
Cryptographic Protocols for Privacy Enhancing
Technologies

From Privacy Preserving Human Attestation to Internet
Voting

by

Iñigo Querejeta-Azurmendi

A dissertation submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in

Computer Science and Technology

Universidad Carlos III de Madrid

Advisors:

Luis Hernández Encinas
Instituto de Tecnoloǵıas F́ısicas y de la Información (ITEFI)

Consejo Superior de Investigaciones Cient́ıficas (CSIC)

Jorge López Hernández-Ardieta

Universidad Carlos III de Madrid (UC3M)

Tutor:

Jorge López Hernández-Ardieta

Universidad Carlos III de Madrid (UC3M)

June, 2022

ii

This thesis is distributed under license “Creative Commons Attribution - Non
Commercial - Non Derivatives”.

iii

ACKNOWLEDGMENTS

These are probably the lines of the thesis that bring me more excitement.
They represent the ending of a long way being left behind. I am very grateful
of the people I have met and worked with throughout this journey.

First of all, I would like to thank Jorge López Hernández Ardieta and
Luis Hernández Encinas, my advisors, for giving me this opportunity. Your
support has been key for the success of this project, and your time and
dedication to this thesis has turned it into a result that I am proud to present.
Your trust on my capabilities, sometimes higher than what I had of myself,
pushed me to believe in the worthiness of my research.

I would also like to thank Wouter Lueks and Carmela Troncoso. Your
view of how research should be conducted, and how the world of academia
should be defined made you a role for who I wanted to become as a researcher.
I am very greatful to have had the chance to work with you.

Jorge Linde and David Nevado, I have learned more from you than what
I can recall. Those breakfast sessions have been very educational. I am very
happy to know that, even if digitally, we still manage to find time for those
important moments.

Antonio Nappa, if today I’m part of the Web3 movement it is in big part
thanks to you. You opened me the door to this great world by giving me the
opportunity of being your PhD intern at Brave.

I would like to thank Minsait and Brave for hosting me as a researcher
and giving me the financial support to pursue my research. I would also like
to thank Instituto de Tecnoloǵıas F́ısicas y de la Información (ITEFI) from
the Consejo Superior de Investigaciones Cient́ıficas (CSIC) for hosting me as
a PhD student throughout my thesis and financing my research efforts.

Ana, you have been my companion in the hardest moments along the
way. Thanks for being there, and for managing to keep my motivation high
till the end of the way.

And finally, to my family. From you I have received the crucial support
throughout all stages of my life to reach this point and beyond. Part of what
I am today is thanks to you.

iv

PUBLISHED AND SUBMITTED CONTENT

We now present a list of the published content throughout the thesis. We
divide this list into two main blocks. First we discuss the internet voting
related content. Then we finish with the human attestation related content.

Internet Voting The design of the internet voting protocols, presented in
Chapter 4 of this thesis, started as a research project at the Cybersecu-
rity department of Minsait. In a team lead by Jorge López Hernández-
Ardieta, I was assigned the task of designing, jointly with Jorge, an in-
ternet voting proposal with two particularly important properties: (i)
designing a usable and scalable scheme, and (ii) presenting a coercion-
resistant construction. The initial design of the protocol was conducted
by Jorge and myself, for which we received support of Luis Hernández
Encinas, David Arroyo Guardeño and Victor Gayoso Mart́ınez to val-
idate the work, modify it slightly, and perform an evaluation experi-
ment. This resulted in the first publication of the thesis [QA+17]:

Iñigo Querejeta-Azurmendi, Jorge L. Hernandez-Ardieta, Vı́ctor
Gayoso Mart́ınez, Luis Hernandez Encinas, and David Arroyo.
“A coercion-resistant and easy-to-use Internet e-voting protocol
based on traceable anonymous certificates”. In: III Jornadas
Nacionales de Investigación en Ciberseguridad. Selected Best
Research Article. May 2017

This work was then forked into two lines of improvement. Firstly, an
effort guided by myself resulted in an improved version for which a
short version was published at CISIS’19 [QA+19]:

Iñigo Querejeta-Azurmendi, Luis Hernández Encinas, David
Arroyo Guardeño, and Jorge L. Hernandez-Ardieta. “An In-
ternet Voting Proposal Towards Improving Usability and Co-
ercion Resistance.” In: CISIS-ICEUTE. vol. 951. Advances in
Intelligent Systems and Computing. Springer, 2019, pp. 155–
164. doi: 10.1007/978-3-030-20005-3_16

and its extended version in the journal Mathematics [QA+20]:

Iñigo Querejeta-Azurmendi, David Arroyo Guardeño, Jorge L.
Hernández-Ardieta, and Luis Hernández Encinas. “NetVote:
A Strict-Coercion Resistance Re-Voting Based Internet Voting
Scheme with Linear Filtering”. In: Mathematics 8.9 (2020).
doi: 10.3390/math8091618

https://doi.org/10.1007/978-3-030-20005-3_16
https://doi.org/10.3390/math8091618

v

These two pieces of work were co-authored with Jorge, Luis and David.
Formal analysis of the system was done by myself, and the co-authors
helped in the conceptualization, investigation, methodology, and writ-
ingâ€“review and editing.

Secondly, the initial work was modified and improved in a joint work
with Wouter Lueks and Carmela Troncoso. This work was published
at USENIX Security’20 [LQAT20]:

Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Tron-
coso. “VOTEAGAIN: A Scalable Coercion-Resistant Voting
System”. In: Proceedings of the 29th USENIX Conference on
Security Symposium. USA: USENIX Association, 2020

The design of the scheme was co-authored by Wouter, Carmela and
myself. Formal analysis was led by Wouter, while I performed the proof
of concept (PoC) implementation of the scheme. These two efforts have
different trade-offs, making both solutions of interest depending on the
setting.

Bot detection In this thesis, particularly in Chapter 3, we present one main
contribution with respect to bot detection. We introduce a candidate
replacement to the more intrusive Google ReCAPTCHA method cur-
rently used. This work was jointly brainstormed with all co-authors,
namely Jiexin Zhang, Panagiotis Papadopoulos, Matteo Varvello, An-
tonio Nappa, Benjamin Livshits and myself. Initially the project was
led by Jiexin which covered the machine learning (ML) related research.
It was finally led by myself when the main contributions were in the
field of cryptography. It is published in PoPETs’21 [Que+21]

Iñigo Querejeta-Azurmendi, Panagiotis Papadopoulos, Matteo
Varvello, Antonio Nappa, Jiexin Zhang, and Benjamin Livshits.
“ZKSENSE: A Friction-less Privacy-Preserving Human Attes-
tation Mechanism for Mobile Devices”. In: Proc. Priv. En-
hancing Technol. 2021.4 (2021), pp. 6–29. doi: 10 . 2478 /

popets-2021-0058

All contributions in the field of Cryptography (the main topic of the
paper) in this paper are of myself. The work on the system design
and ML model are by Jiexin, Panagiotis and Antonio. The experimen-
tal analysis is set up by Matteo. Finally, the implementation of the
ML model and Cryptographic primitives were performed by Jiexin and
myself respectively.

https://doi.org/10.2478/popets-2021-0058
https://doi.org/10.2478/popets-2021-0058

vi

OTHER RESEARCH MERITS

We list four pieces of work that were published during the time of this
research which are not presented in this thesis. In the following two works
we were looking for an untrusted way to transmit voting codes, which is
a technique commonly used under the assumption of a trusted side channel
(such as postal voting). The first paper was published at the PhD Colloquium
of E-Voting-ID [Que17]:

Iñigo Querejeta. “A different approach to code voting”. In: PhD
Colloquium of Electronic Voting. Ed. by Robert Krimmer, Melanie
Volkamer, Nadja Braun Binder, Norbert Kersting, Olivier Pereira,
and Carsten Schürmann. Springer International Publishing, 2017

The second paper was published as a short paper in JNIC’18 [QAHEHA18]:
Iñigo Querejeta-Azurmendi, Luis Hernández Encinas, and Jorge L.
Hernández Ardieta. “Don’t shoot the messenger, How a trusted chan-
nel may not be a necessary assumption for remote code-voting”. In:
IV Jornadas Nacionales de Investigación en Ciberseguridad. 2018

None of these techniques resulted successful, and were therefore dismissed
from the main body of the thesis.

Then, I was part of a project for designing a decentralised VPN. This work
was co-authored with Matteo Varvello, Antonio Nappa, Panagiotis Papadopou-
los, Gonçalo Pestana and Ben Livshits. It has been published in IFIP Net-
working ’21 [Var+21]:

Matteo Varvello, Iñigo Querejeta Azurmendi, Antonio Nappa, Pana-
giotis Papadopoulos, Gonçalo Pestana, and Benjamin Livshits. “VPN-
Zero: A Privacy-Preserving Decentralized Virtual Private Network”.
In: 2021 IFIP Networking Conference (IFIP Networking). 2021,
pp. 1–6. doi: 10.23919/IFIPNetworking52078.2021.9472843

My involvement in this work was in building (and implementing) the crypto-
graphic protocols that allowed for a verifiable hop in a distributed network.

As part of my internship at Brave, we built a Decentralized and Trustless
Ad Platform with Reporting Integrity. This project, named THEMIS, was
co-authored with Gonçalo Pestana, Panagiotis Papadopoulos and Benjamin
Livshits [Pes+20]:

Gonçalo Pestana, Iñigo Querejeta-Azurmendi, Panagiotis Papadopou-
los, and Benjamin Livshits. THEMIS: Decentralized and Trustless
Ad Platform with Reporting Integrity. 2020. arXiv: 2007.05556

[cs.CR]

The initial, and centralised, design was performed by myself. The decentrali-
sation efforts where then led by Gonçalo, with whom we jointly performed the

https://doi.org/10.23919/IFIPNetworking52078.2021.9472843
https://arxiv.org/abs/2007.05556
https://arxiv.org/abs/2007.05556

vii

conceptualization, investigation and implementation of the system. Panagi-
otis and Benjamin collaborated in the original writing and initial design of
the work. This effort was then modified to be used with more performant
cryptographic primitives. The latest update versions of THEMIS are de-
scribed in two technical reports, Brave Ads x THEMIS RFC&C 1 and Black
Box Accumulators in the Context of THEMIS 2

Finally, I have been part of a research effort to improve the current definition
of a Verifiable Random Function Standard. This work was co-authored with
Christian Badertscher, Peter Gaži and Alexander Russell.

Christian Badertscher, Peter Gaži, Iñigo Querejeta-Azurmendi, and
Alexander Russell. On UC-Secure Range Extension and Batch Ver-
ification for ECVRF. Technical report. https://iohk.io/en/

research/library/papers/on-uc-secure-range-extension-

and-batch-verification-for-ecvrf/. 2021

1https://github.com/brave-intl/themis-rfcc/blob/main/

rfcc-themis-tech-report-v1.0.pdf
2https://github.com/brave-intl/themis-rfcc/blob/main/

rfcc-themis-bbas-v1.0.pdf

https://iohk.io/en/research/library/papers/on-uc-secure-range-extension-and-batch-verification-for-ecvrf/
https://iohk.io/en/research/library/papers/on-uc-secure-range-extension-and-batch-verification-for-ecvrf/
https://iohk.io/en/research/library/papers/on-uc-secure-range-extension-and-batch-verification-for-ecvrf/
https://github.com/brave-intl/themis-rfcc/blob/main/rfcc-themis-tech-report-v1.0.pdf
https://github.com/brave-intl/themis-rfcc/blob/main/rfcc-themis-tech-report-v1.0.pdf
https://github.com/brave-intl/themis-rfcc/blob/main/rfcc-themis-bbas-v1.0.pdf
https://github.com/brave-intl/themis-rfcc/blob/main/rfcc-themis-bbas-v1.0.pdf

viii

SUMMARY

Desire of privacy is oftentimes associated with the intention to hide cer-
tain aspects of our thoughts or actions due to some illicit activity. This is a
narrow understanding of privacy, and a marginal fragment of the motivations
for undertaking an action with a desired level of privacy. The right for not
being subject to arbitrary interference of our privacy is part of the univer-
sal declaration of human rights (Article 12) and, above that, a requisite for
our freedom. Developing as a person freely, which results in the develop-
ment of society, requires actions to be done without a watchful eye. While
the awareness of privacy in the context of modern technologies is not widely
spread, it is clearly understood, as can be seen in the context of elections,
that in order to make a free choice one needs to maintain its privacy. So
why demand privacy when electing our government, but not when selecting
our daily interests, books we read, sites we browse, or persons we encounter?
It is popular belief that the data that we expose of ourselves would not be
exploited if one is a law-abiding citizen. No further from the truth, as this
data is used daily for commercial purposes: users’ data has value. To make
matters worse, data has also been used for political purposes without the
user’s consent or knowledge. However, the benefits that data can bring to
individuals seem endless and a solution of not using this data at all seems
extremist. Legislative efforts have tried, in the past years, to provide mecha-
nisms for users to decide what is done with their data and define a framework
where companies can use user data, but always under the consent of the lat-
ter. However, these attempts take time to take track, and have unfortunately
not been very successful since their introduction.

In this thesis we explore the possibility of constructing cryptographic pro-
tocols to provide a technical, rather than legislative, solution to the privacy
problem. In particular we focus on two aspects of society: browsing and
internet voting. These two events shape our lives in one way or another, and
require high levels of privacy to provide a safe environment for humans to
act upon them freely. However, these two problems have opposite solutions.
On the one hand, elections are a well established event in society that has
been around for millennia, and privacy and accountability are well rooted
requirements for such events. This might be the reason why its digitalisation
is something which is falling behind with respect to other acts of our society
(banking, shopping, reading, etc). On the other hand, browsing is a recently
introduced action, but that has quickly taken track given the amount of pos-
sibilities that it opens with such ease. We now have access to whatever we
can imagine (except for voting) at the distance of a click. However, the data
that we generate while browsing is extremely sensitive, and most of it is dis-

ix

closed to third parties under the claims of making the user experience better
(targeted recommendations, ads or bot-detection).

Chapter 1 motivates why resolving such a problem is necessary for the
progress of digital society. It then introduces the problem that this thesis
aims to resolve, together with the methodology. In Chapter 2 we introduce
some technical concepts used throughout the thesis. Similarly, we expose the
state-of-the-art and its limitations.

In Chapter 3 we focus on a mechanism to provide private browsing. In
particular, we focus on how we can provide a safer, and more private way, for
human attestation. Determining whether a user is a human or a bot is impor-
tant for the survival of an online world. However, the existing mechanisms
are either invasive or pose a burden to the user. We present a solution that
is based on a machine learning model to distinguish between humans and
bots that uses natural events of normal browsing (such as touch the screen
of a phone) to make its prediction. To ensure that no private data leaves
the user’s device, we evaluate such a model in the device rather than sending
the data over the wire. To provide insurance that the expected model has
been evaluated, the user’s device generates a cryptographic proof. However
this opens an important question. Can we achieve a high level of accuracy
without resulting in a noneffective battery consumption? We provide a posi-
tive answer to this question in this work, and show that a privacy-preserving
solution can be achieved while maintaining the accuracy high and the user’s
performance overhead low.

In Chapter 4 we focus on the problem of internet voting. Internet vot-
ing means voting remotely, and therefore in an uncontrolled environment.
This means that anyone can be voting under the supervision of a coercer,
which makes the main goal of the protocols presented to be that of coercion-
resistance. We need to build a protocol that allows a voter to escape the
act of coercion. We present two proposals with the main goal of providing
a usable, and scalable coercion resistant protocol. They both have different
trade-offs. On the one hand we provide a coercion resistance mechanism
that results in linear filtering, but that provides a slightly weaker notion of
coercion-resistance. Secondly, we present a mechanism with a slightly higher
complexity (poly-logarithmic) but that instead provides a stronger notion of
coercion resistance. Both solutions are based on a same idea: allowing the
voter to cast several votes (such that only the last one is counted) in a way
that cannot be determined by a coercer.

Finally, in Chapter 5, we conclude the thesis, and expose how our results
push one step further the state-of-the-art. We concisely expose our contri-
butions, and describe clearly what are the next steps to follow. The results
presented in this work argue against the two main claims against privacy-

x

preserving solutions: either that privacy is not practical or that higher levels
of privacy result in lower levels of security.

Contents

Acknowledgements . iii
Published and Submitted Content iv
Other Research Merits . vi
Summary . viii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem statement and objectives 5

1.2.1 Privacy-preserving bot detection 6
1.2.2 Internet voting . 8

1.3 Methodology . 10
1.4 Structure of this thesis . 11

2 Background 13
2.1 Notation and Definitions . 13
2.2 Cryptographic Algorithms and Protocols 16

2.2.1 Public Key Cryptosystems 16
2.2.2 Commitment Schemes 20
2.2.3 Zero-knowledge proofs 22

2.3 State of the art . 27
2.3.1 Sub-linear zero-knowledge proofs - Bot detection 27
2.3.2 Coercion resistance in internet voting 31

3 zkSENSE—Private Human Attestation 35
3.1 Human attestation . 35

3.1.1 Classification of Humanness 37

xi

xii CONTENTS

3.2 Privacy-Preserving and Provable ML 39

3.3 zkSVM—proving humanness with logarithmic complexity . . . 41

3.3.1 IP-ZKP . 41

3.4 Scheme . 44

3.5 Security analysis . 51

3.6 System Implementation . 55

3.6.1 Enclosing SVM Result in a ZKP 56

3.6.2 Prototype of our Approach 57

3.7 Performance Evaluation . 58

3.7.1 zkSENSE Vs. reCAPTCHA 62

3.7.2 Summary . 64

3.8 Further improvements to zkSVM 64

4 Internet Voting 71

4.1 Fake Credentials vs. Re-Voting 72

4.2 Parties and Cryptographic background 74

4.2.1 Parties . 74

4.2.2 Cryptographic Background 74

4.3 Overview . 76

4.4 Security Properties . 78

4.4.1 Ballot privacy . 80

4.4.2 Practical Everlasting Privacy 83

4.4.3 Verifiability . 85

4.4.4 Coercion resistance . 88

4.4.5 Strict coercion resistance 91

4.5 NetVote . 94

4.5.1 Scheme . 94

4.5.2 Including dummy votes 101

4.5.3 Security Proofs . 104

4.6 VoteAgain . 109

4.6.1 Overview . 109

4.6.2 A different dummy strategy 110

4.6.3 Scheme . 113

4.6.4 Hiding revoting patterns with dummies 121

4.6.5 Security Analysis . 123

4.6.6 Performance Evaluation 131

4.7 Wrapping up . 134

CONTENTS xiii

5 Conclusions, Contributions and Future Work 137
5.1 Conclusions . 137
5.2 Contributions . 138

5.2.1 zkSENSE . 138
5.2.2 i-voting . 139

5.3 Future Work . 140
5.4 Closing remarks . 142

Bibliography 143

xiv CONTENTS

List of Figures

2.1 NM-CPA for ElGamal . 18

3.1 Overview of zkSENSE. 36
3.2 Output of gyroscope and accelerometer. 36
3.3 Motion sensors during automatically generated clicks. 37
3.4 zkSENSE privacy experiment. 52
3.5 zkSENSE verifiability experiment. 54
3.6 Execution time per operation in zkSENSE 59
3.7 CPU utilization per operation in zkSENSE 60
3.8 Energy consumption in zkSENSE. 61

4.1 Summary of pre-election and election. 77
4.2 Summary of tallying phase. 78
4.3 Ballot privacy experiment. 81
4.4 Strong-consistency experiment. 83
4.5 Strong-correctness experiment. 83
4.6 Practical everlasting privacy experiment. 84
4.7 Verifiability experiment. 86
4.8 Coercion resistance experiment. 89
4.9 Strict-coercion resistance experiment. 92
4.10 Negative binomial distribution used to select number of dum-

mies. 102
4.11 Overview of no-dummies . 110
4.12 Example of padding . 112
4.13 Overview of filtering with dummies 112
4.14 High-level overview of ballot filtering and grouping. 116

xv

xvi LIST OF FIGURES

4.15 Dummy ballots overhead . 132
4.16 Cost of Filter and VerifyFilter in VoteAgain. 133

List of Tables

3.1 Summary of the collected dataset. 38
3.2 Accuracy of the various tested classifiers. 39
3.3 Performance of zkSENSE vs. Android reCAPTCHA. 63

4.1 Comparison of coercion-resistant mechanisms. 72
4.2 Comparison of existing schemes. 135

xvii

xviii LIST OF TABLES

CHAPTER 1

Introduction

Digital progress has undoubtedly made our lives easier —this makes it far
easier for us to overlook the harm that these technologies do in our daily
lives. Even for experts in the field, it is hard to sacrifice the benefits of
these privacy invasive technologies, and all too often we criticise the harm
that Google, Facebook or Twitter can do with our data, but in turn use
these apps for our daily routines. Instant gains make us forget long term
loses. This is comparable, as presented in a study [VCA04], with the climate
emergency. The majority of us understand the danger and harm it might
cause, but the instant reward makes invisible the loses. Another similarity
with the climate emergency is that this is not a problem that affects a small
portion of society —this will produce systemic changes (if is not doing it
already) and affect all of us. The power we give companies with big data
of all the population allows them to take targeted decisions that can shape
the communities ideas, political visions (polarising the community) or even
belief of needs that these people have.

There has been several scandals that have positioned part of the com-
munity against data gathering corporations, as they have shown what is the
power that data gives [Cad18; LH18]. Fake news are an ever increasing prob-
lem, and while that might not be directly related to privacy, the information
companies have of our lives allow them to target their ‘fake news’ [Buc17]
with best possible outcome - having as many people believe these. Political
polarisation has been one of the negative results of targeted information, and
if in one thing we might all find consensus is in saying that we want to avoid
a polarised, frustrated community. Enforcing privacy might be an important

1

2 Chapter 1. Introduction

first step of removing that powerful weapon to data gathering corporations,
but how can we achieve it without losing all the facilities that they have
brought back?

The first responsibility relies in the experts of the field, and is common
to every other problem: the communication. The big importance of how
the problem reaches the consumers is what carves their understanding and
the feel of emergency. But more importantly, the understanding of how to
act against it will shape their implication. The communication from the
expert community to the users is not something that should be taken for
granted, and is the result of studies [Adj+13; CPJ18; FG20]. The alternatives
presented to the community need to have an important goal —they need to
be easy to understand. Moreover, not only it is important to understand
what and how data is used, but also by whom. It is no longer a matter
of Governments following suspects using their GPS signals. Things have
evolved, and even third party entities (not related to the services one uses,
or the sites one browses) have access to vast amount of data of users’ daily
actions.

1.1 Motivation

Recent years have brought several legislative efforts to take measures against
these intrusive actions [Com18; Jus18], but they have been, in too many
senses, absolute failures [Dro20; Hor19; Rya20]. Therefore, we believe that
the solution needs to be technical, rather than legislative, as only the former
can enforce actions that follow the pace of the technological advances.

Offering privacy-preserving alternatives with considerable lacks is not the
path to follow, as the main blocker of such a transition is “I have nothing
to hide, why should I deteriorate my services?”. That is an ever increas-
ing argument for not caring about privacy, and washing intrusive actions of
governments or private corporations. The benefit, to the eyes of the user,
can be several. Homeland security, better and free services (advertising), or
more usability among others. However, these arguments have been used to
surpass limits of surveillance, and even private companies have had to held
up the pulse against the US government at the time of requiring to down-
grade (or even break) security in their services. Some of these examples are
Facebook and Apple [BL16; MIB19]. In the case of the former, the US At-
torney General William P. Barr requested from Facebook a back door for
the encryption mechanism used in their services. This request was rejected,
with a good argument of relevance: “The ‘backdoor’ access you are demand-
ing for law enforcement would be a gift to criminals, hackers and repressive

Motivation 3

regimes”. Indeed, a backdoor not only exists for the “good folks” —it can
also be exploited with bad intentions. The US has had a long history of trying
to limit the use of strong encryption —from the enforcement of weak ciphers,
where security had to be deliberately weakened [Fre97], to the creation of a
‘standardised backdoor’ in an Elliptic Curve proposed by the NIST [BLN16].
As it is to expect, this has not only served the intended purpose (of claimed
Homeland Security); it also opened the possibility to perform attacks on the
‘claimed’ security these ciphers gave [Adr+18; Val+15]. The US have not
been the only government ‘scared’ of private communications, for example
UK [Bal15], Europe [Pre20], or Russia [Ily] have considered, at some point
of recent history, limiting or banning encryption. The effort has often times
been directed in imposing, what we believe to be, a false dilemma; citizens
need to choose between security and privacy (one cannot have both). This
not only is false, but this misconception presents a considerable danger as the
recent pandemic has proved. Tracking applications and systems have been
recommended, and sometimes enforced, during the pandemic. The mes-
sage was clear, these invasive technologies serve for tracking the spread of
the virus, which results in the protection and security of all. Unfortunately,
this scenario made clear the importance of privacy-preserving solutions. 85%
percent of tracking apps leaked data [Hel20], and more worrying, some track-
ing apps which where used for health reasons are now being used for other
purposes [Str21] to those initially claimed. What is more concerning, is
that the use of these invasive technologies were enforced when there existed
privacy-preserving (and decentralised) alternatives that offered almost the
same guarantees [Gol20; Tro+20].

There is the general misconception from law abiding citizens that this data
gathering is not targeted to them. They believe they get nothing but the
benefits, and because they have nothing but ‘normal lives’, their information
is not of interest. However, nothing further from the truth. Privacy invasions
are not always aimed at their benefit, and yes, their profiles are of interest.
As a matter of fact, their ‘profile’ is their main source of income. As a
saying pictures it: “if you are not paying for the product, then you are the
product”. As presented by an article in The Economist, “the world’s most
valuable resource is no longer oil, but data”[Eco16]. Unfortunately, data is
not only used with economical motivations. In the past years, data of the
masses has been used to affect voter turnout, or even vote direction in both
Trump’s presidential election and the Brexit campaign [Cad18; LH18]. To
quote Cummings, VoteLeave’s campaign manager, “we couldn’t have done it
without [AggregateIQ]”. Whether the use of this data was illegal or immoral
falls out of the scope of this thesis. However, what seems clear, is that data
is gold, both for online businesses as for success with electoral campaigns.

4 Chapter 1. Introduction

This brings yet another direction for privacy-preserving technologies: the
social pressure of the political polarisation, public disclosure of one self, or
targeted electoral campaign make it more important than ever to have safe
elections, where not only privacy of vote is essential, but also verifiability that
the election outcome is as it is expected. In an ever increasingly digitalised
word, it is worth asking the question if an online voting system is possible.

One of the biggest challenge when designing privacy-preserving technolo-
gies is that we need to offer similar services to the non-private counterparts.
After all, they do bring back to the community. Homeland security, human
trafficking, or tax evasion are problems which are often solved with intrusive
means, and we certainly want to build a society which is capable of handling
these. Advertising is often seen as a burden [Mal19], but it is after all, the
fuel of the free internet (except for important exceptions such as Wikipedia).
Bot detection mechanisms are an important tool for the survival of our most
desired commerces, and targeted recommendations are what makes a Google
search more successful than some other engines. Moreover, allowing third
party entities to access the furthest corners of our private online lives, has
allowed them to provide reliable solutions. Google maps or Waze would not
be as reliable if they did not know the location of their users, and current
bot detection mechanisms would fail tremendously if they could not follow
“legitimate users” in their browsing activities. Technologies have made our
lives easier, allowing us to make bank transactions from home, purchases
from our sofa, or keeping contact with our friend that moved to the other
side of the world. Hence, ‘if’ our data is only used for things that benefit us
(even if it generates income to the companies that exploit our data), then we
are all good. Unfortunately, this does not hold true: data breaches have al-
lowed adversaries to access millions of records of users around the world. The
20% of small and medium european companies have suffered data breaches
in 2019 [Seg19], they are considered among the top 5 risks of global sta-
bility [MW19], and in the first 6 months of 2019, 4.1 billion records where
exposed by data breaches [Win19]. This means that the data we believe to
be used by private corporations is exploited by unwanted adversaries. Such
is the concern over data breaches that companies are starting to adopt a new
strategy —data minimisation [Mar16]. The General Data Protection Regula-
tion (GDPR) has tried to enforce this [Com18], but it was a common practice
way before the legislation came into place. The idea is simple, minimise the
amount of data a company stores to the strictly necessary to provide their
services. This, in turn, minimises the damage in case of a data breach.

Problem statement and objectives 5

1.2 Problem statement and objectives

In this thesis we try to push the boundaries further; rather than minimising
the data stored to what is strictly needed to provide the service, we try to
minimise the data needed to provide the service. The question is, can we
achieve the benefits of existing solutions without the damage they expose us
to? If the dilemma of ‘security or privacy’ is false, then why is there no widely
deployed online solution for something as conceptually simple as elections?

We explore and construct privacy-preserving systems providing three
properties simultaneously: (i) usability, (ii) sustainability and (iii) integrity.
By usability we mean that the solution does not need to require an important
effort by the user. Our solutions need to be aimed to the general population,
and not exclusively the technical knowledgeable individuals. Not only that,
but we need to require as little interaction as possible from the user. By
sustainability of a system, we consider scalability, or user side computation
(e.g. our solutions cannot drain user battery). A successful system needs to
be designed in a way that can reach (or at least get close to) the dimensions
of the replaced mechanism. Finally, with integrity we mean that the system
needs to provide cryptographic guarantees of the claimed properties. The
specific details of these three properties are specific to each of the presented
schemes, and we give a more formal description thereof. In particular the
two schemes we principally focus are the following; creating a private, and
yet successful, bot detection mechanism, and an internet voting scheme.

While designing a privacy-preserving human attestation mechanism our
goals were clear:

P1 Design a completely friction-less attestation via device micro-movements
that happen during natural user actions like typing and screen touch-
ing.

P2 Avoid sending sensitive data to the server, by performing the entire
attestation on the user’s very own device enclosing it in zero-knowledge
proofs to ensure integrity.

P3 Design a zero-knowledge mechanism that does not drain the user’s de-
vice battery, while ensuring that the verification server can scale the
number of attestations. This is, find a sweet spot between prover and
verifier time.

P4 Design a mechanism which does not introduce any additional barrier
to people affected by any form of disability.

6 Chapter 1. Introduction

Similarly, when building an internet voting scheme, our objectives were the
following:

V1 Design a user-friendly voting procedure.

V2 Provide maximum security in terms of ballot privacy, verifiability of
the correctness of the election, and coercion resistance.

V3 Build a scheme that can handle large-scale elections without requiring
massive economical effort to prepare, or realize the election.

We further motivate these two topics in Section 1.2.1 and 1.2.2 respec-
tively. These two topics are opposite, as the former exists due to invasive
solutions (either from the perspective of usability as image CAPTCHA, or
from the perspective of user privacy, such as reCAPTCHAv3), and the lat-
ter is barely used due to lack of private solutions providing usable, scalable
and verifiable systems. We focus on these two topics as they entail two
very important parts of our daily lives: on the one hand, human attesta-
tion (whether we realize it or not) happens constantly while browsing, and
therefore presenting a privacy-preserving and usable solution is key. On the
other hand, internet voting shapes our society, and therefore a solution that
allows everyone to vote in total privacy and liberty, from wherever they are
is what ensures an honest representation of the peoples choices. We ques-
tion the dilemma of “Security OR Privacy”, and try to provide both without
harming usability. In the following subsections we present an overview of the
two problems discussed above, and introduce the solutions presented in this
thesis.

1.2.1 Privacy-preserving bot detection

Automated software agents that interact with content in a human-like way,
have become more prevalent and pernicious in the recent years. Web scrap-
ing, competitive data mining, account hijacking, spam and ad fraud are at-
tacks that such agents launch by mimicking human actions at large scale.
According to a study [Hug19], 20.4% of the 2019 internet traffic was fraud-
ulent, associated with user, albeit not human, activity.

In the ad market specifically, such type of fraudulent traffic costs compa-
nies between $6.5-$19 billions in the U.S. alone, and it is estimated that this
will grow to $50 billion by 2025 [MK17]. When it comes to the ever-growing
mobile traffic, a study [Thr18] (using data spanning 17 billion transactions)
observes 189 million attacks originated specifically from mobile devices; this
is an increase of 12% compared to the previous six months.

Problem statement and objectives 7

The “Completely Automated Public Turing tests to tell Computers and
Humans Apart” (or just CAPTCHA) is the current state-of-the-art mecha-
nism to assess the humanness of a user. CAPTCHAs are widely deployed
across the internet to distinguish between human and non-human users. The
major downsides of current CAPTCHA solutions (e.g. Securimage [Phi15],
hCaptcha [Int19]) include:

(i) questionable accuracy: various past works demonstrate how CAPTCHAs
can be solved within milliseconds [Boc+17; Iri18; Ove18; SPK16; YEA08],

(ii) added friction: additional user actions are required (e.g. image, audio,
math, or textual challenges) that significantly impoverish the user experi-
ence [GN16], especially on mobile devices,

(iii) discrimination: poor implementations often block access to content [Dzi19],
especially to visual-impaired users [Hol+19],

(iv) serious privacy implications: to reduce friction, the 3rd generation of
Google’s reCAPTCHA [Liu18] replaces proof-of-work challenges with exten-
sive user tracking. Google’s servers attest user’s humanness by collecting and
validating behavioral data [Fre19] (i.e. typing patterns, mouse clicks, stored
cookies, installed plugins), thus raising significant privacy concerns [AFA19;
Cla19; Sch19].

The goal of this thesis with respect to bot detection, and the content of
Section 3, is to present a humanness attestation alternative that will answer
negatively to the following question: are user experience or privacy required
trade-offs for humanness attestation? By leveraging the device’s motion sen-
sors we aim at demonstrating that it is possible to build a humanness at-
testation mechanism on the edge that preserves the privacy of the users and
runs seamlessly on the background thus adding zero friction to the mobile
user experience. The key intuition behind our research is that whenever a
(human) user interacts with a mobile device, the force applied during the
touch event generates motion. This motion can be captured by the device’s
sensors (e.g. accelerometer and gyroscope) and used to uniquely distinguish
real users from automated agents. As a matter of fact, this can even be used
to provide continuous authentication of users [HA+21a; HA+21b]. Further,
this detection can run on the user device, without requiring an impractical
secure execution environment (unlike related proposals [Gue+18; JKP10]),
but more importantly without sharing private information with any server
(unlike state-of-the-art [Liu18]), apart from a proof that guarantees the in-
tegrity of the attestation result.

8 Chapter 1. Introduction

1.2.2 Internet voting

Democracy is one of the biggest achievements of our society with its main
pillar being elections, and that is why any change in the electoral process
needs a very detailed study. The digitalization of polls, while still going
slower than any other field of society, is starting to become a developed
trend, and even if some countries drawed back lately for fear of not having the
ability to have high levels of auditability [Reu17; The17], the list of countries
using electronic devices to assist in the ballot cast or tallying process keeps
growing, with special focus in the developing world [HIT16]. This is known
as electronic voting (e-voting), which comprises not only internet voting (i-
voting) schemes, but also presence schemes that use electronic means for
voting, tallying or verification purposes.

Traditional presence elections have the control in the environment where
the voters cast a ballot, ensuring privacy of vote cast and allowing auditability
of the vote cast method, which makes the process of digitalization of presence
elections faster in comparison with the one of remote elections. The latter has
several differences compared to the former. Firstly, the voter may cast the
vote under any circumstances, resulting in a high possibility of coercion or
vote-selling. Secondly, the vote cast will go through an uncontrolled channel.
Thirdly, remote authentication increases the chances of impersonation, and
finally, in the specific case of i-voting, the voter casts a vote from its own
device, making it difficult to do a massive-scale, effective security assessment.

The next natural step for absentee voters is i-voting and whether it is be-
cause the number of expats grows, people living abroad want to get more po-
litically involved, or simply because voters want to cast their vote from their
homes, the number of remote voters is growing [Cha18; EC18]. However,
many countries (e.g.: Germany, Great Britain, Spain, Mexico) are reluctant
to use i-voting, and prefer, on the contrary, postal voting. A proposal of the
former offering security, usability, low deployment requirements and low com-
plexity has still not been presented, and this pushes countries to keep using
postal voting as a remote voting system, even if properties such as privacy
may be compromised. For example, in some countries [Gov20; Min; Min20],
to cast an accepted postal vote, one has to send their sealed vote together
with a certificate (which contains identification of the voter) validating their
right to vote together in an envelope. This creates a direct relation between
identity and vote choice, compromising like that vote privacy. Furthermore,
a full chain-of-custody cannot be made, trust has to be given to external
entities (postal office) and coercion can easily happen. Hence, i-voting to
replace remote paper based elections would not only offer a reduction of tal-
lying time, but mainly, could offer more security while improving usability

Problem statement and objectives 9

towards the voter. Current literature presents many solutions offering coer-
cion resistance, universal and individual verifiability or everlasting privacy
(these concepts will become clear in Section 2.1) with very low trust require-
ments. However these solutions are not usable, either by the complication
towards the voter or by the complexity of the solution.

Remote authentication is another main topic in remote voting schemes,
both by the difficulty of a proper solution and by its importance in a remote
election. Digital authentication still remains a fragile topic, however, it is
tenable that using cryptographic certificates is the most secure way of digital
authentication. A cryptosystem of 128 bits security3 is, as specified by the
U.S. National Institute of Standards and Technology (NIST) or the SOG-IS
crypto working group among others, considered to be secure for the distant
future [ANS20; Bar16; BSI21; SOG20]. Some countries (such as Spain, Es-
tonia, Luxembourg or Belgium), have a Public Key Infrastructure (PKI) for
national identity cards. Such a key storage mechanism allows easy mobility
of cryptographic keys to the user and requires only to memorize a password in
order to use its cryptographic key, a key that (usually) never leaves the smart-
card. Nevertheless, smartcards have disadvantages. While it may seem that
it allows user mobility, it is still necessary to use it with a smartcard reader,
limiting its usability. There is a high cost in the deployment of the card
itself, which increases once we consider training the electorate or the Total
Cost of Ownership (TCO). It is clear that the digitalisation of identification
and authentication has to be included in governmental actions, however it is
not a straightforward project. The cost of deploying the Spanish electronic
identity card was expected to be of e220 million [Min06] and in 2014 (eight
years after its introduction), it was used only in a 0,02% of the electronical
procedures [GVUSS14]. In the case of Germany, apart from a delay in its
deployment, it cost the government a total of e1.5 billion [CSP12] to deploy
smartcards for eHealth. This shows that deploying a smartcard-based PKI
in short notice cannot be a requirement for i-voting. Moreover, attacks to
smartcard-based PKIs were shown [HA+13], with two well known cases; first
with the known vulnerability of Taiwan’s smartcards [Ber+13], followed with
the vulnerability of a chip distributor [Nem+17], which affected, among oth-
ers, Estonia, a country considered as the pioneer of Europe’s digitalization.

The final goal of this thesis, with respect to internet voting, is to present
a secure protocol that can be used both by developing countries, and more
technologically mature countries. We believe that it is important not to
base our protocol on the requirement of the ownership of public key pairs

3Note that bits of security does not necessarily mean the size of the keys, and for the
cases of asymmetric cryptography, keys are always larger than 128 bits.

10 Chapter 1. Introduction

by the users. Not only it is expensive, but as we have seen, several weak-
nesses have been found. Hence, if a requirement to deploy an online voting
system is to first deploy individual cryptographic keys per user, several gov-
ernments/companies/institutions might oppose.

1.3 Methodology

This thesis’ research was conducted by first finding an open problem, con-
cerning users’ privacy in the digital world, that could be solved by the means
of cryptographic tools. The next step in resolving an existing problem was
formalising the properties that we want to achieve. The properties are di-
vided in two groups, either security properties or functional properties. By
formalising the security properties, we understand exactly what we expect
out of, for example, a private or verifiabile protocol. On the other hand, our
functional requirements specified what was, for instance, our target traffic of
users, or what level of interaction and computational complexity we could
expect out of the user. Next, a design and preliminary security analysis of
the design followed. It was common to iterate through this process until the
preliminary (and informal) security analysis did not break the security of
the protocol. Once a preliminary design was successful, an analysis of the
functional properties followed. Again, if this study showed that the solution
was unusable, we were back at square one.

Finally, when a design was preliminary functional and secure, a formal
study followed (both for the security and functional properties). This con-
sisted in trying to formally prove that the design indeed provides the expected
formal properties. In this iterative process we found how, in certain cases,
if we relaxed the initial conditions of our cryptographic schemes, important
improvements could be achieved in terms of performance. In this scenario,
which is clearly pictured in the chapter of Internet Voting, Chapter 4, we
presented both of the schemes. To formally ensure that the functional re-
quirements were met, an implementation was produced. This allowed us to
study the scalability that the scheme could achieve, as well as the efficiency
with respect to the user’s device.

If, on the design of the solution, we introduced a new cryptographic prim-
itive, a similar process followed. However, throughout this thesis we focused
our efforts in building cryptographic protocols rather than primitives. More-
over, the cryptographic protocols introduced in this thesis considerably sim-
plified the methodology for two reasons. First, the cryptographic protocols
are transparent to the user, and therefore do not require a user study. Sec-

Structure of this thesis 11

ondly, most of the properties expected out of these protocols are already well
defined, facilitating the formalisation of the introduced protocols.

1.4 Structure of this thesis

In Chapter 2 we introduce the cryptographic protocols and tools, and the
state-of-the-art. This will cover the basic cryptographic primitives that are
generic to the work presented in the thesis, such as security notions, asym-
metric encryption, or commitments schemes. Then, Chapters 3 and 4 are
self-contained and can be read independently. They present the contribu-
tions of this thesis. In the former we describe a human attestation mecha-
nism that preserves the privacy of the user. In the latter, we describe two
internet voting solutions with different trade-offs. The first protocol pro-
vides a better performant filtering phase, while the second scheme provides a
higher level of coercion resistance while maintaining scalability for large scale
elections. Finally, in Chapter 5 we make the conclusion remarks, discuss the
open problems and possible lines of future work.

12 Chapter 1. Introduction

CHAPTER 2

Background

In this chapter we present the related work and introduce the cryptographic
notions used throughout this thesis. For introductory concepts on abstract
algebra, we refer the reader to Lee [Lee18]. For a detailed and generic intro-
duction to cryptographic protocols, we refer to Schoenmakers [Sch22]. We
begin the chapter, in Section 2.1, by introducing the notation. Then, we
proceed in Section 2.2, with a brief introduction to cryptographic primitives.
Finally, we conclude the chapter in Section 2.3 with a study of the state-of-
the-art for the two topics studied in this thesis: bot detection and internet
voting.

2.1 Notation and Definitions

The field of cryptology owns its origins to the Greek language, kryptós, mean-
ing “hidden, secret”, and logia, meaning “study”. This field is generally
divided into two sub-fields, cryptography and cryptanalysis. The former
concerns the study and design of secure processes and schemes related to
information security. The latter studies ways to break them. We hereby
present the distinction made by Schoenmakers, Definition 1.1 [Sch22], be-
tween a cryptographic algorithm, protocol and scheme. A cryptographic
algorithm is a set of well-defined steps, which given an input value, pro-
cess an output value. These algorithms achieve certain security objectives.
A cryptographic protocol, on the other hand, is a distributed algorithm,
where two or more parties interact following the defined steps. Similarly, a

13

14 Chapter 2. Background

protocol is expected to satisfy certain security objectives. Finally, a cryp-
tographic scheme is a suite of related cryptographic algorithms and cryp-
tographic protocols, achieving certain security objectives. In this thesis we
focus in cryptographic protocols.

Cryptographic protocols require interaction between two or more par-
ties, and therefore, the definition of these protocols require the definition of
the types of channels that are available to these users. In a multiple party
protocol (multi-party computation, or MPC), the channels are distinguished
between end-to-end or broadcast channels. Another distinction of these chan-
nels is made between how the information is exchanged. A public channel
assumes that observers of the protocol can read the exchanged data. On the
other hand, a private channel assume that observers of the protocol cannot
read the exchanged data. We put special attention to the notion of a bulletin
board, which is an append only public broadcast channel, where parties of the
protocol can post data such that everyone (even third parties) have access
to it. A communication model is what defines the type of channels that are
available to the parties involved in the protocol.

We use ϵ to denote the security parameter, and 1ϵ to denote its unary
representation. All algorithms of the cryptographic protocols presented in
this thesis take as input 1ϵ, and therefore, we omit it from the list of inputs.
We use Zp to denote the integers modulo p. Moreover, throughout the thesis
we use p to denote a prime number. Let D be a set, we use x ←$ D to
denote that x is taken uniformly at random from D. The symbols ⊤ and
⊥ denote success and failure respectively. We represent vector with bold
letters, and use x←$ D

n to denote that we take a vector of size n uniformly
at random from D. To denote exponentiation of two vectors, x,y, we use
xy = xy1

1 · · · xyn
n .

When presenting a new cryptographic algorithm, protocol or scheme, one
needs to prove that it achieves the expected security objectives. Some cryp-
tographic algorithms have well defined properties to be satisfied (see Public
Key Cryptosystems 2.2.1 or zero-knowledge proofs 2.2.3). However, proving
security of cryptographic protocols may be a harder task, as one first needs
to capture the properties of the protocol, and then prove it satisfies them.
In this thesis, when defining a new cryptographic protocol, we use game
based proofs, were we first define a game capturing the security properties,
and then prove that no adversary (limited by our assumptions) can win the
game (and hence, break the security). In general, this thesis assumes that
adversaries run in probabilistic polynomial time (except for the property of
everlasting privacy that we present in the protocol of Chapter 4).

