L2(R) supported in the interval [0, 2]. Notice that
we can check if a system {U(γ)ϕ(t)}γ∈D∞ = {ϕ(t − n)}n∈Z ∪ {ϕ(n − t)}n∈Z is a Riesz basis
for Aϕ =

{∑
n∈Z a(n)ϕ(t− n) + b(n)ϕ(n− t) : a, b ∈ `2(Z)

}
by using the Gramian condition

(see, for instance, Refs. [7, 15]). For instance, the function ϕ(t) = (16t2− 13)t2(2− t)2χ[0,2](t),
t ∈ R, fulfills these requirements.

The aim here is the recovery of any f ∈ Aϕ from its samples {f(n+p)}n∈Z∪{f(n−p)}n∈Z
with a fixed p ∈ (0, 1/2). We proceed to check condition (a) in Theorem 9. Indeed, since supp
ϕ ⊆ [0, 2], we obtain f̂1(z) = ϕ(p) + ϕ(p + 1)z and f̂−1(z) = ϕ(1 − p)z−1 + ϕ(2 − p)z−2 and
then (see Eq.(10))

det F(z) = C +D(z + z−1) , z ∈ T ,
where C = ϕ(p)2 +ϕ(p+ 1)2−ϕ(1− p)2−ϕ(2− p)2 and D = ϕ(p)ϕ(p+ 1)−ϕ(1− p)ϕ(2− p).
Since det F(eiw) = C + 2D cos(w), whenever |C| > 2|D| the sampling formula (20) holds. It
reads

f(t) =
∑
n∈Z

{
f(n+ p)Φp(t− n) + f(n− p)Φp(n− t)

}
, t ∈ R ,

where the interpolating function is Φp(t) =
∑

n∈Z
{
g1(n)ϕ(t − n) + g−1(n)ϕ(n − t)

}
, t ∈ R,

with (see Eq. (11))

ĝ1(z) =
ϕ(p) + ϕ(p+ 1)z

C +D(z + z−1)
, ĝ−1(z) = −ϕ(1− p)z−1 + ϕ(2− p)z−2

C +D(z + z−1)
, z ∈ T .

Note that, whenever D = 0, the interpolanting function Φp has also compact support. For
instance, by choosing the generator ϕ(t) = (16t2 − 13)t2(2− t)2χ[0,2](t), t ∈ R, we obtain that

D = 0 and C = 3627
64 , and therefore

Φp(t) =
64

3627

[
ϕ(p)ϕ(t) + ϕ(p+ 1)ϕ(t+ 1)− ϕ(1− p)ϕ(1− t)− ϕ(2− p)ϕ(2− t)

]
, t ∈ R ,

has support [−1, 2]. Using Eqs. (12), the computation of coefficients a(γ) in (21) has condition
number (Bf/Af)

1/2 ≈ 4.82. For this choice of ϕ, the D∞-invariant space Aϕ is a subspace of
the space of cardinal splines of degree 6 with nodes at Z and continuous derivative.

5 A C∗-algebra connection

It is known that the Banach space `1(Γ) becomes a Banach ∗-algebra under convolution but it
is not a C∗-algebra. To avoid this drawback, it can be used the group C∗-algebra of Γ denoted
by C∗(Γ); it is the completion of `1(Γ) with respect to the norm ‖f‖ = ‖Λf‖B(`2(Γ)) [6, II.10.2].

In Ref. [25] it is proved that the mapping f 7→ F in Definition 1 is a C∗-isomorphism
between C∗(Γ) and a C∗-subalgebra of Mκ

(
C(N̂)

)
, the C∗-algebra of the κ × κ matrices

with continuous entries on N̂ (see also [22]). Thus, this C∗-isomorphism provides an explicit
description for the group C∗-algebra of the semidirect product group Γ.

Next, we show that for the semidirect product group Γ = N oσ H, when N is a discrete
abelian group and H a finite group, an alternative to the group C∗-algebra of Γ is the larger
space

L∗(Γ) :=
{
f ∈ `2(Γ) : f̂h,l ∈ L∞(N̂), h, l ∈ H

}
.
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In Theorem 12 below we will prove that L∗(Γ) is a C∗-algebra, and that the linear map S (see
Definition 1)

L∗(Γ) 3 f
S7−−→ F ∈Mκ

(
L∞(N̂)

)
defines a C∗-isomorphism, and consequently an isometry, between the C∗-algebra L∗(Γ) and
a C∗-subalgebra of Mκ

(
L∞(N̂)

)
. Thus, the space L∗(Γ) allows to consider, in a C∗-algebra

setting, elements of `2(Γ) with discontinuous Fourier transform, such as ideal filters in signal
processing applications. In case the group Γ = Z oσ 1H ∼= Z, the space L∗(Γ) coincides with
the space A′(Z) of pseudomeasures [4, 3.1.8].