Definition 2.1.1. An adversary, A, is said to run in polynomial time if

Notation and Definitions 15

there exists a polynomial P (·) such that A running on any input x ∈ {0, 1}∗
halts within P (|x|) steps.

This definition is what defines the complexity class P, which is the class
of problems which can be solved by a deterministic polynomial time (DPT)
Turing machine. Deterministic, in this context means that the algorithm,
or Turing machine, at each step, moves from its current configuration to
a unique successor. The problem of defining the hardness of a problem
using the complexity class P, is that the problem is considered in terms of
worst-case complexity. However, in cryptography it is much more relevant to
consider the complexity of the problems in the average-case. To this end, we
allow the adversary to access a source of randomness to define the next steps
of its computation, and hence define the adversary to run in probabilistic
polynomial time.

Definition 2.1.2. An adversary, A, is said to run in probabilistic polyno-
mial time (PPT) if and adversary A′(·) = A(·, r) runs in polynomial time
where r is a string of uniformly random bits.

Finally, when modelling security in cryptography, one cannot always aim
to achieve perfect security. Sometimes there exists a (small) chance that the
adversary guesses the secret correctly. When defining a protocol, one needs
to take into consideration these events, and define what is the acceptable
probability of such events happening without breaking the security of the
protocol. We consider a protocol to be secure, if these events happen with
negligible probability.

Definition 2.1.3. A nonnegative function f : N → R is called negligible if
for every γ ∈ N there exists a k0 ∈ N such that ∀k ≥ k0, f(k) ≥ 1/kγ.

In cryptography, to have practical groups and rings, we rely on hardness
assumptions. These are usually of the type “a PPT adversary has very low
probability in finding X given Y”. In the coming chapter we introduce the
hardness assumptions used throughout this thesis which rely mainly on the
Discrete logarithm (DL) problem in cyclic groups4. As previously introduced,
hardness of a problem depends on the fact that an adversary has no more
than negligible probability of finding a solution. We now introduce the DL
related hardness assumptions. We use a cyclic group G = ⟨g⟩ of order p.

Definition 2.1.4. The discrete logarithm problem is defined by, given g,X ∈
G, output x such that X = gx, namely the discrete logarithm of X in the base

4For a more thorough list of cryptographic assumptions, see https://www.ecrypt.eu.
org/ecrypt2/documents/D.MAYA.6.pdf

https://www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf
https://www.ecrypt.eu.org/ecrypt2/documents/D.MAYA.6.pdf

16 Chapter 2. Background

g. More technically, we say the DL-assumption holds relative to G if for all
PPT adversaries A,

Pr[x← A((G, p, g), X) ∧X = gx]

is negligible with respect to ϵ.

Definition 2.1.5. The Diffie-Hellman (DH) problem is defined by, given
gx, gy ∈ G for x, y ∈ Zp, output g

x·y. We say that the DH-assumption holds
relative to G, if for all PPT adversaries A,

Pr[gx·y ← A((G, p, g), X, Y) ∧X = gx ∧ Y = gy]

is negligible with respect to ϵ.

Definition 2.1.6. The Decisional Diffie-Hellman (DDH) problem is defined
by, given gx, gy, Z ∈ G for x, y ∈ Zp, determine whether or not Z = gx·y. We
say that the DDH-assumption holds relative to G, if for all PPT adversaries
A,

|Pr[A((G, p, g), gx, gy, gz)] = 1| − |Pr[A((G, p, g), gx, gy, gx·y)] = 1|

is negligible with respect to ϵ, where x, y, z ←$ Zp.

Note that DDH assumption can only hold in a group where DH assump-
tion holds, which in turn must be in a group where the DL assumption holds.

2.2 Cryptographic Algorithms and Protocols

In this section we introduce some basic cryptographic algorithms and pro-
tocols which are commonly used in the field, and in this work. We first
introduce the notions with an analogy, and proceed with a more formal de-
scription. All the methods described hereof rely on the hardness assumptions
described in Section 2.1. However, this is not, in any way, an extensive list
of commonly used cryptographic algorithms and protocols, and only covers
those used throughout the thesis.

2.2.1 Public Key Cryptosystems

The most commonly used analogy to describe public key cryptosystems is one
of a padlock. Anyone that has access to the padlock may choose which locker
to lock, but only the owner of the key is capable of opening the lock. Similarly,
a public key (or asymmetric) cryptosystem consists of two keys; the public

Cryptographic Algorithms and Protocols 17

key, pk, and the private (or secret) key, sk. As in the analogy, anyone that has
access to the public key can encrypt (or “lock”) a message, but only the owner
of the secret key is capable of recovering the message. This allows two parties
to communicate securely by exchanging their public keys and encrypting the
corresponding messages. In this subsection we introduce the only encryption
scheme used throughout the thesis, namely ElGamal cryptosystem. Finally,
we briefly introduce Digital Signatures and Threshold Cryptography, which
are important building blocks of public key cryptography.

An encryption scheme is described by three functions: key generation,
KeyGen(1ϵ), where given a security parameter, outputs a key pair; encryption,
Enc(m, pk), where given a message and a public key outputs a ciphertext;
and decryption, Dec(c, sk), where given a ciphertext and a secret key, outputs
the encrypted message in plaintext. We do not specify the encryption scheme
when it is implicit. In general, given an entity X , pkX and skX will denote
the public and private keys of X , respectively.

ElGamal

The public key cryptosystem used throughout this thesis is one based on the
discrete logarithm problem, presented in 1985 by El Gamal [EG85]. This
cryptosystem is not so widely used, as its predecessor RSA, but some inter-
esting properties that we present later in this section will make clear why it
is our choice of preference. The three functions of ElGamal are defined as
follows.

Algorithm 1 (KeyGen(ϵ)). Select a group G generated by g with order p,
according to ϵ. Then sk ←$ Zp and pk = gsk. Return (pk, sk).

Now, any party that has access to the public key pk, can simply encrypt
a message m ∈ G with the following algorithm.

Algorithm 2 (Enc(pk,m)). Let c = (c1, c2) = (gr,m · pkr) for r ←$ Zp.
Return c.

Now only the owner of the private key can decrypt the ciphertext as
follows.

Algorithm 3 (Dec(sk, c)). Return m = c2 · c−sk
1 .

One of the advantages of this encryption scheme is that it works over
prime order groups where the DL problem is hard, and can hence be instan-
tiated over elliptic curves. This allows for smaller key or ciphertext sizes,
while maintaining the same security level [Bar16]. Moreover, from Bernhard

18 Chapter 2. Background

Exp
nm-cpa,b
A,D (ϵ):

(pk, sk)← KeyGen(1ϵ)
m0,m1 ← A(“find”, pk)
c∗ = Enc(pk,mb)
b′ ← AOD(“guess”, pk, c∗)
Output b′

OD(c⃗):
If c∗ ∈ c⃗ then return ⊥
m⃗i = Dec(sk, c⃗i)
Return m⃗

Figure 2.1: In the NM-CPA experiment Exp
bpriv,b
A,D AV, the adversary A finds two messages

m0 and m1 of which it asks an encryption of the challenger. It is then allowed to ask the
decryption of a vector of ciphertexts c⃗ of its decryption oracle OD. It may only call this
oracle once.

et al.’s work on Helios [BPW12] we know that in the random oracle model
under the DDH assumption the ballot encryption scheme based on ElGamal
with a non-interactive proof of correct construction is NM-CPA secure, that
is, ⃓⃓⃓

Pr
[︂
Exp

nm-cpa,0
A,D (ϵ) = 1

]︂
− Pr

[︂
Exp

nm-cpa,1
A,D (ϵ) = 1

]︂⃓⃓⃓
is negligible in ϵ, where Expnm-cpa,bA,D is as in Figure 2.1.

However, the property that motivates the usage of this scheme is its ad-
ditive homomorphic property, which allows one to perform additions over
encrypted data without decrypting it first. To see this, let l1, l2 ∈ Zp be
two messages that one wants to encrypt and operate over with. To lever-
age the homomorphic property, we encode these values as group elements
m1 = gl1 ,m2 = gl2 ∈ G. Then, given a key-pair (pk, sk) = KeyGen(G, g, p),
applying the binary operation that defines the group, ·, over the correspond-
ing encryptions results in the encryption of the added messages. More pre-
cisely,

Enc(pk,m1) · Enc(pk,m2) = (gr1 ,m1 · pkr1) · (gr2 ,m2 · pkr2) =

(gr1+r2 , gl1+l2 · pkr1+r2) = Enc(pk,m1 ·m2) = Enc(pk,m12)

with r1, r2 ←$ Zp and m12 = gl1+l2 , the encoding of the addition of the
values l1, l2. Now, to extract the message one needs to compute the discrete
logarithm of m12 = gl1+l2 . However, note that while we are in a group where
the hardness of the discrete logarithm is assumed to hold, we can restrict

Cryptographic Algorithms and Protocols 19

the message space to be quite small, and hence brute force is feasible. The
practicality of this property will become clear by the end of this thesis. This
message representation is often referred to as the ‘exponential ElGamal’.

An example of the use of such a property, is the possibility of randomising
a ciphertext. Assume you have the encryption of l1 under ciphertext c1 =
(gr1 , gl1 ·pkr1) with r1 ←$ Zp. Now, one can randomise the ciphertext without
changing the encrypted value or accessing the private key. Let c0 = (gr0 , g0 ·
pkr0) with r0 ←$ Zp. By leveraging the additive homomorphic property, one
can compute c3 = c1 · c0 = (gr1+r0 , gl1 · pkr1+r0), such that c3 looks random
in comparison with c1, but Dec(sk, c3) = Dec(sk, c1). We refer to this as
randomisation of a ciphertext.

Digital signatures

We introduce the notation of digital signatures, as they constitute an impor-
tant role in some of our protocols. However, we do not present the exact
algorithms, as we use them in a more generic fashion. A signature scheme is
defined by two algorithms: the signing algorithm s = Sign(sk,m) that signs
messagesm ∈ {0, 1}∗; and a verification algorithm SignVerify(pk, s,m) that
outputs ⊤ if Sign is a valid signature on m and ⊥ otherwise. There exists
both an RSA based signature algorithm [RSA78] as well as a Discrete-log
based construction [Sch90].

Threshold Cryptography

Many situations benefit from the fact that not a single entity has the com-
plete ownership of a secret. If you take for example a personal safe in a bank,
the lock requires two keys, one by an employee of the bank, and the other by
the user. In cryptography, such situations also exist, where one requires the
participation of several parties to use a secret. Moreover, in threshold cryp-
tography, it is possible to build schemes where a secret is shared amongst k
parties, and the protocol requires at least t parties, where t ≤ k, to cooperate
in order to use the secret. For example, in threshold encryption, a secret key
is shared among 10 parties, such that 7 (or more) parties need to cooperate
in order to decrypt a ciphertext encrypted with the corresponding key.

In this subsection we introduce a distinct notation than the one presented
above to distinguish between standard cryptography and threshold cryptog-
raphy. Throughout this thesis we only instantiate threshold cryptography
for encryption, and hence the notation for other use cases (e.g. signatures)
is omitted.

To generate a key, the different parties jointly run the DistKeyGen(1ϵ, t, k)

20 Chapter 2. Background

protocol where ϵ is the security parameter, t is the number of parties needed
to decrypt ciphertexts, and k the total number of parties. They follow the
protocol as presented in [Ped91b]. Such a protocol allows a set of trustees to
compute a public key pair where the public key is directly computed from
the different shares of the private key, meaning that the ‘full’ private key is
never computed. This protocol outputs a public encryption key pkd and each
party obtains a private decryption key skd,i.

2.2.2 Commitment Schemes

A commitment scheme is usually introduced with the following analogy. Sup-
pose that Alice wants to ‘commit’ to a sentence, without (initially) disclosing
it. Then she writes the sentence in a piece of paper, and introduces it in a
locked box, which she keeps the key. She gives this box to Bob. Whenever
Alice wants to disclose the initially committed sentence, she simply gives the
key to Bob. In this way, Bob is certain that Alice did not change her mind
from the moment he received the box. In commitment schemes, this key is
named the ‘opening key’.

Commitment schemes consist of three protocols. The key generation,
the commit, and the reveal protocols. In many cases the definition of these
properties require no interaction amongst the parties, and are hence called
non-interactive commitment schemes.

Definition 2.2.1. A non-interactive commitment scheme involves a sender
and a receiver, and is formed by the following three algorithms Com = (Setup,
Commit, VerifyCommit). Setup(ϵ) takes the security parameter and outputs
the commitment key, ck. Commit(ck,m) takes the commitment key ck and
a message m, and outputs a commitment c, and its corresponding opening,
o. Finally, VerifyCommit(ck, c, o,m) takes as input the key, commitment,
opening and message, and accepts, ⊤, or rejects, ⊥. This tuple of algorithms
need to have, in addition, the following properties:

Correctness If the sender and receiver follow the protocol, then the receiver
always accepts.

Binding Any polynomial-time adversary, A, can extract two differ-
ent messages, m1,m2 such that VerifyCommit(ck, c, o,m1) =
VerifyCommit(ck, c, o,m1) = ⊤ with negligible probability.

Hiding For any polynomial-time adversary, A, given a commitment, c, find-
ing a message m such that VerifyCommit(ck, c, o,m) = ⊤ happens with
negligible probability.

Cryptographic Algorithms and Protocols 21

Moreover, one makes the following distinctions of the binding and hiding
properties. If the adversary is defined to be computationally unbounded,
we say that the commitment scheme is information-theoretically binding
or information-theoretically hiding. It is straightforward to prove that
a commitment scheme cannot be both information-theoretically binding
and hiding simultaneously. Assume that we have a commitment scheme,
(Commit, VerifyCommit), which is information-theoretically hiding. This
means than a computationally unbounded adversary can not get any in-
formation about the committed value. Given that Commit is public, the (un-
bounded) adversary could try all possible openings, and still not be able of
determining which is the opening which the prover committed to. This means
that, for a given commitment c, there exists o1 ̸= o2 and m1 ̸= m2 such that
VerifyCommit(ck, c, o1,m2) = VerifyCommit(ck, c, o2,m2) = ⊤. However,
this precludes the possibility of the scheme to be information-theoretically
binding, as an unbounded adversary would find these two distinct openings,
that pass verification.

The commitment scheme mostly used throughout this thesis is an
information-theoretically hiding commitment scheme. This means that no
matter how powerful an adversary is, it will never be able to extract the
committed message without the knowledge of the o. More precisely, we use
the Pedersen commitment scheme, introduced below.

Pedersen Commitment Scheme

In this thesis we use two variants of the Pedersen Commitment scheme. The
first was the original work by Pedersen in 1991 [Ped91a]. The algorithms of
the Pedersen Commitment scheme are defined as follows. We consider an
instantiation on a group finite cyclic G of order a prime p.

Algorithm 4 (Pedersen Commitment). Let m ∈ Zp.

Setup(ϵ): Let g, h←$ G. Output ck = (g, h).
Commit(ck,m): Let o←$ Zp. Output (c, o) = (gm · ho, o).
VerifyCommit(ck, c, o,m): Output ⊤ if c = gm · ho, else return ⊥.

The second variant was presented by Groth in 2009 [Gro09] and functions
similarly to the original construction, with the difference that one can commit
a vector of values, rather than a single one. The algorithms of the Pedersen
Vector Commitment scheme for vector messages, m, of size n are defined as
follows.

Algorithm 5 (Pedersen Vector Commitment). Let m ∈ Zn
p .

22 Chapter 2. Background

Setup(ϵ): Let g ←$ G
n, h←$ G. Output ck = (g, h).

Commit(ck,m): Let o←$ Zp. Output (c, o) = (gm · ho, o).
VerifyCommit(ck, c, o,m): Output ⊤ if c = gm · ho, else return ⊥.

This particular instantiation of commitment schemes is information-
theoretically hiding, and computationally binding. Moreover, these commit-
ment schemes are additively homomorphic, similar to the ElGamal encryp-
tion scheme presented above. Consider two commitments, c1, c2, for messages
m1,m2 ∈ Zn

p ,
ci = gmihoi for i ∈ {0, 1}.

Then, we have that applying the group operation to the commitments equals
the commitment of the addition of the messages, whose opening is the sum
of the openings. More specifically

c1 · c2 = gm1ho1 · gm2ho2 = gm1+m2ho1+o2 .

2.2.3 Zero-knowledge proofs

Throughout this thesis, we rely on a well known class of cryptographic pro-
tocols, namely ZKP. They were introduced by Goldwasser et al. [GMR85],
and they enable one party (prover) to convince another (verifier) about the
validity of a certain statement. The statement being proved must include
the assertion that the prover has such knowledge, without revealing any
other information about the knowledge itself. Let {Rj}j∈N be a family of
polynomial-time decidable relations R on pairs (v, w). The relation is con-
stituted by the common input, v, and the private input of the prover, or
witness, w. To denote that a relation holds, we write R(v, w) = 1, and use
R(v, w) = 0 otherwise. Both the common input and witness may be formed
by one or more elements.

In this thesis we take particular interest in ZKPs where the verifier is
honest, and generates honest randomness, which we replace by a random
function modeled as a random oracle [FS87]. Despite this limitation, they
turn out to be very versatile tools. They consist of several messages, where
initially the prover sends a message, a1, the verifier responds with a challenge,
c1, prover proceeds with another message a2, and so on and so forth, until
they reach the final round and the prover ends with the response, r. At
the end of the interaction, the verifier can perform checks to ensure that the
statement being proven is true.

A zero-knowledge proof system is defined by three probabilistic poly-
nomial time algorithms, (K,P ,V), the generator, prover and verifier. The
generator takes as input a security parameter written in unary form, 1ϵ, and

Cryptographic Algorithms and Protocols 23

builds the common input of a proof, pp ← K(1ϵ). In our research, we use
only common inputs that do not need to be honestly generated, meaning
that the output of K can be publicly verified. The P and V algorithms
take as input (pp, u, w) and (pp, u) respectively. We denote the interaction
between prover and verifier, and the latter’s output (0 if valid or 1 oth-
erwise) by ⟨P(pp, u, w)||V(pp, u)⟩. We consider relations R that consist of
a three element tuple (pp, u, w), which we refer as the common input, in-
stance and witness respectively. We define the set of all valid instances as
LR = {(pp, u)| ∃ w : (pp, u, w) ∈ R}. The protocol (K,P ,V) is called a zero-
knowledge proof system if it has perfect completeness, knowledge soundness
and special honest-verifier zero-knowledge as described below. We now pro-
ceed with a formal definition of the properties a proof system needs to have
to be considered a zero-knowledge proof.

Definition 2.2.2 (Perfect Completeness). A proof system is perfectly com-
plete if for all PPT adversaries A

Pr

[︄
pp← K(); (u,w)← A(pp) :

(pp, u, w) /∈ R ∨ ⟨P(pp, u, w)||V(pp, u)⟩ = 1

]︄
= 1

Paraphrasing, this means that whenever prover and verifier proceed with
the protocol, the verifier will always validate the proof.

Definition 2.2.3 (Knowledge soundness). A proof system has (strong black-
box) computational knowledge soundness if for all DPT P∗ there exists a
PPT extractor E such that for all PPT adversaries A

Pr

[︄
pp← K(1ϵ); (u, s)← A(pp);w ← E ⟨P∗(s)||V(pp,u)⟩(pp, u) :

b = 1 ∧ (pp, u, w) /∈ R

]︄

is negligible with respect to ϵ.
Here, the oracle ⟨P∗(s)||V(pp, u)⟩ runs a full protocol execution from the

state s, and if the proof is successful it returns a transcript of the prover’s
communication. The extractor E can ask the oracle to rewind the proof to
any point and execute the proof again from this point on with fresh challenges
from the verifier. We define b ∈ {0, 1} to be the verifier’s output in the first
oracle execution, i.e., whether it accepts or not, and we think of s as the state
of the prover. If the definition holds also for unbounded P∗ and A we say
the proof has statistical knowledge soundness.

The definition can then be paraphrased as saying that if the prover in
state s makes a convincing proof, then we can extract a witness.

24 Chapter 2. Background

Definition 2.2.4 (Special Honest-Verifier Zero-Knowledge). A proof system
is computationally special honest-verifier zero-knowledge (SHVZK) if there
exists a PPT simulator S such that for all state-full interactive PPT adver-
saries A that output (u,w) such that (pp, u, w) ∈ R and randomness ϕ for
the verifier

Pr

⎡⎢⎣ pp← K(1ϵ); (u,w, ϕ)← A(pp);
viewV ← ⟨P(pp, u, w)||V(pp, u, ϕ)⟩ :

A(viewV) = 1

⎤⎥⎦−
Pr

⎡⎢⎣ pp← K(1ϵ); (u,w, ϕ)← A(pp);
viewV ← S(pp, u, ϕ) :

A(viewV) = 1

⎤⎥⎦
is negligible with respect to ϵ. We say the proof is statistically SHVZK if the
definition holds against unbounded adversaries, and perfect SHVZK if the
probabilities are equal.

This definition can be paraphrased as saying that for every valid protocol
run, a simulator can generate simulated random view which is indistinguish-
able from the original run.

Blum et al. [BFM88] introduced non-interactive Zero-Knowledge Proofs
(NIZKPs), which enable the prover to prove the validity of a statement with-
out interacting with the verifier. This, in turn, allows any party to act as a
verifier. The prover simply sends one message to the verifier, and the verifier
either accepts or rejects it. The challenge step is then replaced by a source
of randomness. This is known as the Fiat-Shamir heuristic [FS87].

We adopt the Camenisch-Stadler notation [CS97] to denote such proofs
and write, for example,

Π = SPK{(x) : X = gx}, (2.1)

to denote the non-interactive zero-knowledge proof that the prover knows
the discrete logarithm x of X with base g. To represent the verification
procedure, we use Π.Verify.

As described in the introduction, we are interested in use cases where users
might be behind a device with low bandwidth network or with constraints
in the amount of data to be transmitted (e.g. mobile devices). Similarly, we
study scenarios where the server needs to scale to millions of users, and in
the context of ZKPs, to millions of proofs verifications. It is relevant, then,
to introduce a concept that has been of high interest for the academic and

Cryptographic Algorithms and Protocols 25

industrial community, namely Succint Non-interactive ARguments of Knowl-
edge (SNARK) [Bit+12]. A SNARK is also defined by three algorithms,
(K,P ,V), which in contrast to ZKPs, satisfy the properties of completeness,
succinctness and knowledge soundness. The notion of succinctness, the only
not described above, is defined as follows:

Definition 2.2.5 (Succintness). Π is said succinct if the running time of V
is poly(ϵ)(ϵ+ |x|+log |w|) and the proof size is poly(ϵ)(ϵ+log |w|), where |x|
is the size of the computation (with respect to the number of gates), and |w|
is the size of the witness.

Note that there is no requirement of the zero-knowledge property for a
system to be considered a SNARK. There exists, however, the ZK-SNARKs,
which do require the zero-knowledge property. There has been a huge amount
of advances in the field in the past years [Bün+18; Chi+20; Gro16; GWC19;
Mal+19] just to cite a few. Of particular interest in this thesis is the construc-
tion of Groth [Gro16], which has an existing framework to easily generate
ZKPs out of code, namely ZoKrates [ZoK19].

Some examples

To introduce the power of ZKP, in this subsection we present a few con-
structions. To begin, one could consider the example of equation (2.1), and
use it as a zero-knowledge proof that the prover is the owner of an ElGamal
key-pair. In this way a verifier is convinced about the statement that the
prover knows the private key, but the latter does not disclose anything about
the secret.

This can also be used for the decryption procedure. Assume a scenario
where several parties encrypt their secret under a public key. Then, the
homomorphic property of the ElGamal encryption scheme is leveraged to
compute the addition. Finally, the key-pair owner proceeds with the decryp-
tion to show to all the participants what the sum of the secrets is. However,
given that only the key-pair owner knows the secret, it could cheat the rest of
the participants, by simply outputting a random number. To avoid this, all
participants would require the key-pair owner to compute a proof of correct
decryption. Let c = (c1, c2),mg, pk be the ciphertext, plaintext, generator
and public key respectively, and let sk with pk = gsk be the secret key.
Then, the key-pair owner, when disclosing the plaintext m, also provides the
following proof:

ΠD = {(sk) : pk = gsk ∧m = c2 · c−sk
1 }

26 Chapter 2. Background

As we can see, one can compose several conditions in the construction of
a ZKP. As a matter of fact, one can encode any NP-program as a zero-
knowledge proof, and prove correct computation. Another representative
example can be instantiated over the Pedersen commitment scheme. Assume
that a prover commits to two values, and publishes them somewhere. Later,
it wants to prove ownership of the commitment by showing that it knows the
opening, but without disclosing it. Hence, it can use the following ZKP,

ΠOpen = {(m1, o1,m2, o2) : c1 = gm1ho1 ∧ c2 = gm2ho2}
to prove it knows ownership without disclosing the message or the opening.
More generally, we can have such a proof for vector commitments.

ΠOp := {(m, r) : c = gm · hr} .
We use the work presented by Hoffmann et al. [HKR19] to achieve a proof

with logarithmic complexity with respect to the size of the input vector.
One can also instantiate ZKPs to prove statements about the opening,

without having to disclose the latter. For example, one can prove that two
commitments share the same opening,

ΠEq := {(m, r1, r2) : c1 = gm · hr1 ∧ c2 = hm · hr2} .
Again, we use the work presented in [HKR19] to achieve logarithmic

communication with respect to the vector opening.
Similarly, one can provably exchange any element in the committed vector

by a zero, and prove we did so correctly,

Π0 :=
{︁
(m ∈ ZN

p , r) : c = gmhr ∧ E = g
mj

j ∧
c/E = gm1

1 · · · g
mj−1

j−1 · g
mj+1

j+1 · · · g
mN
N hr

}︁
.

Moreover, the prover can prove some algebraic relation amongst the two
openings, for instance that the first is the square of the second [CM99],

ΠSq :=
{︁
(m1,m2, r1, r2 ∈ Zp) : c1 = gm1 · hr1 ∧ c2 = gm2 · hr2 ∧m1 = m2

2

}︁
.

To prove that a number is within a range, we leverage Bulletproofs [Bün+18]:

ΠGE :=
{︁
(m, r ∈ Zp) : c = gmhr ∧m ∈ [0, 2l]

}︁
for some positive integer l. We combine these two proofs, ΠSq and ΠGE, to
prove the correct computation of the floor of the square root of a committed

State of the art 27

value. Let c1 = gm1 ·hr1 , c2 = gm2 ·hr2 and c+1
1 = c1 ·g = gm1+1 ·hr1 . We want

to prove that m1 = ⌊
√
m2⌋. It suffices to prove the following two statements:

(i) The square of the committed value in c1 is smaller or equal than c2,
and

(ii) The square of the committed value in c+1
1 is greater than c2.

We denote this proof by:

Πsqrt := {(m1,m2, r1, r2 ∈ Zp) :

c1 = gm1 · hr1 ∧ c2 = gm2 · hr2 ∧m1 = ⌊
√
m2⌋} .

2.3 State of the art

The usage of cryptographic constructions for improving the privacy of the
user has been an active area of research since the introduction of public key
cryptography in 1976 by Diffie and Hellmann [DH76]. In the coming decade
after the introduction of the key exchange mechanism, important founda-
tions where introduced, such as public key encryption [EG85; RSA78], Zero-
Knowledge Proofs (ZKPs) [BFM88; GMR85], commitment schemes [EGL85;
SRA81], blind signatures [Cha83] or mix-nets [Cha81]. However, it has been
in the last decade where we have seen a boom of mainstream usage of some
of these technologies such as zero knowledge proofs, blind signatures or mix-
nets, which were only used in very particular scenarios. These technologies
are, nowadays, used by millions of users through internet voting systems,
Zcash [Mie+13], Privacy Pass [Dav+18], Signal [Sig21] or the incentivised
test-net of the Nym network [Net20]. In this section we do not aim to cover
all recent advances of cryptography aimed at improving user privacy. Instead
we focus primarily in sub-linear zero-knowledge proofs (which we use to im-
prove the state of the art in bot detection mechanisms), privacy-preserving
advertising and internet voting schemes.

We now provide the state-of-the-art in the two topics that are covered
in this thesis, namely bot detection, and the mechanisms used to achieve it,
and internet voting.

2.3.1 Sub-linear zero-knowledge proofs - Bot detection

Assessing Humanness To prevent automated programs from abusing on-
line services, the widely adopted solution is to deploy a CAPTCHA system.
However, text-based CAPTCHA schemes have been proven to be insecure as

28 Chapter 2. Background

machines achieved 99.8% success rate in identifying distorted text [Che+21;
CSJ09; Dou21; Goo+13; YEA08; Zi+20]. Audio-based CAPTCHAs have
also been used to assist visually impaired people, but they are difficult to
solve, with over half of users failed during their first attempt [Tas+12]. There-
fore, CAPTCHA service providers started to test image-based CAPTCHA
schemes, which require users to select images that match given descrip-
tion [Goo14]. Nevertheless, in [SPK16; Zho+18] authors demonstrated that
more than 70% of image-based Google and Facebook CAPTCHAs can be
efficiently solved using deep learning.

In [WKY10], authors designed a multi-level data fusion algorithm, which
combines scores from individual clicks to generate a robust evidence. Never-
theless, these CAPTCHA systems require users to perform additional tasks
and deliver worse user experience, especially when running on mobile de-
vices [RC13]. Google reCAPTCHA v2 use a risk analysis engine to avoid
interrupting users unnecessarily [Goo19]. This engine collects and analy-
ses relevant data during click events. The latest reCAPTCHA v3 no longer
requires users to click but instead it studies user interactions within a web-
page and gives a score that represents the likelihood that a user is a hu-
man [Dev18]. A similar method has been performed by Süzen [Sü21], which
also uses mouse movements, keyboard gestures, or web behavior among oth-
ers. Although these CAPTCHA schemes are transparent to users, a plethora
of sensitive data, including cookies, browser plugins, and JavaScript objects,
is collected [O’R15] that could be used to fingerprint the user.

With the proliferation of smartphones, more humanness attestation
schemes proposed leveraging the variety of available sensors. Most of these
schemes require users to perform additional motion tasks. In [SSH13], au-
thors showed that waving gestures could be used to attest the intention of
users. In [Fen+20; Gue+15], authors designed a bot detection system that
asks users to tilt their device according to the description to prove they
are human. In [HKH16], authors presented a movement-based CAPTCHA
scheme that requires users to perform certain gestures (e.g. hammering and
fishing) using their device. In [DL+12], authors exploited touch screen data
during screen unlocking to authenticate users. In [Gue+16], authors sug-
gested a brightness-based bot prevention mechanism that generates a se-
quence of circles with different brightness when typing a PIN; users will in-
put misleading lie digits in circles with low brightness. In [BGC17], authors
proposed a behavioural-based authentication scheme, which uses timing and
device motion information during password typing.

Finally, there exists the Invisible CAPTCHA [Gue+18]. In this work,
authors leveraged the different device acceleration appearing on a finger touch
and a software touch to make a decision about whether a user is a bot.

State of the art 29

However, Invisible CAPTCHA is not fully implemented as it requires a secure
execution environment and its accuracy is low when device is stable on a
table. In addition, it only considers simple tap and vibration events; its
accuracy on more complicated touch events (e.g. drag, long press, and double
tap) is unclear.

In summary, the state-of-the-art is limited in the three main properties
that we expect out of a bot detection mechanism.

A) Be friction-less: Most existing mechanisms require the user to solve
mathematical quizzes or image/audio challenges [Int19; Phi15], thus severely
hampering the user experience. According to studies [All13; Bur+10]: (i)
humans only agree on what the CAPTCHA says 71% of the time, (ii)
visual CAPTCHAs take 9.8 seconds (on average) to complete, (iii) au-
dio CAPTCHAs take 28.4 seconds (and 50% of the Audio CAPTCHA
users quit). The profound degradation of the user experience forces ser-
vice providers to perform user attestations only sporadically [Fou16; Kah20;
Loz19] in an attempt to save their declining conversion rates. Related re-
search works [Gue+15; HKH16; SSH13] reduce user friction by requiring, for
example, the user to tilt their phone during humanness verification, which
still requires the user to perform a non-natural action.

B) Be privacy-preserving: To mitigate the above, mechanisms like re-
CAPTCHA v3 [Liu18] (i) track the user while browsing a webpage, (ii)
send raw tracking data to third party attestation servers, where (iii) a “risk
score” representative of humanness is computed and then (iv) shared with
the webmasters. Of course, this pervasive behavioral tracking raises sig-
nificant privacy concerns [Cla19; Sch19]. Similarly, there are sensor-based
approaches [Gue+15; Gue+18; HKH16] that transmit raw mobile sensor
data to remote attestation servers; something that as reported, may reveal
keystrokes, gender, age, or be used to fingerprint users [Dav+17; DBC16;
Mal+18; Pap+17; RO+16; SS+18; ZBS19].

C) Be broadly accessible: The majority of existing CAPTCHA solu-
tions are not accessible to all users [Con19; Hol+19]. According to a sur-
vey [Min17], CAPTCHAs constitute the first source of difficulty for visually
impaired users. Meanwhile, human attestation mechanisms designed for vi-
sually impaired people (like audio-based reCAPTCHA) have been exploited
to bypass CAPTCHAs by providing automatic responses [Seb19; Tam+09].

Privacy-Preserving and Provable ML A potential approach to offer
privacy-preserving machine learning is to evaluate the model locally, avoiding
data to be sent to the server. However, if such approach is taken without

30 Chapter 2. Background

proving correct evaluation of the model, then verification may be lost [BR11;
GCF11; TVD17]. In cases such as bot detection the user’s interest might be
of faking the evaluation model, and this may be vulnerable to user attacks.

Another approach consists in encrypting the data on the client, and run
ML model on such encrypted data at the server. This can be achieved via
Fully Homomorphic Encryption (FHE)5 [BLN14; Dow+16; GLN12]: clients
encrypt their data with their own keys and send the ciphertext to the server
to evaluate an ML model. Next, the server sends the outcome of the homo-
morphic computation back to the user who would provably decrypt it and
send back to the server. FHE has received increased interest in the past
years. However, it is studied in scenarios where a single client encrypts a
large dataset which is evaluated in the server. For the case of millions of
users, each with their own encryption keys, FHE has not seen a wide interest
due to its computational overhead.

To the best of our knowledge, there are few papers aiming to provide
provable machine learning local evaluation without a trusted execution en-
vironment. Davidson et al. [DFL14] try to solve a similar problem, where
personalization of a user device is done by evaluating a model locally on the
user’s machine. This work uses Bayesian classification, for which they need
from 100-300 feature words. The generation of correct model evaluation for
such range of feature words ranges from 30 to 80 seconds in a laptop. More-
over, this study uses standard techniques for constructing zero-knowledge
proofs, which give a big overhead to the prover and verifier. Danezis et
al. [Dan+12] propose a solution where after the evaluation of Random For-
est and Hidden Markov models, the user generates a zero-knowledge proof of
correct evaluation. However, this paper misses an evaluation study or avail-
ability of the code, which makes a study of the scalability of their approach
inaccessible.

The available zero-knowledge schemes are, however, not ideal for our use
case. We need a proof system with low prover computational overhead, while
maintaining the communication complexity and verifiable computation low.
A recent paper by Groth [Gro16] presented a quasi-optimal solution for the
last two properties. Such a scheme falls in the category of Succinct Non-
interaction ARgument of Knowledge (SNARK), where any nondeterministic
polynomial time (NP) statement can be proven with minimal proof size and
verification time. However, this construction comes with some caveats. A
trusted setup is required, and to make matters worse, for our particular sce-
nario, it was over 1GB of data that the user needed to download. Moreover,

5Similar to the additive homomorphic property described in Chapter 2, FHE can per-
form both addition and multiplication over encrypted texts.

State of the art 31

the complexity of the user is considerably affected, with proof generation
time reaching around 174.5 seconds in a 2018 Samsung S9. There has been
a high number of improvements in the past years with proposals reducing
the assumption requirements or prover time, however they all fall short for
our goals. An important observation is that our scheme does not require a
general computation zero-knowledge proof, but we can build an ad-hoc proof
for our statement, improving on setup size and prover time. As a matter of
fact, an inner product proof shows sufficient for a bot-detection mechanism.
Groth [Gro09] presented the best current solution that offered simultane-
ously zero-knowledge and soundness. Recent advances [Boo+16; Bün+18]
have presented sub-linear inner product proofs which are only sound. How-
ever, they fail to present an explicit definition and proof of a zero-knowledge
version.

2.3.2 Coercion resistance in internet voting

Coercion resistance comes at a high cost, as can be seen in the existing
literature (we forward the reader to Section 4.4 for a formal definition of
the security properties). In the present moment there are three methods to
achieve coercion resistance in remote elections: fake credentials, re-voting,
and, a recently introduced notion, vote-flipping. Other mechanisms to pro-
vide a weaker form of coercion resistance exist. Such weaker notions assume
that a voter cannot prove its vote to a coercer. This requires the adversary
to not be present during vote cast. This is a very strong assumption that we
exclude from our analysis of the state-of-the-art. One recent example of such
a mechanism was presented by Dimitriou [Dim20], which not only assumes
that the coercer is not present during vote cast, but also assumes anonymous
communications, and secure forgetting of a secret value.

In particular, the works that cover the three methods to prevent coer-
cion in electronic elections are the following. First comes the use of fake
credentials (or fake passwords) introduced in the work by Juels, Catalano
and Jakobsson [JCJ05] (referred to as the JCJ protocol), and used in several
new constructions [Ara+16; BGR12; CH11; Gro+19; MCC08; Ye+21]. In
these schemes, during the registration phase, the voter receives a bunch of
credentials out of which some are correct and will cast a valid vote; while
others are invalid, and cast a non countable vote. When a voter is coerced,
it uses a fake credential to cast a vote, making this vote invalid during the
tallying phase. In a moment where the coercer is absent, the voter can cast
a vote using the correct credential. These type of solutions assume the co-
ercer to be absent during registration and at a given moment throughout
the election. Moreover, they require the voter to privately and securely store

32 Chapter 2. Background

cryptographic material (being able to hide it from the coercer) and to lie
convincingly under the pressure of the coercer, which may indeed be a chal-
lenge for some. Finally, in order to provide coercion resistance, they do not
provide feedback to the user of whether the vote was cast with a valid cre-
dential, resulting in a high dependence of the human memory and usage of
the correct credentials at the right time.

Secondly, comes a recently introduced mechanism, named vote flipping.
Chaum et al [Cha+21] present a new strategy to avoid coercion, which con-
sists in providing the voters with a ‘code’ that allows them to flip their vote
before the end of the election. However, the problem of such a solution is
that it requires the voter to maintain cryptographic state. In order to flip
the vote, the user needs to provide a zero-knowledge proof of knowledge of
a secret key related to a particular public key. As with fake credentials, this
mechanism requires the user to safely store and keep cryptographic material.

Thirdly, coercion can be mitigated by the use of re-voting. Voters can
cast multiple votes, and the last vote is counted. Contrary to the previous
approach, this solution requires the voter to be able to cast a vote after being
coerced and before the election closes. However, there is no registration pro-
cess where the coercer must be absent, the user may not necessarily need to
store cryptographic material, and the voter can suffer from ‘perfect coercion’:
the coercer may indicate exactly how the user must act, without the latter
needing to lie about its actions while coercion is taking place.

We choose the latter solution as we believe that its core assumptions are
more realistic for real world scenarios. In Section 4.1 we give an intuition
of why these assumptions are more realistic than the ones assumed in fake
credentials based solutions. Re-voting has been used in several construc-
tions proposed in current literature. The main challenge that one finds when
allowing multiple voting for coercion resistance is filtering. In order to miti-
gate coercion attacks, voting must be deniable, meaning that the adversary
must not be able to determine whether a specific voter re-cast her ballot, or
more generally, not be able to know which of the voters re-voted. Otherwise,
and adversary can perform what is known as the the 1009 attack [Smi05] in
which the coercer forces a voter to cast a specific number of ballots and looks
for a group of that size in the filtering step. If such group does not exist,
the coerced voter has revoted. Concurrently, auditability that the process
happened as expected must be provided.

The JCJ protocol [JCJ05] allows multiple voting, and the filtering stage
is not deniable, i.e., one can determine whether a given vote has been fil-
tered (note that this is not how JCJ achieves coercion resistance, but with
fake credentials). The authors achieve this by using a cryptographic tool,
Plaintext Equivalence Texts (PETs), allowing an entity to compare two ci-

State of the art 33

phertexts without the need of decrypting any of them. With this tool, they
are capable of comparing every pair of credentials used to cast a vote. If
two votes are cast by the same voter, they take the last. The complexity of
comparing each pair of credentials results in a computation of O(N2) PETs,
with N being the total number of votes cast, making it an unusable scheme
even for small scale elections. This complexity was later reduced by Araújo
et al. [Ara+16], however, still not offering filter deniability.

The work presented by Spycher et al. [SHD10] allows the voter to cast a
vote in an electoral school, and therefore overwrite any previously cast votes.
However, this results in the requirement of presence accessibility of the voter.
Another used method is to do the filtering as a black box protocol. Trust is
given to a server which will filter all votes and publish all re-encrypted votes
[Gjø10]. This avoids any tracking or knowledge of which votes have been
filtered, but the verifiability is totally dispensed.

To the best of our knowledge, current filtering schemes that offer a trust-
less deniable voting scheme which, at the same time have public verifia-
bility, are the ones proposed by Achenbach et al. [Ach+15] and Locher et
al. [LHK16] which use similar solutions. In a protocol where a Public Bul-
letin Board (PBB) is used in order to allow verifiability, the filtering process
must be done after the mixing, else wise, a voter (and thus the coercer) would
know whether her vote was filtered or not. However, after the mixing, it is
not longer possible to know which is the order of the votes, and therefore, be-
fore inserting the votes in the mix-net there must be some kind of reference of
their order. This solution faces this by performing Encrypted PETs (EPET)
on the credentials for all votes against all lately cast votes before mixing.
This consists in performing a PET whose output is encrypted, and if any of
the comparisons among the credentials is equivalent, then the output of the
EPET hides a random number (alternatively, the encrypted number will be
a one). Votes are then included in a mix-net. The filtering stage happens
after mixing by decrypting the EPET, and all votes which output a random
number will be filtered out. This achieves deniability with no trust in any
external entity. However, there is a high increase in the complexity as the
EPET have to be performed for each pair of votes, resulting in a complexity
of O(N2) distributed (among several servers) EPET calculations prior to the
mixing, and in O(N) distributed decryptions and zero knowledge proofs of
correct decryption during the filtering. Again, this makes these solutions
unusable even for elections of tens of thousands of voters.

Note that all these filtering schemes presented above are implemented by
comparing the voting credentials, needing like that for voters to maintain a
cryptographic state throughout the election.

Everlasting privacy is a concept that was introduced by Moran et al.

34 Chapter 2. Background

[MN06]. In this scheme perfectly hiding commitment schemes are used to
hide vote intention, and the hiding values of the commitment schemes are
exchanged through private channels. This idea can be used in any scheme
based in homomorphic tallying. In [Gro+19], an everlasting privacy scheme
is presented in the JCJ setting, giving to users the burden of having to handle
several credentials, but with the improvement on previous schemes that it
only assumes the existence of private channels. Locher et al. [LHK16] present
an everlasting privacy scheme in an information-theoretical sense, with the
main drawback of having a quadratic proposal which makes it unusable even
for medium sized elections.

CHAPTER 3

zkSENSE—Private Human Attestation

In this chapter, we introduce zkSENSE, a new humanness verification mech-
anism which was published at the 21st Privacy Enhancing Technologies Sym-
posium (PETS 2021) [Que+21]. In Section 3.1 we define the model we select
to perform the attestation. Next, in Section 3.2 we introduce the compu-
tation we need to prove in zero-knowledge to maintain the privacy of the
user. Section 3.3 presents an ad-hoc construction respectively. In the lat-
ter, we introduce a new zero-knowledge proof to reduce the complexity of
the humanness proof. We then present zkSVM, the proof of humanness, in
Section 3.4. We then provide a security analysis, a description of the im-
plementation and a performance analysis in Sections 3.5, 3.6 and 3.7. For
the implementation and performance we include details on how we build a
SNARK based approached, that showed to be less performant. We conclude
the chapter in Section 3.8 with an improvement to the data consumption by
batching the proofs we introduced in Section 3.3.

3.1 Human attestation

The key intuition behind zkSENSE, shown in Figure 3.1, is that whenever a
(human) user interacts with the mobile’s display, the force applied during the
touch event generates motion. This motion is captured by the embedded IMU
(Inertial Measurement Unit) sensors (e.g.: accelerometer and gyroscope). By
contrast, when there is automated user activity (e.g.: simulated touches)
there is no external force exerted by fingers, and thus there is no noticeable

35

36 Chapter 3. zkSENSE—Private Human Attestation

Figure 3.1: High-level overview of the zkSENSE architecture. An integrated ML-based
classifier studies the patterns of sensor outputs right before, during, and shortly after a
click event. To avoid leaking sensitive sensor output outside the device, the classification
appears on the user side and the client has to prove the integrity of the reported result to
the server.

change in the output of the above sensors. The sensor data is then used in
the client’s device to generate a proof of humanness, which is finally verified
by the server.

Figure 3.2 shows a snapshot of the output produced by IMU sensors
during click events performed both by a human (left plots) and an auto-
mated agent (right plots). During the click events (highlighted in red) the
accelerometer (top plots) senses a max rate of change of 0.6 in case of human
and 0.07 for an automated agent, i.e. 8.5× greater maximum linear accelera-
tion movement. Similarly, the gyroscope (bottom plots) senses a max rate of
change of 0.024 in case of human click and 0.0049 when there is automation,
i.e. 4.9× greater maximum angular rotational velocity.

Figure 3.3 shows a snapshot of the same sensors’ output in the case of
automated clicks coupled with two artificial device movements: vibration

1

Human triggered click Bot triggered click

Figure 3.2: Output of gyroscope and accelerometer motion sensors during human and
automatically triggered click (in red, the click event). The maximum linear acceleration
movement is up to 8.5× greater and the angular rotational velocity is up to 4.9× greater
in case of a human triggered click.

Human attestation 37

3

Bot click during vibration Bot click during swing motion

Figure 3.3: Motion sensors output during automatically triggered click with artificial
device movement (in red, the click event): (i) during device vibration (on the left) and (ii)
when device is docked on a swing (on the right).

and swing motion. In presence of vibration (left plots), we see that the
motion generated is comparable with the case of the human click depicted
in Figure 3.2. Note that the y-axis of the triggered click is around an order
of magnitute smaller than the human triggered click, which implies that the
movements detected in the right are micro movements detected by the sensors
when the device is not in motion. We see that the accelerometer senses the
same force with the case of the human click (this verifies the observations
of [Gue+18]) but for a longer time. The gyroscope though senses greater
angular rotational velocity and for longer time than in the case of a human’s
click. In presence of swing motion (right plots), the gyroscope senses similar
angular rotational velocity as with the case of the human click, while the
accelerometer senses greater linear acceleration movement (up to 3.8×) for
a long period.

3.1.1 Classification of Humanness

Building upon the above observations and as depicted in Figure 3.1, zk-
SENSE uses an ML-based classifier to study the pattern of sensor outputs
before, during, and shortly after a click event. Based on this information, the
model decides about whether the action was triggered by a human or not.

In zkSENSE, we pre-train a model on a server and we move the classifier
to the edge by running it on the user side and only report the result to an
attestation server responsible for auditing the humanness of the user. This
way, zkSENSE ensures that private sensor data never leaves the user’s device.
In Figure 3.1, we present the high level overview of our approach. As we can
see, an attestation starts with a click (screen touch). The motion sensor
outputs generated during this event are used as input to the zkSVM Prover

38 Chapter 3. zkSENSE—Private Human Attestation

Data Data amount

Volunteering Users 10 users
Duration of collection 22 days
Android Devices tested Google Pixel 3, Realme X2 Pro,

Samsung Galaxy S9/S8/S6, Honor 9,
Huawei Mate 20 Lite, OnePlus 6

Human events collected 7736 clicks
Artificial events collected 25921 clicks

Table 3.1: Summary of the collected dataset.

module, which runs a trained model to classify if the action was conducted
by a human or not.

To collect the necessary ground truth to train the various tested mod-
els, we instrumented the open source browser Brave [Bra20] for Android
to capture click events (and their corresponding motion sensor traces) per-
formed during browsing. Then, we recruited 10 volunteers who used our
instrumented browser for 22 consecutive days for their daily browsing6. The
device models used are: Google Pixel 3, Samsung Galaxy S9, S8 and S6,
OnePlus 6, Realme X2 Pro, Huawei Mate 20 Lite and Honor 9. Volunteers
were well-informed about the purpose of this study and gave us consent to
collect and analyse the motion sensor traces generated during their screen
touch events. We urged volunteers to use their phone as normal.

To generate artificial user traffic, we used adb [Dev20] to automate soft-
ware clicks on 4 of the volunteering devices. To test different attack scenarios,
during the automation, we generated software clicks with the device being
in 4 different states:

1. Resting on a platform (desk/stand).

2. Being carried around in pocket.

3. Being placed on a swing motion device.

4. While device is vibrating (triggered by adb).

As summarized in Table 3.1, by the end of the data collection, we had 7736
human-generated clicks and 25921 artificially generated clicks.

During data collection, accelerometer and gyroscope sensors were sampled
at 250Hz. For each click event, we not only consider the device motion

6During data collection the instrumented browser was running on the users’ personal
device so we could not control the services running in the background. The data collected
included only the raw sensor data during a user click.

Privacy-Preserving and Provable ML 39

Classifier F1 (weighted) Recall

SVM 0.92 0.95
Decision Tree (9 Layers) 0.93 0.95
Random Forest (8 Trees, 10 Layers) 0.93 0.95
KNN 0.92 0.93
Neural Network (Linear Kernel) 0.86 0.95
Neural Network (ReLU Kernel) 0.91 0.96

Table 3.2: Accuracy of the various tested classifiers, where we study Support Vector
Machines (SVM), Decision Trees, Random Forests, K-Nearest Neighbor (KNN) and Neural
Networks with Linear and ReLU kernels.

during the touch, but also the device motion right before and shortly after
the touch. In particular, we consider that the period starts 50ms before the
finger touches the screen and finishes 250ms after it. Then, we split each
period into two segments: (i) before releasing finger and (ii) after releasing
finger. For each axis (x, y, z) in accelerometer and gyroscope, we calculate the
average and standard deviation of its outputs in each segment. In addition,
we calculate the consecutive difference of sensor outputs in each segment and
use the average and standard deviation of these differences as features.

Using the above features, we test several ML classifiers via 10-fold cross
validation. Table 3.2 presents the weighted F1 score and recall of the differ-
ent classifiers we tested [Chi92]. Recall is the number of correctly detected
positives divided by all positives of the dataset. In this context, recall means
the proportion of correctly identified artificial clicks over all artificial clicks.
In other words, recall indicates the ability to capture artificial clicks. The
F1 score is the harmonic mean of the precision (where the precision is deter-
mined by dividing the number of true positives over the number of all positive
results) and the recall represents the number of correctly identified bots out
of all bots in the dataset. We choose weighted F1 score as an evaluation
index because our dataset is unbalanced.

3.2 Privacy-Preserving and Provable ML

To preserve user privacy, human attestation in zkSENSE is performed in the
user’s device and only the result of the attestation is shared with the server.
To ensure that the server can verify the integrity of the transmitted result,
the user includes a commitment of the sensors, together with a proof that
the result corresponds to the model evaluated over the commited values.

We build the two ML evaluation proving components of zkSENSE: (i)
zkSVM Prover and (ii) zkSVM Verifier. The zkSVM Prover checks on the
client whether a user is a human based on a model we pre-trained (Sec-

40 Chapter 3. zkSENSE—Private Human Attestation

tion 3.1.1), and generates a proof to ensure its proper execution. The zkSVM
Verifier, on the server’s side, checks that the proof is correctly generated. If
the verification is successful, the server will know that (a) the ML-based hu-
manness detection model classifies the user as human or non-human based
on the committed sensor outputs, and that (b) the used model is the genuine
one, without though learning the value of sensor outputs.

Table 3.2 shows that the different classifiers tested achieve similar accu-
racy. While decision trees, random forests, or neural networks provide slightly
higher F1 accuracy than SVM (see Table 3.2), in zkSENSE we choose SVM as
the underlying model due to its simplicity at evaluation time and its suitabil-
ity with zero-knowledge proofs. Hence, our zkSENSE’s accuracy in assessing
the humanness of a user is 92%. Contrarily, neural networks need to perform
non-linear operations, while decision trees require several range proofs, which
are expensive operations to prove in zero-knowledge. As mentioned above,
the SVM model we trained uses as features the average (µ) and standard
deviation (σ) of sensor outputs, together with the average and standard de-
viation of the consecutive difference vector. On top of that, before applying
the SVM model, the extracted features need to be normalised. The goal of
normalisation is to change data values to a common scale, without distorting
differences in the ranges of values. Then, trained SVM weights are assigned
to each normalised feature to calculate the SVM score.

Suppose for each feature fi, the normalisation mean, normalisation scale,
and SVM weight and intercept are Mi, Si, wi and c respectively. Then, the
SVM score s can be calculated with the equation:

s =
1

e
−(c+

∑︁N
i=1

(fi−Mi)

Si
wi) + 1

. (3.1)

Since only the value of fi is secret, we only need to provably compute∑︁N
i=1 fi

wi

Si
. Given only integer values can be processed in the underlying

group arithmetic of Pedersen commitments, we instead prove
∑︁N

i=1 fi

⌊︂
wi

Si
10d
⌋︂

and effectively use the parameter d to preserve d-digits after the decimal
points of wi

Si
.

The model trained in this work had as a goal the exploration of the
feasibility of generating a zero knowledge proof of correct execution of the
model. Training a model using only 10 users with their respective mobile
devices is not representative of the whole population, and if this solution is
reused, this should be taken into account to train a more accurate model.
However, we note that the way that zkSENSE is built allows the server to
change and update the model as soon as it gets obsolete. zkSENSE is not
bound to a particular trained model, but only to SVM in general. We would

zkSVM—proving humanness with logarithmic complexity 41

like to emphasize that a model with more data, users, or devices would not
affect the proof generation, nor the evaluation performed in Section 3.7.

In order to perform the provable computation of the ML model, we tested
two approaches:

• General computation ZKPs.

• Ad-hoc ZKP.

As introduced in Section 2.2, there exists ZKP systems that allow one
to encode and prove any type of NP-statement. This seemed ideal at first
for our construction, in particular with the existing tools and compilers that
abstract the low level knowledge away from the developer. However, as will
become clear by the end of the section, this was not the best solution for
our scenario. As it turns out, building an ad-hoc proof for our computation
resulted in a considerable improvement on the performance on prover side.

3.3 zkSVM—proving humanness with loga-

rithmic complexity

The development of the general computation ZKP approach was ideal for
prototyping, but as we will show in Section 3.7, it induces a considerable
overhead in the client side. To avoid using a general computation ZKP, in
this section we present an ad-hoc model that considerably reduces prover
time. However, to achieve this, it is not sufficient with ZKPs presented in
Section 2.2 —we require a zero-knowledge inner product proof. However,
as presented in Section 2.3.1, such a solution, with logarithmic complexity
has not been yet formalised. We begin by formalising such a proof, before
presenting the description of zkSVM.

3.3.1 IP-ZKP

Inner product proofs are an important building block of zkSENSE, as it
is what allows us prove correctness of average computation and standard
deviation. However, existing constructions which have sub-linear complexity
only provide the soundness properties of proofs, and not the zero-knowledge.
The latter is key for our applications and hence we need to extend the existing
solutions to provide honest-verifier zero-knowledge.

Protocol 3.3.1. IP-ZKP This protocol presents the sub-linear Inner Prod-
uct Zero-Knowledge Proof (IP-ZKP). Our construction is based on the non

42 Chapter 3. zkSENSE—Private Human Attestation

zero-knowledge version presented in [Bün+18]. For their use cases, the zero-
knowledge property is not required, and hence the lack of an explicit def-
inition and study of a zero-knowledge proof. In this section we make it
explicit, and prove (in Section 3.8) that it provides completeness, knowledge
soundness and special honest-verifier zero-knowledge properties. For the in-
troduction of notation, refer to Chapter 2. In our construction the prover
has a commitment, A = hαgahb, of two vectors a, b with blinding factor α,
and a second commitment, V = gichγ, of a value, ic, with blinding factor γ.
The prover convinces the verifier that ⟨a, b⟩ = ic holds. In particular, the
prover proves the following statement:

SPK{(α, γ,a, b, ic) : A = hαgahb ∧ V = gichγ ∧ ⟨a, b⟩ = ic}

The prover, P , and verifier, V , interact as follows7:

P: It computes blinding vectors, sL, sR for each vector of the inner product
and commits to it:

sL, sR ←$ ZN
p , (3.2)

ρ←$ Zp, (3.3)

S = hρgsLhsR ∈ G. (3.4)

Now the prover defines two linear vector polynomials, l(X), r(X) ∈
ZN

p [X], where X is the indeterminate, and a quadratic polynomial as
follows:

l(X) = a+ sL ·X ∈ ZN
p [X], (3.5)

r(X) = b+ sR ·X ∈ ZN
p [X], (3.6)

t(X) = ⟨l(X), r(X)⟩ = t0 + t1 ·X + t2 ·X2 ∈ ZN
p [X]. (3.7)

By creating like that the polynomials, it allows for an evaluation of the
polynomial at a given point without disclosing any information about
the vectors a or b. The prover needs to convince the verifier that the
constant term of t(X) equals ic. To do so, the prover commits to the
remaining coefficients of the polynomial

τ1, τ2 ←$ Zp, (3.8)

Ti = gtihτi ∈ G, i = {1, 2}. (3.9)

7Note that this protocol can be made non-interactive with the Fiat-Shamir Heuris-
tic [FS87].

zkSVM 43

P → V: S, T1, T2

V: The verifier then computes a challenge

c←$ Z∗
p.

V → P: c

P: It computes the response using the challenge received

l = l(c) = a+ sL · c ∈ ZN
p , (3.10)

r = r(c) = b+ sR · c ∈ ZN
p , (3.11)

t̂ = ⟨l, r⟩ ∈ Zp, (3.12)

τc = τ2 · c2 + τ1 · c+ γ, (3.13)

µ = α + ρ · c ∈ Zp. (3.14)

P → V: τc, µ, t̂, r, l.

V: The verifier needs to check that r, l are correct and the inner product
relation holds with respect to t̂. To this end it performs the following
checks:

gt̂hτc ?
= V · T c

1 · T c2

2 , (3.15)

P = A · Sc ∈ G, (3.16)

P
?
= hµ · gl · hr, (3.17)

t̂
?
= ⟨l, r⟩. (3.18)

If all checks validate, then this means that the statement is true with
overwhelming high probability.

To make this proof logarithmic, we use the same trick as in the original paper.
Instead of sending the vectors r, l to prove the inner product relation, we
leverage IP-ZKP over the blinded vectors recursively.

We present the following result:

Theorem 1 ([Que+21]). The inner product proof presented in Protocol 1
has perfect completeness, perfect special honest verifier zero-knowledge, and
knowledge soundness.

Proof. This theorem is simply an instantiation of Theorem 4 (which proves
the above statement for batch proofs) with m = 1.

44 Chapter 3. zkSENSE—Private Human Attestation

3.4 Scheme

Now that we have a sub-linear zero-knowledge inner product proof, and by
leveraging the proofs introduced in Section 2.2, we can design our ad-hoc
ZKP of SVM evaluation. Without loss of generality, we assume that the
number of sensor inputs is n for every sensor.

Protocol 3.4.1 (zkSVM). The protocol is divided in three phases. First, the
setup phase, Setup(ϵ), where the server generates the model and their corre-
sponding weights. Secondly, the proving phase, where the prover fetches the
SVM related data, computes the difference vector, and proceeds to provably
compute the average and standard deviation of these values. It then applies
the corresponding linear combinations to the hidden features, and opens the
result to send it to the verifier. Finally, the verification phase, where the ver-
ifier checks that all computations were correctly performed. Then, it checks
whether the scores do correspond to a human or a bot.

Setup phase
The setup involves the server, where it generates the cryptographic material,
and trains the SVM model. The details on how this model is generated
falls out of the scope of zkSVM, the only requirement is that it follows the
specifications described at the beginning of this section. Once these values
are computed, they are published to allow provers to fetch them and generate
the proofs.

Procedure 3.4.1. (Setup) On input the security parameter, ϵ, the
zkSVM server runs Setup(ϵ) to generate the SVM and cryptographic
parameters. Precisely, it trains the SVM model and generates the
normalisation mean, normalisation scale, and SVM weight and in-
tercept, Mi, Si, wi and c respectively. It also considers the size of
the input vectors, n, which defines how long a touch is considered
and the measurement frequency. Next it selects the group, G, with
generators g and h, and prime order p. It proceeds by computing
two vectors, g,h, of generators that act as bases for the Pedersen
Vector Commitments. Note that the corresponding discrete log of
these bases must remain unknown.

Proving phase
The proof generation is divided in five protocols. First the prover computes
the difference vectors and proves correctness. Next it computes the average
of all vectors, followed by a computation of the standard deviation. Finally, it
evaluates the normalising linear computations over the results, and sends the
opening of the result to the verifier together with the proofs of correctness.

Scheme 45

The prover’s secret is v ∈ ZN
p , r ∈ Zp such that

SH = gv · hr.

Procedure 3.4.2. (Consecutive difference) In this step the prover’s
goal is to compute the difference of consecutive values in the input
vector, while keeping it hidden. Mainly, we want a provable value of

Sd
H = gvdhrd ,

with vd = [v1 − v2,v2 − v3, . . . ,vn−1 − vn, 0], and rd ∈ Zp, indistin-
guishable from random. The intuition here is first to get a commit-
ment of the iterated values of the sensor vector, then leverage the
homomorphic property to subtract this commitment with SH and
finally provably replace the value in position n by zero. To compute
the iterated value, the prover first iterates the base generators, to get

giter = [gn, g1, . . . , gn−1].

Note that this step can be performed by the verifier as the generators
are public. It then commits the sensor vector with this base

Siter
H = gv

iter · hriter ,

with riter ←$ Zp, and generates a proof of equality,

ΠEq = ΠEq.Gen(g, giter, h, SH , S
iter
H ;v, r, riter).

Note that
Siter
H = gv2

1 · · · gvn
n−1 · gv1

n · hriter ,

so now we can simply subtract the two commitments to get

SH = SH/S
iter
H = gv1−v2

1 gv2−v3
2 · · · gvn−1−vn

n−1 gvn−v1
n · hr−riter .

Note that r and riter are random, and therefore, so is r−riter. Finally,
the prover replaces the value in the exponent of gn by a zero, to get
the final commitment:

Diff = gv1−v2
1 gv2−v3

2 · · · gvn−1−vn
n−1 g0n · hrdiff , (3.19)

and generates a proof of correctness,

Π0 = Π0.Gen(g, h, SH , Diff ;vd, r − riter, rdiff). (3.20)

It stores ∆ = [Diff, Siter
H ,ΠEq,Π0].

46 Chapter 3. zkSENSE—Private Human Attestation

Procedure 3.4.3. (Sum of vectors) The prover now computes µ̃ =
N · µ, mainly, the sum of all values. To provably compute this, we
leverage IP-ZKP between the initial commitment, SH , and a Peder-
sen commitment with base h of the one vector, h1, to prove that a
third commitment, Avg = Comm(µ̃, rµ), commits to the sum of the
committed values in SH ,

⟨v,1⟩ = µ̃.

The user proves correctness of the commitment,

Πµ
IP = ΠIP .Gen(g,h, g, h, SH · h1, Avg;v, r).

It stores both values M = [Avg,Πµ
IP]. It repeats the same steps

as above with the commitment of the consecutive difference vector,
resulting in a commitment of the average, Avg ′, and a proof of cor-
rectness, Πµ

IP
′. It stores both values M′ = [Avg ′,Πµ

IP
′].

Procedure 3.4.4. (Standard deviation) To calculate a factor of the
standard deviation, σ, we first compute the variance, σ2. Recall that

σ2 =
1

N

N∑︂
i=1

(vi − µ)2,

or written differently

σ2 =
1

N
⟨v− µ,v− µ⟩,

where µ is a vector with µ in all its positions. For this we need the
average, but only have a provable commitment of the sum, µ̃. Hence,
instead of computing the variance, we compute N3 ·σ2 by leveraging
the inner product proof and the arithmetic properties of the com-
mitment function. The intuition is the following: if we multiply each
entry of v by N , we can get the following relation.

⟨N · v− µ̃, N · v− µ̃⟩ = ⟨N · v−N · µ, N · v−N · µ⟩ =
⟨N · (v− µ), N · (v− µ)⟩ = N2⟨v− µ,v− µ⟩ = N3 · σ2. (3.21)

However, we only have SH , and a provable commitment of µ̃ (not of
µ̃). Moreover, we need a commitment of v and µ̃ under both bases
(g and h). To this end, the prover computes the following steps.

Scheme 47

First, it computes the commitment of µ̃ with both bases. To this
end, the prover first computes a product of all the bases,

gΠ =
n∏︂

i=1

gi and hΠ =
n∏︂

i=1

hi.

Note that this step is again reproducible by the verifier, and hence no
proof is required. Next it commits the average using these products
as a base, to get

Gµ̃ = gµ̃Π · h
rG = gµ̃1 · · · gµ̃n · hrG ,

and
H µ̃ = hµ̃

Π · h
rH = hµ̃

1 · · ·hµ̃
n · hrH ,

with rG, rH ←$ Zp. It proves equality between the opening of
Avg,Gµ̃ and H µ̃ using ΠEq, and stores the two proofs,

ΠG
Eq = ΠEq.Gen(gΠ, g, h, Avg,G

µ̃;µ, rµ, rG),

and
ΠH

Eq = ΠEq.Gen(hΠ, g, h, Avg,H
µ̃;µ, rµ, rH),

one for each base. Finally, the prover commits to v with randomness
rS with h as bases,

HS = hvhrS ,

and proves equality of opening with respect to SH , getting

ΠS
Eq = ΠEq.Gen(g,h, h, SH , HS;v, r, rS).

This allows the prover to leverage relation (3.21) to provably compute
a commitment of a factor of the variance using the proof presented
in Protocol 3.3.1 To this end, it computes

AS = SN
H /Gµ̃ ·HN

S /H µ̃ = gN ·v−µ̃ · hN ·v−µ̃ · hN ·r−rG+N ·rS−rH

and the commitment of the factor of the variance,

V ar = Comm(N3 · σ2, rV).

It generates a proof of correctness

Πσ2

IP = ΠIP .Gen(AS, V ar, g,h, g, h;v, µ̃, r, rG, rH , rS, rV).

48 Chapter 3. zkSENSE—Private Human Attestation

Finally, the prover needs to compute the square root of the vari-
ance. To this end, it commits to the floor of the square root of
N3 · σ2, Std = Commit(⌊

√
N3 · σ2⌋, r√), with randomness r√. Then,

the prover leverages the square root proof introduced in Section 2.2.3,
and generates

Πσ
sqrt = Πsqrt.Gen(V ar, Std, g, h; σ2, σ, rV , r√).

This results in a provable commitment of a factor of the floor of the
standard deviation, Std. The prover stores,

Λ =
[︂
Gµ̃, H µ̃, HS,Π

G
Eq,Π

H
Eq,Π

S
Eq, V ar,Πσ2

IP , Std,Π
σ
sqrt

]︂
.

It repeats the same steps above with the consecutive difference vector
(and average), resulting in

Λ′ =
[︂
Gµ̃ ′, H µ̃ ′, HS

′,ΠG
Eq

′,ΠH
Eq

′,ΠS
Eq

′, V ar ′,Πσ2

IP
′, Std ′,Πσ

sqrt
′
]︂
.

Procedure 3.4.5. (Computing SVM score) Provably comput-
ing SVM score, equation (3.1), reduced to provably computing∑︁N

i=1 fi

⌊︂
wi

Si
10d
⌋︂
where fi are the features. However, note that we

do not have the features themselves, but a factor of them. Hence,

with this scheme, we need to compute instead r =
∑︁N

i=1 fi

⌊︂
wi

Ni·Si
10d
⌋︂

where Ni equals N if fi is an average, and N3/2 if it is a standard
deviation (note that we have different factors of each). Again, wi

Ni·Si

is public. Let Commi = Commit(fi, ri) be the commitment of feature
fi with blinding factor ri. The prover computes the following:

Res =
N∏︂
i=1

Comm

⌊︂
wi

Ni·Si
10d

⌋︂
i =

N∏︂
i=1

Commit

(︃
fi ·
⌊︃

wi

Ni · Si

10d
⌋︃
, ri ·

⌊︃
wi

Ni · Si

10d
⌋︃)︃

=

Commit

(︄
N∑︂
i=1

fi

⌊︃
wi

Ni · Si

10d
⌋︃
, rR

)︄
, (3.22)

where rR =
∑︁N

i=1 ri

⌊︂
wi

Ni·Si
10d
⌋︂
, is the blinding factor known to the

prover. Once these operations have been performed, the prover stores

the opening of the commitment, Score =
∑︁N

i=1 fi

⌊︂
wi

Ni·Si
10d
⌋︂
, and the

blinding factor rR.

Scheme 49

Procedure 3.4.6. (Sending values) The prover sends to the verifier
the following tuple

[SH ,∆,M,M′,Λ,Λ′, Score, rR] .

Verification phase
The verifier then performs all respective linear combinations commitments,
and verifies the zero-knowledge proofs. If any proof fails or the evaluation of
the model over Score fails, the verifier denies the request. Else, it accepts it.
More precisely, the verifier follows the following procedures:

Procedure 3.4.7. (Verifying consecutive difference) The verifier be-
gins by iterating the base of generators, to get

giter = [gn, g1, . . . , gn−1],

and then verifies the proof of opening equality,

ΠEq.Verif(g, giter, h, SH , S
iter
H)

?
= ⊤.

Next it computes the subtraction commitment to get

SH = SH/S
iter
H .

Finally, it verifies that the proof

Π0.Verif(g, h, SH , Diff)
?
= ⊤.

Procedure 3.4.8. (Verifying sum of vectors) The verifier checks the
inner product proof

Πµ
IP .Verify(g,h, g, h, SH · h1, Avg)

?
= ⊤.

It repeats this step for the consecutive difference commitment and
proof.

Procedure 3.4.9. (Verifying standard deviation) The verifier first
computes a product of all the bases,

gΠ =
n∏︂

i=1

gi and hΠ =
n∏︂

i=1

hi.

50 Chapter 3. zkSENSE—Private Human Attestation

Next it verifies the proofs of equality of commitments using these
bases

ΠG
Eq.Verify(gΠ, g, h, Avg,G

µ̃)
?
= ⊤,

and
ΠH

Eq.Verify(hΠ, g, h, Avg,H
µ̃)

?
= ⊤.

Next, the verifier checks that HS commits to the input vector

ΠS
Eq.Verify(g,h, h, SH , HS)

?
= ⊤.

Now the verifier needs to generate the commitments under which the
inner product proof of the variance will verify against. To this end
it computes

L = SH/G
µ̃ and R = HS/H

µ̃ (3.23)

and uses them to verify the inner product proof

Πσ2

IP .Verify(L ·R, V ar, g,h, g, h)
?
= ⊤.

Finally, the verifier checks the correctness of the factor of the stan-
dard deviation commitment

Πσ
sqrt.Verify(V ar, Std, g, h)

?
= ⊤.

It repeats these steps for the consecutive difference commitments.

Procedure 3.4.10. (Computing SVM score) Finally, the verifier
computes the same linear combinations as the prover,

Res′ =
N∏︂
i=1

Comm

⌊︂
wi

Ni·Si
10d

⌋︂
i , (3.24)

and checks the validity of the received opening,

o(Res′, Score, rR, g, h)
?
= ⊤.

It uses this value to compute the final score as described in equa-
tion (3.1). If any of the checks fail or the score determines the user
is a bot, it returns ⊥, otherwise it returns ⊤.

In a nutshell, by extending the inner product proof presented in [Bün+18]
to a zero-knowledge proof and leveraging the arithmetic properties of Ped-
ersen commitments, we build zkSVM, a privacy-preserving SVM evaluation
model.

Security analysis 51

3.5 Security analysis

In this section we formally define the properties we expect out of zkSVM,
namely privacy and verifiability. We use game based proofs to show that
zkSVM indeed provides these properties. We formally define them here, and
include the proofs subsequently. To model the experiments of privacy and
verifiability, we define the following five functions:

• Setup(ϵ): Which is defined exactly as in Procedure 3.4.1. We omit
the notation of the cryptographic material, and consider it implicit.
We represent the set of parameters of the SVM model (normalisation
mean, normalisation scale, SVM weight and SVM intercept) by W .

• GenProof(v): Generates the zkSVM proof by running Proce-
dures 3.4.2, 3.4.3, 3.4.4, and 3.4.5. Mainly, it runs all steps of the
proof except for the submission step. We simplify the representation
of the resulting tuple by [SH ,Θ, Score, rR], where Θ consists of all in-
termediate proofs and commitments.

• SubmitReq([SH ,Θ, Score, rR]): Submits the output of GenProof(v) by
sending it to the verifier (Procedure 3.4.6).

• VerifReq([SH ,Θ, Score, rR]): Runs all procedures defined in the Verifi-
cation phase of zkSVM, mainly Procedures 3.4.7, 3.4.8, 3.4.9 and 3.4.10.

• EvalSVM(v): Generates the result, Score, corresponding to v, as de-
fined in the zkSVM proof, but excluding the cryptographic mechanisms.

Privacy

The goal of zkSVM is that no information is leaked from the input vector
other than the result of the SVM model. To model this, in Figure 3.4 we
define an experiment, Exppriv,bA,D , between an adversary, A, and a challenger,
D. The latter chooses a bit b ∈ {0, 1}, uniformly at random, which is given
as input to the experiment. The adversary controls the zkSVM verifier, and
its goal is to distinguish the submissions of two different input vectors. The
adversary is given access to an oracle, OSubmit(), which takes as input two
vectors of size n, runs GenProof() over them, and submits a result. Note that
it is the adversary who chooses the vectors over which the zkSVM is executed
and may modify the weights of the SVM model outputted by Setup(). There-
fore, this experiment models the malicious choice of the SVM parameters,
as well as any possible choice of input vector. Depending on the bit, b, the
oracle submits the result of one vector or the other, by running SubmitReq().

52 Chapter 3. zkSENSE—Private Human Attestation

Exp
priv,b
A,D (ϵ):

W← Setup(ϵ)
b′ ← AOSubmit(W)
Output b′

OSubmit(v1, v2):
Let [S1

H ,Θ1, Score1, r1R]← GenProof(v1,W)
Let [S2

H ,Θ2, Score2, r2R]← GenProof(v2,W)
Let Θ2 ← SimResult(S2

H , Score1, r1R)
return SubmitReq([Sb

H ,Θb, Score1, r1R])

Figure 3.4: In the privacy experiment Exppriv,bA,D , the adversary A has access to the oracle
OSubmit and controls zkSVM verifier.

However, to avoid a trivial win by the adversary, the submitted SVM score
is always computed over the first vector. Hence, the experiment simulates
the proof of the second vector by running SimResult(). The adversary may
call this oracle as many times as it wishes. By the end of the experiment,
the adversary outputs a bit, b′ ∈ {0, 1}. The adversary wins if b′ = b with
non-negligible probability with respect to the security parameter, ϵ.

Theorem 2. There exists a SimResult algorithm, such that no PPT adver-
sary can win the zkSVM privacy experiment, Exppriv,bA,D , with colluding verifier
with probability non-negligibly better than 1/2 with respect to ϵ.

Proof. To prove that zkSVM provides privacy we proceed by a series of
games. We start with the adversary playing the privacy experiment with
b = 0, and after a sequence of game step transitions, the adversary fin-
ishes playing the ballot privacy experiment with b = 1. We argue that each
of these steps are indistinguishable, and therefore the results follows. The
proof proceeds along the following sequence of games:

Game G0: Let game G0 be the Exppriv,0A,D (ϵ) game (see Figure 3.4).

Game G1: Game G1 is as in G0, but now OSubmit always computes a
simulation of Θ regardless of the bit. Mainly, OSubmit proceeds as
follows:

OSubmit(v1, v2):
Let [S1

H ,Θ1, Score1, r1R]← GenProof(v1,W)
Let [S2

H ,Θ2, Score2, r2R]← GenProof(v2,W)
Let Θ1 ← SimResult(S1

H , Score1, r1R)
Let Θ2 ← SimResult(S2

H , Score1, r1R)
return SubmitReq([S1

H ,Θ1, Score1, r1R])

Security analysis 53

The function SimResult proceeds by simulating all zero-knowledge
proofs contained in Θ. Because all these proofs are zero-knowledge
proofs, and hence have the special honest-verifier zero-knowledge prop-
erty (see Section 2.2), there exists a simulation algorithm such that A
cannot distinguish between a real and a simulated proof. Note that at
this point of the experiment, the commitment SH and all commitments
in Θ correspond to those of v1 —only the zero-knowledge proofs in Θ
are simulated.

Game G2: Game G2 is as in G1, but now, instead of returning

SubmitReq([S1
H ,Θ

1, Score1, r1R]),

the oracle OSubmit returns

SubmitReq([S2
H ,Θ

2, Score1, r1R]).

In G2 the view of the adversary is identical to the one of Exppriv,1A,D (ϵ).
Only thing that remains is to prove that G1 and G2 are indistinguish-
able

Given the Special Honest-Verifier Zero-Knowledge property of the proofs,
we know that the simulated view is random. Given that both simulations
are equally distributed, it is infeasible to distinguish between Θ1 and Θ2.
Similarly, given the perfectly hiding property of Pedersen commitments, no
adversary can distinguish between S1

H and S2
H .

Clearly the resulting view is independent of b. And privacy follows.

Verifiability

The other goal of zkSVM is that an adversary cannot convince a verifier that
the result is not linked to the committed vector as defined by the protocol.
To model this, in Figure 3.5 we define an experiment, ExpverifA,D , between an
adversary, A, and a challenger, D. Informally, verifiability ensures that a
result that is not the outcome of the model evaluation over the committed
vector cannot have a valid proof. Note that this property does not ensure that
the sensor data has not been used before nor that it comes from the sensors
of the device. It is out of the scope of this security analysis to ensure that
the mobile device is not rooted and that the adversary cannot tamper the
sensor data. During the experiment the adversary has access to the weights
of the model, and generates an input vector, a result, and its corresponding
proof material. The adversary wins the experiment if the result does not
correspond the the SVM execution of the committed vector, and the verifier
validates. We formally describe the experiment in Figure 3.5.

54 Chapter 3. zkSENSE—Private Human Attestation

ExpverifA,D (ϵ):

W← Setup(ϵ)
[v, SH ,Θ, Score, rR]← A(W)
If EvalSVM(v) = Score return 0
If VerifReq([SH ,Θ, Score, rR]) = ⊥
then return 0, else return 1.

Figure 3.5: In the verifiability experiment Expverifb,A , the adversary A needs to submit a
result not corresponding to the commited vector.

Theorem 3. No PPT adversary can win the zkSVM verifiability experiment,
ExpverifA,D , with non-negligible probability with respect to ϵ.

Proof. At the end of the proof generation procedure, the prover (in our case
the adversary) outputs a commitment, SH , a tuple of intermediate cryp-
tographic material, Θ, and a score, Score, together with the randomness
associated to the commitment of the score, rR. The result follows from the
soundness property of ZKPs and the binding property of Pedersen commit-
ments. Let us extend the cryptographic material associated with the vector.
We have that Θ = [∆,M,M′,Λ,Λ′], with

∆ =
[︁
Diff, Siter

H ,ΠEq,Π0

]︁
,

M = [Avg,Πµ
IP] ,

M′ = [Avg ′,Πµ
IP

′] ,

Λ =
[︂
Gµ̃, H µ̃, HS,Π

G
Eq,Π

H
Eq,Π

S
Eq, V ar,Πσ2

IP , Std,Π
σ
sqrt

]︂
,

Λ′ =
[︂
Gµ̃ ′, H µ̃ ′, HS

′,ΠG
Eq

′,ΠH
Eq

′,ΠS
Eq

′, V ar ′,Πσ2

IP
′, Std ′,Πσ

sqrt
′
]︂
.

The proof verifies all proofs. In particular

• Procedure 3.4.7 first generates the iterated generators, and checks that
indeed SH and Siter

H commit to the same opening, by verifying ΠEq.
Then, it checks that Diff commits to the difference of SH and Siter

H ,
in all entries but the last, which contains a zero, by verifying Π0.

• Procedure 3.4.8 checks that Avg commits to the sum of the elements
committed in SH by verifying Πµ

IP . It does the same for the difference
vector.

• Procedure 3.4.9 first checks that Gµ̃ and H µ̃ commit to the sum com-
mitted in Avg by verifying ΠG

Eq and ΠH
Eq respectively. Then, it checks

that HS commits to the same values as SH by verifying ΠS
Eq. With

System Implementation 55

these verified commitments, the verifier can check that V ar commits
to N2⟨v − µ,v − µ⟩, in other words, that it commits to a factor of
the variance. It does so by running the algebraic operations of equa-
tion (3.23), and verifying Πσ2

IP . Finally, to check that Std commits to
the standard deviation of the vector committed in SH , it simply needs
to check that it contains the square root of V ar. It does so by verifying
Πσ

sqrt. The same is performed for the difference vector.

Given that all these proofs are Zero Knowledge Proofs, which provide
the knowledge soundness property, the commitments of the SVM features,
Avg,Avg ′, Std, Std ′, do not contain the expected features of the vector com-
mitted in SH with negligible probability. It only remains to prove that the
result indeed corresponds to the SVM function executed with these features
as inputs.

• Procedure 3.4.10 first leverages the homomorphic properties of the com-
mitment scheme. In this way, the verifier obtains a commitment of the
linear combination of the values committed in Avg,Avg ′, Std, Std ′.
This results in the commitment of the result, as described in equa-
tion (3.22). This operation is conducted solely by the verifier, avoiding
any possible attacks by the adversary. Finally, the verifier checks that
the submitted score, and the corresponding opening key, indeed corre-
spond to the locally computed commitment. Only if this is true, the
verifier validates.

Given that the commitment scheme used in zkSVM is computationally bind-
ing, a PPT adversary has no more than negligible probability of submitting
an opening that does not correspond to the committed value.

Given that EvalSVM and the proof of zkSVM compute the exact same
operations over the input vector, the result that the adversary has no more
than negligible probability of wining the verifiability experiment follows.

3.6 System Implementation

To assess the feasibility and effectiveness of our approach we developed (i)
an open source library of zkSVM, and (ii) a prototype Android SDK of
zkSENSE.

56 Chapter 3. zkSENSE—Private Human Attestation

3.6.1 Enclosing SVM Result in a ZKP

The zkSVM library: In order to prove the integrity of the classifica-
tion results, we developed an open-sourced Rust library that implements the
logic presented in Protocol 3.4.1, on enclosing SVM results in zero-knowledge
proofs. To this end, we additionally implemented the Pedersen Commitment
ZKPs as described in Section 2.2.3. For the proofs ΠSq,ΠEq,Π0 and ΠOp,
we based our implementation in the work presented in [Gro09]. We used the
range proof presented in [Bün+18] and implemented in [VYA20]. Finally, for
ΠIP , we implemented the zero-knowledge proof presented in Protocol 3.3.1
All the above proofs were implemented using the ristretto255 prime order
group over Curve25519 by leveraging the curve25519-dalek [LV20] library.
To integrate this library with our detection engine, we used the Android
NDK development kit.
General-purpose zkSNARK: To compare the performance of zkSVM
with the ZK-SNARK based solution, we implement the SVM execution using
the ZoKrates general-purpose zkSNARK toolbox [ET18]. ZoKrates works as
a high-level abstraction for the encoding of the computation to be proved into
a zkSNARK. ZoKrates constructs the ZKP by using the Rust implementa-
tion of Bellman’s [Gri16] Groth16 zkSNARK [Gro16]. This construction has
optimal proof size and verification time. However, this comes by trading off
prover’s computational complexity and the requirement of a trusted setup.

To test our scheme in ZoKrates, we test the performance both with the
SHA and the Pedersen hash ZoKrates standard library implementations8 and
conclude that the former is more efficient (only SHA and Pedersen where
available at the time of testing). ZoKrates only supports static arrays, i.e.
their size needs to be known at compilation time. Because of that, we defined
the maximum array size to be 70 which was an upper bound for the size of
most of the touch events as defined in Section 3.1.1. We padded with zeros
the events shorter than 70 sensor values. Moreover, the Pedersen standard
library implementation offers a 512-bit input version of the hash function.
Given that we use a precision of 6 decimal digits (and hence, can represent
each integer with 25 bits), we batch 18 sensor outputs per hash. Given that
the gyroscope and accelerometer work in a three dimensional space, and the
static size of the array is 70, we need to use signatures over 11 different hashes,
and hence prove knowledge of pre-image of 11 Pedersen hashes for every
sensor. Moreover, the constant size zkSNARK used in ZoKrates requires a
trusted setup.
Comparison: zkSVM does not have any of these limitations: (i) it does

8https://github.com/Zokrates/ZoKrates/tree/master/zokrates_stdlib/

stdlib/hashes

https://github.com/Zokrates/ZoKrates/tree/master/zokrates_stdlib/stdlib/hashes
https://github.com/Zokrates/ZoKrates/tree/master/zokrates_stdlib/stdlib/hashes

System Implementation 57

not have a trusted setup, (ii) it supports dynamic arrays and (iii) computing
Pedersen hashes is not bounded to a maximum. This allows us to compute
a single Pedersen hash per sensor.

3.6.2 Prototype of our Approach

We implement a prototype SDK of zkSENSE for Android, which consists
of around a thousand lines of code. Our prototype collects the output of
the Android’s accelerometer and gyroscope during a touch event and, by
applying a pre-trained model, it determines if the touch event was performed
by a human or not.

For demonstration purposes, we created a demo app with a user interface
that shows the output of the detection model and in [Ano19] we provide
publicly a video that demonstrates its functionality. In this demo, we test
multiple scenarios to showcase the accuracy of our system:

1. When the device is resting on a steady platform and:

(a) A human is performing clicks.

(b) Clicks are simulated.

2. When the device is docked on a swing motion device that produce
artificial movement.

3. When the device is held in one hand and:

(a) A human is performing clicks.

(b) Clicks are simulated.

In each scenario, the app is using our SDK to attest the humanness of a
touch-screen event on the mobile device.

After reading the output of the accelerometer and gyroscope sensors,
the zkSENSE SDK applies, on the background, our pre-trained model and
classifies the origin of the touch-screen event (i.e. performed by a human or
not). For the generation of the ZKPs and the model’s evaluation, we leverage
the library we implemented and described previously, which we call from the
mobile device using the sensor data. The pre-trained model, is generated on
a server of ours. Apart from generating and distributing the trained model,
the server also acts as the external auditor that verifies the validity of the
transmitted attestation results.

58 Chapter 3. zkSENSE—Private Human Attestation

3.7 Performance Evaluation

In this section, we set out to explore the performance of humanness attes-
tation in zkSENSE. More specifically, we benchmark our Android prototype
with respect to the duration of its main operations: (i) humanness classifica-
tion, (ii) Pedersen commitment computation, and (iii) zero-knowledge proof
construction. Next, we evaluate general resource utilization metrics: (a)
CPU, (b) memory, and (c) battery consumption. Our tests cover the three
key operations of a humanness attestation in zkSENSE, and a comparative
baseline:

1. The baseline, where we run our demo application which uses zkSENSE
service (see Section 3.6) and several artificial clicks are generated.

2. The detection operation, where sensors input is collected and humanness
classification realized on zkSENSE.

3. The commitment operation where the Pedersen commitment computation
is taking place.

4. The ZKP operation where the proof of correct attestation is constructed.

We test and compare the different implementations described in Section 3.6:
(i) the general-purpose zkSNARK9 and (ii) our proposed zkSVM. We run
each stage for an hour and we ensure the same number of artificial clicks by
using as an interval the duration of the longest operation (ZKP) as empiri-
cally measured on each device under test (Figure 3.6).
Setup We leverage a testbed composed of two Android devices representa-
tive of a mid-end (Samsung Galaxy S9, model 2018) and a low-end (Samsung
Galaxy J3, model 2016) device, to inspect what is the worst performance a
user can get on a cheap (around 90 USD) device. The S9 mounts an octa-
core processor (a Quad-Core Mongoose M3 at 2.7GHz and a Quad-Core ARM
Cortex-A55 at 1.8Ghz), while the J3 is equipped with a quad-core ARM Cor-
tex A53 at 1.2 Ghz. The S9 also has twice as much memory (4 GB when J3
has 2 GB) and a larger battery (3,000 mAh when the battery of J3 is 2,600
mAh). The low-end device (J3) is part of Batterylab [Bat19; Var+19], a
distributed platform for battery measurements. It follows that fine grained
battery measurements (via a Monsoon High Voltage Power Monitor [Mon19]
directly connected to the device’s battery) are available for this device. Au-
tomation of the above operations is realized via adb run over WiFi to avoid
noise in the power measurements caused by USB powering.

9We ignore the time elapsed while computing the trusted setup, as this cannot be
computed by the client.

Performance Evaluation 59

(a) ZKP generation, using zkSVM, lasts about 2.9
seconds.

(b) ZKP generation, using the generic zkSNARK
solution, lasts about 174.5 seconds

Figure 3.6: Execution time per operation, commented over results on commodity hardware
(S9)

Execution time: Figure 3.6a shows the average duration (and standard
deviation as error-bars) of each zkSENSE’s operation, per device, when con-
sidering zkSVM. Regardless of the device, humanness classification and com-
mitments are extremely fast, i.e. about 0.3 and 0.6 seconds even on the less
powerful J3. The ZKP generation is instead more challenging, lasting about
2.9 and 39.2 seconds on the S9 and J3, respectively.

Figure 3.6b shows the same results but when considering the ZK-SNARK
based solution. In this case, we measure commitment operations comprised
between 24 and 190 seconds, and ZKP generation comprised between 175 and
600 seconds, depending on the device. This suggests one order of magnitude
speedup of zkSVM versus the more generic zkSNARK solution.

For the verification time, the general purpose zkSNARK (808 nanosec-
onds) outperforms zkSVM (177 milliseconds). This is expected as the
Groth16 approach used by ZoKrates has a big prover overhead and a trusted
setup in exchange of minimal communication and verification time overhead.
However, in zkSENSE’s scenario, these verification times can be handled by
the server, and instead, zkSVM makes the prover times reasonable (as shown,
the entire attestation takes a bit less than 3 seconds) and removes the need
for trusted setup.