Specifically, byMκ

(
L∞(N̂)

)
we denote the involution algebra formed by the κ×κ matrices

with entries in L∞(N̂), with pointwise addition and multiplication and where the involution
is given by the adjoint matrix. Any A ∈ Mκ

(
L∞(N̂)

)
can be represented by the bounded

operator πA ∈ B
(
L2
κ(N̂)

)
defined by

(
πAx

)
(ξ) := A(ξ)x(ξ). With respect to the norm induced

by this representation,

‖A‖Mκ(L∞(N̂))
:= ‖πA‖B(L2

κ(N̂))
= sup

{
‖A(·) x(·)‖

L2
κ(N̂)

: ‖x‖
L2
κ(N̂)

= 1
}
,

the involution algebra Mn

(
L∞(N̂)

)
is a C∗-algebra [6, II.6.6]. An estimation for this norm

can be found in Ref.[5].

Lemma 11. For each A ∈ Mκ

(
L∞(N̂)

)
we have that ‖A‖Mκ(L∞(N̂))

= ess sup
ξ∈N̂ ‖A(ξ)‖2,

where ‖A(ξ)‖2 denotes the spectral norm of the matrix A(ξ).

Proof. Since ‖πAx‖2
L2
κ(N̂)

=

∫
N̂

x∗(ξ)A∗(ξ)A(ξ)x(ξ)dµ
N̂

(ξ), the lemma can be proved by

means of the argument used to prove Theorem 5 from equality (6).

Alternatively, this lemma could be proved by checking that Mκ

(
L∞(N̂)

)
with the norm

‖A‖ = ess sup
ξ∈N̂ ‖A(ξ)‖2 is a C∗-algebra, and having in mind the uniqueness of the C∗-norm.

Theorem 12. The vector space L∗(Γ) under the convolution product, the involution defined
by f∗(γ) = f(−γ), γ ∈ Γ, and the norm ‖f‖L∗(Γ) = ‖F‖Mκ(L∞(N̂))

becomes a C∗-algebra.

Besides, the linear map S : f 7→ F is a C∗-isomorphism between L∗(Γ) and a C∗-subalgebra
of Mκ

(
L∞(N̂)

)
. The transform S changes the order of the multiplication, i.e., S(g ∗ f) =

S(f)S(g), f, g ∈ L∗(Γ).

Proof. We can easily check that S satisfies S(f∗) = (Sf)∗. According to Theorem 4 we have
that for any f, g ∈ L∗(Γ), S(g ∗ f)(ξ) = Sf(ξ)Sg(ξ) a.e. ξ ∈ N̂ . As ‖f‖L∗(Γ) = ‖F‖Mκ(L∞(N̂))

=

‖Sf‖Mκ(L∞(N̂))
, we just need to prove that the range of S is closed in norm.

In so doing, let us consider Fi = Sfi, with fi ∈ L∗(Γ), and a matrix A ∈Mκ

(
L∞(N̂)

)
such

that ‖Fi −A‖Mκ(L∞(N̂))
→ 0 as i 7→ ∞. We have to prove that A belongs to the range of S.

From Lemma 11, ess sup
ξ∈N̂ ‖Fi(ξ)−A(ξ)‖2 → 0 as i 7→ ∞. Having in mind that maxh,l |bh,l| ≤

‖B‖2 for any matrix B = [ bh,l ], we obtain that ess sup
ξ∈N̂ |(Fn)h,l(ξ)−Ah,l(ξ)| → 0 and then

‖(Fi)h,l −Ah,l‖L∞(N̂)
→ 0 as i 7→ ∞. Having in mind that N̂ is compact, we also have that

‖(Fi)h,l −Ah,l‖L2(N̂)
→ 0 as i 7→ ∞, l, h ∈ H. (22)
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On the other hand, since, for each h ∈ H, Ah,1H ∈ L∞(N̂) ⊂ L2(N̂), there exists a unique
f ∈ `2(Γ) such that the Fourier transform of f(·, h) is Ah,1H .

For any h ∈ H, the sequence fi(·, h) converges in `2(N) to f(·, h) since, by (22), its Fourier
transform (Fi)h,1 converges in L2(N̂) to Ah,1H the Fourier transform of f(·, h). Hence, for
any h, l ∈ H, the sequence (fi)h,l = fi(−σl(·), l−1h) converges in `2(N) to f(−σl(·), l−1h) = fh,l
and then its Fourier transform (Fi)h,l converges in L2(N̂) to f̂h,l. Thus, by using (22) and the

uniqueness of the limit we obtain that f̂h,l = Ah,l, h, l ∈ H, and then Sf = A.