CPU and memory utilization: Figures 3.7a and 3.7b show the CPU uti-
lization per operation and device, using zkSVM and the ZK-SNARK based
solution respectively. Since no significant difference was observed between
baseline and detection operation, we improve the figure visibility by report-
ing only one boxplot representative of both operations. The figure shows,

60 Chapter 3. zkSENSE—Private Human Attestation

(a) Median CPU consumption, using zkSVM, of
about 15%.

(b) CPU utilization, using zkSNARK, gets higher
than 20% for 25% of the operation duration on a S9
device.

Figure 3.7: CPU utilization per operation, commented over results on commodity hard-
ware (S9), over the most expensive operation, the ZKP generation.

overall, minimal CPU utilization associated with humanness classification10

and commitment operations with zkSVM. Even on the less powerful J3, com-
mitting only consumes about 12% of CPU (median value across devices) with
peaks up to 45% on the J3. The ZKP generation is the most expensive op-
eration, showing a median CPU consumption of about 15% and 30%, on
respectively the S9 and J3. Overall, the CPU analysis suggests minimal im-
pact of zkSENSE’s operation and feasibility even on entry-level devices like
the J3. On the other hand, we can see that the ZK-SNARK based solution
induces a considerable overhead on the user, with CPU peaks of about 30-
40% for the bot detection and hashing operations. The ZKP generation is
by far the most expensive operation. While easy to manage for the S9 device
(e.g. CPU utilization higher than 20% for only 25% of the operation dura-
tion), it can be challenging for an entry level device like the J3 for which the
plot shows high CPU utilization (90% of higher).

During our tests, we also collected memory usage of zkSENSE’s as re-
ported by procstats. Detailed results are omitted since zkSENSE’s memory
consumption is negligible, i.e. less than 20MB regardless of device and oper-
ation. In comparison, the zkSNARK solution requires up to 1GB of memory
due to the data generated during the trusted setup. These data cannot be
generated on the client’s device and hence needs to be stored in the zkSENSE
app. This is quite limiting in presence of low-end devices which might not
have that amount of free memory, requiring swapping and thus a further

10The non-intuitive higher CPU usage at the S9 is due to the fact that this is a personal
device with hard to filter background activities from other apps.

Performance Evaluation 61

(a) ZKP computation, using zkSVM, consumes
about 5 mAh or 0.2% of the device’s battery.

(b) Hashing and ZKP computation, using the zk-
SNARK solution, consume an extra 10 and 50mAh,
or an overall of about 2% on the device’s battery.

Figure 3.8: Energy consumption per operation on a low-end hardware (J3). Only consid-
ering the non-negligible operations.

increasing in execution time,

Battery consumption: We quantify the extra battery discharge (in mAh)
associated with zkSENSE’s key operations. First, we compute the battery
discharge of each operation (i.e. detection, commitment, ZKP creation) from
the fine grain current and voltage measurements reported by the power meter.
Next, we derive the additional battery discharge caused by each zkSENSE’s
operation by subtracting the baseline discharge from each specific operation.
In Figure 3.8a and Figure 3.8b, we plot the results11 of zkSVM and zkSNARK
based solution respectively. As expected from the previous results, the bat-
tery overhead imposed by zkSENSE’s detection and committing operation
is negligible. Even ZKP computation only consumes about 5 mAh or 0.2%
of the J3’s battery (2,600 mAh). Even assuming five zkSENSE’s humanness
verification per day, the later result suggests minimal impact on battery life
even for entry-level devices. Note that this is a worst case operation, given
the entry level device. The lower duration and CPU utilization, coupled with
bigger batteries, make zkSENSE less noticeable in term of battery consump-
tion on more powerful devices. On the other hand, zkSNARK based solution
drains more battery by an order of magnitude, where each validation cost
about 2% of the device battery.

Data consumption: Finally, we compute what is the data consumption
required by the user to send a proof. The proof consists of the commit-
ments of the difference vector, the average and standard deviation, for each

11Given the design of S9 device, we were unable to wire its battery with the power
meter. Therefore we could not measure the energy consumption on this device.

62 Chapter 3. zkSENSE—Private Human Attestation

of the input vectors the user submits. We use data from two sensors, namely
the gyroscope and accelerometer, and for each sensor, we use three axis
data. Moreover, we split each period into two segments as explained in Sec-
tion 3.1.1. This results in a total of 12 input vectors. For every input vector,
the proof consists of 14 KB. In our library, we implemented the trivial con-
struction, where we build 12 of such proofs in parallel, resulting in 167 KB.
However, there are ways to reduce this overhead, for which we provide the
estimates.

3.7.1 zkSENSE Vs. reCAPTCHA

As a next step, we compare the performance of zkSENSE with the state-
of-the-art privacy-preserving humanness attestation mechanism (i.e. visual
CAPTCHA). To do so, we developed an Android app which embeds re-
CAPTCHA for Android [Goo21]. The app is minimal12 to ensure its perfor-
mance evaluation covers only the CAPTCHA aspect rather than any extra
components. For the same reason, we opted for Android reCAPTCHA rather
than setting up a webpage with a CAPTCHA to solve. This alternative ap-
proach would require an Android browser for testing and the performance
evaluation would be tainted by the extra cost of running a full browser. We
did not evaluate Privacy Pass [Dav+18] for two reasons: 1) it currently re-
quires a full browser along with an add-on, 2) it lacks support on mobile
devices. Note that we do not expect critical performance difference between
Privacy Pass and Android reCAPTCHA since they use a very similar strat-
egy. Their difference instead lies in how invasive they are, both in how
frequently they require user input and from a sensor data collection stand-
point.

Using the above application we setup the following experiment. We enable
remote access to the S9 device via the browser using Android screen mirror-
ing [JMO21b] coupled with noVNC [JMO21a]. Then we asked 10 volunteers
to visit the device from their browsers and solve CAPTCHAs as needed by
the app. The app was coded such that users can continuously request for a
new CAPTCHA to solve. Note that Android reCAPTCHA, as reCAPTCHA
v3, leverages client side behavior to minimize friction, i.e. whether to ask or
not a user to solve a visual CAPTCHA like “click on all images containing a
boat”. It follows that often users do not need to solve any visual CAPTCHA.
We label automatic all the samples we collected where our volunteers did not
have to solve a CAPTCHA. We instead label manual all the samples where

12Source code: https://github.com/svarvel/CaptchaTest

https://github.com/svarvel/CaptchaTest

Performance Evaluation 63

zkSENSE reCAPTCHA
Automatic/Manual

Execution time 3 1.4/8.9 sec
CPU utilization 15% 3/15%
Memory utilization 20 MB 20 MB
Replay protection No Yes
Consumed data 167 KB 16 KB

Table 3.3: Performance of zkSENSE vs. Android reCAPTCHA.

human interaction was needed. To increase the chance of showing an actual
CAPTCHA, we created 15 CAPTCHAs that the app rotates on.

Over one week, our volunteers have requested about 500 CAPTCHAs
with a 70/30 split: 350 automatic and 150 manual. Table 3.3 directly com-
pares zkSENSE with Android reCAPTCHA with respect to: execution time,
CPU and memory utilization, and data consumption. The median was re-
ported for each metric, further differentiating between automatic and manual
for Android reCAPTCHA. The table shows that zkSENSE adds about 1.6
seconds to the time required by Android reCAPTCHA when no user inter-
action is needed. zkSENSE instead saves a whole 6 seconds to the (median)
user by never requiring any interaction. Even considering the fastest user in
our experiment (5.4 seconds), zkSENSE is about 2x faster —and 10x faster
than the slowest user (28.5 seconds). This is possible because zkSENSE re-
moves the need of user interaction, at the cost of a higher risk for replay
attacks. With respect to CPU and memory utilization, Table 3.3 shows that
the two mechanisms are quite similar and both very lightweight. Data-wise,
reCAPTCHA outperforms zkSENSE (16 versus 160KB), which communica-
tion overhead is still minimal and bearable even by devices with very little
connectivity.

Table 3.3 currently reports on ”overall time” which includes both the
computation time and the time required to report to the server. While for
Google we have no control on the server endpoint – located within 10ms in
our experiments – in our experiments the server runs in the same LAN with
1-2 ms delay (negligible). We currently use HTTP (POST) + TLS1.3 to
return the proof. For TCP, we use an unmodified kernel running Cubic with
an initial window of 10 packets (1500B MTU). Given our proof has a size of
160KB, the content delivery requires a worst case of: 1 RTT (for TCP) +
1 RTT (for TLS, in case of unknown server) + 3 RTT for TCP to transfer
the data – assuming slow start (doubling of cwnd), aka 15K (10 MTU sized
packets) + 30K + 60K + 60K (1/2 of the last cwnd available). This sums up
to about 3/4 RTTs, which we could further reduce assuming a larger initial

64 Chapter 3. zkSENSE—Private Human Attestation

cwnd, or using QUIC – thus bringing the duration down to a maximum of
2RTTs. Assuming a CDN runs such a service, as Google does, this would
thus cost between 20ms (with optimization) up to 100ms. Assuming a very
bad client connection, e.g., on mobile with RTT of 150ms, then this would
cost an extra 300 to 750ms.

3.7.2 Summary

Our experiments show that the general purpose zkSNARK is not a viable
solution for mobile-based ZKP computation (600 sec and 2% battery drain
on a low-end device). By designing our own model (i.e. zkSVM), we reduce
ZKP’s execution time by 10x, achieving a duration of a bit less than 3 sec and
0.2% battery drain. This execution time is comparable with today’s visual
CAPTCHA solving time, 9.8 sec on average [All13]), thus making zkSENSE a
serious competitor to state-of-the-art mechanisms for humanness attestation.

3.8 Further improvements to zkSVM

The opening and equality proofs we used (introduced in Section 2.2.3)
could be improved, by implementing them using the techniques presented
in [Boo+16]. This would reduce the complexity from linear to logarithmic,
resulting in 3x improvement, with a size of the full proof of 56 KB. Simi-
larly, we could use the batching techniques for the range proofs, as presented
in [Bün+18]. This would further reduce the size of the proof to 45 KB.

However we can further reduce the data consumption by batching the
proofs presented in Section 3.3.1. In this section we present how we can
achieve this and prove the corresponding properties of the scheme pre-
sented. In particular, we present the batching technique used for range proofs
in [Bün+18] for our IP-ZKP. With these improvements, we recompute the
data consumption of zkSENSE and show these techniques further improve
the construction.

Protocol 3.8.1. Batch IP-ZKP Given the similarities of IP-ZKP with the
bulletproofs system, we follow the same path for the batch proofs. In partic-
ular, the prover proves the following argument

SPK{([α, γ,a, b, ic]mi=1) :

Ai = hαigai
i hbi

i ∧ Vi = gicihγi ∧ ⟨ai, bi⟩ = ici for i ∈ [1,m]}

with gi,hi distinct for all i ∈ [1,m].

Further improvements to zkSVM 65

The proof presented in the previous section achieves logarithmic com-
plexity with respect to the number of elements in each vector. The trivial
way to solve this “batch” proof would with a multiplicative factor m —by
performing m of the proofs presented in Section 3.3.1. However, if we follow
the work presented in [Bün+18], we can reduce the overhead of batching to
an additive factor of m. In particular, if we have that the size of the vectors
is N , we achieve a complexity of 2 · log(N · m) + 4. The intuition of this
proof is the same as the one presented in [Bün+18], where instead of proving
m times the logarithmic proof, we generate a single proof for an extended
vector. This extended vector is the concatenation of all witness vectors, in
particular,

ã = [a0,a1, . . . ,am],

b̃ = [b0, b1, . . . , bm].

However, simply changing the witness vectors is not sufficient to prove
that the argument holds. In particular, proving that ⟨ã, b̃⟩ =

∑︁m
i=1 ici is not

sufficient to prove that ⟨ai, bi⟩ = ici for i ∈ [1,m]. Hence, we need to perform
slight modifications to the proof. In particular, we require the verifier to send
a challenge before the prover commits to the polynomial, so that the prover
can use different powers of this challenge to separate the different vectors
in the same inner product equation. In particular, the prover and verifier
interact as follows.

P: It computes blinding vectors, sL, sR for each vector of the inner product
and commits to it:

sL, sR ←$ ZN ·m
p , (3.25)

ρ←$ Zp, (3.26)

S = hρgsLhsR ∈ G. (3.27)

P → V: S

V: y ←$ Z∗
p

V → P: y

P: Now the prover defines two linear vector polynomials, l(X), r(X) ∈

66 Chapter 3. zkSENSE—Private Human Attestation

ZN ·m
p [X], and a quadratic polynomial as follows:

l(X) = ã+ sL ·X ∈ ZN ·m
p [X], (3.28)

r(X) =
m−1∑︂
i=0

b̃[(i−1)·N :i·N] · yi + sR ·X ∈ ZN ·m
p [X], (3.29)

t(X) = ⟨l(X), r(X)⟩ =
t0 + t1 ·X + t2 ·X2 ∈ ZN ·m

p [X].
(3.30)

By creating like that the polynomials, it allows for an evaluation of the
polynomial at a given point without disclosing any information about
the vectors ã or b̃. The prover needs to convince the verifier that the
constant term of t(X) equals

∑︁m
i=1 y

iici. To do so, the prover commits
to the remaining coefficients of the polynomial

τ1, τ2 ←$ Zp, (3.31)

Ti = gtihτi ∈ G, i = {1, 2}. (3.32)

P → V: S, T1, T2

V: c←$ Z∗
p

V → P: c

P: It computes the response using the challenge received

l = l(c) = ã+ sL · c ∈ ZN ·m
p , (3.33)

r = r(c) =
m−1∑︂
i=0

b̃[(i−1)·N :i·N] · yi + sR · c ∈ ZN ·m
p , (3.34)

t̂ = ⟨l, r⟩ ∈ Zp, (3.35)

τc = τ2 · c2 + τ1 · c+
m−1∑︂
i=0

yiγi, (3.36)

µ = α + ρ · c ∈ Zp. (3.37)

P → V: τc, µ, t̂, r, l.

V: The verifier needs to check that r, l are correct and the inner product
relation holds with respect to t̂. However, it needs to take into account
the different powers of the challenge that have been included in the

commitment. To this end it computes h′ =
∏︁m−1

i=0 hy−i

i . This will cancel

Further improvements to zkSVM 67

out the challenge in the verification function, and allow the verifier to
check the above statement. To this end it performs the following checks:

gt̂hτc ?
=

m−1∏︂
i=0

V yi · T c
1 · T c2

2 , (3.38)

P = A · Sc · h′ ∈ G, (3.39)

P
?
= hµ · gl · h′r, (3.40)

t̂
?
= ⟨l, r⟩. (3.41)

If all checks validate, then this means that the statement is true with
very high probability.

To make this proof logarithmic, we use the same trick as in the original paper.
Instead of sending the vectors r, l to prove the inner product relation, we
leverage IP-ZKP over the blinded vectors recursively. Note that at this point,
the logarithmic factor is of O(log(m · n)) instead of the trivial O(m · log(n)).

Theorem 4. The batch inner product proof presented in Protocol 3.3.1
has perfect completeness, perfect special honest verifier zero-knowledge, and
knowledge soundness.

Proof. Completeness follows from the fact that, if

⟨a, b⟩ = c,

then
⟨a,N · b⟩ = N · c.

It is then straightforward to see that by generating h′, and performing the
checks by the verifier, an honest run of the protocol will always validate.

To prove special honest verifier zero-knowledge we construct a simulator
that generates valid statements which are indistinguishable from random. In
particular, the simulator acts as follows:

y, c←$ Z∗
p,

l, r ←$ ZN ·m
p ,

t̂, τc, µ←$ Zp,

T2 ←$ G,

T1 =

⎛⎝gt̂hτc ·

(︄
m−1∏︂
i=0

V yi

)︄−1

· T−c2

2

⎞⎠1/c

,

S =
(︁
hµ · gl · hr · A−1

)︁1/c
.

68 Chapter 3. zkSENSE—Private Human Attestation

In the simulated transcript,

(S, T1, T2; c; l, r, t̂, τc, µ),

all elements except for S and T1 are random, and the latter two are compu-
tationally indistinguishable from random due to the DDH assumption (Sec-
tion 2.1).

Also, note that S and T1 are generated following the verification equa-
tions, hence this simulated conversation is valid.

We now construct an extractor to prove knowledge soundness. The ex-
tractor runs the prover with three different values of the challenge c and
m different values of the challenge y, ending with the following valid proof
transcript:

(S, T1, T2; yi, c
′; l′, r′, t̂

′
, τ ′c, µ

′)mi=1,

(S, T1, T2; yi, c
′′; l′′, r′′, t̂

′′
, τ ′′c , µ

′′)mi=1,

(S, T1, T2; yi, c
′′′; l′′′, r′′′, t̂

′′′
, τ ′′′c , µ′′′)mi=1.

Additionally, the extractor invokes the extractor of the inner product
argument. This extractor is proved to exist in the original paper of Bünz
et al. [Bün+18]. For each proof transcript, the extractor first runs the in-
ner product extractor, to get a witness l, r to the inner product argument
such that P = hµglhr ∧ ⟨l, r⟩ = t̂. With this witness, and using two valid
transcripts, one can compute linear combinations of (3.17), we can compute
α, ρ,a, b, sL, sR such that A = hαgahb and S = hρgsLhsR . Such an extrac-
tion of these values proceeds as follows:

A · Sc′ = hµ′
gl′hr′

, A · Sc′′ = hµ′′
gl′′hr′′

.

Combining both relations we have

S =
(︂
hµ′−µ′′

gl′−l′′hr′−r′′
)︂ 1

c′−c′′
.

The extraction of A follows.
Using these representations of A and S, as well as li and ri with i ∈

{′,′′ ,′′′ }, we have that

li = a+ sLc
i,

ri = b+ sRc
i.

Further improvements to zkSVM 69

If these do not hold for all challenges, then the prover has found two distinct
representations of the same group element, yielding a non-trivial discrete
logarithm relation.

Now, we can extract the values Ti with i ∈ {1, 2} from equation (3.15),
by fixing a challenge y0, and computing the linear operations as follows:

gt̂
′
hτ ′c =

m−1∏︂
i=0

V yi0 · T c′

1 · T c′2

2 ,

gt̂
′′
hτ ′′c =

m−1∏︂
i=0

V yi0 · T c′′

1 · T c′′2

2 ,

gt̂
′′′
hτ ′′′c =

m−1∏︂
i=0

V yi0 · T c′′′

1 · T c′′′2

2 ,

which we can combine to get the following representation of T2:

T2 =
(︂(︁

gLhR
)︁ 1

c′−c′′′
)︂ c′+c′′′

c′+c′′

with L = t̂
′−t̂

′′

c′−c′′
− t̂

′−t̂
′′′

c′−c′′′
andR = τ ′c−τ ′′c

c′−c′′
− τ ′c−τ ′′′c

c′−c′′′
. Extractions of T1. Additionally,

from that same equation, we can compute ic and γ such that

gichγ =
m−1∏︂
i=0

V yi .

Given that the extractor is running the prover with m different challenges
y, we can then compute (ic, γ)mi=1 with gicihγ

i = Vi. If for any transcript, we
have that

t̂
i ̸=

m−1∑︂
j=0

yjk · ici + t1c
i + t2c

i2

with i ∈ {′,′′ ,′′′ } and k ∈ [1,m], then the extractor has again found a non
trivial discrete logarithm relation.

Finally, let P (X) = ⟨l(X), r(X)⟩. Due to the validity of the transcripts,
we have that P (X) equals t(X) =

∑︁m−1
j=0 yjici + t1X + t2X

2 at least in
the different challenges c′, c′′, c′′′. In other words, the polynomial P (X) −
t(X) has at least three roots, and is of degree 2, hence it must be the zero
polynomial. Therefore, we have that t(X) = P (X). This implies that the
zero coefficient of t(X), namely ic, equals ⟨a, b⟩ and we have a valid witness
for the statement.

70 Chapter 3. zkSENSE—Private Human Attestation

This batching further reduces the communication complexity. In partic-
ular, for every sensor vector we compute two IP-ZKPs. With the näıve way
explained in Section 3.4, we compute the two IP-ZKPs for each coordinate of
each vector and their corresponding ‘difference vector’, resulting in 12 proofs
(resulting in a multiplicative factor of 12). If, in contrast, we use the scheme
presented above, the factor would turn additive, and considerably reduce the
proof size. In particular, the number of points sent through the wire would
be reduced to a total of 16KB, which is a 64% improvement over the evalu-
ation presented in Section 3.7. We leave as future work the implementation
of this scheme.

CHAPTER 4

Internet Voting

This chapter presents the work performed throughout the thesis in what
regards internet voting. In particular, we present the work published
in [QA+20] and [LQAT20]. These papers are an extension of what was ini-
tially published in [QA+17], each with different trade-offs. First we present
NetVote [QA+20], which provides an internet voting scheme with linear fil-
tering (with respect to the number of votes), but provides a slightly weaker
notion of coercion resistance. Secondly, we present VoteAgain [LQAT20],
which presents a scheme with poly-logarithmic filtering complexity but pro-
vides the stronger notion of coercion resistance. In this chapter we also
include minor modifications on the formal definition, protocol description,
and proofs that improve the security and assumptions of the protocols. We
begin, in Section 4.1, with a comparison of the two existing solutions used to
mitigate coercion resistance. In Section 4.2 we introduce some cryptographic
concepts, particular to our constructions, that were not introduced in Chap-
ter 2, as well as the parties involved in the protocols. Section 4.3 presents an
overview of our constructions, and Section 4.4 the formal definitions of the
security properties. Next, in Section 4.5 and Section 4.6 we present our two
constructions, NetVote and VoteAgain respectively. Finally, we conclude in
Section 4.7 with some final remarks.

71

72 Chapter 4. Internet Voting

Table 4.1: Comparison of assumptions in pre-election phase and election phase required
to mitigate coercion attacks in fake credentials and revoting-based systems.

Assumptions Fake Credentials Revoting

Pre-election phase

No coercion ✓ N/A

Inalienable authentication ✓ N/A

Election phase

Lie convincingly ✓ ✗

Coercer absent at some point
✓ ✓

during election

Absence of coercer after
✗ ✓

coercion

Device holding voting secrets or
✓ ✗

need to remember special pwds

Inalienable authentication ✗ ✓

4.1 Fake credentials vs. re-voting

Coercion in remote elections is an important threat that requires strong as-
sumptions regarding the adversary and the user interaction with the election.
As presented in Section 2.3.2, current solutions mitigate coercion either by
the use of fake credentials, or by allowing voters to re-vote. In this sec-
tion we give an intuition of the motivation of choosing the latter for both
our works. We do not analyse specific constructions, but rather study the
intrinsic limitations of each approach.

We now set to compare the differences between the two settings, as shown
in Table 4.1. For fake credentials setting, the assumptions are the following:

1. User needs inalienable means of authentication.

2. User needs to lie convincingly while being coerced.

3. User needs to store cryptographic material securely and privately.

4. Coercer needs to be absent during the registration and at some point
during the election.

Fake Credentials vs. Re-Voting 73

In the case of the re-voting setting, the assumptions are as follows:

1. User needs inalienable means of authentication.

2. Coercer needs to be absent at the end of the election.

Current proposals have failed to present a solution to remove the as-
sumption on inalienable means of authentication, and it seems that it is an
intrinsic problem to remote voting. A voter, either to register or to cast a
vote, will need to authenticate itself to prove that it is an eligible voter. If
these authentication means can be removed by an adversary, then coercion
is inevitable.

In our opinion, fake credential schemes seem to have stronger assump-
tions. Lying convincingly to an adversary while voting can be a challenge
to some. However, this is not the only limitation. It is clear from how
much money it has been lost in the cryptocurrency world (because of los-
ing keys) that storing cryptographic credentials securely and privately is not
obvious [Cry18]. Moreover, having to store the cryptographic material in
a device opens attack vectors for a coercer to impede re-voting, simply by
removing the device where these keys are stored. Last, but not least, a study
by Neto et al. [Net+18] concluded that more than 90% of the participants
did not understand the concept of casting fake votes, and were uncomfortable
with the fact of not being able to distinguish between real or fake votes at
the time of casting. This result puts the usability of fake credential systems
for the common public under question.

Finally, we argue on the difference of the strength of the assumptions
regarding the absence of the adversary. Both approaches require that the
coercer is absent during a fixed period. In the re-voting setting the coercer
must not allow to cast a vote to the coerced voter at the end of the election.
As long as the voter is left alone enough time to cast a vote (say 5 min) before
the end of the election, the voter will be able to escape coercion. In the other
case, the coercer needs to be absent during registration and some time during
the election. In general, a registration process can happen across several
hours or days (In Spain it is 24 days for citizens living abroad [Mar19]).
This enlarges the time the adversary has to perform the attack —it is no
longer limited to five minutes. Clearly, both solutions allow an adversary to
successfully perform a targeted attack. However, this intuitively shows that
producing a large scale coercion attack in a small time frame (the coercer
needs to coerce all voters at the same time, i.e. before the end of the election)
is harder than performing one during the registration phase. This motivates
our choice of a re-voting scenario rather than fake credentials.

74 Chapter 4. Internet Voting

4.2 Parties and Cryptographic background

This section introduces the parties involved and the specific notation and
cryptographic background not covered in Chapter 2.

4.2.1 Parties

The parties involved throughout the protocol are:

• The electorate, formed by nt voters, of which we only consider the
subset that takes part in the election, say nV voters, with nV ≤ nt

identified as V = {V1,V2, . . . ,Vnt}.

• The nc candidates, C = {C1, . . . , Cnc}.

• The k trustees T = {T1, T2, . . . , Tk}, each holding a share, skv,i, of the
threshold voting key (see Subsection 2.2.1), pkv. Similarly, the trustees
handle, in a decentralised fashion the voting credential generation. This
is, whenever voters want to cast a vote they request from trustees the
voting token. However, to simplify the description of the protocol, we
explicitly treat the Certificate Authority, CA, as a different entity.

• Next, we require the participation of an append-only Public Bulleting
Board, PBB, which validates and posts the votes. In all our models,
we implicitly assume that the PBB is append-only.

• Finally, the Tallying Server, TS, which performs the filtering and the
counting of votes. For the sake of minimizing the coercion resistance
assumptions, TS also holds a share of the voting key, pkv, such that its
participation in the decryption procedure is required.

4.2.2 Cryptographic Background

The internet voting protocols presented in this thesis share the same key gen-
eration procedure, and same cryptographic scheme, namely ElGamal (see
Section 2.2). The voting key is distributively generated among a set of
trustees (see Subsection 2.2.1), such that a subset of these need to collab-
orate in order to decrypt the ciphertexts. To this end, the trustees jointly
run DistKeyGen(ϵ, t, k) to generate the trustees share of the key, pkT , and
the distinct shares of the tellers, skv,i. As mentioned above, to improve the
security of the scheme, we require the participation of the TS in the decryp-
tion procedure. Hence, when a voter encrypts its choice, it encrypts it under

Parties and Cryptographic background 75

pkT and then under pkTS. For sake of simplicity we denote this action im-
plicitly by a single encryption under the master voting key, pkv. To encrypt
a vote for candidate Ci, a voter calls (V,ΠV) = VoteEnc(pkv, Ci) to obtain an
encrypted vote, V , and zero-knowledge proof, ΠV , that V encrypts a choice
for a valid candidate. We denote the encryption of the zero candidate (i.e.
no candidate) with explicit randomiser r ←$ Zp by VoteZEnc(pkv; r). This
is equivalent to VoteEnc(pkv, 0) with explicit randomiser r. The algorithm
ΠV .Verify(pkv, V,ΠV) outputs ⊤ if the encrypted vote V is correct, and
⊥ otherwise. We use deterministic encryption (with randomness zero) as a
cheap verifiable ‘encoding’ for the dummy ballots. This allows the TS to
include dummy ballots in the verifiable shuffle, introduced below, in a cheap
verifiable way.

We use verifiable reencryption shuffles [BG12; Gro10] to support coercion
resistance in a privacy-preserving and verifiable way. These enable an entity
to verifiably shuffle a list of homomorphic ciphertexts in such a way that it
is infeasible for a computationally bounded adversary to match input and
output ciphertexts. These are defined by a function Shuffle(A) = (ΠS, A

′)
which on input a list of ciphertexts, A, outputs a shuffled list of ciphertexts,
A′, and a proof of shuffle, ΠS.

In the construction of NetVote, Section 4.5, the TS, in order to
prove correctness of filtering, needs to prove that an encrypted counter,
Enc(pk, count1) is greater than another encrypted counter, Enc(pk, count2),
without disclosing any information about the counters. For this it uses the
homomorphic property of the encryption scheme to subtract both encryp-
tions:

count′ = Enc(pk, count1)/Enc(pk, count2) = Enc(pk, count1 − count2).

If count1 is greater than count2, we expect the subtraction to be greater
than zero, and negative otherwise. However, as we are working over finite
fields, even if count2 is greater, the subtraction will be positive. Given that
the counters are numbers of at most 32 bits, then we know that if count1 is
greater, then count′ will also be a number of at most 32 bits. In the opposite
scenario, count′ will be a much bigger number (given that the order of the
finite field is a number of 256 bits). It suffices then to prove that count′ is
a number of at most 32 bits. For this, we use the range proof presented by
Bünz et al. [Bün+18]. To denote the proof that a number is greater than
another, we use ΠGT .

In NetVote, we use anonymous credentials during the registration phase
and vote cast. The only requirement of these credentials is that they cer-
tify certain attributes which are used to group voters by electoral colleges

76 Chapter 4. Internet Voting

and filter votes cast by the same voter. Several constructions exist in
the literature, [Bra00; CL02; Par+09]. We instantiate them by the use
of three algorithms: the request, ReqCred(auth), where the user authen-
ticates to the credential authority and requests an anonymous credential;
the generation, Cert({attr}ni=1) = CredGen({attr}ni=1), where upon receipt
of a certificate request, the certificate authority generates one with the at-
tributes, attr, assigned to the user; and the verification of the certification,
CertVerify(pkCA, Cert({attr}ni=1)), where with input a certificate and the
public key of the certificate authority, verifies the correctness of the certifi-
cate. It outputs ⊤ if the verification succeeds, and ⊥ otherwise. While any
type of attributes can be added in these certificates, throughout the chapter
we only consider a unique anonymous identifier per voter, and leave addi-
tional attributes optional to particular electoral runs.

Finally, we use an append-only PBB where votes, proofs (re-encryption,
shuffle, decryption) and all intermediate steps until the tally step are posted.
A specification of a possible construction is explained in [HL09]. Another
interesting approach for a PBB is the use of blockchain technologies, as pre-
sented in [MSH17].

4.3 Overview

As it was mentioned before, this chapter presents two internet voting
schemes, whose goals differ in the asymptotic complexity and security prop-
erties. However, the rationale used for both is similar, and principally both
seek the usability on what concerns users. In this section we give an overview
of the basic design ideas, and present both schemes in more detail in Sec-
tions 4.5 and 4.6.

The protocols can be divided in three phases: pre-election, election and
tallying phases. During the pre-election phase all server keys are generated.
CA randomly generates nt voter identifiers, V Idi for 1 ≤ i ≤ nt, and other
user data. In the election-phase the voters first obtain a voting certificate,
which allows them to cast a vote while proving they are eligible voters. This
certificate is ephemeral, and is generated each time that a voter wants to cast
a vote. The intuition behind using ephemeral certificates is that by having
one-time usage keys, we avoid the user the need of storing and transporting
cryptographic material safely. Moreover, enforcing a single key to users might
require them to use a single device throughout the election, limiting the
ability to escape coercion. Each certificate generated for the same voter
contains the same voter identifier in order to uniquely identify each vote cast
by the same voter at the time of filtering. Using the encrypted identifier as

Overview 77

an attribute (instead of the decrypted identifier), and randomising it at each
request (see Section 2.2.1), ensures that an adversary is not able to determine
whether a particular voter revoted or not.

Voter CA PBB

Generate V Id

Pre-election phasePre-election phase

ReqCred(auth)

CredGen(Enc(pk, V Id))

Send certificate

Certificate generationCertificate generation

Cast vote

Verify ZKP

Store

Confirmation

Vote castVote cast

Verify

Election phaseElection phase

Figure 4.1: Diagram presenting a summary of the pre-election and election phases involving
the voters, certificate authority and public bulletin board.

When the voter wants to cast a vote, she signs the encrypted ballot with
the ephemeral certificate to prove, on the one hand, that she is an eligible
voter, and on the other hand, to link the vote to the V Idi. This allows TS to
filter votes, and select only one cast vote per user. She then sends her vote to
PBB, which verifies the correctness of the vote and publishes it. The voter
verifies that her vote was recorded as cast. These two steps are presented in
Figure 4.1.

During the tallying phase, the TS generates ‘dummy’ certificates for each
of the voters and casts ‘dummy’ votes in a verifiable manner. This avoids
a coercer performing a 1009 attack (Section 2.3.2), by hiding the real size
of groupings of votes cast by the same voter. Next, the votes are filtered
by TS in a verifiable and private manner. Finally, the tellers, T , proceed

78 Chapter 4. Internet Voting

with a complete tally and decryption of the votes. This phase is presented
in Figure 4.2.

Voter PBB TS T

GET request

Send votes

Add dummies

Shuffle

Prove

Prove

Decrypt V Id

Filter

Prove

Filter Proofs

GET request

Send votes

Decrypt

Prove
Decryption Proofs

Tally PhaseTally Phase

Check Results

Figure 4.2: Diagram showing a summary of the tallying phase, involving the voters, the
public bulletin board, the tallying server and the tellers.

4.4 Security Properties

In order to analyse the security properties, we define them using a general,
protocol independent, syntax. The goal of this syntax is to be able to prove
the security properties of other schemes with minimal possible changes to the
game definitions. In this section we begin introducing the used syntax and
we proceed with the formal definitions of ballot privacy, practical everlasting
privacy, verifiability, coercion resistance and strict coercion resistance.

A voting scheme, V , consists of nine protocols: Setup,Register,CastVote,
VoteVerify,Valid,Filter,VerifyFilter,Tally and Verify:

Security Properties 79

• Setup(E , C). In the pre-election phase, the scheme runs Setup to pre-
pare the voting scheme for voting. This protocol takes as input the
electoral roll E , the list of all eligible voters, and the list of candidates
C.

• Register(i). Before casting a vote, voter Vi runs Register(i) to obtain a
token/certificate τ that allows her to cast a vote.

• CastVote(τ, Ci). After registering, voters use their token τ and selected
candidate Ci to cast their vote using the CastVote(τ, Ci) protocol. The
user produces a ballot β containing her choice, and interacts with the
voting scheme. If the user’s ballot β is accepted by the voting scheme,
the ballot β is added to the public bulletin board.

• VoteVerify(β, PBB). After casting a vote, voters can verify that the
ballot was recorded as cast, i.e. they verify that the vote was success-
fully stored in PBB.

• Valid(β, PBB). Once the scheme receives a vote, it verifies that it is
valid.

• Filter(PBB,L, skTS). After voting and before the tallying phase, the
voting scheme runs Filter. This protocol takes as input the PBB, the
number of all cast votes and the secret key of the TS. It returns the
filtered votes, S, together with a proof of correctness, θ.

• VerifyFilter(PBB,S, θ). Any third party can use as input the PBB (to
take the votes before filtering), S and θ to verify the correctness of the
shuffle.

• Tally(S). After filtering, the voting scheme runs Tally. This protocol
takes as input the set S of ballots on the bulletin board. It computes
the tally of the votes and outputs an election result, z, and a proof of
correctness Πz of the election results.

• Verify(S, z,Πz). Finally, any third party can run Verify. This protocol
takes the set S of ballots, the result, z and the proof of correct tally,
Πz, and checks its correctness.

The following game between an adversary, A, and a challenger, D, based
on Bernhard et al. [Ber+15], formalizes ballot privacy. A wins the game if it
manages to differentiate between a real and fake world. To model these two
worlds, the game, Expbpriv,bA,D , tracks two bulletin boards, PBB0 and PBB1 for
each world respectively. At least t trustees are assumed to be honest. During

80 Chapter 4. Internet Voting

the game, the adversary can make calls to the OLRvote(i, C0, C1) oracle,
where A selects two possible candidates, C0, C1 for voter Vi. The challenger
produces voting tokens τ and generates one ballot for each candidate, β0, β1.
It then places β0 and β1 in PBB0 and PBB1 respectively. It can call this
oracle at any point of the game. Note that this oracle implicitly assumes
that the adversary cannot submit different tokens for the same voter. This
is the case under our assumption because at least t trustees are honest, and
hence the adversary cannot forge certificates. Similarly, the adversary can
call Ocast(β) oracle, where A has the ability to cast a vote for any voter.
The same ballot, β, is generated for both bulletin boards. It can call this
oracle at any point of the game. To view the state of the bulletin board, we
give the adversary access to Oboard(), which allows the adversary to see the
information posted until that moment in the bulletin board. It can call this
oracle at any point of the game.

Finally, the adversary is given access to the Otally(S, θ) oracle which
allows A to request the result of the election given as input the filtered list of
votes, S, and the proof of correctness, θ. Recall that the adversary controls
the tallying server, and hence can perform the filtering. The oracle first
verifies the correctness of the proof, and proceeds with the tally computation.
To avoid information leakage of the tally result, when b = 1 the result is
counted on PBB0, and the results and proofs are simulated. It can call this
oracle once.

We denote the calls to the oracles by AO. At the end of the game,
the adversary needs to output b′, guessing which of the two worlds (real or
fake) it is seeing. If it guesses correctly with non negligible probability, the
adversary has won the game. We formally describe the experiment, Expbpriv,bA,D ,
in Figure 4.3.

Definition 1. Consider a voting scheme V = (Setup,Register,CastVote,
VoteVerify,Valid,Filter,VerifyFilter,Tally,Verify). We say the scheme has ballot
privacy if there exists an algorithm SimTally such that for all probabilistic
polynomial time adversaries A⃓⃓⃓

Pr
[︂
Exp

bpriv,0
A,D (ϵ, E , C) = 1

]︂
− Pr

[︂
Exp

bpriv,1
A,D (ϵ, E , C) = 1

]︂⃓⃓⃓
is negligible with respect to ϵ.

4.4.1 Ballot privacy

Strong Consistency

The ballot privacy definition ensures that ballots and the proof of correct
tally, Π, do not leak anything about how voters voted. However, maliciously

Security Properties 81

Exp
bpriv,b
A,D (ϵ, E , C):
(pk, skCA, skTS , skv)← Setup(1ϵ, E , C)
b← AO(pk, skCA, skTS)
Output b′

OLRvote(τ, C0, C1):
Let β0 = CastVote(τ, C0) and β1 = CastVote(τ, C1)
If Valid(PBBb, βb) = ⊥ return ⊥
Else PBB0 ← PBB0 ∥ β0 and PBB1 ← PBB1 ∥ β1

Ocast(β):
If Valid(PBBb, β) = ⊥ return ⊥
Else PBB0 ← PBB0 ∥ β and PBB1 ← PBB1 ∥ β

Oboard():
return PBBb

Otally(S, θ)
If VerifyFilter(PBBb,S, θ) = ⊥ return ⊥
PBBb ← PBBb ∥ S
PBB1−b ← PBB1−b ∥ Filter(PBB1−b, |PBB1−b|, skTS)
(z,Π0)← Tally(PBB0, skv)
Π1 = SimTally(PBB1, z)
return (z,Πb)

Figure 4.3: In the ballot privacy experiment Expbpriv,bA,D , the adversary A has access to the
oracles O = {OLRvote, Ocast, Oboard, Otally}. It is assumed that at least t trustees are
honest. This ensures that the adversary is not capable of decrypting votes or misbehaving
during voting certificate generation. It can call Otally only once.

crafted voting schemes might leak information about honest votes in the
result z itself. To ensure that this is not possible, Bernhard et al. [Ber+15]
introduced the notion of strong consistency. Intuitively, this notion ensures
that the result z is equal to the result function applied directly to the valid
ballots (skipping the filter and tally phase). We follow the exposition of
Bernhard et al., but make some changes to account for the fact that our
scheme selects ballots with the highest corresponding ballot number count,
rather than simply the last per voter. This allows us to use this ballot privacy
definition for both VoteAgain and NetVote, where the former considers the
vote generated with the latest token as the ‘last vote’, while the latter counts
the last vote submitted as the ‘last vote’.

Our voting scheme depends on a formal result function ρ : ((Zp × N) ×
C)∗ → R, where Z∗

p is the space of voters identifiers, N is the space of counters,
and R is the result space. Our result function selects, for every V Id ∈ Zp, the
ballot ((V Id, count), c), where count is the maximal counter for this voter.

82 Chapter 4. Internet Voting

Then it counts the number of votes per candidate c in the selected ballots
and returns the result.

To model that the result z output by Tally is consistent with the result
function ρ, we require the existence of an extraction algorithm Extract that
takes as input the TS’s key skTS, the trustee key skv and a ballot, and
outputs a tuple ((V Id, count), c) ∈ ((Zp × N) × C) with the corresponding
voter identifier V Id, ballot number count and candidate c in this ballot. If
it fails to extract these values, it outputs ⊥.

Moreover, we require the method Valid that validates ballots independent
of the bulletin board. The function Valid takes as input the election public
key pk and a ballot, and outputs ⊤ if the ballot is valid, and ⊥ otherwise.

Definition 2 (Adapted from Bernhard et al. [Ber+15]). A voting
scheme V = (Setup,Register,CastVote,VoteVerify,Valid,Filter,VerifyFilter,
Tally,Verify) for an electoral roll E and candidate list C has strong consis-
tency with respect to a result function ρ if there exists algorithms Extract
and Valid as above, such that the following three conditions hold:

1. For any (pk, skCA, skTS, skv) output by Setup, for all voters i ∈ E
with voter identifier V Id, for all τ ← Register(i) where count is the
corresponding ballot number, and for any ballot β ← v(τ, c) with c ∈ C,
we have that Extract(skv, skCA, β) = ((V Id, count), c).

2. For any (PBB, β) ← A() we have that Valid(PBB, β) = ⊤ implies
Valid(β) = ⊤.

3. For all probabilistic polynomial time adversary A we have that

Pr
[︁
Exps-consA,D (ϵ, E , C) = 1

]︁
is a negligible function in ϵ (see Figure 4.4 for the game).

The first condition ensures that Extract can extract ((V Id, count), C)
correctly for honestly created ballots. The second condition ensures that
ballots that are accepted by Valid with respect to the board PBB must also
be accepted by Valid. Finally, the third condition ensures that the adversary
cannot produce bulletin boards where the result z does not correspond to the
formal result function ρ executed on the individual ballots. (The adversary
loses if Filter or Tally aborts because of an invalid bulletin board.)

Strong correctness

Finally, a malicious protocol designer might modify which ballots are ac-
cepted based on earlier ballots. To address this attack, Bernhard et

Security Properties 83

Exps-consA,D (ϵ, E , C):
(pk, skCA, skTS, skv)← Setup(1ϵ, E , C)
PBB = [β1, . . . , βL]← A(pk, skCA)
If ∃βi s.t. Valid(βi) = ⊥ then return 0
Let S, θ ← Filter(PBB,L′, skTS)
Let (z,Π)← Tally(PBB ∥ S ∥ θ, skv)
If z = ⊥ return 0
If z ̸= Tally(Extract(skv, skCA, β1), . . . , Extract(skv, skCA, βL))
return 1, else return 0.

Figure 4.4: In the strong-consistency experiment Exps-consA,D , adversary A must output a
board PBB with ballots that are not tallied correctly given Extract.

Exps-corrA,D (ϵ):
(pk, skCA, skTS, skv)← Setup(1ϵ)
(i, τ, c, PBB)← A(pk, skCA)
Let β = v(τ, c)
If v aborts because τ is invalid, return ⊤
Else return Valid(PBB, β)

Figure 4.5: In the strong-correctness experiment Exps-corrA,D , the adversary outputs a board
PBB such that an honest ballot by a voter of its choice is not valid.

al. [Ber+15] introduce the notion of strong correctness. Informally, a scheme
has strong correctness if honestly generated ballots are accepted regardless
of the content of the bulletin board.

Definition 3 (Adapted from Bernhard et al. [Ber+15]). Consider a voting
scheme V = (Setup,Register,CastVote,VoteVerify,Valid,Filter,VerifyFilter,
Tally,Verify) for an electoral roll E and candidate list C. We say the scheme
has strong correctness if

Pr
[︁
Exps-corrA,D (ϵ) = ⊥

]︁
is a negligible function in ϵ (see Figure 4.5 for the game).

4.4.2 Practical Everlasting Privacy

In this section, we present the first game-based definition of practical everlast-
ing privacy. We use the definition as introduced by Arapinis et al. [Ara+13].
A more recent game-based definition of everlasting privacy (note the absence

84 Chapter 4. Internet Voting

Exp
everbpriv,b
A,D (ϵ, E , C):
b← AO(pk, skCA, skTS , skv)
Output b′

ORunElection(ϵ, E , C):
(pk, skCA, skTS , skv)← Setup(1ϵ, E , C)
Let τ0 = Register(V0) and τ1 = Register(V1)
Let βb

0 = CastVote(τ0, Cb) and βb
1 = CastVote(τ1, C1−b).

PBB0 ← PBB0 ∥ β0
0 ∥ β0

1 and PBB1 ← PBB1 ∥ β1
1 ∥ β1

0

(z0,Π0)← Tally(PBB0, skv)
(z1,Π1)← Tally(PBB1, skv)
return (zb,Πb)

Figure 4.6: In the practical everlasting privacy game, Expeverbpriv,bA,D (), the adversary A has
access to the oracle O = {ORunElection}. In this scenario, the setup needs to happen
inside the oracle, so that the voter identifiers are ‘reset’.

of practical) was presented by Grontas et al. [GPZ19], which allows the future
adversary to control all electoral entities during the election. Our schemes
do not satisfy this stronger model of everlasting privacy, as we assume that
the information generated by the Certificate Authority during the election is
unreachable to the future adversary. In the definition of Arapinis et al., it is
assumed that the adversary can only get information that was posted in the
PBB during the election. This is, all information that was exchanged dur-
ing the election is not accessible to the adversary (such as timing attacks or
tokens requests). We propose a game based definition, Expeverbpriv,bA,D , similar

to Exp
bpriv,b
A,D . Again, A wins the game if it manages to differentiate between

a real and fake world. To model these two worlds, the game tracks two bul-
letin boards, PBB0 and PBB1 for each world respectively. To model such a
scenario, we allow the adversary to call on runs of the voting protocol, with
electoral roll E = {V0,V1}, and candidate list C = {C0, C1}. Hence, the ad-
versary can make calls to the ORunElection(V0,V1, C0, C1) oracle, where the
adversary chooses two voters and two candidates and requests the challenger
to run the election. The challenger runs the election, by first running the
Setup protocol, generating keys for all parties, and distinct random identi-
fiers to each of the voters. It proceeds with the Register(i) protocol for each
voter, generating voting credentials for each of the voters, then proceeds by
casting votes for both voters in both worlds, and, finally, it runs the tally
protocol.

Then, A needs to guess which world it is interacting with with its guess
b′. We formally describe the game, Expeverbpriv,bA,D , in Figure 4.6. Note that
the result is independent of the game bit b, as it will always be one vote for

Security Properties 85

C0 and one vote for C1.

Definition 4. Consider a voting scheme V = (Setup,Register,CastVote,
VoteVerify,Valid,Filter,VerifyFilter,Tally,Verify). We say the scheme has prac-
tical everlasting privacy if for a computationally unbounded adversary A

|Pr
[︂
Exp

everbpriv,0
A,D (ϵ, E , C) = 1

]︂
− Pr

[︂
Exp

everbpriv,1
A,D (ϵ, E , C) = 1

]︂
|

is negligible with respect to ϵ.

4.4.3 Verifiability

In their analysis, Achenbach et al. [Ach+15] adapt the correctness definition
of Juels et al. [JCJ05] to the revoting setting. However, Achenbach et al.’s
model does not take into account that voters may not check that their ballots
are cast correctly, nor that newer ballots should supersede older ballots even
if voters have been coerced or corrupted. To address these cases, we adapt
the qualitative game-based verifiability definition of Cortier et al. [Cor+14]
—which accounts for a malicious bulletin board and voters not checking
their ballots —to our setting by adding the Register function and explicitly
modeling revoting. As in Cortier et al. [Cor+14], our game does not model
voter’s intent, and assumes that the voting hardware, i.e., the device and
software running CastVote, is honest. We refer to Cortier et al. [Cor+16] for a
formal process-based computational model that does model verifiability with
voter intent. We note that the correctness definition by Juels et al. [JCJ05]
was renamed to ‘verifiability’ by Cortier et al. [Cor+14], and therefore any
model satisfying the latter also satisfies the former.

In a nutshell, a voting scheme is verifiable [Cor+14] if for nC corrupt
voters, the result of the election always includes: (1) all votes by honest
voters that verified whether their ballots were cast correctly, (2) at most nC

corrupted votes, and (3) a subset of the votes by honest voters that did not
check if their ballots were cast correctly. These conditions ensure that while
a malicious bulletin board can drop ballots of voters that do not check, it
can insert at most nC new votes.

Extending the current verifiability definition. We extend the definition
presented by Cortier et al. [Cor+14] for the revoting setting to explicitly
consider the number of votes cast by a voter, see Figure 4.7. The CA is
honest, and hence we assume that at least t trustees are honest. The system
implicitly tracks the number of tokens #tokens(i) that have been obtained
by voter Vi. The game tracks when each voter is corrupted in a (initially
empty) list of corruption events C, and tracks the honest votes in H. The

86 Chapter 4. Internet Voting

0 Exp
verif,b
A,D (ϵ, E , C):

1 (pk, skCA, skTS , skv)← Setup(1ϵ, E , C)
2 Set H← ∅ and C← ∅
3 (PBB,S, θ, z,Π)← AO(pk, skTS , skv)
4 If VerifyFilter(PBB,S, θ) = ⊥ or Verify(PBB ∥ S ∥ θ, z,Π) = ⊥ return 0
5 Let Verified = {(i1, count1), . . . , (inν , countnν)}

correspond to checked ballots.
6 Let Corrupted = {i | (i, count) ∈ C ∧ ∀(i, count′) ∈ Verified :

count′ < count}
7 Let Checked = {i | (i,) ∈ Verified} \ Corrupted
8 Let Unchecked = {i | (i, ,) ∈ H ∧ (i,) ̸∈ C} \ Checked
9 Let AllowedVotes[i] = {c | (i, count, c) ∈ H s.t. ∀(i, count′) ∈ Verified :

count ≥ count′}
10 If ∃ cV1 , . . . , cVnV

s.t. cj ∈ AllowedVotes[iVj] where Checked = {iV1 , . . . , iVnV
}

11 ∃ (iU1 , cU1), . . . , (iUnU
, cUnU

) s.t. iUj ∈ Unchecked, cUj ∈ AllowedVotes[iUj]

with iUj different

12 ∃ cB1 , . . . , cBnB
∈ C s.t. 0 ≤ nB ≤ |Corrupted|

13 s.t. z = τ̃({cVi }
nV
i=1) ⋆R τ̃({cUi }

nU
i=1) ⋆R τ̃({cBi }

nB
i=1)

14 Then return 0, otherwise return 1
Ocast(i, c):
Let τ = Register(i)
Add (i,#tokens(i), c) to H
Return CastVote(τ, c)

Oregister(i):
Let τ = Register(i)
Add (i,#tokens(i)) to C
return τ

Figure 4.7: In the verifiability game experiment Expverif,bA,D , the adversary A has access to
the oracles O = {Ocast, Oregister}.

adversary can call two oracles: Ocast(i, c) to request that honest voter i
outputs a ballot for candidate c, and Oregister(i) to get a voting token for
user i. Note that the oracle Ocast() in the verifiability game is different to
that of the ballot privacy game. This models both corruption and coercion of
voter i. After a call to Oregister(i), voter i is considered corrupted until it
casts an honest ballot using Ocast(i, c). Eventually, the adversary outputs a
bulletin board PBB, the selected votes S and proof θ, the election outcome
z ∈ R, and a tally proof Πz (line 3). The adversary loses if θ or Πz do not
verify (line 4). If it verifies, the adversary wins if the result does not satisfy
the three intuitive conditions above.

Security Properties 87

The game computes the following groups of voters:

• Corrupted (line 6): voters considered corrupted, i.e., voters that were
once corrupted (by calling Ocast) and thereafter never cast a checked
honest vote.

• Checked (line 7): voters that verified a ballot and were not corrupted
thereafter.

• Unchecked (line 8): voters that were never corrupted, but did not check
their ballots either.

The game computes allowed candidates for honest voters:

• AllowedVotes[i] (line 9): A list of candidates that voter i honestly voted
for in or after the last checked ballot. If voter i never checked a ballot,
this list includes all candidates this voter ever voted for.

The adversary wins if the result z verifies but violates any of the following
conditions (lines 10–13): (1) For each honest voter that verified a ballot
and was not thereafter corrupted (i.e., voters in Checked) the result should
include either the candidate in that ballot, or a candidate in a later ballot.
This corresponds to the candidates {cVi }

nV
i=1 in the game. (2) Of the honest

voters that did not check their ballots but were never corrupted (i.e., voters
in Unchecked), at most one candidate that the honest voter voted for (in any
ballot) can be included. This corresponds to the candidates {cUi }

nU
i=1 in the

game. Note that nU can be smaller than |Unchecked| or in fact zero. (3) At
most nC corrupted (or bad) votes were counted (i.e., the candidates {cBi }

nB
i=1).

In the game, the sum of these choices is modeled by the tallying function
τ̃ : C∗ → R that maps the voter’s choices in C to an election result in R. This
function should support partial tallying, i.e., for any two lists S1 and S2 we
have that τ̃(S1 ∪ S2) = τ̃(S1) ⋆R τ̃(S2) for a commutative binary operator
⋆R : R×R→ R. Note that a tally function that outputs the number of votes
per candidate naturally admits partial tallying.

Definition 5. Consider a voting scheme V = (Setup,Register,CastVote,
VoteVerify,Valid,Filter,VerifyFilter,Tally,Verify) for an electoral roll E and
candidate list C. We say the scheme is verifiable if for all probabilistic poly-
nomial time adversary A⃓⃓

Pr
[︁
Exp

verif,0
A,D (ϵ, E , C) = 1

]︁
− Pr

[︁
Exp

verif,1
A,D (ϵ, E , C) = 1

]︁⃓⃓
is a negligible function in ϵ.

88 Chapter 4. Internet Voting

4.4.4 Coercion resistance

Coercion resistance ensures that a coercer should not be able to determine
whether a coerced user submitted to coercion, other than the information
it can learn by seeing the result of the election (e.g., if there are zero votes
for the candidate selected by the coercer, the latter knows the coerced user
escaped coercion).

Existing coercion resistant models are insufficient. Juels, Catalano
and Jakobsson (JCJ) model coercion resistance by comparing a real-world
game with an ideal game [JCJ05]. In JCJ, voters evade coercion by providing
the coercer with a fake credential. The real-world models normal execution.
The adversary plays the role of the coercer and chooses a set of corrupted
voters and identifies the coerced voter. Then, the honest voters cast their
ballots (or abstain). If the coerced voter does not submit she also casts her
true ballot. Thereafter, the adversary is given the credentials of all corrupt
users, a credential for the coerced voter (which is fake if that voter resists),
and the current bulletin board. The adversary can now cast more ballots.
Upon seeing the result and the tally proof the adversary decides if the coerced
voter submitted. In the ideal game, the adversary is not shown the content
of the bulletin board, and she is given the true credential of the coerced
voter and can therefore cast real ballots for the coerced voter. However, a
modified tally function does not count ballots for the coerced voter cast by
the adversary if the coerced voter resists. Once the election phase is over,
the adversary is shown only the tally result, not the tally proof.

The JCJ model does not work for the revoting setting where the coerced
voter casts another ballot after casting the ballot under coercion. Achenbach
et al. [Ach+15] propose a variant in which the coerced voter acts after the
adversary has cast his votes, revoting if she resists or doing nothing if she
submits. Thereafter, the adversary is shown the new bulletin board and the
resulting tally and proof. In the ideal model, the adversary is only provided
the length of the bulletin board.

The model proposed by Achenbach et al. [Ach+15] does not capture co-
ercion resistance. Following the real/ideal paradigm, in the ideal game it
should hold with overwhelming probability that the adversary cannot distin-
guish between a submitting and a resisting coerced voter. Then, the proof
would show that the adversary cannot learn more in the real world than it
could in the ideal world. However, in the ideal game proposed by Achenbach
et al., the coercion resistance property does not hold. The adversary can
always distinguish between these two cases by simply observing the length of
the bulletin board (which increases by one ballot if the coerced voter revotes).
Therefore, proofs in this model say nothing about whether the real scheme

Security Properties 89

Exp
cr,b
A,D(ϵ, E , C):
(pk, skCA, skTS , skv)← Setup(1ϵ, E , C)
Create CA0 and CA1 with keys pk0CA, pk

1
CA

b′ ← AO(pk, pkbCA, pk
1−b
CA)

Output b′

OvoteDR(i0, C0, i1, C1):
Let τ0 ← CA0.ReqCred(i0) and τ1 ← CA1.ReqCred(i1)
Let β0 = v(τ0, C0) and β1 = v(τ1, C1)
If Valid(PBBb, βb) = ⊥ return ⊥
Else PBB0 ← PBB0 ∥ β0 and PBB1 ← PBB1 ∥ β1

Oregister(i):
Let τ0 ← CA0.ReqCred(i) and τ1 ← CA1.ReqCred(i)
return τ = τb, τ

′ = τ1−b

Ocast(β, β′):
Let βb ← β and β1−b ← β′

If Valid(PBB0, β0) = ⊥ or Valid(PBB1, β1) = ⊥ return ⊥
Else PBB0 ← PBB0 ∥ β0 and PBB1 ← PBB1 ∥ β1

Oboard():
return PBBb

Otally()
Let L be the number of tokens obtained from CA0.
Let S0, θ0 = Filter(PBB0, L, skTS)
Let (z,Πz,0)← Tally(PBB0 ∥ S0 ∥ θ0, skv)
Let (S1, θ1)← SimFilter(PBB1, L

′, z)
Let PBB0 ← PBB0 ∥ S0 ∥ θ0 and PBB1 ← PBB1 ∥ S1 ∥ θ1
Πz,1 = SimTally(PBB1, z)
return (z,Πz,b)

Figure 4.8: In the coercion resistance experiment Expcr,bA,D, adversaryA has access to oracles
O = {Oregister, Ocast, Oboard, Otally}. It can call Otally only once, thereafter it
can see the result θb by using Oboard().

offers coercion resistance. The Achenbach et al. [Ach+15] scheme seems to
be coercion resistant, but coercion resistance does not follow from the proof
in their model.

Finally, the model by Achenbach et al. does not capture the leakage re-
sulting from the state kept by the voter, or as in our protocol, by the polling
authority. Our protocol deliberately hides the ballot counter from the voter,
so that if the coercer coerces the voter again, it cannot determine whether
the coerced voter re-voted based on this counter. Achenbach et al.’s model
does not capture this property, as the coercer is not allowed to coerce a voter

90 Chapter 4. Internet Voting

more than once.

A new coercion resistance definition. We propose a new game-based
coercion resistance definition inspired by Bernhard et al.’s ballot privacy
definition. The game tracks two bulletin boards, PBB0 and PBB1, of which
only one is accessible to the adversary (depending on the bit b). We ensure
that regardless of the bit b, the same number of ballots are added to the
bulletin board. The goal of the adversary is to determine b (see Figure 4.8).
Recall that we assume that TS, and the trustees (and therefore the CA)
are honest with respect to coercion resistance. We model honesty of the
PBB (respectively, the use of an anonymous communication channel) by not
revealing which voter posted to the bulletin board.

To model submits versus resists, we provide the adversary with an
OvoteDR(i0, C0, i1, C1) oracle to let voter i0, a “coerced” voter, cast a vote
for candidate C0 in PBB0, and voter i1, any other voter, cast a vote for
candidate C1 in PBB1. The adversary is allowed to make this call multiple
times. Regardless of the value of b, every call to OvoteDR results in a single
ballot being added to each bulletin board. This prevents the trivial win in
the Achenbach et al. model. Since the polling authority keeps state, we work
with two CA: CA0 and CA1.

We model a coercion attack as follows. The adversary can cast votes using
any user by calling Oregister(i) to obtain a voting token τ for voter i on
the board that it can see, and a token τ ′ for the other board. It can then run
β = v(τ, Ci) and β′ = v(τ ′, Ci) itself to create ballots for candidate Ci, on both
boards and cast them using Ocast(β, β′). Note that per our assumptions,
the adversary does not get access to the voter’s means of authentication.
Moreover, we require that the adversary always casts valid ballots to both
boards (but the encoded candidate need not be the same).

Finally, the adversary can make one call to Otally() which performs the
filtering step and returns the result z (always computed on PBB0) and the
tally proof. To correct for leakage stemming from the tally result, as in the
ballot privacy game, we simulate the filter and tally proofs if the adversary
sees PBB1.

This game models all the coercion attacks applicable to a re-voting pro-
tocol:

• The 1009 attack. The adversary casts a ballot as coerced voter i0 using
τ, τ ′ = Oregister(i0), β = v(τ, c), β′ = v(τ ′, c) and then Ocast(β, β′)
1009 times. (Both boards now contain 1009 ballots by voter i0.) Then
it calls OvoteDR(i0, c, i1, c). If b = 0 the coerced voter revotes for
candidate c on PBB0, otherwise it does not, and the alternative voter
casts a ballot for candidate c on PBB1 visible to the adversary. Note

Security Properties 91

that if the result of Filter reveals the size of a group of ballots, the
adversary can win this game (SimFilter does not model this leakage
as it only gets L′ and z as input).

• Returning coercer. Let voter i0 be the coerced voter. First the co-
ercer runs τ, τ ′ = ReqCred(i0), β = v(τ, c) and β′ = v(τ ′, c), and
Ocast(β, β′) to cast one vote as the coerced user on both boards and
to observe the token τ corresponding to the board PBBb it can see.
Then it runs OvoteDR(i0, c0, i1, c1), causing i0 to cast a vote on the
bulletin board PBBb if b = 0, and i1 to casts a vote on PBBb if b = 1.
Thereafter, it can examine the state by running τ, τ ′ = ReqCred(i0)
again. If the new token τ leaks whether voter i0 voted again (on board
PBBb), then the adversary wins the coercion resistance game.

• Italian attacks [DC07]. Let voter i0 be the coerced voter. Let V P be
a long list of candidates unlikely to be selected by any other voter.
The adversary then casts ballots for each of the candidates in V P
in the name of the user. More precisely, The adversary runs τ, τ ′ =
Oregister(i0), β = v(τ, cj), β

′ = v(τ ′, cj) for cj ∈ V P . Then it calls
OvoteDR(i0, c, i1, c). If b = 0 the coerced voter revotes for candidate
c on PBB0, otherwise it does not, and the alternative voter casts a
ballot for candidate c on PBB1 visible to the adversary. Note that if
the adversary has access to all decrypted votes, it wins the game.

Definition 6. Consider a voting scheme V = (Setup,Register,CastVote,
VoteVerify,Valid,Filter,VerifyFilter,Tally,Verify) for an electoral roll E and
candidate list C. We say the scheme has coercion resistance if there exist
algorithms SimFilter and SimTally such that for all probabilistic polyno-
mial time adversaries A⃓⃓

Pr
[︁
Exp

cr,0
A,D(ϵ, E , C) = 1

]︁
− Pr

[︁
Exp

cr,1
A,D(ϵ, E , C) = 1

]︁⃓⃓
is a negligible function in ϵ.

4.4.5 Strict coercion resistance

The definition of coercion resistance presented above, ensures that even a
user that wants to submit to coercion (or sell her vote) is capable of doing so
with negligible probability. However, in real world elections, the property of
coercion might not be of the same importance as the one of vote-selling. In
the case of NetVote, the protocol presented in Section 4.5, the vote buying
can happen with low probability, but in order to achieve linear filtering we
dispense the negligibility of it happening.

92 Chapter 4. Internet Voting

Exp
scr,b
A,D (ϵ, E , C):
(pk, skCA, skTS , skv)← Setup(1ϵ, E , C)
b′ ← AO(pk, pkCA)
Output b′

OvoteDR(i0, C0, i1, C1):
Let τ0 ← Register(i0) and τ ′1 ← RegisterDummy(i1)
τ1 ← Register(i1) and τ ′0 ← RegisterDummy(i0)

Let β0 = CastVote(τ0, C0) and β′
1 = CastVoteDummy(τ ′1, 0)

β1 = CastVote(τ1, C1) and β′
0 = CastVoteDummy(τ ′0, 0)

If Valid(PBBb, βb) = ⊥ or
Valid(PBBb, β

′
1−b) = ⊥ return ⊥

Else PBB0 ← PBB0 ∥ β0 ∥ β′
1 and

PBB1 ← PBB1 ∥ β1 ∥ β′
0

Oregister(i):
Let τ ← Register(i)
return τ

Ocast(τ, C):
If Valid(PBB0, β) = ⊥ or
Valid(PBB1, β) = ⊥ return ⊥

Else PBB0 ← PBB0 ∥ β and
PBB1 ← PBB1 ∥ β

Oboard():
return PBBb

Otally()
Let L be the number of tokens obtained from CA0.
Let S0, θ0 = Filter(PBB0, L, skTS)
Let (z,Πz,0)← Tally(PBB0 ∥ S0 ∥ θ0, skv)
Let (S1, θ1)← SimFilter(PBB1, L

′, z)
Let PBB0 ← PBB0 ∥ S0 ∥ θ0 and PBB1 ← PBB1 ∥ S1 ∥ θ1
Π1 = SimTally(PBB1, z)
return (z,Πb)

Figure 4.9: In the strict coercion resistance experiment, Exp
scr,b
A,D (ϵ, E , C), adversary A

has access to oracles O = {OvoteDR, Ocast, Oboard, , Oregister, Otally}. It can call
Otally only once.

Current literature covers vote-selling as part of coercion resistance. To
model such a difference we need to differentiate between coercion-resistance
and vote-selling. To this end we need to modify the definition presented
above.

We propose a new game-based coercion-resistance definition,

Security Properties 93

Exp
scr,b
A,D (ϵ, E , C), that we define under the name strict coercion-resistance,

inspired by the coercion resistance definition presented in the previous
section. The game tracks two bulletin boards, PBB0, PBB1, of which the
adversary has access to only one. The goal of this new notion is not that
the adversary should not be able to distinguish between a voter resisting
or submitting to coercion. Instead, we only aim to model that if the voter
escapes coercion, the coercer cannot determine whether it decided to resist
coercion and cast another vote, or if on the contrary, the voter decided to
submit to coercion. The goal of the adversary is to determine which run of
the experiment it is seeing (see Figure 4.8). To model this, we provide the
adversary with the OvoteDR(i0, C0, i1, C1) oracle, to make voter i0 cast a vote
for candidate C0, and voter i1 cast a dummy vote for a dummy candidate,
0, in PBB0. And, to make voter i1 cast a vote for candidate C1, and
voter i0 cast a dummy vote for a dummy candidate, 0, in PBB1. We use,
RegisterDummy(i) to denote the dummy registration of voter i. Moreover,
we denote by CastVoteDummy(τ, C) the dummy vote cast for candidate C
using token τ . The adversary is allowed to make this call multiple times.

Note that regardless of the call, two votes are added to both bulletin
boards. This oracle models the situation we want to protect our voters from.
If they wish to escape coercion, the adversary will not be able to distinguish
that situation with one where a dummy vote is added. Note that in our
schemes, the dummy votes are added once the election is closed. However, in
the game we model the dummy vote addition in parallel to the voting stage
to avoid the trivial win of the adversary. To this end, we allow the challenger
to use two additional protocols to register and cast dummy votes. These
protocols are RegisterDummy(i) and CastVoteDummy(τ, 0), which create a
token for and cast a dummy vote for user i respectively.

The rest of the oracles are modelled as for the coercion resistance exper-
iment, with the difference that this game does not keep state of the voting
tokens. Mainly Oregister(i), allows the adversary to register and obtain a
token, τ , for voter Vi; Ocast(τ, C), where using a token τ , the adversary can
call this oracle to cast a vote for candidate C in PBB0 and PBB1; Oboard()
allows the adversary to see the bulletin board; finally, Otally() allows the
adversary to compute the tally of the election. It can call this oracle only
once.

Again, as in the coercion resistance game, the result is always computed
from the same bulletin board, to avoid leakage of information given by the
result. To this end, the game simulates the tally and proofs of correctness
in case the game is using PBB1. We stress that this game models the 1009
attack only when the voter decides to escape coercion. The vote-selling
where the voter decides to submit to the adversary and prove that it did not

94 Chapter 4. Internet Voting

resubmit is not hereby modeled. At the end of the game, the adversary needs
to output a guess, b′. If it guesses correctly with non-negligible probability,
it wins the game. We formally define Expscr,bA,D (ϵ, E , C) in Figure 4.9.

Definition 7. Consider a voting scheme V = (Setup,Register,CastVote,
VoteVerify,Valid,Filter,VerifyFilter,Tally,Verify). We say the scheme has strict
coercion resistance if there exists algorithm SimTally such that for all prob-
abilistic polynomial time adversaries A⃓⃓

Pr
[︁
Exp

scr,0
A,D (ϵ, E , C) = 1

]︁
− Pr

[︁
Exp

scr,1
A,D (ϵ, E , C) = 1

]︁⃓⃓
is negligible with respect to ϵ.

4.5 NetVote

This section presents the first protocol presented in this thesis in what con-
cerns internet voting, namely NetVote. In this section we present a detailed
explanation of the phases of the protocol, namely the pre-election, election
and tally phases in Section 4.5.1. Then, Section 4.5.2 presents our dummy
vote strategy. In Section 4.5.3 we prove that our scheme satisfies ballot pri-
vacy, practical everlasting privacy, verifiability and strict coercion resistance
as presented in Section 4.4.

4.5.1 Scheme

Pre election

During the pre-election phase, the different parties generate their key pairs
and publish the public key in PBB. Similarly, PBB publishes the list of
candidates. Then, VS generates the random identifiers and commits to them
by publishing their encryption. More formally:

Procedure 4.5.1 (Setup). During the setup procedure, the differ-
ent entities run Setup(1ϵ, C, E , t, k), with security parameter ϵ, can-
didate list C, electoral roll E , threshold t and number of trustees k.
They pick a group G with primer order p and generator g. Then
they proceed as follows:

1. PBB publishes the list of candidates, C = {C1, . . . , Cnc}, and
initializes a counter count = 0.

2. CA and TS generate their key-pairs (pkCA, skCA) and
(pkTS, skTS) respectively, by calling KeyGen(1ϵ). They proceed
by publishing their public keys in PBB.

NetVote 95

3. The trustees and TS distributively run DistKeyGen(1ϵ, t, k),
where the voting key, pkv, is generated, and each trustee and
TS owns a share of the private key skv,i. They proceed by
publishing the voting key, pkv in PBB. Recall, as introduced in
Section 4.2, that the collaboration of TS, (as well as t of k) is
required to decrypt.

4. CA takes as input the total number of voters, nt = |E|, and
generates random and distinct voting identifiers, V Idi ←$ Zp

for 1 ≤ i ≤ nt with V Idi ̸= V Idj for i ̸= j. It keeps the
relation between V Id and voter private. Next, it encrypts all
identifiers:

wi := Enc(pkTS, V Idi) for 1 ≤ i ≤ nt.

Next, it signs each encrypted identifier, wi:

σi = Sign(skCA, wi).

Finally, it commits to these values by publishing the pair
(wi, σi) in PBB.

Election Phase

This phase comprises all steps that are taken while the election process is
open. Note that a voter needs to follow a certification phase for each vote
cast, which allows to avoid coercion without a high increase in complexity
whilst simplifying the task for voters to cast votes multiple times from dif-
ferent devices. With the received certificate, Cert, the user signs their ballot
β and sends it to the PBB. The later verifies the validity of the ballot, and
the signature before posting it. More formally:

Procedure 4.5.2 (ReqCred(id, Auth)). The voter authenticates to
the certification authority using her inalienable means of authentica-
tion, Auth, and requests an anonymous credential. As a response, she
receives a one-time use anonymous certificate with a re-encryption,
w′

i, of the respective wi as an attribute. Together with the certificate,
Cert(w′

i), CA includes a proof of correct re-encryption of wi.

1. The voter authenticates to CA using Auth.

2. CA selects the corresponding encrypted voter identifier, wi,
and randomizes the ciphertext by levering the homomorphic
property:

(ΠR, w
′
i) = RandCtxt(wi, ri),

96 Chapter 4. Internet Voting

for ri ←$ Zp, to generate a randomization of the encrypted
identifier, w′

i, and a proof of correct randomization, ΠR.

3. CA generates an anonymous certificate, Cert(w′
i) =

CredGen({w′
i}), with w′

i as an attribute, and sends it to the
user together with wi and the proof of re-encryption ΠR,

(Cert(w′
i), wi,ΠR) .

4. The user verifies that the attribute of the certificate is an en-
cryption of wi by verifying ΠR. If it is not the first time it
casts a vote, it may also verify that it has received the same wi

during both vote cast phases.

Procedure 4.5.3 (Vote(Cert, c)). The procedure of casting a vote
proceeds as a ‘regular vote-cast protocol’. Voter uses her voting
credential, selects a candidate, encrypts it and proves correctness.
It includes her encrypted identifier for a further filtering phase. It
sends the tuple to the PBB. More precisely:

1. Voter encrypts the chosen candidate, c ∈ C and generates a
proof of correctness by calling

(V,ΠV) = VoteEnc(pkv, c)

and signs it using her ephemeral certificate, Cert. Let skC be
the private key related to Cert, then the user computes

s = Sign(skC , V),

Finally, she sends to PBB her ballot,

β = (Cert(w′
i), V,ΠV , s) .

2. PBB verifies that the vote is valid running Valid(β) (see be-
low). If everything verifies correctly, it publishes it and sends
an acknowledge to the voter.

3. PBB augments the counter count = count + 1 and publishes
the vote in the board

(count, β) .

NetVote 97

4. Upon receiving the acknowledge, the voter can verify that her
vote was recorded as cast. Moreover, any third party is able
to check that all votes recorded in PBB come from a certified
voter, the w′

i is related to the certificate and votes have a correct
format.

Procedure 4.5.4 (Valid(β)). The PBB verifies that a ballot, β =
(Cert(w′

i), V,ΠV , s) is valid before publishing it in the PBB. It verifies
that the certificate was issued by the CA, the signature is a valid
signature by Cert, and the proof ensures that the encrypted vote
corresponds to a valid candidate. More technically:

CertVerify(pkCA, Cert(w
′
i)) = ⊤ ∧

SignVerify(pkC , s) = ⊤ ∧
ΠV .Verify() = ⊤.

Note that voters may repeat Procedure 4.5.2 and 4.5.3 as many times as
they wish while the election is open, from different devices without needing
to store or move the voting certificates.

Tallying phase

At this point, the election process is closed, and all votes from the voters that
took place in the election (possibly more than one vote from some voters)
are stored. Before proceeding to the tallying, the system needs to perform
the filtering, i.e. keeping the vote with the highest counter for each voter. To
this end, we make use of a proof determining whether a > b, with a, b being
the counters of the objects in the PBB, without giving any other information
of a, b. However, during the filtering procedure, we disclose the number of
times each voter voted (even though these voters are anonymous). Therefore,
to avoid the 1009 attack, we need to add dummy votes before the filtering
procedure. We formally define these procedures and their verification coun-
terparts.

Procedure 4.5.5 (Filter). Our interest is to do the public filtering
in a manner that a voter (or coercer) cannot know which of its votes
has been accepted. However, it must be provable that only the vote
with the highest by each individual voter passed the filtering. In
order to do this, we use Bulletproofs [Bün+18] to prove that an en-
crypted counter is greater than another. The filter proof is formed
by several distinct proofs, and distinct states of the votes (randomi-
sations, shuffles, filters). Hence, we represent it as an appendable

98 Chapter 4. Internet Voting

list, θ, where all these proofs and states are added. At the end of the
procedure, this parallel board is included in PBB.

1. The tally server, TS, extracts the ordered list of ballots,
[β1, . . . , βL] from PBB. It then verifies each of the ballots by
running Valid(βi) for i ∈ [1, L]. If this fails, it adds ⊥ to θ,
appends it to PBB, and aborts.

2. TS follows by stripping the information from the ballot, keeping
only the necessary information to proceed the filtering phase,
mainly the counter, the encrypted identifier and the encrypted
vote, β′ = (count, w′

i, V) and adds them to θ.

3. Next, the TS ads a random number of dummy voters per voter.
In total, it ads nD dummies. We describe how the TS chooses
the number of voters to add per voter in Subsection 4.5.2. We
want the counter of the dummy votes to be always less than
the counters of real votes, and hence, TS always adds a dummy
with a zero counter. Moreover, every added dummy uses the
encrypted zero vector with zero randomness, VoteZEnc(pkv, 0).
Finally, we don’t want an adversary to know how many dummy
votes were added to its coerced voter, so TS randomises the
encrypted V Id, w′′

i = RandCtxt(w′
i, ri) for ri ←$ Zp. Each

added dummy vote has the following form,

β = (0, w′′
i , VoteZEnc(pkv, 0)).

TS appends the dummy ballots to θ.

4. Next, TS encrypts each of the counters with randomness zero,
EncCounter = Enc(pkTS, i) for every counter i (including the
counters from dummy votes) resulting in each entry of PBB as
follows:

(EncCounteri, Vi, w
′
i),

which it ads to θ.

5. Now, TS proceeds by performing a verifiable shuffle to all the
entries in the bulletin board. Let B = [β′

1, . . . , β
′
L+nD

] be the
stripped ballots with the encrypted counter. It uses a provable
shuffle to obtain a shuffled list of ballots, BS = [β′′

1 , . . . , β
′′
L+nD

]
and a proof of correctness ΠS. It appends B

′ and ΠS to θ.

NetVote 99

6. Next, it proceeds to group encrypted votes cast by the same
voters. To achieve this it begins decrypting each identifier,
V Idi = Dec(skTS, w

′
i) and generating a proof of correct de-

cryption, Πd,

(EncCounteri, Vi, V Idi,Π
d).

Next, it groups ballots by V Idi. Each of these groups has size
SG
i . TS appends the ballots with decrypted V Id in groups to

θ.

7. The TS filters the votes by taking the encrypted vote with the
higher counter. To do this it locally decrypts every counter
and selects the one with the highest counter. It proceeds by
publishing the filtered votes, together with SG

i − 1 proofs that
the counter is greater than all the other counters related to
votes cast by the same voter, where SG

i is the number of votes
cast by voter Vi. Note that the Bulletproof system that we
use for this proof provides batch proofs, allowing TS to batch
all these proofs at the cost of an additive factor (instead of a
multiplicative factor) in the communication and computational
complexity. It appends to θ

(EncCounteri, Vi, V Idi, (ΠGT,j)j∈Si
),

where Si are the groups formed by votes cast with the same
identifier V Idi.

8. Finally, the TS publishes the final list of votes S = [v1, . . . , vnV]
and the full proof θ to PBB.

Procedure 4.5.6 (Tally). Finally, the TS calculates the full en-
crypted result by performing an addition of all ciphertexts accepted
after the filtering

Enc(pkv, vFinal) =

nV∏︂
i=1

Enc(pkv, vi) = Enc

(︄
pkv,

nV∑︂
i=1

vi

)︄
.

Then, the result goes through the group of trustees T holding the
different shares of the private key, together with the TS, which also
holds a required share of the decryption key. They decrypt and
generate the proof of correct decryption, Πz. Moreover, any auditor
or third party can calculate the sum of all the ciphertexts, and then
verify that the result is a proper decryption of such a product.

100 Chapter 4. Internet Voting

Verification

Any external auditor can use the PBB to verify that all steps in the tally and
filtering phases were performed correctly. We define the following verification
procedures:

Procedure 4.5.7 (VerifyFilter). Any party can verify that the filter-
ing processes was performed correctly by running VerifyFilter(). This
algorithm examines the content of the bulletin board and performs
the following checks:

1. First, check if all ballots are correct and that no duplicate votes
or public keys are included in the ballots as per step 1 of Proce-
dure 4.5.5. If the checks fail, the bulletin board should contain
θ = ⊥; VerifyFilter returns ⊥ if that is not the case. Otherwise,
it continues.

2. Retrieve the selected votes S and the proof θ from the bulletin
board and continue as follows:

(a) Verify that stripped real ballots are correctly
formed. Consider ballots [β1, . . . , βL], where
βi = (counti, Cert(w

′
i), V,ΠV , σ) and check that the

stripped ballot β′
i = (counti, w

′
i, V) has been added to θ.

(b) Verify that the dummy ballots on the bulletin board
are correctly formed. For ballots β′

L+1, . . . , β
′
L+nD

where
β′
i = (counti, w

′
i, V), check that Vi = VoteZEnc(pkv, 0)

and count = 0.

(c) Let EncCounteri be the encryption of counter counti. For
β′
1, . . . , β

′
L, verify that EncCounteri = Enc(pkTS, i) with

randomness zero. Then, for β′
L+1, . . . , β

′
L+nD

, verify that
EncCounteri = Enc(pkTS, 0), with randomness zero.

(d) Let B = [β′
1, . . . , β

′
L+nD

] be all stripped ballots, and
BS = [β′′

1 , . . . , β
′′
L+nD

] the shuffled and randomized ballots.
Verify the shuffle proof ΠS to check that BS is a correct
shuffle of B.

(e) Next, let [(V Id1,Π
d
1), . . . , (V IdL+nD

,Πd
L+nD

)] from the
bulletin board, and verify the decryption proofs Πd

i for
each of the shuffled ballots β′′

i .

(f) Let V Id′i be the plaintexts verified in the previous step.
Group the ballots by voter identifier into ballot groups Gj

NetVote 101

of size SG
j . For each group Gj, find the selected ballot,

V Id′k, and verify the SG
i − 1 proofs that the encrypted

counter is greater than all other encrypted counters in the
group.

If any of the checks fail, it returns ⊥, and ⊤ otherwise.

Procedure 4.5.8 (Verify). Any party can verify the result z and
proof Πz against the public bulletin board. To do so, they proceed
as follows:

1. Verify that the TS operated honestly by running the
VerifyFilter() algorithm. If VerifyFilter returns ⊥, then return
⊤ if (z,Πz) = (⊥,⊥), otherwise return ⊥.

2. Given the selected votes S, return the result of
VerifyTally(pkv,S, z,Πz).

4.5.2 Including dummy votes

The inclusion of dummy votes allows us to mitigate the 1009 attack in an
elegant and simple manner. Undoubtedly, complexity increases, as we include
more votes in the shuffle and the filtering stage. However, the number of
dummy votes does not need to be big, and therefore complexity will only
be increased by a small constant. In this section, we describe how the TS
includes dummy votes once the election is closed and how this affects filtering
complexity.

In order to hide the number of votes that each voter casts, we include a
random number of votes per eligible voter. To see how it is not trivial to
determine the number of dummies to add per voter, consider the following:

• It is straightforward to see why a fixed number of dummies for all
voters would not serve the purpose here. So say that a random number
of dummies for voter Vi, ni,dum, is added. If the set were we take ni,dum

from is Z, then the overhead would become prohibitive, as there is no
upperbound. However, if ni,dum ←$ Zu, where u is the upperbound,
then with probability 1/u, ni,dum = u which would blow the wistle if
voter Vi decided to re-vote to escape coercion (as now a total of u+ 1
votes would have been added, where not all could have been dummies).

Then, it seems necessary to have no upperbound, but instead of choos-
ing ni,dum uniformly at random from Zu, we could use a distribution
where ni,dum = n with probability 1/2n+1. With this distribution there

102 Chapter 4. Internet Voting

0 20 40
0

0.2

0.4

0.6

0.8

1

Number of added dummies

P
ro

b
a
b
il
it
y

1 vote(s) cast

5 vote(s) cast

10 vote(s) cast

20 vote(s) cast

40 vote(s) cast

0 0.5 1

·107

1.24

1.25

1.26

1.27

Number voters

O
v
e
rh

e
a
d

0.0001 %

0.005 %

0 50 100 150
0

0.1

0.2

Number of added dummies

P
ro

b
a
b
il
it
y

1 vote(s) cast

5 vote(s) cast

10 vote(s) cast

20 vote(s) cast

40 vote(s) cast

0 0.5 1

·107

4.95

5

5.05

5.1

Number voters

O
v
e
rh

e
a
d

0.0001 %

0.005 %

Figure 4.10: Negative binomial distribution (left) with probability of success 0.8 (top) and
0.2 (bottom). This distribution is used to select the number of dummies to add per voter,
depending on how many votes a voter casts. Overhead caused by the dummy addition
(right), having used the corresponding distributions (top and bottom), where the overhead
is counted as ((#votes+#dummies)/#votes).

is no upperbound but it is very unlikely to add a big number of dum-
mies for voter Vi. The drawback of this mechanism is that there is a
lower bound. Moreover, with probability 1/2, zero dummy votes will
be added. This is not a problem for a voter who wants to escape coer-
cion, as re-voting would not reveal anything to the coercer. However, a
voter that wants to submit would be able to prove so with probability
1/2, and therefore be able to sell its vote with high probability.

• However, while we want to hide the groups of votes with unusual group
sizes (e.g. 1009), we do not need to add an overhead to small groups

NetVote 103

(which are not prone to receive the 1009 attack). To this end, our
solution adds random votes to voters depending on the votes they have
cast, following the negative binomial distribution, defined as:

f(µ; ρ, p) := Pr[X = µ] =

(︃
µ+ ρ− 1

µ

)︃
(1− p)ρpµ.

where ρ is the number of votes cast by the voter in question, and µ is
the number of dummy votes to add for that user.

The choice of this probability distribution is made clear in Figure 4.10,
left. This distribution results in adding, with high probability, a low
number of dummy votes for voters that cast a small number of votes,
and with very low probability adding zero dummy votes for voters who
cast an unusual number of votes. This behaviour is exactly what we
want to achieve for hiding voting patterns.

We present in Figure 4.10, left, the different distributions of the number of
dummy votes added depending on how many votes a voter cast. In both
top and bottom (left) we see the probability distribution of the number of
dummies to add given a number of cast votes. In top, the probability of
success is 0.8, while on the bottom it is of 0.2.

In order to understand how big the overhead is in the filtering phase, we
present the overall overhead assuming that a subset of users re-voted. To
define how the population of voters votes, we use the Poisson distribution
to determine the number of votes cast by each voter. This distribution is
defined by

P (k;λ) := Pr[X = k] =
λke−λ

k!
.

Again, this distribution fits our goal with λ = 1, as we expect most users to
vote once or twice, and consider the activity of casting many votes highly
unlikely. Note that, with λ = 1, the probability of casting a high number
of votes is low. However, we need to consider a subset of voters that casts
lots of votes, either as an attack to the system or simply by users who are
suffering coercion. To this end, we consider that a given percentage, say
l, cast a very high number of votes, and therefore the number of re-votes
are chosen at random from the Poisson distribution with λ = 200. In this
case, the probability of casting a lot of votes is high. In Figure 4.10 right,
we plot the overhead caused by dummies, # votes +# dummies

votes
, with a varying l

between 0.1% − 5% of such users. Top and bottom represent the overhead
using probability of success of 0.8 and 0.2 respectively. We can see that the
overhead defined by ((# votes +# dummies)/# votes) remains constant in 1

104 Chapter 4. Internet Voting

and 5 respectively. This shows that the mechanism used to hide the patterns
of whether voters revoted results in a minimal effect on the performance of
the filtering phase.

4.5.3 Security Proofs

In this section we prove that NetVote satisfies the security properties intro-
duced in Section 4.4.

Proof of Ballot Privacy

Theorem 5. NetVote provides ballot privacy, as defined in Definition 1,
under the Decisional Diffie-Hellman (DDH) assumption in the random oracle
model.

Proof. We provide a similar proof than the one used to prove that He-
lios [Adi08] has ballot privacy presented in [Ber+15] by using a sequence
of games. We initialise the argument with Exp

bpriv,0
A,D and go step by step

until reaching a game equivalent to Exp
bpriv,1
A,D . By showing that each of the

transitions between the steps are indistinguishable, we conclude that the two
experiments are indistinguishable and hence NetVote satisfies ballot privacy.

Game G0: Let G0 be Exp
bpriv,0
A,D as defined in Figure 4.3 where the adversary

has access to the bulletin board PBB0.

Game G1: G1 is defined exactly as G0 with the exception that the tally
proof is simulated. This is, the result is still computed from the votes
in PBB0, but the proof of tally is simulated. The proofs to be simu-
lated are the shuffle proof in Step 5, the proofs of correct decryption in
Step 6, and the proofs of greater or equal relation in Step 7, of Proce-
dure 4.5.5. Given that all these proofs are zero-knowledge proofs, they
require (in order to have the zero-knowledge property) the existence of
a simulator algorithm that generates simulations of the proofs which
are indistinguishable from real proofs. We use the random oracle to de-
scribe as such our SimTally algorithm (as introduced in Definition 1).

Let L be the number of votes published in the bulletin board. Note that, by
how the oracles are defined, this number is equivalent in PBB0 and PBB1.
We denote βi the ballots posted in PBBi for i ∈ {0, 1}. Next, we proceed
with a series of L games where we change (one by one) each entry of posted
votes. Let G0

1 = G1. For i ∈ {1, . . . , L}, we do the following:

NetVote 105

Game Gi
1: The difference between Gi

1 and Gi−1
1 is only one. If ballot βi

0 of
PBB0 differs from ballot βi

1 of PBB1, it exchanges β
i
0 by βi

1.

Game G2: We define G2 as GL
1 . Note that this view is equivalent to the

view of Expbpriv,1A,D . Hence, all that remains to prove is that this set of
transitions of games Gi

1 are indistinguishable among each other.

In order to prove that the transitions made between games Gi
1 are indistin-

guishable, we use the non-malleability under chosen plaintext attack (NM-
CPA) property of the ElGamal cryptosystem [BPW12]. This property of
ElGamal ensures that an adversary that chooses two plaintexts, and has
a challenger encrypt them, is capable of distinguishing which ciphertext en-
crypts which plaintext with negligible probability. Recall that the ballots are
formed by (Cert(w′

i), V,ΠV , σ), where the identifier and vote are encrypted.
However, the process of changing each of the ballots will occur after TS has
stripped them, as defined in Step 2 of Procedure 4.5.5, mainly, (count, w′

i, V).
Hence, when changing two ballots between games Gi

1 and Gi+1
1 , we only

need to change the encrypted vote V . We piggyback on this property of
ElGamal encryption, and deduce that if an adversary is capable of distin-
guishing between two consecutive games Gi

1 with non-negligible probability,
then it is capable of breaking NP-CPA security of ElGamal.