Theorem 12 gives a simple description of the convolution C∗-algebra L∗(Γ). For example,
from (10), the C∗-algebra L∗(D∞) for the infinite dihedral group D∞ is C∗-isomorphic to the
C∗-algebra of matrices of the type

A(z) =

[
f(z) g(z−1)
g(z) f(z−1)

]
, z ∈ T , with f, g ∈ L∞(T) ,

and the norm ‖A‖M2(L∞(T)) = ess supz∈T ‖A(z)‖2.

Finally, it is worth to mention that it is possible to give an alternative proof of Theorem
6 by using Theorem 12 and C∗-algebras techniques.
A new proof of Theorem 6:

Proof. Let B
(
`2(Γ)

)
be the C∗-algebra of bounded linear operators on `2(Γ). The linear map

L∗(Γ) 3 f
Λ7−−→ Λf ∈ B

(
`2(Γ)

)
defines a C∗-isomorphism between L∗(Γ) and a C∗-subalgebra of B

(
`2(Γ)

)
. Indeed, from

Theorem 5 (see the second remark in 3.1), we obtain that any f ∈ L∗(Γ) satisfies Λf ∈
B
(
`2(Γ)

)
and ‖f‖L∗(Γ) = ‖F‖Mn(L∞(Γ) = ess sup

ξ∈N̂ ‖F(ξ)‖2 = B
1/2
f = ‖Λf‖B(`2(Γ)); using (5)

in Theorem 4 we obtain that [Λf∗g]h = Λg(Λfh), for all f, g ∈ L∗(Γ) and h ∈ `2(Γ); and from
(4) we have Λf∗ = Λ∗f for f ∈ L∗(Γ).

Hence, from Theorem 12 we deduce that the operator

Λ(L∗(Γ)) 3 Λf
SΛ−1

7−−−−→ F ∈ S(L∗(Γ))

is a C∗-isomorphism.
Assume first (a), that is

{
Lγf
}
γ∈Γ

is a Riesz basis for `2(Γ). Then, from Theorem 5,

the entries of the matrix-valued function F(ξ) belong to L∞(N̂) and the upper Riesz bound
is Bf < ∞. Besides, Λf ∈ B

(
`2(Γ)

)
and it is invertible. Since Λ(L∗(Γ)) is a unital C∗-

subalgebra of B
(
`2(Γ)

)
, and Λf belongs to Λ(L∗(Γ)), its inverse Λ−1

f also belongs to Λ(L∗(Γ))
[24, Proposition 4.8]. Then, by applying the C∗-isomorphism SΛ−1, we obtain that F is
invertible in the C∗-subalgebra S(L∗(Γ)) and that the lower Riesz bound is [8, Proposition
3.6.8]

‖Λ−1
f ‖
−2
B(`2(Γ))

= ‖F−1‖−2

Mκ(L∞(N̂))
=
[

ess sup
ξ∈N̂

‖F−1(ξ)‖22
]−1

=
[

ess sup
ξ∈N̂

λ−1
minF∗(ξ)F(ξ)

]−1
= ess inf

ξ∈N̂
λminF∗(ξ)F(ξ) = Af .
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Hence Af > 0, and then, having in mind (8), we prove condition (b).

Assume now (b). Since the entries of F(ξ) belong to L∞(N̂) and ess inf
ξ∈N̂ |det F(ξ)| > 0,

there exists [F∗(ξ)]−1, a.e. ξ ∈ N̂ ; besides, [F∗(ξ)]−1 ∈ Mκ(L∞(N̂)). Since S(L∗(Γ)) is a
C∗-subalgebra ofMκ(L∞(N̂)) and F∗ belongs to S(L∗(Γ)), its inverse (F∗)−1 also belongs to
S(L∗(Γ)). Hence there exists a unique g ∈ L∗(Γ) such that Λg = (F∗)−1. By means of the
C∗-isomorphism SΛ−1, we deduce that ΛgΛf∗ = Id, and then∑

γ∈Γ

〈a, Lγf〉Lγg = Λg

(
Λf∗a

)
= a , a ∈ `2(Γ).

From Theorem 5, the systems
{
Lγf
}
γ∈Γ

and
{
Lγg

}
γ∈Γ

are Bessel sequences. Hence, from [8,

Theorem 3.6.6], the system
{
Lγf
}
γ∈Γ

is a Riesz basis for `2(Γ) with dual Riesz basis
{
Lγg

}
γ∈Γ

.

Finally, since F∗(ξ)G(ξ) = F∗(ξ)[F∗(ξ)]−1 = Iκ, a.e. ξ ∈ N̂ , having in mind that TΓg(ξ) is
the first column of the matrix G(ξ) and Lemma 3, we deduce that g is the unique element in
`2(Γ) satisfying (7).
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