This completes the proof that an adversary can distinguish between
Exp

bpriv,0
A,D and Exp

bpriv,1
A,D with negligible probability.

Proof of Everlasting privacy

Theorem 6. NetVote provides practical everlasting privacy, as defined in
Definition 4.

Proof. As in the proof of Theorem 5, we begin defining a game corresponding
to Exp

everbpriv,0
A,D , and proceed with indistinguishable changes until a game

corresponding to Exp
everbpriv,1
A,D , therefore completing the proof.

Game G0: This is defined as a run of Expeverbpriv,0A,D as defined in Figure 4.6,
where the adversary has access to the bulletin board PBB0.

Game G1: This game is defined exactly as G0 with the sole exception that
now, we change the register phase, and instead run: τ1 = Register(V0)
and τ0 = Register(V1)

Note that G1 already corresponds to Exp
everbpriv,1
A,D . In order to prove that

these two events are statistically (and not computationally) indistinguishable,
we recall how the Register phase is defined in NetVote. A voter Vi uses

106 Chapter 4. Internet Voting

its authentication credentials (e.g. usr/pwd) to request a voting certificate,
Cert() to CA. This certificate contains an encrypted voting identifier wi

unique to the voter. However, these identifiers are chosen at random during
the Setup protocol, and the link between voter and V Id is private to CA
(i.e. it is not published in the PBB). Hence, while the adversary is capable
of decrypting the identifier in each of the credentials, it is not capable of
determining whether a given V Id corresponds to V0 or V1, as they are chosen
at random at each oracle call.

This completes the proof that NetVote provides practical everlasting pri-
vacy.

Proof of Verifiability

Theorem 7. NetVote is verifiable, as defined in Definition 5, under the DDH
assumption in the random oracle model.

Proof. We provide a similar proof by showing that dummy votes are not
counted in the final tally and that at least one cast vote has been counted
(one later than the last verification). At the end of the election, the adversary
outputs z,Π. Because Π validates, we know that the result z is the addition
of the filtered votes from the PBB. Now it remains to show that the filtered
votes do indeed satisfy the conditions imposed by the game.

Let B be the stripped ballots in PBB once the election closes. We know
that all these votes originate from a valid ballot cast by a voter, and hence are
accompanied by a proof that they contain an encryption of a valid candidate.

Let nV be the number of different voters that cast at least a ballot. We
argue that the number of ballots included in the tally equals nV . Because of
the correctness of the shuffle, ΠS, we know that these same ballots will be
present after the shuffle, and hence votes of voters 1, . . . , nV are present in
B′. The filtering procedure groups votes cast by the same voter, and takes
only the vote with the highest counter (where the counter is unique per PBB
entry starting at one). Because of the validity of the decryption proof, Πd,
we know that the filtering is applied to votes cast by the same voter (recall
that we assume the honesty of CA for verifiability). Moreover, given the
correctness of the greater than proofs, ΠGT,i for i ranging all indexes of votes
cast by the same voter, we know that only the ballot with higher index was
counted for each voter. Finally, all dummy votes are cast with non encrypted
zero counter, and therefore it is impossible that a dummy vote supersedes a
real vote cast by a voter.

Hence, we know that votes counted in the final tally are the votes with
the highest counter recorded in the PBB by each voter that took part in the

NetVote 107

election. These voters are part of one of the three groups of our definition.
What remains is to prove that the conditions are met for each of these three
groups.

First, we show that the last checked vote or one after is counted for each
voter in Checked. Consider voter Vi ∈ Checked, and let countv be the
counter of the last ballot it checked was recorded as cast. We know that
ballot with counter countv was added to PBB, therefore in the grouping
after the shuffle, we now that the group for voter Vi will exist, with at least
ballot with counter countv. Given that the selected ballot of each group is
accompanied with a proof that the counter is greatest among the group, the
selected ballot must be the one with counter countv or one cast afterwards.
Given the proof of decryption of the homomorphic tally among all selected
votes, we know that either ballot countv or a later ballot by voter Vi is
counted in the final tally.

Now consider a voter Vi ∈ Unchecked. Then, by the same argument as
above, we know that the tally either drops all ballots, or counts one of the
ballots cast by the voter. In other words, the tally cannot add a vote not
cast by voter Vi.

Finally, all remaining voters correspond to group Corrupted. Notice that
by the arguments above, the tally procedure cannot include any votes by
voters who did not cast a vote. Moreover, only one vote per grouped votes
is selected. Hence, it follows that the size of this group is a most the number
of corrupted voters, nC.

Proof of Strict coercion resistance

Theorem 8. NetVote has strict coercion resistance, as defined in Defini-
tion 7, under the DDH assumption in the random oracle model.

Proof. As in the proof of Theorem 5, we construct our SimTally algorithm
by leveraging the zero-knowledge property of the zero-knowledge proofs used
in the tally. Namely, SimTally simulates the proofs of shuffle, decryption,
greater than, and finally, the proof of decryption of the added votes (Proce-
dures 4.5.5 and 4.5.6).

We present a proof following a series of games, replacing all the ballots
that depend on the bit b. If all steps used throughout the replacement of
these ballots are indistinguishable, strict coercion resistance follows.

Game G1: This game is defined as Expscr,bA,D (ϵ, E , C) of Figure 4.8. Note that
we differ from the proof of ballot privacy in that we do not start with
a fixed value of b.

108 Chapter 4. Internet Voting

Game G2: Later, we are going to replace all votes by random votes. To
this end, in this game, we compute the result taking the decrypted
ballots of PBB0. Consider the stripped ballots of step 4 of Proce-
dure 4.5.5, (EncCounter, V, w′). It computes the tally of these ballots,
Tally((EncCounter, V, w′)nl

i=1), where nl is the total number of votes
cast. It does so by first decrypting EncCounter, V, w′ using skTS, skv
and skTS respectively. Now, it proceeds by computing the final result
by taking the last vote cast per V Idi. Note that, as the result is al-
ways taken from PBB0 and the game does not publish these decrypted
values, game G2 is indistinguishable from game G1.

Game G3: Same as the previous game, but now all zero-knowledge proofs,
regardless of b, are replaced by simulations. This is, the proof of shuffle,
ΠS, of all votes (including the dummies), the proof of correct decryp-
tion, Πd, of each identifier, V Idi, the greater than proofs used to filter
all but the last vote, ΠGT,i, and finally, the proof of decryption of the
final result, Πz.

Due to the zero-knowledge property, we can use the random oracle
to simulate this step, making the difference between game G2 and G3

indistinguishable.

Our goal now is to exchange all identifying ciphertexts (mainly w′,
EncCounter, and the corresponding values after the shuffle) by random ci-
phertexts. Note that the proofs are simulated, and the result (filter and tally)
is calculated from the decrypted votes of game G2, so the decryption, shuffle,
and tally are now independent of the actual values of the encrypted votes.

Game G4: We defineG4 the same asG3 with the exception that we exchange
all ciphertexts w′ in the certificates by random ciphertexts. Note that
due to the changes of G2, the result is correctly calculated from the
votes initially in PBB0 and hence this does not affect the filtering
stage. A hybrid argument reduces the indistinguishability of games G4

and G3 to the CPA security of ElGamal encryption. Note that this
reduction is possible as we no longer need to decrypt the ciphertexts in
the tallying.

Game G5: We follow by replacing all votes cast by OvoteDR() by zero votes.
Given that we assume TS is honest, and hence the adversary cannot
decrypt the ciphertexts, the indistiguishability of this step is reduced
to the NM-CPA security of ElGamal.

Game G6: To ensure that the filter does not leak information to the coercer,
we also replace all ciphertexts generated thereafter. We replace the

VoteAgain 109

encryption of the counters, EncCounter, by random ciphertexts. We do
the same with all ciphertexts that exit the shuffle. Namely, we replace
the shuffled encrypted counters, encrypted votes and encrypted V Ids.
This exchange is possible as we do not need to decrypt the ciphertexts
(as of game G2). Moreover, the indistinguishability of this steps follows
from the simulation of the zero-knowledge proofs (of game G3) and the
NM-CPA security of the encryption scheme.

The resulting game is clearly independent of b. Due to indistiguishable
changes that we made to achieve this last game, we conclude that game G1,
and therefore Exp

scr,b
A,D (ϵ, E , C), are independent of the game bit b, and hence

strict coercion resistance follows.

4.6 VoteAgain

This section presents our second protocol introduced in this thesis in what
concerns internet voting, namely VoteAgain. Contrarily to the previous sec-
tion, this protocol has stronger security properties with respect to coercion
resistance in exchange of a quasi linear filtering phase. We begin the sec-
tion pointing out the main differences between the two approaches in Sec-
tion 4.6.1. We present a detailed explanation of the phases of the protocol,
the pre-election, election and tally phases in Section 4.6.3, and an explana-
tion of the deterministic dummy strategy in Section 4.6.4. In Section 4.6.5
we proof that our scheme satisfies ballot privacy, verifiability and coercion
resistance as presented in Section 4.4. Finally, in Section 4.6.6, to prove that
this increase in the computation complexity does not affect the usage of the
scheme in large scale elections, we include an evaluation section.

4.6.1 Overview

The two key observations for possible improvement involve the anonymous
credentials, the counter reference and the dummy strategy. The first is
straightforward - we need to trust the CA both for coercion resistance and
for everlasting privacy, therefore, it is not necessary to use anonymous cre-
dentials. By using simple tokens signed by the CA, we achieve the desired
properties. Secondly, the counter reference makes an important difference.
Have the scheme set up as presented in Section 4.5, the filtering procedure
takes the token of the last vote cast, regardless of when the certificate was
generated. This allows an adversary of collecting several tokens of many
users, and use the last 5 minutes of the election to cast as many votes as
possible. By changing the reference over which the TS performs the filtering,

110 Chapter 4. Internet Voting

135 25 c1
144 89 c2
144 90 c2
135 26 c2

1. Original ballots

135 26 c2
144 90 c2
135 25 c1
144 89 c2

2. Shuffled ballots

25: c1
26: c2

Voter 135

89: c1
90: c2

Voter 144

3. Decrypt voter identifier
and ballot indices,
group per voter

Figure 4.11: Basic filtering process by tally server without using dummies. Ballots consist
of an encrypted voter identifier (), an encrypted ballot index (), and an encrypted vote
().

we can easily mitigate this attack. In VoteAgain, we include the counter in
the voting token, not in the PBB. This ensures that the selected vote is the
one cast with the last generated certificate, rather than the actual last vote.

We dedicate the rest of this section to focus on the third point as it
requires a more thorough explanation, namely the new dummy strategy.
Changing the dummy strategy allows us to enforce the security properties at
the cost of minimally deteriorating performance. For simplicity, we omit the
zero-knowledge proofs that parties use to show that they performed opera-
tions correctly.

4.6.2 A different dummy strategy

One of the first differences is that, in this new protocol counters are assigned
to the certificate generation, rather than to the vote submission. This ensures
that the last generated certificate is the one tallied in the final result. This
prevents an attack from an adversary that collects plenty of certificate of
coerced users, and submits the vote just before the end of the election. The
dummy addition by the TS happens during the filtering procedure in the
tallying phase. The encrypted voter identifiers and ballot indices enable
the tally server (TS) to efficiently select the last ballot for each voter. The
TS uses the simplest mechanism possible: It shuffles the ballots, and then
decrypts the voter identifiers and ballot indices. The ballots can then publicly
be grouped per voter, and the last ballot can be identified by inspection.
Finally, the trustees tally the ballot with the highest counter of each voter.
See Figure 4.11.

As presented previously, the random dummy generation procedure
achieved good performance, but affected the security. In VoteAgain, TS
inserts a deterministic number of dummy ballots and dummy voters before
shuffling the ballots to hide such patterns while maintaining the simple public
filtering procedure.

VoteAgain 111

We illustrate VoteAgain’s dummy mechanism in Figure 4.12, in a sce-
nario with two voters (A and B) where, the coercer forces voter A to cast 2
ballots. At the end of the election phase the coercer observes 4 ballots and
must determine whether A revoted (situation 2) or not (situation 1). With-
out dummies, distinguishing these situations is trivial: if A revoted there is
a group of 3 ballots and one of 1 ballot, and there are two groups of 2 ballots
otherwise. We add dummy ballots and voters to make both situations look
identical. The idea is to find a cover of ballots that could result from both sit-
uations. For instance, adding to either situation two dummy voters that cast
four dummy ballots total yields groups of 1, 2, 2, and 3 ballots. This obser-
vation makes both situations indistinguishable for the coercer (Figure 4.12,
right).

To ensure that the cover is independent from the voters’ real actions, its
appearance must depend only on the information available to the coercer:
(1) the number of ballots L posted by users to the bulletin board; and (2) the
number of voters nt that cast a ballot. The goal of the dummy generation
strategy is to allocate dummy ballots such that the adversary observes the
same cover regardless of the actual distributions of the L ballots over nt

voters.

Consider the case of two voters, i.e., nt = 2, and 9 ballots, i.e., L = 9.
As the filtering stage only reveals the sizes of the groupings and not their
relation to voters the adversary’s possible observations are (1, 8), (2, 7), (3, 6),
and (4, 5). To cover all these scenarios one needs 8 voters (6 of which are
dummy) casting 1, 2, 3, 4, 5, 6, 7, and 8 ballots, for a total of 36 − 9 = 27
dummy ballots.

We add dummy ballots to real voters as well to reduce the number of
group sizes that are possible. For example, in the previous scenario one can
pad the cases (1, 8), (2, 7), (3, 6), (4, 5) to (1, 8), (2, 8), (4, 8), (4, 8). This can
be covered with a cover containing voters with 1, 2, 4, 8 ballots each. Building
this cover requires only 2 dummy voters and 15− 9 = 6 dummy ballots. We
stress that the number of added dummy ballots is independent of how the real
ballots are actually distributed among the two voters.

We refer to Section 4.6.4 for a generic, efficient algorithm for computing
a cover.

Filtering with dummies. Before shuffling the ballots, the TS adds dummy
ballots to achieve the desired grouping. To ensure that the TS cannot modify
the election outcome, the TS assigns different tags to real and dummy ballots.
different encrypted tag.

To determine how to add dummies, the TS inspects the decrypted voter
identifiers and ballot indices; determines a cover; and then computes how

112 Chapter 4. Internet Voting

Situation 1
A: 2 ballots
B: 2 ballots

Situation 2
A: 3 ballots
B: 1 ballots

Original
ballots

Dummy
addition

Cover
(coercer observation)

Figure 4.12: The original ballots’ groups () create distinguishable situations. Adding 2
dummy voters casting a total of 4 dummy ballots (), the situations become indistinguish-
able.

135 25 c1

144 89 c2

144 90 c2

135 26 c2

531 45 c1

135 26 c2 R

144 90 c2 R

135 25 c1 R

144 89 c2 R

531 45 c1 R

74 17 c0 D

103 34 c0 D

531 43 c0 D

531 44 c0 D

2. Tagged ballots + dummies1. Original ballots

74 17 c0 D

531 45 c1 R

531 43 c0 D

144 89 c2 R

103 34 c0 D

144 90 c2 R

135 26 c2 R

531 44 c0 D

135 25 c1 R

3. Shuffled ballots

17: c0 D
Voter 74

34: c0 D
Voter 103

25: c1 R

26: c2 R

Voter 135

89: c1 R

90: c2 R

Voter 144

43: c0 D

44: c0 D

45: c1 R

Voter 531

4. Decrypted voter identifiers and ballot
indices, grouped per voter

Figure 4.13: Filtering process by tally server including dummies. Labels as in Figure 4.11.
To enable correctness proofs, the TS tags real ballots and dummy ballots with an encrypted
marker ().

many dummies to add to existing voters, and how many dummies to add to
dummy voters. Consider the example in Figure 4.13. Given 3 voters and 5
ballots, a cover with groups of size 1,1,2,2, and 3 suffices. The TS therefore
adds 4 dummy ballots in step 2: 2 dummies to existing voter 531, and two
dummy voters, 74 and 103, each with one dummy vote.

After adding the dummy ballots, the TS shuffles all ballots. Next, the
TS decrypts the voter identifiers and ballot indices; groups ballots per voter,
and selects the last ballot per voter. The tags enable the TS to prove that
it did not omit real ballots cast by real voters, and it did not count dummy
votes cast by dummy voters. In particular, the TS proves in zero-knowledge
that the selected votes are either tagged as a real vote and therefore must
correspond to the last ballot of a real voter; or the selected vote corresponds
to a dummy voter (i.e., all the ballots in the group are tagged as dummies).
Finally, the TS privately discards the selected votes corresponding to dummy

VoteAgain 113

voters. We refer the reader to Procedure 4.6.5 for the full details.

4.6.3 Scheme

Pre-election

In the pre-election phase, the PBB publishes the candidates, and the TS and
the trustees prepare their cryptographic material. The CA assigns a unique,
random voter identifier V Idi to each eligible voter. The correspondence be-
tween voters and their identifiers is private to the CA. The CA also generates
a random token index counti for each of the voters to enable the selection of
the last ballot per voter. More formally:

Procedure 4.6.1 (Setup). To setup an election system with secu-
rity parameter ϵ, electoral roll E , candidate list C, threshold t, and k
trustees, the different entities run the Setup(1ϵ, E , C, t, k) procedure.
First, they pick a group G with generator g and prime order p. They
then proceed with the following steps:

1. The PBB initializes the bulletin board, and adds the list of
candidates C to the bulletin board.

2. The CA stores the electoral roll E . Let nt = |E| be the num-
ber of eligible voters on the electoral roll. The CA generates a
random and unique voter identifier V Idi ∈ G and ballot index
counti ∈ {2ϵ−2, . . . , 2ϵ−1− 1} for each voter Vi on the electoral
roll and stores them internally. Finally, the CA generates a
public-private key-pair (pkCA, skCA) = KeyGen(1ϵ) to sign to-
kens. It publishes pkCA.

3. The TS generates a public-private ElGamal key-pair
(pkTS, skTS) = KeyGen(1ϵ). It publishes pkTS.

4. The trustees run VoteKeyGen(1ϵ, t, k) to generate a public en-
cryption key pkv and decryption keys skv,i that the trustees
keep private.

Election phase

In the election phase, voters first authenticate to the CA to obtain an
ephemeral voting token τ . They use this token to sign their ballot β, and
post the ballot on the bulletin board. The bulletin board verifies that the
ballot is valid. We formalize this phase in three procedures:

114 Chapter 4. Internet Voting

Procedure 4.6.2 (GetToken(id, Auth)). On input her identity id
and her inalienable means of authentication Auth:

1. The voter authenticates to the CA using Auth.

2. The CA looks up the corresponding voter identifier V Idi and
ballot index counti. Then, the CA encrypts the voter iden-
tifier w = Enc(pkTS, V Idi) and ballot number EncCounter =
Enc(pkTS, counti) (it first encodes counti as an element of G),
and increments the ballot index counti := counti+1. The CA
hides the index counti from the user to prevent coercers – who
can see what users can see under coercion – from being able to
detect whether the user revoted.

3. The CA creates an ephemeral signing key (pk, sk) =
KeyGen(1ϵ) and signs this key together with the encrypted voter
identifier and ballot number:

σ = Sign(skCA, pk ∥ w ∥ EncCounter)

and returns the token τ = (pk, sk, w, EncCounter, σ) to the
user.

4. The user verifies the token τ = (pk, sk, w, EncCounter, σ) by
checking that SignVerify(pkCA, σ, pk ∥ w ∥ EncCounter) =
⊤.

Procedure 4.6.3 (Vote(τ, C)). To cast a vote, the voter takes as pri-
vate input the ephemeral voting token τ = (pk, sk, w, EncCounter, σ)
and a candidate c ∈ C, and then proceeds as follows:

1. Encrypts her candidate c as (V,ΠV) = VoteEnc(pkv, c) to ob-
tain ciphertext V and zero-knowledge proof of correct encryp-
tion ΠV .

2. Creates the ballot

β = (V,ΠV , pk, w, EncCounter, σ, s)

where s = Sign(sk, V ∥ ΠV ∥ pk ∥ w ∥ EncCounter ∥ σ). The
voter posts the ballot β to the public bulletin board.

3. The public bulletin board runs Valid(β), see below, to check
that the ballot is valid, before appending it.

VoteAgain 115

4. Finally, the voter verifies that the ballot β has been appended
to the bulletin board.

Procedure 4.6.4 (Valid(β)). The bulletin board verifies that the
ballot β = (V,ΠV , pk, w, EncCounter, σ, s) is valid with respect to
the current state of the bulletin board as follows:

1. The PBB checks the correctness of the encrypted vote; of the
user’s signature using the ephemeral key pk; and the CA’s sig-
nature on this ephemeral key pk, the encrypted voter identifier
w, and the encrypted ballot number EncCounter:

ΠV .Verify(pkv, V,ΠV) = ⊤,
SignVerify(pk, s, V ∥ ΠV ∥ pk ∥ w ∥ EncCounter ∥ σ) = ⊤,
SignVerify(pkCA, σ, pk ∥ w ∥ EncCounter) = ⊤.

2. The PBB checks that neither the encrypted vote V nor the key
pk appear in any ballot β′ on the bulletin board.

If any of these checks fails, the bulletin board returns ⊥, otherwise,
the PBB returns ⊤.

Tally phase

In the tally phase, the TS takes the ballots from the PBB, adds dummy
ballots, and shuffles them. Then, it selects the vote with the highest counter
per voter (see Figure 4.14). To prevent dummy voters from causing overhead
in the trustees’ shuffle and decrypt phase, the TS shuffles the selected bal-
lots and removes all ballots cast by dummy voters. Contrarily to NetVote,
VoteAgain hides the counters from adversaries, hence TS needs to tag the
dummy ballots to ensure that these do not overwrite real ballots. Finally, the
trustees shuffle and decrypt the selected ballots from real voters. Formally,
we define two procedures, one to filter votes (Filter), and one to tally the
selected ballots (Tally):

Procedure 4.6.5 (Filter). After the election closes, the TS selects
the selected votes vi and produces the filter proof θ. If it aborts, it
publishes the current θ to the public bulletin board.

1. TS retrieves an ordered list of ballots [β1, . . . , βL] from the
PBB, where βi = (Vi,ΠV , pki, wi, EncCounteri, σi, si). The TS
verifies the ballots by running step 1 of Valid and verifies that
there are are no duplicate votes Vi or ephemeral public keys pki

116 Chapter 4. Internet Voting

β1

...
βL

Ballots

β′
1
...
β′
L

β′
L+1
...

β′
nT

Ballots
with dummies

V ′
1 w′

1 EncCounter′1 τ ′1
...

...
...

...
V ′
nT

w′
nT

EncCounter′nT
τ ′nT

Shuffled ballots
without proofs

V Id1
V1,1 count1 τ1,1
...

...
...

V1,SG
1

count1 + SG
1 τ1,SG

1

V Idκ
Vκ,1 countκ τκ,1
...

...
...

Vκ,SG
κ

countκ + SG
κ τκ,SG

κ

decrypt w′
i, EncCounter

′
i

and group

Grouped ballots

V̄ 1 V̄ κ

v1 vnV

Shuffle and reveal+remove dummies

Selected votes

add
dummies shuffle

Compute selected votes

Figure 4.14: High-level overview of ballot filtering and grouping. Let L be the number
of ballots, nD be the number of dummies, nT = L + nD be their sum, κ be the number
of voters plus number of dummy voters, and SG

i be the number of (dummy) ballots for
(dummy) voter i. First, the TS adds dummy ballots and proves they are well-formed.
Then shuffles all ballots without the proofs, hiding which ballots were dummies. Then
it verifiably decrypts both the encrypted voter identifiers w′

i and the encrypted indices
EncCounter′i to group the ballots by V Id and to select the votes with the highest counters
V̄ i. Finally, it outputs the selected votes vi without dummies.

VoteAgain 117

on the bulletin board. If any of these checks fails, the TS sets
θ = ⊥, posts it to the bulletin board, and aborts.

2. The TS removes the proofs and signatures to obtain stripped
ballots. It provably tags the ballots as ‘real’ ballots using a
deterministic ElGamal encryption (with randomness zero) of
the value g0 = 1G, τR = Enc(pkTS, g

0) = (g0, g0pk0) = (1G, 1G):

β′
i = (Vi, wi, EncCounteri, τR).

Next, the TS creates nD dummy ballots and provably tags them
as such using a deterministic ElGamal encryption of the value
g, τD = Enc(pkTS, g) = (1G, g · pk0):

β′
i = (Vϵ, wi, EncCounteri, τD),

where i > L and Vϵ = VoteZEnc(pkv; 0). We explain below
how the TS determines the number of dummies nD as well as
the values for wi and EncCounteri. The TS adds the stripped
ballots B = [β′

1, . . . , β
′
L+nD

] to θ.

3. The TS shuffles the stripped ballots B = [β′
1, . . . , β

′
L+nD

] and
randomizes the ciphertexts, to obtain a list of shuffled and ran-
domized stripped ballots BS = [β′′

1 , . . . , β
′′
L+nD

], which it adds,
together with a proof ΠS that this shuffle was performed cor-
rectly, to θ.

4. The TS now operates on each shuffled ballot β′′
i =

(V ′
i , w

′
i, EncCounter

′
i, τ

′
i). It decrypts w

′
i to recover the shuffled

and decrypted identifier V Idi. It also decrypts EncCounter′i
to obtain the shuffled ballot index counti and proves it did so
correctly:

Πd = SPK{(skTS) : pkTS = gskTS∧
V Idi = Dec(skTS, w

′
i)∧

counti = Dec(skTS, EncCounter
′
i)}

It then adds I = [(V Id1, count1,Π
d), . . . , (V IdL+nD

,
countL+nD

,Πd)] to θ. The TS aborts and adds ⊥ to θ if
the decrypted ballot indices counti are not unique for a given
voter identifier. More precisely, it aborts if there exists indices
i, j; i ̸= j such that (V Idi, counti) = (V Idj, countj).

118 Chapter 4. Internet Voting

5. The TS groups the ballots with the same voter identifier,
and selects the ballot with the highest ballot index from each
group. Let G1, . . . , Gχ be the sets of ballot indices grouped
by voter identifier. Consider group Gj of size SG

i . Let
j∗ = maxk,k∈Gj

countk be the index for which the ballot in-
dex countj∗ is maximal. Group Gj either corresponds to a real
voter, or to a fake voter. The TS produces a reencryption V̄ j

of the encrypted votes as follows:

(a) If the group Gj corresponds to a real voter, then the TS
simply reencrypts the vote corresponding to the ballot
with the highest counter, i.e., it picks rj at random and
sets

V̄ j = Vj∗ · VoteZEnc(pkv; rj),

to a randomized encryption of Vj∗.

(b) If the group Gj corresponds to a fake voter, then picks rj
at random and sets V̄ j to an empty vote:

V̄ j = VoteZEnc(pkv; rj).

The TS proves that it computed the V̄ j correctly. If the cor-
responding voter is real, then the ballot β′′

j∗ selected in (a)
should be a real ballot, so Dec(skTS, τ

′
j∗) should equal g0. If the

voter is fake, then for all tags τ ′ik with ik ∈ Gj, we have that

Dec(skTS, τ
′
ik
) = g1. Let Gj = {i1, . . . , iSG

j
} and τ =

∏︁SG
j

k=1 τ
′
ik
,

then the TS constructs the proof

Πi
R = SPK{(rj, skTS) : pkTS = gskTS∧
((g0 = Dec(skTS, τ

′
j∗) ∧ V̄ j = Vj∗ · VoteZEnc(pkv; rj))∨

(gS
G
j = Dec(skTS, τ) ∧ V̄ j = VoteZEnc(pkv; rj)))}.

The TS adds the list of filtered encrypted votes vF =
[(V Id1, V̄ 1,Π

1
R), . . . , (V Idχ, V̄ χ,Π

χ
R)] to θ.

6. The list SD = [V̄ 1, . . . , V̄ χ] of selected votes contains ballots by
dummy voters. In the next two steps, the TS removes these.
First, the TS shuffles and randomizes the ciphertexts to obtain
a new list S ′

D = [V̄
′
1, . . . , V̄

′
χ] , which it adds, together with a

proof Π′
S of correct shuffle, to θ.

VoteAgain 119

7. The TS knows the indices iD of votes in S ′
D that corre-

spond to dummy voters and randomizers ri such that V̄
′
i =

VoteZEnc(pkv; ri) for i ∈ iD. The TS adds iD and ro = [ri]i∈iD
to θ.

8. Finally, the TS publishes the remaining votes S = [v1, . . . , vnV]
and the full proof θ to the public bulletin board.

The filter procedure ensures that the TS cannot replace ballots by real
voters: a selected vote must either correspond to a ballot by a real voter
(condition a) or the selected vote is empty and the voter is a dummy voter
(condition b). Moreover, the TS can only remove votes cast by dummy
voters.

Procedure 4.6.6 (Tally). To compute the final tally, the trustees
proceed as follows:

1. The trustees verify that the TS operated honestly by running
the VerifyFilter() algorithm (see below). If VerifyFilter returns
⊥ they return (z,Πz) = (⊥,⊥).

2. Let S = [v1, . . . , vnV]. The trustees jointly run the (z,Πz) ←
Mix(pkv,S). They publish the election result z and the zero
knowledge proof of correctness Πz to the public bulletin board.

Verification

Any external auditor can use the PBB to verify that all steps in the tally and
filtering phases were performed correctly. We define the following verification
procedures:

Procedure 4.6.7 (VerifyFilter). Any party can verify that the filter-
ing processes was performed correctly by running VerifyFilter(). This
algorithm examines the content of the bulletin board and performs
the following checks:

1. First, check if all ballots are correct and that no duplicate votes
or public keys are included in the ballots as per step 1 of Filter.
If the checks fail, the bulletin board should contain θ = ⊥;
VerifyFilter returns ⊥ if that is not the case. Otherwise, it
continues.

2. Retrieve the selected votes S and the proof θ from the bulletin
board and continue as follows:

120 Chapter 4. Internet Voting

(a) Verify that stripped real ballots are correctly formed.
Consider ballots [β1, . . . , βL], where βi = (Vi,ΠV ,
pki, wi, EncCounteri, σi, si) and check that the stripped
ballot β′

i = (Vi, wi, EncCounteri, τR) has been added to
θ (where τR is as above).

(b) Verify that the dummy ballots on the bulletin board are
correctly formed. For ballots β′

L+1, . . . , β
′
L+nD

where β′
i =

(Vi, wi, EncCounteri, τi), check that Vi = Vϵ and τi = τD
(where Vϵ and τD are as above).

(c) Let B = [β′
1, . . . , β

′
L+nD

] be all stripped ballots, and
BS = [β′′

1 , . . . , β
′′
L+nD

] the shuffled and randomized ballots.
Verify the shuffle proof ΠS to check that BS is a correct
shuffle of B.

(d) Next, let I = [(V Id1, count1,Π
d), . . . , (V IdL+nD

,
countL+nD

,Πd)] from the bulletin board, and verify the
decryption proofs Πd for each of the shuffled ballots β′′

i .

(e) Let V Id′i and count
′
i be the plaintexts verified in the previ-

ous step. Group the ballots by voter identifier into ballot
groups Gj. For each group Gj, find ballot βj∗ with the

highest ballot index, recompute τ =
∏︁SG

j

k=1 τik , and verify
the reencryption proof ΠR.

(f) Let SD be the selected votes [V̄ 1, . . . , V̄ χ] and S ′
D = [V̄

′
1,

. . . , V̄
′
χ] the shuffled and randomized votes. Verify the

shuffle proof Π′
S for SD and S ′

D.

(g) Finally, for each i ∈ iD verify that V̄
′
i = VoteZEnc(pkv; ri)

and that S = [SD[i] | i /∈ iD].

If any of the checks fail, it returns ⊥, and ⊤ otherwise.

Procedure 4.6.8 (Verify). Any party can verify the result z and
proof Πz against the public bulletin board. To do so, they proceed
as follows:

1. Verify that the TS operated honestly by running the
VerifyFilter() algorithm. If VerifyFilter returns ⊥, then return
⊤ if (z,Πz) = (⊥,⊥), otherwise return ⊥.

2. Given the selected votes S, return the result of
VerifyTally(pkv,S, z,Πz).

VoteAgain 121

4.6.4 Hiding revoting patterns with dummies

In this section we provide a formal description of the dummy generation
algorithm introduced in Section 4.6.1.

Finding a cover. Formally, a cover is a set C = {(∫i, zi)}i formed by
groupings (∫i, zi) ∈ Z+ × Z+. Here, ∫i is the size of the ballot groups within
that grouping, and zi is the upper bound on the number of times that such
a ballot group can occur in any distribution of the L real ballots among real
voters. We aim to find a cover of minimal size |C| =

∑︁
i ∫i · zi to minimize

the number of dummies added.
A sufficient cover. We derive an upper bound on the amount of dum-

mies required to build a cover. We do not use the number of real voters for
this bound. Let L be the number of real ballots on the PBB. For simplicity,
assume padded group sizes are powers of two, i.e., ∫i = 2i for i ≥ 0. Given L
ballots, any distribution can have at most z0 = L groups of size ∫0 = 1 (one
ballot per voter). Similarly, any distribution can have at most z1 = ⌊L/2⌋
groups of size ∫1 = 2. Recall we pad ballot groups to the next bigger size, so
a ballot group of 3 would be padded to one of size ∫2 = 4 ballots, therefore
z2 = ⌊L/3⌋. More generally, there can be at most zi = ⌊L/(2i−1+1)⌋ groups
of ∫i = 2i ballots. The biggest possible group (if all ballots were cast by the
same voter), has size 2⌈log2 L⌉. Therefore, the size of the cover |C| is bounded
by:

|C| =
⌈log2 L⌉∑︂

i=0

zi · ∫i = L+

⌈log2 L⌉∑︂
i=1

2i
⌊︃

L

2i−1 + 1

⌋︃

≤ L+

⌈log2 L⌉∑︂
i=1

2i

2i−1 + 1
L ≤ L+

⌈log2 L⌉∑︂
i=1

2L = (1 + 2⌈log2 L⌉)L.

An efficient cover. Knowing the number of real voters nt enables to
obtain a tighter cover. Consider the example of Section 4.6.1 with nt = 2
and L = 9. If we only consider L = 9, one of the possible distributions of
votes would be having ∫1 = ⌊9/2⌋ = 4 groups of size 2. However, knowing
nt = 2 rules out this possibility. There can be at most one group of size two:
if there were 2 groups, each of the 2 voters could only cast 2 ballots, i.e., 4
ballots in total. However, we know there are 9 ballots so at least one voter
has voted more than twice, implying that ∫1 = 1.

When the number of ballots grows this reasoning becomes intractable.
Consider ballot groups with group sizes, ∫ = Si for i ∈ [0, . . . , ⌈logS L⌉] for
a real number S > 1. We assume that L > nt, otherwise the cover would be
trivial: C = {(∫0 = 1, z0 = nt)}. We compute the cover as follows.

122 Chapter 4. Internet Voting

1. Consider groups of size ∫0 = k0 = 1. As L > nt, at least one voter must
cast more than one ballot, resulting in (∫0, z0) = (1, nt − 1).

2. Consider groups of size ∫i = Si. We know that given L, there can
be at most αi = ⌊L/(Si−1 + 1)⌋ groups of size Si. The number of
groups is also bound by the number of voters. If nt · ∫i ≥ L then all
ballots can be assigned to the nt voters given groups of maximum size
∫i, and we set nt∗ = nt, otherwise set nt∗ = nt − 1 so that one voter is
not in this grouping. Finally, we need at least zi(S

i−1 + 1) ballots to
make zi groups, but we must have enough ballots left over to make nt

groups in total, i.e., L ≥ zi(S
i−1+1)+(nt− zi). Rewriting gives bound

βi = ⌊(L− nt)/S
i−1⌋. We set zi = min(αi, nt∗βi).

Assuming L > nt, the cover has |C| =
∑︁⌈logS L⌉

i=0 zi∫i > L ballots, necessitating

dummy ballots, and
∑︁⌈logS L⌉

i=1 zi > nt groups, necessitating dummy voters.

Creating dummy voters and allocating dummy ballots. The TS re-
covers all voter identifiers V Id by decrypting the wis, and the corresponding
ballot indices by decrypting the EncCounteris.

So far, we assumed that ballot index sequences are continuous. However,
there can be gaps if some tokens were not used (e.g., the coercer does not
use some tokens to identify index gaps in the filtering phase). The TS first
requests the number of obtained tokens L′ from the PA, and adds exactly
L′ −L dummy ballots to fill up any gaps, such that L′ equals the number of
obtained tokens. The TS can create a dummy ballot for voter V Id by setting
w = Enc(pkTS, V Id).

Given the current number of ballots L′ and the number of real voters
nt the TS computes a cover C = {(∫i, zi)}i. To this end the TS performs a
search to find the best k, i.e., the one that gives the smaller cover. In our
experiments in Section 4.6.6, k tends to be in the 2 to 4 range, and the search
takes less than a second. The TS performs the following steps:

1. For every voter V Idj, j ∈ {1, . . . , nt} with t ballots, let (∫i, zi) ∈ C be
the cover group with the smallest size ∫i such that ∫i ≥ t. To ensure
that dummy ballots are never counted, the TS adds t−∫i dummy votes
to V Idj with descending (and unused) ballot counters smaller than the
last cast vote by this voter.

2. For each grouping (∫i, zi) ∈ C let z′i be the number of real voters that
were assigned to this group. The TS adds zi − z′i dummy voters. For
each dummy voter, it picks a random V Id and initial ballot index count
and creates ∫i dummy ballots with increasing ballot indices.

The algorithms Filter and VerifyFilter are quasilinear in the number of real
ballots L. The TS first adds nD dummies, so that the bulletin board contains

VoteAgain 123

a total of nT = L+nD = O(L logL) ballots (see the bound above). All other
steps in Filter and Verify filter are linear in nT . The claim follows.

4.6.5 Security Analysis

In this section we prove that VoteAgain satisfies ballot privacy, verifiability
and coercion resistance as defined in Section 4.4

Proof of Ballot privacy

Theorem 9. VoteAgain provides ballot privacy under the DDH assumption
in the random oracle model.

Proof. This proof is very similar to the proof of ballot privacy of Helios in
the full version of Bernhard et al. [Ber+15]. We start with the adversary
playing the ballot privacy game with b = 0 and after a sequence of game
steps transitions, the adversary finishes playing the ballot privacy game with
b = 1. We argue that each of these steps are indistinguishable, and therefore
the results follows. The proof proceeds along the following sequence of games:

Game G0: Let game G0 be the Exp
bpriv,0
A,D game (see Figure 4.3 and Defini-

tion 1).

Game G1: Game G1 is as in G0 but we now compute

Π0 = SimProof(PBB0, z)

by simulating the proof using the random oracle instead of using the
real proof from Tally(PBB0, skv). Because of the simulation properties
of the zero-knowledge proof system, A cannot distinguish these two
games.

Game G2: As in game G1, but now Otally(S, θ) ignores S and θ provided
by A when computing the result z. In particular, Otally now proceeds
as follows:

Otally(S, θ)
If VerifyFilter(PBBb,S, θ) = ⊥ return ⊥
(z,Π0)← Tally(PBB0 ∥ Filter(PBB0, L

′, skTS), skv)
PBBb ← PBBb ∥ S ∥ θ
PBB1−b ← PBB1−b ∥ Filter(PBB1−b, L

′, tssk)
Π0 = SimProof(PBB0, z)
Π1 = SimProof(PBB1, z)
return (z,Πb)

124 Chapter 4. Internet Voting

The proofs included in θ ensure that A honestly computed the filtering
step. Therefore, the adversary’s view is indistinguishable from that in
G1.

Game G3: As in game G2, but in Oboard we return PBB1. Note that in
G3 the adversary has the same view as in the Expbpriv,1A,D game. All that
is left to show is that G2 and G3 are indistinguishable.

We now show that no adversary A can distinguish G2 from G3. Let
NO be the number of Ocast(τ, C0, C1) calls that the adversary A made. In
particular, for the ith call to Ocast, remember the tuple (β0, β1, C0, C1) of
candidates and resulting ballots. We now build a series of gamesH0, . . . , HNO

and proceed by a hybrid argument.
In game Hi we show to the adversary a bulletin board where the first i

ballots cast using Ocast on PBB0 are replaced by those of PBB1. More
precisely, in all games Hi we keep track of an additional bulletin board PBB
that is shown to the adversary, i.e., Oboard now returns PBB. Whenever the
adversary makes an Ocast(β) query, we also add β to PBB, i.e., PBB ←
PBB ∥ β. In gameHi in response to the first i calls toOcast, we additionally
set PBB ← PBB ∥ β1. For the remaining calls we additionally set PBB ←
PBB ∥ β0. Note that H0 = G2 and that HNO

= G3.
We reduce to the NM-CPA security (see Figure 2.1) of the encryption

scheme to show that Hi is indistinguishable from Hi−1. To show this, we
create an adversary B against NM-CPA. Internally, B uses adversary A.
Adversary B receives the public key pk from its challenger. At the start of
the game B runs Setup as normal, but instead it sets pkv = pk. It then
answers the jth Ocast(τ, C0, C1) query as follows:

• For j < i it sets PBB ← PBB ∥ β1

• For i = i it returns C0, C1 to the NM-CPA challenger to receive a
challenge ciphertext c∗, and uses that ciphertext when running v to
obtain a ballot β∗ and set PBB ← PBB ∥ β∗.

• For j > i it sets PBB ← PBB ∥ β0

Thereafter B answers the Otally query as follows. It cannot directly com-
pute the tally, as it does not know the decryption key skv. However, it
knows skTS so it can recompute the Filter(PBB0, L

′, skTS) to determine
which ballots βi1 , . . . , βiχ on PBB0 should be included in the final tally
(recall that the result is always computed on PBB0, and that as per G2

we do not use θ provided by the adversary). Then proceed as follows:
Let Γ = (Vi1 ,ΠV), . . . , (Viχ ,ΠV) be the corresponding vote ciphertexts and
proofs. Then, B computes the result z as follows:

VoteAgain 125

• If c∗ ∈ Γ, then the ballot for candidate C = C0 in query i should be
included in the tally as well. Recall that the tally always is computed
over PBB0, therefore, B sets (Ci1 , . . . , Ciχ−1) = OD(Γ \ {c∗}) and sets

z = τ̃(Ci1 , . . . , Ciχ−1 , C0).

• Otherwise, B sets (Ci1 , . . . , Ciχ) = OD(Γ \ {c∗}) and sets

z = τ̃(Ci1 , . . . , Ciχ).

Finally, as in game G2, B simulates the tally proof. Note that if b = 0 in
B’s NM-CPA game, then B perfectly simulates Hi−1, and if b = 1 then it
perfectly simulates Hi. Therefore, any distinguisher between Hi and Hi−1

breaks the NM-CPA security of the voting scheme.
A standard hybrid argument now shows thatH0 = G2 is indistinguishable

from HNO
= G3. This completes the proof.

Furthermore, we prove that VoteAgain provides strong-consistency and
strong-correctness with the following theorem.

Theorem 10. VoteAgain provides strong-consistency and strong-
correctness.

Proof. This proof roughly follows that of the strong consistency and strong
correctness of Helios in the full version of Bernhard et al. [Ber+15]. To show
that VoteAgain is strongly consistent, we define the following Extract and
Valid algorithms:

• Extract(β, skTS, skv) operates on a ballot β =
(V,ΠV , pk, w, EncCounter, s, σ). First, it verifies the proof ΠV ,
and the signatures s and σ as in step 1 of Valid in Proce-
dure 4.6.4. If any check fails, it returns ⊥. Otherwise, it
recovers the candidate C = Dec(skv, V) (note that C ∈ C be-
cause ΠV is valid). Then it decrypts w and EncCounter to get
(V Id, count) = (Dec(skCA, w), Dec(skCA, EncCounter)). It returns
((V Id, count), C).

• Valid(β) proceeds as in step 1 of Valid in Procedure 4.6.4 to verify the
ballot:

ΠV .Verify(pkv, V,ΠV),

SignVerify(pk, s, V ∥ ΠV ∥ pk ∥ w ∥ EncCounter ∥ σ),
SignVerify(pkCA, σ, pk ∥ w ∥ EncCounter).

It returns ⊤ if all are valid, and ⊥ otherwise.

126 Chapter 4. Internet Voting

First we show that the first condition of strong consistency is satisfied.
By the correctness of the zero-knowledge proofs and decryption algorithms,
Extractwill indeed extract the required values for valid ballots.

Since Valid executes a strict subset of the checks in Valid, it follows that
the second condition is trivially satisfied.

For the third condition, we need to show that the adversary cannot create
a valid bulletin board PBB (i.e., one on which Filter and Tally do not fail),
but where the result is incorrect (respect to the output calculated with the
extractor function).

Note that by the checks in steps 1 and 4 of Procedure 4.6.5, we know
that the identifier pairs (V Id, count) are unique. Consider the group Gj of
ballots corresponding to V Idj. The ideal result function ρ includes the vote
where the ballot index is highest. In exactly the same way, Filter sets V̄ j to
Vj∗ where the index j∗ maximizes the ballot index countj∗. The equivalence
of the ideal result and the result produced by tally now follows.

To show that VoteAgain is strongly correct we need to prove that an
adversary cannot create a ballot box PBB such that an honest ballot by
an honest voter will be rejected, i.e., Valid(PBB, β) = ⊥. Note that the
verification in Valid(β) is twofold. First, it verifies the validity of the ballot.
It is trivial to see that this check passes for an honestly generated ballot.
Second, it checks that the ephemeral public key pk and encrypted vote V do
not yet appear on the bulletin board. Clearly, V does not appear because it
was just generated honestly by the user. Moreover, neither does the public
key pk appear before, because it was just freshly generated by the CA. Given
that these two values contain a source of randomness when generated, it
proceeds that A can only win with negligible probability.

Proof of Coercion Resistance

Theorem 11. VoteAgain provides coercion resistance under the DDH as-
sumption in the random oracle model.

Proof. We first specify how to construct SimProof and SimFilter. As in
the ballot privacy proof, SimProof(PBB, z) simply simulates the proof of
shuffle and the proof of correct decryption in Tally, so that regardless of the
values in S, z is the correct outcome.

The algorithm SimFilter(PBB,L′, z) proceeds similarly. It takes as
input the bulletin board PBB, which it uses to determine the number of
ballots L, the number of registrations L′, and the result z. Moreover, it
derives the number of real voters nV using z. It uses these data to compute
the cover, and it adds the correct number of dummy ballots (for these, it sets

VoteAgain 127

w and EncCounter to random ciphertexts) to obtain B. Then it computes
a list of zero ciphertexts (encryptions of zero) of equal length, and simulates
the shuffle proof ΠS. It then generates fake voter identifiers V Id and count

corresponding to the cover it computed earlier, associates these to shuffled
ballot βi, and simulates the proofs Πd. Next, for each resulting group, it
generates a random encryption of zero V̄ j = VoteZEnc(pkv, rj) and simulates
the corresponding proof ΠR. Then, it returns the randomness rj and the
indices of the dummy voters corresponding to the cover it computed early.
Finally, for each remaining vote, it generates a random vj and simulates the
shuffle proof Π′

S.
In this proof, we will step by step replace all the ciphertexts that depend

on the bit b by random ciphertexts. In particular, we first show that the
adversary learns nothing about b during the election phase. We then show
that it also learns nothing about b during the tally phase. The result follows.

Game G1: Game G1 is as the Expcr,b(,ϵ , E , C) experiment. (Note that contrary

to the proof of ballot privacy we do not fix the value for b.)

Game G2: Game G2 is as game G1, but we compute the result directly based
on the ballots on PBB0. Let [β1, . . . , βL] be the list of ballots where

βi = (Vi,ΠV , pki, wi, EncCounteri, si, σi).

Let Ci = Dec(sk, Vi), V Idi = Dec(skTS, wi), and counti =
Dec(skTS, EncCounteri). Then compute the result:

z = ρ(((V Id1, count1), C1), . . . , ((V IdL, countL), CL))

As per strong consistency, games G2 and G1 are indistinguishable.

Game G3: Game G3 is as game G2, but with all the zero-knowledge proofs
replaced by simulations. This includes the shuffle proof ΠS, the decryp-
tion proofs of Πd of the shuffled w′

i and EncCounter′is, the reencryption
proofs ΠR, and the shuffle proof Π′

S produced in Filter; as well as the tally
proof Π0 which we replace by the output of SimProof(PBB0, z). We use
the random oracle to simulate this step, which is indistinguishable by the
simulatability of the zero-knowledge proof system.

Game G4: Game G4 is as game G3 but we do not decrypt the wi and
EncCounteri anymore when running Filter. Instead, we proceed as fol-
lows. All ballots βi = (Vi,ΠV , pki, wi, EncCounteri, si, σi) on the bulletin
boards are valid. Hence, σi is a valid signature by CA0 resp. CA1 on
wi and EncCounteri. Since the signature scheme is unforgeable, we know

128 Chapter 4. Internet Voting

these ciphertexts were created by CA0 resp. CA1. Hence, we can asso-
ciate to them the corresponding plaintexts V Idi and counti. Moreover,
we know the permutation used by the TS during Filter, so we can also
provide the correct plaintexts in step 4 of Filter on PBB0 (recall the
proofs of decryption Πd are already simulated).

Game G5: Game G5 is as game G4, but we replace the ciphertexts wi and
EncCounteri in the token τi by random ciphertexts for all tokens. Sim-
ilarly, we replace the wi and EncCounteri ciphertexts for the dummy
ballots by random ciphertexts. Note that per the change in game G4 we
still associate the correct plaintexts V Idi and counti in the Filter pro-
tocol. A hybrid argument with reductions to the CPA security of the
ElGamal encryption scheme shows that games G5 and G4 are indistin-
guishable. This reduction is possible since we no longer need to decrypt
these ciphertexts.

Game G6: Game G6 is as game G5, but we replace the encrypted votes
Vi in the Ocast() call by encryptions of the zero vector, i.e., Vi =
VoteZEnc(pkv, r) for a uniformly random randomizer r. Given that we
assume TS is honest, and hence the adversary cannot decrypt the cipher-
texts, a hybrid argument with a reduction to the NM-CPA security of
the ElGamal encryption scheme with zero-knowledge proof shows that
games G6 and G5 are indistinguishable. Note that in this reduction we
use the OD of the NM-CPA challenger to decrypt votes in the adversary-
determined ballots before computing the result z.

Note that as of game G6, the adversary’s view of the bulletin board
before calling Otally() is independent of the value of b (the ballots resulting
from the Ocast call also contain a random ephemeral public key pk and
the signatures s and σ, but these are also independent of the actual voter
selected).

We now proceed to show that the adversary also cannot learn anything
from the output of Filter. Notice that, regardless of the value of b, the filter
step is computed with the same number of voters nt, the same number of
ballots L and the same number of obtained tokens L′. Therefore, the output
of Filter applied to PBB0 and that of SimFilter applied to PBB1 should be
indistinguishable. In the following game steps we replace the ciphertexts after
shuffling by zero-ciphertexts and show that these steps are indistinguishable
for the adversary.

Game G7: Game G7 is the same as game G6, but we replace the ciphertexts
w′

i, EncCounter
′
i and τ ′i after shuffling by random encryptions of zero.

VoteAgain 129

We proceed as if they still decrypt to the correct values. Note that we
already simulate the shuffle proof and decryption proofs. Again, a hybrid
argument with reductions to the CPA security of the ElGamal encryption
scheme shows that the games G7 and G6 are indistinguishable. This
reduction is possible since we no longer need to decrypt these ciphertexts.

Game G8: Game G8 is the same as game G7, but we replace the shuffled
encrypted votes V ′

i by random encryptions of zero. Similarly, we replace
the randomizations, ro, of the votes corresponding to dummy voters by
the corresponding new randomization. This causes the pre-selected votes
V̄ j per group to be incorrect, but this does not matter as we simulate
the second shuffle proof, Π′

S, anyway. As before, the indistinguishability
of this step follows from the NM-CPA security of the vote encryption
scheme.

Game G9: Game G9 is the same as game G8, but we replace the second
shuffled votes vj by random encryption of zero. This causes the selected
votes vj after the shuffle to be incorrect with respect to the result, but
this does not matter as we simulate the proof of the tally. As before, the
indistinguishability of this step follows from the NM-CPA security of the
vote encryption scheme.

Game G10: Game G10 is as game G8, but we replace the filter and tally proofs
on PBB0 by simulations: we set (S0, θ0)← SimFilter(PBB0, L

′, z) and
Π0 ← SimProof(PBB0, z). Note that this difference is purely syntactic,
as per the changes we made before, we already computed exactly the
output of SimFilter on PBB0 and the result z.

Clearly the resulting view is independent of b. And coercion resistance
follows.

Proof of Verifiability

Theorem 12. VoteAgain is verifiable under the DDH assumption in the
random oracle model.

Proof. At the end of the filter procedure, the TS (or in our case, the adver-
sary) outputs a list of selected votes S = {v1, . . . , vnV}, a proof θ, the result
z and the tally proof Π. Because Π verifies, we know that the result z is the
addition of the votes contained in S.

We first show that each encrypted vote vj contains a vote for a single
candidate or an empty vote. Given that ΠS and Π′

S validate, we know that

130 Chapter 4. Internet Voting

the vote vj corresponds to a group of ballot indices Gj = {i1, . . . , iνj}, cor-
responding to voter identifier V Idj. Moreover, the index j∗ is such that the
decrypted index countj∗ is maximal. Because ΠR is valid, we know that
either

1. vj is the reencryption of vote Vj∗ and Dec(τj∗) = g0,

2. vj is the encryption of zero and Dec(
∏︁νj

k=1 τik) = gνj .

We now show that in the first case Vj∗ must be the encryption of a single
candidate. Because τj∗ = g0 and the correctness of the shuffle proofs ΠS,Π

′
S,

we know that Vj∗ originates from a valid ballot cast by a voter. This ballot
included a proof that Vj∗ is the encryption of a single candidate.

Let nt be the number of voters that requested a voting token and for
which at least one ballot is included on the bulletin board. We argue that
the number of non-zero ballots that is included in the tally equals nt. Let
V Idi1 , . . . , V Idint

be the corresponding voter identifiers. Because of the cor-
rectness of the shuffle, ΠS, there exists corresponding groups Gi1 , . . . , Gint

to
these voter identifiers after shuffling.

We show that any other group Gξ contributes an empty vote to the tally.
Let V Idξ be the corresponding voter identity. The adversary cannot forge
signatures by the PA, so any ballot with voter identity V Idξ was added as a
dummy ballot with τD as a tag. Therefore, in group Gξ, each tag encrypts
g1, so the only possible disjunct in ΠR is therefore the second, and thus V̄ ξ

is the encryption of zero.
We show that only such encrypted votes may be removed after the

second shuffle. The adversary needs to find a random r such that vi =
VoteZEnc(pkv, r). Given that the DL-assumption holds, the adversary can
only find such r if the underlying plaintext is zero with very high probability.
Given that the encryption of candidate zero is not a permitted option for
real voters, and given the correctness of ΠV , only votes corresponding to the
above groups may be removed by the adversary after the second shuffle.

So, we now know that only the groups Gi1 , . . . , Gint
each contribute ex-

actly one candidate to the tally, and no more candidates are added by the
other groups. We assign each group to one of the three groups in the game:
the voters in Checked, the voters in Unchecked, or the voters in Corrupted.
The result then follows.

We now show that the correct values are tallied for each of the voters in
Checked that verified that their ballots were correctly cast. Consider a voter
i ∈ Checked with voter identifier V Idi. Let ctr be the last ballot that it veri-
fied. We need to show that the tally includes either i’s ballot ctr, or a ballot
with a higher counter. We know ballot ctr was added to the bulletin board.

VoteAgain 131

Therefore, the corresponding group Gi (matching voter identifier V Idi) con-
taining νi ballots, must contain a shuffled ballot (V ′

j , V Idi, countj, τ
′
j) corre-

sponding to the original ballot ctr (because the shuffle proof and decryption
proofs are valid). Note that τ ′j must be a decryption of g0 by construction,
therefore the tags in group Gj (which must be encryptions of g0 or g1) can
never sum to gνi and therefore, we must take the first disjunct in the reen-
cryption proof ΠR: V̄ i must be the reencryption of an encrypted ballot j∗
where τj∗ decrypts to g0. Therefore, ΠR must contain the encrypted vote
corresponding to a real ballot cast by voter i. Finally, since j∗ maximizes
countj∗ in the group, we know in particular, that countj∗ ≥ countj cor-
responding to the verified ballot. Therefore, we conclude that indeed V̄ i

reencrypts either ballot ctr by voter i, or a ballot with a higher counter by
voter i. Given the correctness of the second shuffled proved with Π′

S, there
will be a selected ballot vi encrypting the same value as V̄ i. Finally, given
the correctness of the mixnet and decryption proofs in Tally, either ctr by
voter i, or a ballot with a higher counter by voter i, will be counted in the
final tally.

Now suppose a group Gi corresponds to a voter i in Unchecked. Then,
by the same argument as for voters in Checked, we know that the tally must
either drop all ballots or include one of the ballots cast by voter i.

Finally, any remaining groups correspond to voters in Corrupted. Notice
that any voter that is not in Checked or Unchecked must be in Corrupted.
Since, each remaining group corresponds to an actual voter, and this voter
is not in either of the former groups, it must indeed correspond to a voter in
Corrupted.

4.6.6 Performance Evaluation

We evaluate the performance of VoteAgain using a Python prototype imple-
mentation of its core cryptographic operations.13 We did not implement the
GetTokenprotocol, but we note that as it relies on standard cryptography it
can be implemented easily and cheaply; nor did we implement the bulletin
board as it is not core to our design. We use the petlib [Dan] binding to
OpenSSL for the group operations using the fast NIST P-256 curve. We ran
all experiments in Linux on a single core of an Intel i3-8100 processor running
at 3.60GHz. We expect nation-wide elections to have much more process-
ing power available. For example, the Swiss CHVote system, which aims to
support 8 million voters, has around 32 cores available per party in the sys-

13The code is open source and can be found here: https://github.com/spring-epfl/
voteagain.

https://github.com/spring-epfl/voteagain
https://github.com/spring-epfl/voteagain

132 Chapter 4. Internet Voting

103 104 105 106 107 108
0

10

20

30

Number of Voters

O
v
e
rh

e
a
d

(#
d
u
m

m
ie
s
/

#
b
a
ll
o
ts
)

200 Revotes

100 Revotes

50 Revotes

20 Revotes

10 Revotes

0 Revotes

103 104 105 106 107 108
0

10

20

30

Number of Voters

No limit

1/sec

1/10 seconds

1/min

103 104 105 106 107 108
0

10

20

30

Number of Voters

O
v
e
rh

e
a
d

(#
d
u
m

m
ie
s
/

#
b
a
ll
o
ts
)

100%

10%

5%

1%

Figure 4.15: Dummy ballots overhead: Varying percentages of extra ballots with respect
to the total number of voters (top left); effect of a rate-limit on revoting voters assuming
at most 50% extra ballots (top right); and limiting the percentage of voters that revotes
assuming at most 50% extra ballots and a rate-limit of 1 ballot per 10 seconds (bottom
left).

tem. We also include performance estimates of running the system on a large
machine with 8 Intel Xeon Platinum 8280L processors with 28 cores each,
running at 2.7Ghz. As our scheme is almost completely parallelizable (only
the hash functions for the non-interactive zero-knowledge proofs need to be
computed sequentially), we estimate a 90% parallelization gain: a speedup
of 170 times when using the 8x28 cores with respect to the single core.

For all experiments we empirically select the best cover size S by sweeping
over values from 1 to 64. In the majority of cases the optimal S is in the
range [2, 4].

Creating a ballot. We use an ElGamal ciphertext to encrypt the voter’s
choice, and a Bayer and Groth [BG13] zero-knowledge proof of membership
to show that the selected candidate is eligible. Creating a ballot from 1000
eligible candidates costs 1.2 seconds, while verifying its correctness costs 0.17
seconds. The size of this proof is 1.5 kB.

Impact of revoting. Figure 4.15 shows the overhead depending on the

VoteAgain 133

102 103 104 105

#voters

101

104

107

T
im

e
(s

)

Filter

VerifyFilter

Achenbach Filter

105 106 107 108 109

#voters

101

103

E
st

im
at

ed
ti

m
e

(s
) Filter

VerifyFilter

100 101 102 103 104

Ballots per voter

0.000

0.001

0.002

0.003

0.004

T
im

e
p

er
b

al
lo

t
(s

) Filter

VerifyFilter

Figure 4.16: Cost of Filter and VerifyFilter: Measured cost on single core (left); estimated
cost on 8 processor machine (8× 28 cores, center); and effect of different distributions of
50 000 ballots (including dummies) among voters (right). Note that one ballot per voter
causes the highest processing time per vote.

number of votes, in terms of number of dummies per real ballot. This over-
head influences the computation time of shuffling and filtering in the tally
phase. In the leftmost figure we model users’ revoting behaviour as a per-
centage of the number of voters: 50% models that half of the voters revoted
once, and 200% models that all voters revote twice. We note that the over-
head of 100% voters revoting once is equivalent to, for example, 25% of the
voters revoting 4 times. As expected, the overhead increases with both the
number of voters and the number of revoted ballots. However, even for 100
million voters revoting twice (200% revotes), the overhead is at most a factor
of 32 (Figure 4.15 top left).

Casting a vote takes time. Thus, revoting patterns are constrained by
the number of ballots that can be cast during an election. We consider an
election period of 24h (larger than most countries), and bound how often a
single voter can vote (1 ballot per second, per ten seconds, and per minute).
As this limits the number of voters with a large amount of ballots, we do
not need large covers, reducing the overhead (see Figure 4.15, top right).
Similarly, assuming that all voters will revote is very conservative. In a
normal election one expects the vast majority of voters to vote once. In
Figure 4.15, bottom left, we show the overhead when the number of voters
that cast more than one vote is limited. As fewer voters revote, the total
amount of votes is smaller and so are the covers.

Filtering. We implemented a non-optimized version of Bayer-Groth’s veri-
fiable shuffle protocol [BG12] to implement steps 3 and 6 of Procedure 4.6.5.
We measure the execution time of filtering and verifying, when varying the
number of voters. Figure 4.16 left shows the times to run Filter and Veri-
fyFilter on a single core machine. Figure 4.16 middle shows the estimated
processing times on the big 8 processor Xeon machine. We estimate that the
8 processor machine can filter and tally the second round presidential elec-
tion in Brazil (147 million registered voters) in 65 minutes if no voter revotes,

134 Chapter 4. Internet Voting

and within 11 hours assuming 50% extra ballots and at most one ballot per
voter per ten seconds. We note that elections usually tally ballots per state,
city, or smaller electoral district. In general we expect the number of ballots
to be much smaller. All ballot groups in Figure 4.16 left and center have
size one. Figure 4.16 right shows the effect of larger ballot groups resulting
from revoting and dummy voters. As the average group size increases, the
computation time goes down. Therefore, Figure 4.16 gives an upper bound
on the processing time, given a known cover size.

For comparison we computed a lower bound on the filter cost of Achen-
bach et al.’s filter method by counting the number of group operations needed
per ballot. We used this number to compute the estimate in Figure 4.16 left.
A small-town election with 100000 ballots takes 5 core months to filter in
their scheme. Even on the large Xeon machine, an election with 1 million
ballots takes over four months to complete. Our method needs respectively
7 core minutes and 30 seconds. The sizes of the tally proofs in VoteAgain
for these examples are 54 and 501 MB respectively.
Smaller regions. Many countries report election results per region, such as
a province, a city, or a neighborhood. In those cases, results can be com-
puted per region at lower computation cost. However, even in this setting,
Achenbach et al.’s quadratic approach scales poorly. We note that the allow-
able size of reporting regions depend on local regulations, with the smallest
regions likely being cities or neighborhoods, which can easily total 100000s
of voters. As Figure 4.16 (left) shows, even in this configuration, Achen-
bach et al.’s quadratic approach requires 3 to 4 orders of magnitude more
computation resources than VoteAgain.

Tallying. We also measured the execution time of a single step of the mix
network – a single shuffle and one verifiable decryption – using our verifiable
shuffle implementation. Our results show that one step is a factor of three
times faster than our filter protocol, e.g., mix-and-decrypting the 100000
ballots takes less than 2 core minutes and 1 million ballots take less than 7
seconds on the Xeon machine.

4.7 Wrapping up

In this chapter we have presented two internet voting schemes. Both use
the re-voting method to prevent coercion attacks. To provide deniability at
the time of re-voting, we used dummy votes. Including a random number of
dummy votes is the trivial solution, and as we have presented, barely affects
the complexity of filtering. However, by having this random variable, it is
much harder to formalise security properties, and we were forced to trade-off

Wrapping up 135

Filtering Coercion

D
en
ia
bl
e

V
er
ifi
ab
le

C
om

pl
ex
it
y

C
ry
pt
o
St
at
e

A
ss
um

pt
io
n

St
ri
ct

IC

JCJ No Yes n2 Yes KT+ AC No No
Rønne et al. No Yes n Yes KT+ AC No Yes
Blackbox TTP No n Yes TTP No No

Achenbach et al. KT Yes n2 Yes KT+ AC No No
Locher et al. KT Yes n2 Yes KT+ AC No No
NetVote TTP Yes n No TTP Yes No
VoteAgain TTP Yes n log n No TTP No No

Table 4.2: Comparison of existing schemes. NetVote constitutes the first re-voting scheme
with linear complexity, which is verifiable and does not depend on immature cryptography
(IC). We denote a t-out-of-k assumption by KT . We also compare the schemes on whether
they require a cryptographic state (user needs to securely store cryptographic material) or
not. We introduce the new notion of strict coercion resistance to achieve linear filtering.

on these. Using a deterministic dummy vote aggregation technique is the
best solution for something as delicate as internet voting —it is of interest to
have the highest guarantees on the security properties, and while the trade
off was moving from linear to quasi-linear filtering time, we showed that this
overhead was not a limitation for nation wide elections. In table 4.2 we
present a comparison of the two schemes presented in this chapter with the
state of the art. Our principal goal was to present a scheme that was usable by
non-technical users, and therefore not requiring a cryptographic state was a
strong requirement. We have shown that not only have we achieved that goal,
but we have performed without an impact in usability compared with the best
current schemes for the case of NetVote, and a sub-linear decline for the case
of VoteAgain. Moreover, only a scheme with no deniability [Røn+20], and
one without verifiability [Gjø10] achieve the same assymptotic complexity of
our scheme.

136 Chapter 4. Internet Voting

CHAPTER 5

Conclusions, Contributions and Future Work

The goal of this thesis was to explore the possibility of constructing usable,
scalable privacy-preserving protocols that offered the same, or close to equal,
functionality to their non-private counterparts. In this chapter we conclude
the objectives set at the beginning of the thesis, followed by a concrete list
of contributions. Then, we proceed with a list of how the research presented
in this thesis can be improved in future work. Finaly, we finish the chapter
and thesis with some closing remarks.

5.1 Conclusions

As shown throughout the thesis, we achieve at a high level of success the
objectives, P1–P4 and V1–V3, set a the start of the project (see Section 1.2).
In summary, zkSENSE presents a novel design allowing for a mechanism to
detect bots that does not require to send any data from the user to the
verifying party, but that it also requires no interaction from the user. The
attestation, instead, happens by using natural actions that a user would
make in a normal use of a mobile device. Similarly, our evaluation confirmed
that our solution was usable and scalable. However, in this thesis we did
not formally study how this solution affects people that suffer some sort of
disability, or how can the solution be extended to cover this affected portion
of users.

On the other hand, NetVote and VoteAgain offer scalable and usable
internet voting protocols with different trade-offs between scalability and se-

137

138 Chapter 5. Conclusions, Contributions and Future Work

curity. A voting scenario with low concerns on coercion would make use of
NetVote, which offers a slightly better performance in the tallying proce-
dure. On the other hand, a senario with higher concerns on coercion would
use VoteAgain, which offers stricter guarantees in terms of coercion. Both
schemes, however, require minimal effort from the user’s perspective and of-
fer competitive performance in comparison with the state-of-the-art voting
schemes. In terms of the security properties, we had to lower our initial
expectations of providing maximum guarantees. Both schemes need to rely
on the correct behavior of certain parties to provide the desired properties,
but we believe that this trade-off makes both solutions interesting to be used
in real life elections. Similarly, a user study would make the statement of
‘user-friendly’ stronger. Both schemes make minimal assumption on what
are the user actions (no cryptographic material, no anonymous credentials,
no usage of two distinct devices, etc). However, a user study comparing our
construction with other existing constructions would further strengthen that
statement.

5.2 Contributions

In this section we list the contributions made in the thesis, mainly in Chap-
ters 3 and 4.

5.2.1 zkSENSE

As presented in Section 2.3, current bot detection mechanisms offer solu-
tions which either require interaction by the user, or that are invasive to
their privacy. In this thesis we presented zkSENSE: a novel friction-less and
privacy-preserving mechanism for humanness attestation that aims to replace
CAPTCHA systems in mobile devices. In particular, Chapter 3 makes the
following contributions:

1. We designed a human attestation system (zkSENSE) that is both friction-
less and privacy-preserving(see Section 3). We formally proved that it pro-
vides privacy and verifiability(see Section 3.5). zkSENSE leverages mobile
motion sensors to verify that user actions (e.g. type/touch events) on a
mobile device are triggered by an actual human. Such classification takes
place by studying the output of the mobile device’s motion sensors dur-
ing the particular user action. To set the ground truth, we instrumented
an actual Android browser app to capture both user clicks and sensor
traces from a small set of real users. Our approach is tested under various

Contributions 139

scenarios: (i) when device is resting (on a table), (ii) when there is artifi-
cial movement from device’s vibration, or (iii) from an external swinging
cradle.

2. We modified and implemented a sub-linear inner product proof into its
zero-knowledge counterpart, which is of independent interest. We use it
to implement zkSVM (which we provide open-source14): a zero-knowledge
based library for enclosing results of an SVM classifier into zero-knowledge
proofs (see Section 3.3). zkSVM leverages arithmetic properties of com-
mitment functions and prover-effective proofs to ensure the integrity of
the classification result reported to a remote server.

3. We implemented an Android SDK and a demo app to showcase the detec-
tion accuracy of zkSENSE (see demo video15). zkSENSE is transparent to
the user and capable of verifying their humanness with accuracy higher
than related proposals [Gue+18] (92%). Performance evaluation results
of our prototype show that the entire attestation operation takes less than
3 seconds (when the solution of a visual CAPTCHA by a human takes
9.8 seconds [All13]16) and consumes less than 5 mAh of power (see Sec-
tion 3.6).

5.2.2 i-voting

Chapter 4 presents two internet voting schemes, which provide different trade
offs with respect to scalable internet voting solutions. In Section 2.3.2 we
presented how current solutions are either not scalable or construct unusable
voting procedures. NetVote and VoteAgain provide two novel constructions
with particular care in usability and scalability. In particular, Chapter 4
makes the following contributions:

1. We introduced NetVote and VoteAgain, two novel remote electronic revot-
ing schemes based on well defined and widely used cryptographic construc-
tions. See Sections 4.5 and 4.6 respectively.

2. Our constructions do not require any effort from the user except for au-
thentication and vote selection. We do not store any state (cryptographic
or non-cryptographic) in the user’s device, meaning that they can vote
with whatever device they wish.

14zkSVM source code: https://github.com/zkSENSE/zkSVM
15zkSENSE demo: https://youtu.be/FARbekFO1d0
16Note that while this result is from 2013, it was performed over humans

https://github.com/zkSENSE/zkSVM
https://youtu.be/FARbekFO1d0

140 Chapter 5. Conclusions, Contributions and Future Work

3. We introduced two novel efficient padding schemes that hide revoting at a
low cost. Our first padding strategy is probabilistic, achieving a filtering
phase complexity of O(n), while the second result, a deterministic padding
strategy, offers a filtering complexity O(nlogn) where n is the number of
ballots. See Sections 4.5.2 and 4.6.4. Our experiments show that in many
practical scenarios the cost can be even lower.

4. In Section 4.4 we showed that previous definitions of coercion resistance in
the revoting setting are vacuous. We provided a new coercion resistance
definition and we adapt modern definitions of ballot privacy [Ber+15] and
verifiability [Cor+14; Cor+16] to the revoting setting. We proved that
the schemes presented satisfy these definitions.

5. We introduced two new game definitions for the security properties of
internet voting solutions: practical everlasting privacy and strict coercion
resistance (see Sections 4.4.2 and 4.4.5 respectively). The latter is a more
relaxed property (with respect to coercion resistance) that allows us to
offer linear filtering in NetVote. We proved that NetVote satisfies both (in
addition to verifiabiliy and ballot privacy).

6. In Section 4.5.2 we performed a simulation of NetVote, to understand how
the probabilistic dummy strategy affects the filtering procedure. Then, in
Section 4.6.6 we evaluated the scalability of VoteAgain, our most complex
scheme, on a prototype implementation of the core cryptographic primi-
tives. Our results show that NetVote scales linearly with respect to the
number of cast votes, and VoteAgain can support elections with millions
of users.

5.3 Future Work

The results of this thesis set a promising ground for advances in both fields
(bot detection and i-voting). However, there are certain areas that remain
open and that are left for future work. In particular, bot detection could be
improved in the following aspects:

Closer guarantees to current bot-detection. In Chapter 3 we pre-
sented a fast, privacy-preserving, and non-interactive human detection
mechanism. However, we did not not cover a mechanism that ensures
that the data indeed comes from a non-rooted device, or specifically,
from the sensors of the user’s mobile phone. The lines of research that
would resolve this question consist in providing the zkSENSE app to-
gether with a mechanism to detect rooted devices or work over devices

Future Work 141

that have their sensors within a trusted platform. Similarly, improving
the ML models (without hindering running times) would improve the
guarantees that bots are correctly detected.

zkSENSE for voice commands. Our main assumption for zkSENSE is
that users touch their screen. However, it would be of interest to further
extend this to visually impaired people that use the devices mainly with
voice commands. To this end, extending the classifier to work with the
buttons of the devices (i.e. lock/unlock, volume up/down) would make
zkSENSE a more complete construction.

Extend zkSENSE for keyboard/mouse movements. Authentication
using keyboard or mouse patters already exists [Feh+12; Mes+11].
A natural extension of zkSENSE would be to study whether we can
perform private keystroke biometrics by leveraging the idea explored
in this thesis, i.e. evaluating the model in zero-knowledge.

On the other hand, for internet voting, the aspects that can be improved
with further research are the following:

User study for voting schemes. The solutions we provided seem ideal in
what concerns usability and scalability. While evaluation for the scal-
ability of the solution has been provided, no user study has been per-
formed for them. Understanding user opinion for an internet voting
protocol (or human attestation mechanism) seems the next natural
step before adoption.

Less trust in voting authorities. Our focus was to design a usable and
scalable internet voting scheme with the required security guarantees.
To do so, we made certain trade-offs, assuming parties in the protocol
to be honest. An interesting line of research would be to understand
whether these assumptions can be reduced without hindering user ex-
perience, or presenting complex solutions.

Complexity of NetVote with security of VoteAgain. In NetVote we
weakened the definition of coercion resistance to strict coercion re-
sistance to achieve linear filtering. This is due to the fact that the
probability of voters selling votes is not negligible. Nonetheless, it is
still small. It would be of interest to make a more thorough analysis
of the probability of success of selling votes. More generally, it would
be ideal to close this line of research with a proposal that satisfies
the strong definition of coercion resistance while maintaining the linear
filtering complexity.

142 Chapter 5. Conclusions, Contributions and Future Work

5.4 Closing remarks

In this thesis we have shown that privacy can be achieved without hindering
usability or scalability. It is well accepted that privacy comes at a cost,
and certain trade-offs need to be assimilated: this thesis is no exception to
it. With the results presented in this thesis we hope to shift the debate on
privacy-preserving solutions. First of all, with our work, we show how the
claimed dilemma of “security or privacy” is not true —user’s personal data
does not need to be disclosed to achieve secure solutions. Secondly, the cost
does not need to be suffered by the user or the scalability. By presenting
scalable user friendly protocols we aim to increase the privacy-preserving
constructions that do put users and their experience as a determining factor
for the success of the solution. With this thesis, we hope to shift, by a bit,
the balance towards the users’ benefits.

Bibliography

[Ach+15] Dirk Achenbach, Carmen Kempka, Bernhard Löwe, and
Jörn Müller-Quade. “Improved Coercion-Resistant Elec-
tronic Elections through Deniable Re-Voting”. In: USENIX
Journal of Election Technology and Systems (JETS) 2
(2015), pp. 26–45. url: https : / / www . usenix . org /

conference/jets15/workshop-program/presentation/

achenbach (cit. on pp. 33, 85, 88, 89).

[Adi08] Ben Adida. “Helios: Web-based Open-audit Voting”. In: Pro-
ceedings of the 17th Conference on Security Symposium.
SS’08. USENIX Association, 2008, pp. 335–348 (cit. on
p. 104).

[Adj+13] Idris Adjerid, Alessandro Acquisti, Laura Brandimarte, and
George Loewenstein. “Sleights of Privacy: Framing, Dis-
closures, and the Limits of Transparency”. In: Proceedings
of the Ninth Symposium on Usable Privacy and Security.
SOUPS ’13. Association for Computing Machinery, 2013,
9:1–9:11. doi: 10.1145/2501604.2501613 (cit. on p. 2).

[Adr+18] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric,
Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia
Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,
Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. “Imperfect Forward Se-
crecy: How Diffie-Hellman Fails in Practice”. In: Communi-
cations of the ACM 62.1 (2018), 106–114. doi: 10.1145/
3292035 (cit. on p. 3).

143

https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach
https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach
https://www.usenix.org/conference/jets15/workshop-program/presentation/achenbach
https://doi.org/10.1145/2501604.2501613
https://doi.org/10.1145/3292035
https://doi.org/10.1145/3292035

144 BIBLIOGRAPHY

[AFA19] Ismail Akrout, Amal Feriani, and Mohamed Akrout. Hack-
ing Google reCAPTCHA v3 using Reinforcement Learning.
arXiv. 2019. url: http://arxiv.org/abs/1903.01003
(cit. on p. 7).

[All13] Tim Allen. Having a CAPTCHA is Killing Your Conver-
sion Rate. 2013. url: https://moz.com/blog/having-
a- captcha- is- killing- your- conversion- rate (Last
accessed 03/26/2022) (cit. on pp. 29, 64, 139).

[Ano19] Anonymous. Demo: Privacy-Preserving Bot Detection for
Mobile Devices. 2019. url: https : / / youtu . be /

FARbekFO1d0 (cit. on p. 57).

[ANS20] ANSSI. Recommandations pour les Architectures des
Systèmes d’Information Sensibles ou Diffusion Restreinte.
https://www.ssi.gouv.fr/guide/recommandations-

pour-les-architectures-des-systemes-dinformation-

sensibles-ou-diffusion-restreinte/. Agence Nationale
de la Sécurité des Systèmes d’Information. 2020 (cit. on p. 9).

[Ara+13] Myrto Arapinis, Véronique Cortier, Steve Kremer, and Mark
Ryan. “Practical Everlasting Privacy”. In: Principles of Se-
curity and Trust - Second International Conference, POST.
Ed. by David A. Basin and John C. Mitchell. Vol. 7796.
LNCS. Springer, 2013, pp. 21–40. doi: 10.1007/978- 3-
642-36830-1_2 (cit. on p. 83).

[Ara+16] Roberto Araújo, Amira Barki, Solenn Brunet, and Jacques
Traoré. “Remote Electronic Voting Can Be Efficient, Veri-
fiable and Coercion-Resistant”. In: Financial Cryptography
and Data Security - 2016 International Workshops, BIT-
COIN, VOTING, and WAHC. Vol. 9604. LNCS. Springer,
2016, pp. 224–232. doi: 10.1007/978-3-662-53357-4_15
(cit. on pp. 31, 33).

[Bad+21] Christian Badertscher, Peter Gaži, Iñigo Querejeta-
Azurmendi, and Alexander Russell. On UC-Secure Range
Extension and Batch Verification for ECVRF. Technical
report. https : / / iohk . io / en / research / library /

papers/on-uc-secure-range-extension-and-batch-

verification-for-ecvrf/. 2021 (cit. on p. vii).

http://arxiv.org/abs/1903.01003
https://moz.com/blog/having-a-captcha-is-killing-your-conversion-rate
https://moz.com/blog/having-a-captcha-is-killing-your-conversion-rate
https://youtu.be/FARbekFO1d0
https://youtu.be/FARbekFO1d0
https://www.ssi.gouv.fr/guide/recommandations-pour-les-architectures-des-systemes-dinformation-sensibles-ou-diffusion-restreinte/
https://www.ssi.gouv.fr/guide/recommandations-pour-les-architectures-des-systemes-dinformation-sensibles-ou-diffusion-restreinte/
https://www.ssi.gouv.fr/guide/recommandations-pour-les-architectures-des-systemes-dinformation-sensibles-ou-diffusion-restreinte/
https://doi.org/10.1007/978-3-642-36830-1_2
https://doi.org/10.1007/978-3-642-36830-1_2
https://doi.org/10.1007/978-3-662-53357-4_15
https://iohk.io/en/research/library/papers/on-uc-secure-range-extension-and-batch-verification-for-ecvrf/
https://iohk.io/en/research/library/papers/on-uc-secure-range-extension-and-batch-verification-for-ecvrf/
https://iohk.io/en/research/library/papers/on-uc-secure-range-extension-and-batch-verification-for-ecvrf/

BIBLIOGRAPHY 145

[Bal15] James Ball. Cameron wants to ban encryption – he can
say goodbye to digital Britain. 2015. url: https://www.
theguardian . com / commentisfree / 2015 / jan / 13 /

cameron - ban - encryption - digital - britain - online -

shopping - banking - messaging - terror (Last accessed
03/26/2022) (cit. on p. 3).

[Bar16] Elaine B Barker. SP 800-57. NIST Recommendation for Key
Management, Part 1: General. Tech. rep. https://doi.org/
10.6028/NIST.SP.800-57pt1r5. Gaithersburg, MD, United
States, 2016 (cit. on pp. 9, 17).

[Bat19] BatteryLab. A Distributed Platform for Battery Measure-
ments. 2019. url: https://batterylab.dev (cit. on p. 58).

[Ber+13] Daniel J Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-
Ping Chou, Nadia Heninger, Tanja Lange, and Nicko van
Someren. “Factoring RSA Keys from Certified Smart Cards:
Coppersmith in the Wild”. In: 19th International Conference
on the Theory and Application of Cryptology and Informa-
tion Security —ASIACRYPT. Ed. by Kazue Sako and Palash
Sarkar. Vol. 8270. LNCS. Springer, Berlin, Heidelberg, 2013,
pp. 341–360. doi: 10.1007/978-3-642-42045-0_18 (cit. on
p. 9).

[Ber+15] David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. “SoK: A Comprehensive
Analysis of Game-Based Ballot Privacy Definitions”. In:
IEEE Symposium on Security and Privacy, SP. IEEE Com-
puter Society, 2015, pp. 499–516. doi: 10.1109/SP.2015.37
(cit. on pp. 79, 81–83, 104, 123, 125, 140).

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-
Interactive Zero-Knowledge and Its Applications”. In: Pro-
ceedings of the Twentieth Annual ACM Symposium on The-
ory of Computing. STOC ’88. Association for Computing
Machinery, 1988, 103–112. doi: 10.1145/62212.62222 (cit.
on pp. 24, 27).

[BG12] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge
Argument for Correctness of a Shuffle”. In: Advances in
Cryptology – EUROCRYPT 2012. Ed. by David Pointcheval
and Thomas Johansson. Vol. 7237. LNCS. Springer Berlin
Heidelberg, 2012, pp. 263–280. doi: 10.1007/978-3-642-
29011-4_17 (cit. on pp. 75, 133).

https://www.theguardian.com/commentisfree/2015/jan/13/cameron-ban-encryption-digital-britain-online-shopping-banking-messaging-terror
https://www.theguardian.com/commentisfree/2015/jan/13/cameron-ban-encryption-digital-britain-online-shopping-banking-messaging-terror
https://www.theguardian.com/commentisfree/2015/jan/13/cameron-ban-encryption-digital-britain-online-shopping-banking-messaging-terror
https://www.theguardian.com/commentisfree/2015/jan/13/cameron-ban-encryption-digital-britain-online-shopping-banking-messaging-terror
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://batterylab.dev
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17

146 BIBLIOGRAPHY

[BG13] Stephanie Bayer and Jens Groth. “Zero-Knowledge Argu-
ment for Polynomial Evaluation with Application to Black-
lists”. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques - EU-
ROCRYPT. Vol. 7881. LNCS. Springer, Berlin, Heidelberg,
2013. doi: 10 . 1007 / 978 - 3 - 642 - 38348 - 9 _ 38 (cit. on
p. 132).

[BGC17] Attaullah Buriro, Sandeep Gupta, and Bruno Crispo. “Eval-
uation of Motion-Based Touch-Typing Biometrics for Online
Banking”. In: International Conference of the Biometrics
Special Interest Group, (BIOSIG). Ed. by Arslan Brömme,
Christoph Busch, Antitza Dantcheva, Christian Rathgeb,
and Andreas Uhl. Vol. P-270. LNI. GI / IEEE, 2017, pp. 219–
226. doi: 10.23919/BIOSIG.2017.8053504 (cit. on p. 28).

[BGR12] Sergiu Bursuc, Gurchetan S Grewal, and Mark D Ryan.
“Trivitas: Voters Directly Verifying Votes”. In: E-Voting
and Identity: Third International Conference, VoteID. Ed.
by Aggelos Kiayias and Helger Lipmaa. Vol. 7187. LNCS.
Springer Berlin Heidelberg, 2012, pp. 190–207. doi: 10 .

1007/978-3-642-32747-6_12 (cit. on p. 31).

[Bit+12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. “From Extractable Collision Resistance to Succinct
Non-Interactive Arguments of Knowledge, and Back Again”.
In: Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference. ITCS ’12. Association for Com-
puting Machinery, 2012, 326–349. doi: 10.1145/2090236.
2090263 (cit. on p. 25).

[BL16] Katie Benner and Eric Lichtblau. US says it has un-
locked iPhone without Apple. 2016. url: https : / / www .

nytimes.com/2016/03/29/technology/apple-iphone-

fbi - justice - department - case . html (Last accessed
03/26/2022) (cit. on p. 2).

[BLN14] Joppe W. Bos, Kristin E. Lauter, and Michael Naehrig. “Pri-
vate predictive analysis on encrypted medical data”. In: J.
Biomed. Informatics 50 (2014), pp. 234–243. doi: 10.1016/
j.jbi.2014.04.003 (cit. on p. 30).

[BLN16] Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen.
“Dual EC: A Standardized Back Door”. In: The New Code-
breakers - Essays Dedicated to David Kahn on the Occa-

https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.23919/BIOSIG.2017.8053504
https://doi.org/10.1007/978-3-642-32747-6_12
https://doi.org/10.1007/978-3-642-32747-6_12
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://www.nytimes.com/2016/03/29/technology/apple-iphone-fbi-justice-department-case.html
https://www.nytimes.com/2016/03/29/technology/apple-iphone-fbi-justice-department-case.html
https://www.nytimes.com/2016/03/29/technology/apple-iphone-fbi-justice-department-case.html
https://doi.org/10.1016/j.jbi.2014.04.003
https://doi.org/10.1016/j.jbi.2014.04.003

BIBLIOGRAPHY 147

sion of His 85th Birthday. Ed. by Peter Y. A. Ryan, David
Naccache, and Jean-Jacques Quisquater. Vol. 9100. LNCS.
Springer, 2016, pp. 256–281. doi: 10.1007/978- 3- 662-
49301-4_17 (cit. on p. 3).

[Boc+17] Kevin Bock, Daven Patel, George Hughey, and Dave Levin.
“unCaptcha: A Low-Resource Defeat of reCaptcha’s Audio
Challenge”. In: 11th USENIX Workshop on Offensive Tech-
nologies. Ed. by William Enck and Collin Mulliner. USENIX
Association, 2017 (cit. on p. 7).

[Boo+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens
Groth, and Christophe Petit. “Efficient Zero-Knowledge Ar-
guments for Arithmetic Circuits in the Discrete Log Setting”.
In: Proceedings, Part II, of the 35th Annual International
Conference on Advances in Cryptology — EUROCRYPT
2016. Ed. by Marc Fischlin and Jean S. Coron. Vol. 9666.
LNCS. Springer-Verlag New York, Inc., 2016, pp. 327–357.
doi: 10.1007/978-3-662-49896-5_12 (cit. on pp. 31, 64).

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi.
“How Not to Prove Yourself: Pitfalls of the Fiat-Shamir
Heuristic and Applications to Helios”. In: 18th International
Conference on the Theory and Application of Cryptology and
Information Security - ASIACRYPT. Ed. by Xiaoyun Wang
and Kazue Sako. Vol. 7658. LNCS. Springer, 2012, pp. 626–
643. doi: 10.1007/978-3-642-34961-4_38 (cit. on pp. 18,
105).

[BR11] Mikhail Bilenko and Matthew Richardson. “Predictive
client-side profiles for personalized advertising”. In: Proceed-
ings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Ed. by Chid Apté,
Joydeep Ghosh, and Padhraic Smyth. ACM, 2011, pp. 413–
421. doi: 10.1145/2020408.2020475 (cit. on p. 30).

[Bra00] Stefan A. Brands. Rethinking Public Key Infrastructures and
Digital Certificates: Building in Privacy. MIT Press, 2000
(cit. on p. 76).

[Bra20] Brave Software Inc. Brave Android Browser. 2020. url:
https://brave.com/ (Last accessed 03/26/2022) (cit. on
p. 38).

https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1145/2020408.2020475
https://brave.com/

148 BIBLIOGRAPHY

[BSI21] BSI. Cryptographic Mechanisms: Recommendations and Key
Lengths. https://www.bsi.bund.de/EN/Service-Navi/
Publications/TechnicalGuidelines/tr02102/tr02102_

node.html. Bundesamt für Sicherheit in der Information-
stechnik, BSI TR-02102-1 version 2022-01, 2021 (cit. on p. 9).

[Buc17] Mark Buchanan.Why fake news spreads like wildfire on Face-
book. Sept. 2017. url: https://www.chicagotribune.com/
opinion/commentary/ct-perspec-fake-news-google-

facebook- 0904- story.html (Last accessed 03/26/2022)
(cit. on p. 1).

[Bün+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poel-
stra, Pieter Wuille, and Gregory Maxwell. “Bulletproofs:
Short Proofs for Confidential Transactions and More”. In:
IEEE Symposium on Security and Privacy (SP). IEEE Com-
puter Society, 2018, pp. 315–334. doi: 10.1109/SP.2018.
00020 (cit. on pp. 25, 26, 31, 42, 50, 56, 64, 65, 68, 75, 97).

[Bur+10] Elie Bursztein, Steven Bethard, Celine Fabry, John C.
Mitchell, and Daniel Jurafsky. “How Good Are Humans at
Solving CAPTCHAs? A Large Scale Evaluation”. In: 31st
IEEE Symposium on Security and Privacy, S&P. IEEE Com-
puter Society, 2010, pp. 399–413. doi: 10.1109/SP.2010.31
(cit. on p. 29).

[Cad18] Carole Cadwalladr. AggregateIQ: the obscure Canadian tech
firm and the Brexit data riddle. Mar. 2018. url: https :
/ / www . theguardian . com / uk - news / 2018 / mar / 31 /

aggregateiq - canadian - tech - brexit - data - riddle -

cambridge-analytica (Last accessed 03/26/2022) (cit. on
pp. 1, 3).

[CH11] Jeremy Clark and Urs Hengartner. “Selections: Internet Vot-
ing with Over-the-Shoulder Coercion-Resistance”. In: Finan-
cial Cryptography and Data Security - 15th International
Conference, FC. Ed. by George Danezis. Vol. 7035. LNCS.
Springer, Berlin, Heidelberg, 2011, pp. 47–61. doi: 10.1007/
978-3-642-27576-0_4 (cit. on p. 31).

[Cha18] Jefferson Chase. German election could be won by early vot-
ing. 2018. url: http://www.dw.com/en/german-election-
could-be-won-by-early-voting/a-40296550 (Last ac-
cessed 03/26/2022) (cit. on p. 8).

https://www.bsi.bund.de/EN/Service-Navi/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://www.bsi.bund.de/EN/Service-Navi/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://www.bsi.bund.de/EN/Service-Navi/Publications/TechnicalGuidelines/tr02102/tr02102_node.html
https://www.chicagotribune.com/opinion/commentary/ct-perspec-fake-news-google-facebook-0904-story.html
https://www.chicagotribune.com/opinion/commentary/ct-perspec-fake-news-google-facebook-0904-story.html
https://www.chicagotribune.com/opinion/commentary/ct-perspec-fake-news-google-facebook-0904-story.html
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2010.31
https://www.theguardian.com/uk-news/2018/mar/31/aggregateiq-canadian-tech-brexit-data-riddle-cambridge-analytica
https://www.theguardian.com/uk-news/2018/mar/31/aggregateiq-canadian-tech-brexit-data-riddle-cambridge-analytica
https://www.theguardian.com/uk-news/2018/mar/31/aggregateiq-canadian-tech-brexit-data-riddle-cambridge-analytica
https://www.theguardian.com/uk-news/2018/mar/31/aggregateiq-canadian-tech-brexit-data-riddle-cambridge-analytica
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-642-27576-0_4
http://www.dw.com/en/german-election-could-be-won-by-early-voting/a-40296550
http://www.dw.com/en/german-election-could-be-won-by-early-voting/a-40296550

BIBLIOGRAPHY 149

[Cha+21] David Chaum, Richard T Carback, Jeremy Clark, Chao Liu,
Mahdi Nejadgholi, Bart Preneel, Alan T Sherman, Mario
Yaksetig, Filip Zagórski, and Bingsheng Zhang. VoteXX:
Coercion Resistance for the Real World (preliminary ex-
tended abstract). https://votexx.org/votexx-extended-
abstract.pdf. 2021 (cit. on p. 32).

[Cha81] David L. Chaum. “Untraceable Electronic Mail, Return Ad-
dresses, and Digital Pseudonyms”. In: Communications of
the ACM 24.2 (1981), 84–90. doi: 10.1145/358549.358563
(cit. on p. 27).

[Cha83] David Chaum. “Blind Signatures for Untraceable Pay-
ments”. In: Advances in Cryptology Proceedings of Crypto
82. Ed. by D. Chaum, R.L. Rivest, and A.T. Sherman. 1983,
pp. 199–203. doi: 10.1007/978-1-4757-0602-4_18 (cit. on
p. 27).

[Che+21] Jun Chen, Xiangyang Luo, Liyan Zhu, Qikun Zhang, and
Yong Gan. “Handwritten CAPTCHA recognizer: a text
CAPTCHA breaking method based on style transfer net-
work”. In: Multimedia Tools and Applications (2021). Ed.
by Borko Furht. doi: 10.1007/s11042-021-11485-9 (cit.
on p. 28).

[Chi+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush
Mishra, Noah Vesely, and Nicholas P. Ward. “Marlin: Pre-
processing zkSNARKs with Universal and Updatable SRS”.
In: Advances in Cryptology - EUROCRYPT. Ed. by Anne
Canteaut and Yuval Ishai. Vol. 12105. LNCS. Springer, 2020,
pp. 738–768. doi: 10.1007/978-3-030-45721-1_26 (cit. on
p. 25).

[Chi92] Nancy Chinchor. “MUC-4 Evaluation Metrics”. In: Pro-
ceedings of the 4th Conference on Message Understanding.
MUC4 ’92. Association for Computational Linguistics, 1992,
22–29. doi: 10.3115/1072064.1072067 (cit. on p. 39).

[CL02] Jan Camenisch and Anna Lysyanskaya. “A Signature
Scheme with Efficient Protocols”. In: Security in Communi-
cation Networks, Third International Conference, SCN. Ed.
by Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano.
Vol. 2576. LNCS. Springer, 2002, pp. 268–289. doi: 10.1007/
3-540-36413-7_20 (cit. on p. 76).

https://votexx.org/votexx-extended-abstract.pdf
https://votexx.org/votexx-extended-abstract.pdf
https://doi.org/10.1145/358549.358563
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/s11042-021-11485-9
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20

150 BIBLIOGRAPHY

[Cla19] Thomas Claburn. Google’s reCAPTCHA favors – you
guessed it – Google: Duh, only a bot would refuse to sign
into the Chocolate Factory. 2019. url: https : / / www .

theregister.co.uk/2019/06/28/google_recaptcha_

favoring _ google/ (Last accessed 03/26/2022) (cit. on
pp. 7, 29).

[CM99] Jan Camenisch and Markus Michels. “Proving in Zero-
Knowledge that a Number is the Product of Two Safe
Primes”. In: Advances in Cryptology — EUROCRYPT ’99.
Ed. by Jacques Stern. LNCS. Springer Berlin Heidelberg,
1999, pp. 107–122. doi: 10.1007/3-540-48910-X_8 (cit. on
p. 26).

[Com18] European Commission. 2018 reform of EU data protection
rules. May 25, 2018. url: https://ec.europa.eu/info/
sites / default / files / data - protection - factsheet -

role - edpb _ en . pdf (Last accessed 03/26/2022) (cit. on
pp. 2, 4).

[Con19] World Wide Web Consortium. Captcha Alternatives and
thoughts. 2019. url: https : / / www . w3 . org / WAI / GL /

wiki / Captcha _ Alternatives _ and _ thoughts (Last ac-
cessed 03/26/2022) (cit. on p. 29).

[Cor+14] Véronique Cortier, David Galindo, Stéphane Glondu, and
Malika Izabachène. “Election Verifiability for Helios un-
der Weaker Trust Assumptions”. In: European Symposium
on Research in Computer Security - ESORICS. Vol. 8713.
LNCS. Springer Cham, 2014. doi: 10.1007/978-3-319-
11212-1_19 (cit. on pp. 85, 140).

[Cor+16] Véronique Cortier, David Galindo, Ralf Küsters, Johannes
Müller, and Tomasz Truderung. “SoK: Verifiability Notions
for E-Voting Protocols”. In: IEEE Symposium on Security
and Privacy (SP). 2016, pp. 779–798. doi: 10.1109/SP.
2016.52 (cit. on pp. 85, 140).

[CPJ18] Hanbyul Choi, Jonghwa Park, and Yoonhyuk Jung. “The role
of privacy fatigue in online privacy behavior”. In: Computers
in Human Behavior 81 (2018), pp. 42 –51. doi: 10.1016/j.
chb.2017.12.001 (cit. on p. 2).

https://www.theregister.co.uk/2019/06/28/google_recaptcha_favoring_google/
https://www.theregister.co.uk/2019/06/28/google_recaptcha_favoring_google/
https://www.theregister.co.uk/2019/06/28/google_recaptcha_favoring_google/
https://doi.org/10.1007/3-540-48910-X_8
https://ec.europa.eu/info/sites/default/files/data-protection-factsheet-role-edpb_en.pdf
https://ec.europa.eu/info/sites/default/files/data-protection-factsheet-role-edpb_en.pdf
https://ec.europa.eu/info/sites/default/files/data-protection-factsheet-role-edpb_en.pdf
https://www.w3.org/WAI/GL/wiki/Captcha_Alternatives_and_thoughts
https://www.w3.org/WAI/GL/wiki/Captcha_Alternatives_and_thoughts
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1109/SP.2016.52
https://doi.org/10.1109/SP.2016.52
https://doi.org/10.1016/j.chb.2017.12.001
https://doi.org/10.1016/j.chb.2017.12.001

BIBLIOGRAPHY 151

[Cry18] CryptoZ. Chainanalysis- 3.8 million Bitcoin is lost forever.
https : / / steemit . com / cryptocurrency / @crypto - z /

chainanalysis - 3 - 8 - million - bitcoin - is - lost -

forever. 2018. (Last accessed 03/26/2022) (cit. on p. 73).

[CS97] Jan Camenisch and Markus Stadler. “Efficient Group Sig-
nature Schemes for Large Groups (Extended Abstract)”.
In: Proceedings on Advances in Cryptology—CRYPTO ’97.
Ed. by Burton S.Jr. Kaliski. LNCS. Springer-Verlag, 1997,
410–424. doi: 10.1007/BFb0052252 (cit. on p. 24).

[CSJ09] A A Chandavale, A M Sapkal, and R M Jalnekar. “Algo-
rithm to Break Visual CAPTCHA”. In: Second International
Conference on Emerging Trends in Engineering Technology.
IEEE, 2009, pp. 258–262. doi: 10.1109/ICETET.2009.24
(cit. on p. 28).

[CSP12] Helen Cripps, Craig Standing, and Vesna Prijatelj. “Smart
Health Case Cards: Are they applicable in the Australian
context?” In: 25th Bled eConference eDependability: Reli-
able and Trustworthy eStructures, eProcesses, eOperations
and eServices for the Future (2012) (cit. on p. 9).

[Dan] George Danezis. Petlib: A python library that implements
a number of Privacy Enhancing Technolgies. Github. url:
https://github.com/gdanezis/petlib (Last accessed
03/26/2022) (cit. on p. 131).

[Dan+12] George Danezis, Markulf Kohlweiss, Benjamin Livshits, and
Alfredo Rial. “Private Client-side Profiling with Random
Forests and Hidden Markov Models”. In: Proceedings of the
12th International Conference on Privacy Enhancing Tech-
nologies. PETS’12. Springer-Verlag, 2012, pp. 18–37. doi:
10.1007/978-3-642-31680-7_2 (cit. on p. 30).

[Dav+17] Erhan Davarci, Betul Soysal, Imran Erguler, Sabri Orhun
Aydin, Onur Dincer, and Emin Anarim. “Age group detec-
tion using smartphone motion sensors”. In: 2017 25th Euro-
pean Signal Processing Conference (EUSIPCO). IEEE, 2017,
pp. 2201–2205. doi: 10.23919/EUSIPCO.2017.8081600 (cit.
on p. 29).

[Dav+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tanker-
sley, and Filippo Valsorda. “Privacy Pass: Bypassing Inter-
net Challenges Anonymously”. In: Proceedings on Privacy

https://steemit.com/cryptocurrency/@crypto-z/chainanalysis-3-8-million-bitcoin-is-lost-forever
https://steemit.com/cryptocurrency/@crypto-z/chainanalysis-3-8-million-bitcoin-is-lost-forever
https://steemit.com/cryptocurrency/@crypto-z/chainanalysis-3-8-million-bitcoin-is-lost-forever
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1109/ICETET.2009.24
https://github.com/gdanezis/petlib
https://doi.org/10.1007/978-3-642-31680-7_2
https://doi.org/10.23919/EUSIPCO.2017.8081600

152 BIBLIOGRAPHY

Enhancing Technologies 2018.3 (2018), pp. 164 –180. doi:
10.1515/popets-2018-0026 (cit. on pp. 27, 62).

[DBC16] Anupam Das, Nikita Borisov, and Matthew Caesar. “Track-
ing Mobile Web Users Through Motion Sensors: Attacks and
Defenses.” In: The Network and Distributed System Secu-
rity Symposium (NDSS). 2016. doi: 10.14722/NDSS.2016.
23390 (cit. on p. 29).

[DC07] Roberto Di Cosmo. On privacy and anonymity in elec-
tronic and non electronic voting: the ballot-as-signature at-
tack. HAL Archives Ouvertes. https://hal.archives-
ouvertes.fr/hal-00142440. 2007 (cit. on p. 91).

[Dev18] Google Developers. reCAPTCHA v3. 2018. url: https://
developers.google.com/recaptcha/docs/v3 (Last ac-
cessed 03/26/2022) (cit. on p. 28).

[Dev20] Android Developers. Android Debug Bridge (adb). 2020. url:
https : / / developer . android . com / studio / command -

line/adb (Last accessed 03/26/2022) (cit. on p. 38).

[DFL14] Drew Davidson, Matt Fredrikson, and Benjamin Livshits.
“MoRePriv: Mobile OS Support for Application Personaliza-
tion and Privacy”. In: Proceedings of the 30th Annual Com-
puter Security Applications Conference. ACSAC ’14. ACM,
2014, pp. 236–245. doi: 10.1145/2664243.2664266 (cit. on
p. 30).

[DH76] W. Diffie and M. Hellman. “New directions in cryptogra-
phy”. In: Transactions on Information Theory 22.6 (1976),
pp. 644–654. doi: 10.1109/TIT.1976.1055638 (cit. on
p. 27).

[Dim20] Tassos Dimitriou. “Efficient, Coercion-free and Universally
Verifiable Blockchain-based Voting”. In: Computer Networks
174 (2020). doi: 10.1016/j.comnet.2020.107234 (cit. on
p. 31).

[DL+12] Alexander De Luca, Alina Hang, Frederik Brudy, Christian
Lindner, and Heinrich Hussmann. “Touch Me Once and I
Know It’s You!: Implicit Authentication Based on Touch
Screen Patterns”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’12. ACM,
2012, pp. 987–996. doi: 10.1145/2207676.2208544 (cit. on
p. 28).

https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.14722/NDSS.2016.23390
https://doi.org/10.14722/NDSS.2016.23390
https://hal.archives-ouvertes.fr/hal-00142440
https://hal.archives-ouvertes.fr/hal-00142440
https://developers.google.com/recaptcha/docs/v3
https://developers.google.com/recaptcha/docs/v3
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://doi.org/10.1145/2664243.2664266
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1016/j.comnet.2020.107234
https://doi.org/10.1145/2207676.2208544

BIBLIOGRAPHY 153

[Dou21] Zhongchen Dou. “The Text Captcha Solver: A Convolutional
Recurrent Neural Network-Based Approach”. In: Interna-
tional Conference on Big Data Analysis and Computer Sci-
ence (BDACS). IEEE, 2021, pp. 273–283. doi: 10.1109/
BDACS53596.2021.00067 (cit. on p. 28).

[Dow+16] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. “CryptoNets:
Applying Neural Networks to Encrypted Data with High
Throughput and Accuracy”. In: Proceedings of the 33rd In-
ternational Conference on International Conference on Ma-
chine Learning. Vol. 48. ICML’16. JMLR.org, 2016, pp. 201–
210 (cit. on p. 30).

[Dro20] Subramanyam Dronamraju. Nearly 90% Of Businesses Fail
To Comply With California Consumer Privacy Act (CCPA),
Says New Research By InfoSecEnforcer. Oct. 2020. url:
https : / / infosecenforcer . com / nearly - 90 - of -

businesses - fail - to - comply - with - california -

consumer-privacy-act-ccpa-says-new-research-by-

infosecenforcer/ (Last accessed 03/26/2022) (cit. on p. 2).

[Dzi19] Josh Dzieza. Why CAPTCHAS have gotten so difficult.
2019. url: https : / / www . theverge . com / 2019 / 2 / 1 /

18205610/google-captcha-ai-robot-human-difficult-

artificial-intelligence (Last accessed 03/26/2022) (cit.
on p. 7).

[EC18] Electoral-Comission. The administration of the June 2017
UK general election. 2018. url: https : / / www .

electoralcommission . org . uk / _ _ data / assets / pdf _

file / 0003 / 238044 / The - administration - of - the -

June - 2017 - UK - general - election . pdf (Last accessed
03/26/2022) (cit. on p. 8).

[Eco16] The Economist. The world’s most valuable resource is no
longer oil, but data. May 2016. url: https : / / www .

economist.com/leaders/2017/05/06/the-worlds-most-

valuable-resource-is-no-longer-oil-but-data (Last
accessed 03/26/2022) (cit. on p. 3).

[EG85] Taher El Gamal. “A Public Key Cryptosystem and a Signa-
ture Scheme Based on Discrete Logarithms”. In: Proceedings
of CRYPTO 84 on Advances in Cryptology. Ed. by David
Chaum George R. Blakley. Vol. 196. LNCS. Springer, Berlin,

https://doi.org/10.1109/BDACS53596.2021.00067
https://doi.org/10.1109/BDACS53596.2021.00067
https://infosecenforcer.com/nearly-90-of-businesses-fail-to-comply-with-california-consumer-privacy-act-ccpa-says-new-research-by-infosecenforcer/
https://infosecenforcer.com/nearly-90-of-businesses-fail-to-comply-with-california-consumer-privacy-act-ccpa-says-new-research-by-infosecenforcer/
https://infosecenforcer.com/nearly-90-of-businesses-fail-to-comply-with-california-consumer-privacy-act-ccpa-says-new-research-by-infosecenforcer/
https://infosecenforcer.com/nearly-90-of-businesses-fail-to-comply-with-california-consumer-privacy-act-ccpa-says-new-research-by-infosecenforcer/
https://www.theverge.com/2019/2/1/18205610/google-captcha-ai-robot-human-difficult-artificial-intelligence
https://www.theverge.com/2019/2/1/18205610/google-captcha-ai-robot-human-difficult-artificial-intelligence
https://www.theverge.com/2019/2/1/18205610/google-captcha-ai-robot-human-difficult-artificial-intelligence
https://www.electoralcommission.org.uk/__data/assets/pdf_file/0003/238044/The-administration-of-the-June-2017-UK-general-election.pdf
https://www.electoralcommission.org.uk/__data/assets/pdf_file/0003/238044/The-administration-of-the-June-2017-UK-general-election.pdf
https://www.electoralcommission.org.uk/__data/assets/pdf_file/0003/238044/The-administration-of-the-June-2017-UK-general-election.pdf
https://www.electoralcommission.org.uk/__data/assets/pdf_file/0003/238044/The-administration-of-the-June-2017-UK-general-election.pdf
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

154 BIBLIOGRAPHY

Heidelberg, 1985, 10–18. doi: 10.1007/3-540-39568-7_2
(cit. on pp. 17, 27).

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. “A
Randomized Protocol for Signing Contracts”. In: Commun.
ACM 28.6 (June 1985), 637–647. doi: 10.1145/3812.3818
(cit. on p. 27).

[ET18] Jacob Eberhardt and Stefan Tai. “ZoKrates - Scalable
Privacy-Preserving Off-Chain Computations”. In: IEEE In-
ternational Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). IEEE, 2018, pp. 1084–
1091. doi: 10.1109/Cybermatics_2018.2018.00199 (cit.
on p. 56).

[Feh+12] Clint Feher, Yuval Elovici, Robert Moskovitch, Lior Rokach,
and Alon Schclar. “User identity verification via mouse dy-
namics”. In: Information Sciences 201 (2012), pp. 19–36.
doi: 10.1016/j.ins.2012.02.066 (cit. on p. 141).

[Fen+20] Yunhe Feng, Qing Cao, Hairong Qi, and Scott Ruoti. “Sen-
CAPTCHA: A Mobile-First CAPTCHA Using Orientation
Sensors”. In: Proceedings ACM Interactive Mobile Wearable
Ubiquitous Technologies 4.2 (2020). doi: 10.1145/3397312
(cit. on p. 28).

[FG20] Alisa Frik and Alexia Gaudeul. “A measure of the implicit
value of privacy under risk”. In: Journal of Consumer Mar-
keting 37 (2020), pp. 457–472. doi: 10.1108/JCM-06-2019-
3286 (cit. on p. 2).

[Fou16] Interaction Design Foundation. Killing the CAPTCHA for
better UX. 2016. url: https://www.interaction-design.
org/literature/article/killing-the-captcha-for-

better-ux (Last accessed 03/26/2022) (cit. on p. 29).

[Fre19] FreePrivacyPolicy. Privacy Policy for ReCAPTCHA. 2019.
url: https : / / www . freeprivacypolicy . com / blog /

recaptcha-privacy-policy/ (Last accessed 03/26/2022)
(cit. on p. 7).

https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1145/3812.3818
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://doi.org/10.1016/j.ins.2012.02.066
https://doi.org/10.1145/3397312
https://doi.org/10.1108/JCM-06-2019-3286
https://doi.org/10.1108/JCM-06-2019-3286
https://www.interaction-design.org/literature/article/killing-the-captcha-for-better-ux
https://www.interaction-design.org/literature/article/killing-the-captcha-for-better-ux
https://www.interaction-design.org/literature/article/killing-the-captcha-for-better-ux
https://www.freeprivacypolicy.com/blog/recaptcha-privacy-policy/
https://www.freeprivacypolicy.com/blog/recaptcha-privacy-policy/

BIBLIOGRAPHY 155

[Fre97] Louis J. Freeh. Statement of Louis J. Freeh, Director Federal
Bureau of Investigation Before the Senate Judiciary Com-
mittee. 1997. url: https://archive.epic.org/crypto/
legislation/freeh_797.html (Last accessed 03/26/2022)
(cit. on p. 3).

[FS87] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems”. In:
Advances in Cryptology — CRYPTO’ 86. Ed. by Andrew M.
Odlyzko. LNCS. Springer Berlin Heidelberg, 1987, pp. 186–
194. doi: 10.1007/3-540-47721-7_12 (cit. on pp. 22, 24,
42).

[GCF11] Saikat Guha, Bin Cheng, and Paul Francis. “Privad: Prac-
tical Privacy in Online Advertising”. In: Proceedings of the
8th USENIX Conference on Networked Systems Design and
Implementation. NSDI’11. Berkeley, CA, USA: USENIX As-
sociation, 2011, pp. 169–182 (cit. on p. 30).

[Gjø10] Kristian Gjøsteen. Analysis of an Internet Voting Protocol.
Tech. rep. https://eprint.iacr.org/2010/380.pdf. 2010
(cit. on pp. 33, 135).

[GLN12] Thore Graepel, Kristin Lauter, and Michael Naehrig. “ML
Confidential: Machine Learning on Encrypted Data”. In:
Information Security and Cryptology – ICISC 2012. Ed.
by Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon.
Vol. 7839. LNCS. Springer Berlin Heidelberg, 2012, pp. 1–
21. doi: 10.1007/978-3-642-37682-5_1 (cit. on p. 30).

[GMR85] S Goldwasser, S Micali, and C Rackoff. “The Knowledge
Complexity of Interactive Proof-systems”. In: Proceedings of
the Seventeenth Annual ACM Symposium on Theory of Com-
puting. STOC ’85. ACM, 1985, pp. 291–304. doi: 10.1145/
22145.22178 (cit. on pp. 22, 27).

[GN16] Ruti Gafni and Idan Nagar. “CAPTCHA–Security affecting
user experience”. In: Issues in Informing Science and Infor-
mation Technology 13 (2016), pp. 063–077. doi: 10.28945/
3469 (cit. on p. 7).

[Gol20] Jeffrey Goldberg. Apple and Google’s contact tracing is
privacy-preserving. 1Password. May 2020. url: https://
blog.1password.com/contact- tracing/ (Last accessed
03/26/2022) (cit. on p. 3).

https://archive.epic.org/crypto/legislation/freeh_797.html
https://archive.epic.org/crypto/legislation/freeh_797.html
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2010/380.pdf
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.28945/3469
https://doi.org/10.28945/3469
https://blog.1password.com/contact-tracing/
https://blog.1password.com/contact-tracing/

156 BIBLIOGRAPHY

[Goo+13] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha
Arnoud, and Vinay Shet.Multi-digit number recognition from
street view imagery using deep convolutional neural networks.
arXiv. 2013. url: https://arxiv.org/abs/1312.6082 (cit.
on p. 28).

[Goo14] Google. Are you a robot? Introducing “No CAPTCHA re-
CAPTCHA”. 2014. url: https://security.googleblog.
com/2014/12/are-you-robot-introducing-no-captcha.

html (Last accessed 03/26/2022) (cit. on p. 28).

[Goo19] Google. Choosing the type of reCAPTCHA. 2019. url:
https : / / developers . google . com / recaptcha / docs /

versions (Last accessed 03/26/2022) (cit. on p. 28).

[Goo21] Google. SafetyNet reCAPTCHA API. 2021. url: https :

/ / developer . android . com / training / safetynet /

recaptcha (Last accessed 03/26/2022) (cit. on p. 62).

[Gov20] United Kingdom Government. How to vote: voting by post.
2020. url: https://www.gov.uk/voting-in-the-uk/
postal-voting (Last accessed 03/26/2022) (cit. on p. 8).

[GPZ19] Panagiotis Grontas, Aris Pagourtzis, and Alexandros
Zacharakis. Security models for everlasting privacy. Cryp-
tology ePrint Archive, Report 2019/1193. https://eprint.
iacr.org/2019/1193. 2019 (cit. on p. 84).

[Gri16] Jack Grigg. Bellman: Zero-knowledge Cryptography in Rust.
2016. url: https://github.com/zkcrypto/bellman (Last
accessed 03/26/2022) (cit. on p. 56).

[Gro09] Jens Groth. “Linear Algebra with Sub-linear Zero-
Knowledge Arguments”. In: Advances in Cryptology -
CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. LNCS.
Springer Berlin Heidelberg, 2009, pp. 192–208. doi: 10 .

1007/978-3-642-03356-8_12 (cit. on pp. 21, 31, 56).

[Gro10] Jens Groth. “A Verifiable Secret Shuffle of Homomorphic
Encryptions”. In: Journal of Cryptology 23.4 (Oct. 2010),
pp. 546–579. doi: 10.1007/s00145-010-9067-9 (cit. on
p. 75).

https://arxiv.org/abs/1312.6082
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://developers.google.com/recaptcha/docs/versions
https://developers.google.com/recaptcha/docs/versions
https://developer.android.com/training/safetynet/recaptcha
https://developer.android.com/training/safetynet/recaptcha
https://developer.android.com/training/safetynet/recaptcha
https://www.gov.uk/voting-in-the-uk/postal-voting
https://www.gov.uk/voting-in-the-uk/postal-voting
https://eprint.iacr.org/2019/1193
https://eprint.iacr.org/2019/1193
https://github.com/zkcrypto/bellman
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/s00145-010-9067-9

BIBLIOGRAPHY 157

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive
Arguments”. In: Advances in Cryptology - EUROCRYPT
2016. Ed. by Marc Fischlin and Jean-Sébastien Coron.
Vol. 9666. LNCS. Springer, 2016, pp. 305–326. doi: 10.1007/
978-3-662-49896-5_11 (cit. on pp. 25, 30, 56).

[Gro+19] Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis,
and Bingsheng Zhang. “Towards Everlasting Privacy and Ef-
ficient Coercion Resistance in Remote Electronic Voting”. In:
Financial Cryptography and Data Security. Ed. by Aviv Zo-
har, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Brac-
ciali, Federico Pintore, and Massimiliano Sala. Vol. 10958.
LNCS. Springer Berlin Heidelberg, 2019, pp. 210–231. doi:
10.1007/978-3-662-58820-8_15 (cit. on pp. 31, 34).

[Gue+15] Meriem Guerar, Mauro Migliardi, Alessio Merlo, Mohamed
Benmohammed, and Belhadri Messabih. “A completely au-
tomatic public physical test to tell computers and humans
apart: A way to enhance authentication schemes in mobile
devices”. In: International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2015, pp. 203–210.
doi: 10.1109/HPCSim.2015.7237041 (cit. on pp. 28, 29).

[Gue+16] Meriem Guerar, Mauro Migliardi, Alessio Merlo, Mohamed
Benmohammed, Francesco Palmieri, and Aniello Castiglione.
“Using screen brightness to improve security in mobile social
network access”. In: IEEE Transactions on Dependable and
Secure Computing 15.4 (2016), pp. 621–632. doi: 10.1109/
TDSC.2016.2601603 (cit. on p. 28).

[Gue+18] Meriem Guerar, Alessio Merlo, Mauro Migliardi, and
Francesco Palmieri. “Invisible CAPPCHA: A usable mech-
anism to distinguish between malware and humans on the
mobile IoT”. In: Computers and Security 78 (2018), pp. 255–
266. doi: 10.1016/j.cose.2018.06.007 (cit. on pp. 7, 28,
29, 37, 139).

[GVUSS14] Manuel Gimeno, Blanca Villamı́a-Uriarte, and Vı́ctor
Suárez-Saa. eEspaña - Informe anual sobre el desarrollo de
la sociedad de la información en España. 2014. url: https:
/ / www . proyectosfundacionorange . es / docs / eE2014 /

Informe_eE2014.pdf (Last accessed 03/26/2022) (cit. on
p. 9).

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1109/HPCSim.2015.7237041
https://doi.org/10.1109/TDSC.2016.2601603
https://doi.org/10.1109/TDSC.2016.2601603
https://doi.org/10.1016/j.cose.2018.06.007
https://www.proyectosfundacionorange.es/docs/eE2014/Informe_eE2014.pdf
https://www.proyectosfundacionorange.es/docs/eE2014/Informe_eE2014.pdf
https://www.proyectosfundacionorange.es/docs/eE2014/Informe_eE2014.pdf

158 BIBLIOGRAPHY

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.
PLONK: Permutations over Lagrange-bases for Oecumenical
Noninteractive arguments of Knowledge. Cryptology ePrint
Archive, Report 2019/953. https://eprint.iacr.org/
2019/953. 2019 (cit. on p. 25).

[HA+13] Jorge L. Hernandez-Ardieta, Ana I. Gonzalez-Tablas, Jose
M. De Fuentes, and Benjamin Ramos. “A Taxonomy and
Survey of Attacks on Digital Signatures”. In: Comput. Secur.
34 (2013), pp. 67–112. doi: 10.1016/j.cose.2012.11.009
(cit. on p. 9).

[HA+21a] Luis Hernández-Álvarez, José Maŕıa de Fuentes, Lorena
González-Manzano, and Luis Hernández Encinas. “Smart-
CAMPP - Smartphone-based continuous authentication
leveraging motion sensors with privacy preservation”. In:
Pattern Recognition Letters 147 (2021), pp. 189–196. doi:
10.1016/j.patrec.2021.04.013 (cit. on p. 7).

[HA+21b] Luis Hernández-Álvarez, José Maŕıa de Fuentes, Lorena
González-Manzano, and Luis Hernández Encinas. “Privacy-
Preserving Sensor-Based Continuous Authentication and
User Profiling: A Review”. In: Sensors 21.1 (2021). doi:
10.3390/s21010092 (cit. on p. 7).

[Hel20] HelpNetSecurity. 85% of COVID-19 tracking apps leak data.
Sept. 2020. url: https://www.helpnetsecurity.com/
2020/09/30/covid-19-tracking-apps-leak-data/ (Last
accessed 03/26/2022) (cit. on p. 3).

[HIT16] Manik Hapsara, Ahmed Imran, and Timothy Turner. “E-
Voting in Developing Countries”. In: International Joint
Confrence on Electronic Voting - EVOTE ID. Ed. by Robert
Krimmer, Melanie Volkamer, Jordi Barrat, Josh Benaloh,
Nicole Goodman, Peter Y. A. Ryan, and Vanessa Teague.
Vol. 10141. LNCS. Springer, 2016, pp. 36–55. doi: 10.1007/
978-3-319-52240-1_3 (cit. on p. 8).

[HKH16] Thomas Hupperich, Katharina Krombholz, and Thorsten
Holz. “Sensor Captchas: On the Usability of Instrument-
ing Hardware Sensors to Prove Liveliness”. In: International
Conference on Trust and Trustworthy Computing. Ed. by
Michael Franz and Panos Papadimitratos. Vol. 9824. LNCS.
Springer International Publishing, 2016, pp. 40–59. doi: 10.
1007/978-3-319-45572-3_3 (cit. on pp. 28, 29).

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1016/j.cose.2012.11.009
https://doi.org/10.1016/j.patrec.2021.04.013
https://doi.org/10.3390/s21010092
https://www.helpnetsecurity.com/2020/09/30/covid-19-tracking-apps-leak-data/
https://www.helpnetsecurity.com/2020/09/30/covid-19-tracking-apps-leak-data/
https://doi.org/10.1007/978-3-319-52240-1_3
https://doi.org/10.1007/978-3-319-52240-1_3
https://doi.org/10.1007/978-3-319-45572-3_3
https://doi.org/10.1007/978-3-319-45572-3_3

BIBLIOGRAPHY 159

[HKR19] Max Hoffmann, Michael Klooß, and Andy Rupp. “Efficient
Zero-Knowledge Arguments in the Discrete Log Setting, Re-
visited”. In: Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS ’19.
Association for Computing Machinery, 2019, 2093–2110. doi:
10.1145/3319535.3354251 (cit. on p. 26).

[HL09] James Heather and David Lundin. “The Append-Only Web
Bulletin Board”. In: Formal Aspects in Security and Trust.
Ed. by Pierpaolo Degano, Joshua Guttman, and Fabio Mar-
tinelli. Vol. 5491. LNCS. Springer Berlin Heidelberg, 2009,
pp. 242–256. doi: 10.1007/978-3-642-01465-9_16 (cit. on
p. 76).

[Hol+19] Scott Hollier, Janina Sajka, Jason White, and Michael
Cooper. Inaccessibility of CAPTCHA: Alternatives to Visual
Turing Tests on the Web. 2019. url: https://www.w3.org/
TR/turingtest/ (Last accessed 03/26/2022) (cit. on pp. 7,
29).

[Hor19] Louise Horton. Businesses failing to comply with GDPR. Feb.
2019. url: https : / / www . chdlimited . com / 2019 / 02 /

05 / businesses - failing - comply - gdpr/ (Last accessed
03/26/2022) (cit. on p. 2).

[Hug19] Matthew Hughes. Bots drove nearly 40% of internet traffic
last year - and the naughty ones are getting smarter. 2019.
url: https://thenextweb.com/security/2019/04/17/
bots-drove-nearly-40-of-internet-traffic-last-

year- and- the- naughty- ones- are- getting- smarter/

(Last accessed 03/26/2022) (cit. on p. 6).

[Ily] Ilya Khrennikov. Telegram loses bid to block Russia from en-
cryption keys. url: https://www.bloomberg.com/news/
articles/2018-03-20/telegram-loses-bid-to-stop-

russia-from-getting-encryption-keys (Last accessed
03/26/2022) (cit. on p. 3).

[Int19] Intuition Machines Inc. hCaptcha: Earn money with a
captcha. 2019. url: https://www.hcaptcha.com (cit. on
pp. 7, 29).

[Iri18] Roberto Iriondo. Breaking CAPTCHA Using Machine
Learning in 0.05 Seconds. 2018. url: https : / / medium .
com / towards - artificial - intelligence / breaking -

https://doi.org/10.1145/3319535.3354251
https://doi.org/10.1007/978-3-642-01465-9_16
https://www.w3.org/TR/turingtest/
https://www.w3.org/TR/turingtest/
https://www.chdlimited.com/2019/02/05/businesses-failing-comply-gdpr/
https://www.chdlimited.com/2019/02/05/businesses-failing-comply-gdpr/
https://thenextweb.com/security/2019/04/17/bots-drove-nearly-40-of-internet-traffic-last-year-and-the-naughty-ones-are-getting-smarter/
https://thenextweb.com/security/2019/04/17/bots-drove-nearly-40-of-internet-traffic-last-year-and-the-naughty-ones-are-getting-smarter/
https://thenextweb.com/security/2019/04/17/bots-drove-nearly-40-of-internet-traffic-last-year-and-the-naughty-ones-are-getting-smarter/
https://www.bloomberg.com/news/articles/2018-03-20/telegram-loses-bid-to-stop-russia-from-getting-encryption-keys
https://www.bloomberg.com/news/articles/2018-03-20/telegram-loses-bid-to-stop-russia-from-getting-encryption-keys
https://www.bloomberg.com/news/articles/2018-03-20/telegram-loses-bid-to-stop-russia-from-getting-encryption-keys
https://www.hcaptcha.com
https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694
https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694

160 BIBLIOGRAPHY

captcha-using-machine-learning-in-0-05-seconds-

9feefb997694 (Last accessed 03/26/2022) (cit. on p. 7).

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson.
“Coercion-resistant Electronic Elections”. In: Proceedings of
the 2005 ACM Workshop on Privacy in the Electronic So-
ciety. WPES ’05. ACM, 2005, pp. 61–70. doi: 10.1145/
1102199.1102213 (cit. on pp. 31, 32, 85, 88).

[JKP10] Muhammad Asim Jamshed, Wonho Kim, and KyoungSoo
Park. “Suppressing bot traffic with accurate human attes-
tation”. In: Proceedings of the first ACM asia-pacific work-
shop on Workshop on systems. SIGCOMM ’10. Association
for Computing Machinery, 2010, pp. 43–48. doi: 10.1145/
1851276.1851287 (cit. on p. 7).

[JMO21a] Solly Ross Joel Martin Samuel Mannehed and Pierre Os-
sman. NoVNC - the open source VNC client. 2021. url:
https : / / github . com / novnc / noVNC (Last accessed
03/26/2022) (cit. on p. 62).

[JMO21b] Solly Ross Joel Martin Samuel Mannehed and Pierre Oss-
man. NoVNC: HTML VNC Client Library and Application.
2021. url: https : / / novnc . com / noVNC/ (Last accessed
03/26/2022) (cit. on p. 62).

[Jus18] State of California Department of Justice. California Con-
sumer Privacy Act (CCPA). 2018. url: https://oag.ca.
gov/privacy/ccpa (Last accessed 03/26/2022) (cit. on p. 2).

[Kah20] Richard Kahn. CAPTCHA and reCAPTCHA: How Fraud-
sters Bypass It. 2020. url: https://www.anura.io/blog/
how-the-use-of-captcha-can-hurt-user-experience

(Last accessed 03/26/2022) (cit. on p. 29).

[Lee18] Gregory T Lee. Abstract Algebra. An Introductory Course.
Springer, 2018. doi: 10.1007/978-3-319-77649-1 (cit. on
p. 13).

[LH18] Paul Lewis and Paul Hilder. Leaked: Cambridge Analytica’s
blueprint for Trump victory. Mar. 2018. url: https : / /

www.theguardian.com/uk-news/2018/mar/23/leaked-

cambridge-analyticas-blueprint-for-trump-victory

(Last accessed 03/26/2022) (cit. on pp. 1, 3).

https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694
https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694
https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694
https://medium.com/towards-artificial-intelligence/breaking-captcha-using-machine-learning-in-0-05-seconds-9feefb997694
https://doi.org/10.1145/1102199.1102213
https://doi.org/10.1145/1102199.1102213
https://doi.org/10.1145/1851276.1851287
https://doi.org/10.1145/1851276.1851287
https://github.com/novnc/noVNC
https://novnc.com/noVNC/
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://www.anura.io/blog/how-the-use-of-captcha-can-hurt-user-experience
https://www.anura.io/blog/how-the-use-of-captcha-can-hurt-user-experience
https://doi.org/10.1007/978-3-319-77649-1
https://www.theguardian.com/uk-news/2018/mar/23/leaked-cambridge-analyticas-blueprint-for-trump-victory
https://www.theguardian.com/uk-news/2018/mar/23/leaked-cambridge-analyticas-blueprint-for-trump-victory
https://www.theguardian.com/uk-news/2018/mar/23/leaked-cambridge-analyticas-blueprint-for-trump-victory

BIBLIOGRAPHY 161

[LHK16] Philipp Locher, Rolf Haenni, and Reto E Koenig. “Coercion-
Resistant Internet Voting with Everlasting Privacy”. In: Fi-
nancial Cryptography and Data Security. Vol. 9604. LNCS.
Springer Berlin Heidelberg, 2016, pp. 161–175. doi: 10 .

1007/978-3-662-53357-4_11 (cit. on pp. 33, 34).

[Liu18] Wei Liu. Introducing reCAPTCHA v3: the new way to stop
bots. 2018. url: https://webmasters.googleblog.com/
2018/10/introducing-recaptcha-v3-new-way-to.html

(Last accessed 03/26/2022) (cit. on pp. 7, 29).

[Loz19] Andrea L. Lozano. Why is CAPTCHA killing your conver-
sion rate? 2019. url: https://blog.arengu.com/why-
captcha-is-killing-your-conversion-rate/ (Last ac-
cessed 03/26/2022) (cit. on p. 29).

[LQAT20] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela
Troncoso. “VOTEAGAIN: A Scalable Coercion-Resistant
Voting System”. In: Proceedings of the 29th USENIX Con-
ference on Security Symposium. USA: USENIX Association,
2020 (cit. on pp. v, 71).

[LV20] Isis Agora Lovecruft and Henry de Valence. curve25519-
dalek. Version 2.0.0. 2020. url: https : / / crates . io /

crates/curve25519-dalek/2.0.0 (cit. on p. 56).

[Mal+18] Mohammad Malekzadeh, Richard G Clegg, Andrea Caval-
laro, and Hamed Haddadi. “Protecting Sensory Data Against
Sensitive Inferences”. In: Proceedings of the 1st Workshop
on Privacy by Design in Distributed Systems. W-P2DS’18.
ACM, 2018, 2:1–2:6. doi: 10.1145/3195258.3195260 (cit.
on p. 29).

[Mal19] Daniyal Malik. Global Ad-Blocking Behaviors In 2019 -
Stats & Consumer Trends. 2019. url: https : / / www .

digitalinformationworld . com / 2019 / 04 / global - ad -

blocking- behaviors- infographic.html (Last accessed
03/26/2022) (cit. on p. 4).

[Mal+19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah
Meiklejohn. “Sonic: Zero-Knowledge SNARKs from Linear-
Size Universal and Updatable Structured Reference Strings”.
In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’19. Associ-
ation for Computing Machinery, 2019, 2111–2128. doi: 10.
1145/3319535.3339817 (cit. on p. 25).

https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/978-3-662-53357-4_11
https://webmasters.googleblog.com/2018/10/introducing-recaptcha-v3-new-way-to.html
https://webmasters.googleblog.com/2018/10/introducing-recaptcha-v3-new-way-to.html
https://blog.arengu.com/why-captcha-is-killing-your-conversion-rate/
https://blog.arengu.com/why-captcha-is-killing-your-conversion-rate/
https://crates.io/crates/curve25519-dalek/2.0.0
https://crates.io/crates/curve25519-dalek/2.0.0
https://doi.org/10.1145/3195258.3195260
https://www.digitalinformationworld.com/2019/04/global-ad-blocking-behaviors-infographic.html
https://www.digitalinformationworld.com/2019/04/global-ad-blocking-behaviors-infographic.html
https://www.digitalinformationworld.com/2019/04/global-ad-blocking-behaviors-infographic.html
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817

162 BIBLIOGRAPHY

[Mar16] Bernard Marr. Why Data Minimization Is An Important
Concept In The Age of Big Data. Mar. 2016. url: https:
//www.forbes.com/sites/bernardmarr/2016/03/16/

why-data-minimization-is-an-important-concept-in-

the-age-of-big-data/ (Last accessed 03/26/2022) (cit. on
p. 4).

[Mar19] Marea Granate. Calendario electoral voto exterior 2019.
https : / / mareagranate . org / 2019 / 02 / calendario -

electoral-voto-exterior-2019/. 2019 (cit. on p. 73).

[MCC08] Andrew C Myers, Michael Clarkson, and Stephen Chong.
“Civitas: Toward a Secure Voting System”. In: IEEE Sym-
posium on Security and Privacy. IEEE, 2008, pp. 354–368.
doi: 10.1109/SP.2008.32 (cit. on p. 31).

[Mes+11] Arik Messerman, Tarik Mustafić, Seyit Ahmet Camtepe,
and Sahin Albayrak. “Continuous and non-intrusive iden-
tity verification in real-time environments based on free-text
keystroke dynamics”. In: International Joint Conference on
Biometrics (IJCB). IJCB ’11. IEEE Computer Society, 2011,
pp. 1–8. doi: 10.1109/IJCB.2011.6117552 (cit. on p. 141).

[MIB19] David McCabe, Mike Isaac, and Katie Benner. Facebook
and Barr Escalate Standoff Over Encrypted Messages. 2019.
url: https : / / www . nytimes . com / 2019 / 12 / 10 /

technology/whatsapp-barr-encryption.html (Last ac-
cessed 03/26/2022) (cit. on p. 2).

[Mie+13] Ian Miers, Christina Garman, Matthew Green, and Aviel D.
Rubin. “Zerocoin: Anonymous Distributed E-Cash from Bit-
coin”. In: Symposium on Security and Privacy. IEEE, 2013.
doi: 10.1109/SP.2013.34 (cit. on p. 27).

[Min] Ministerio del Interior. Voto desde fuera de España. url:
https://infoelectoral.interior.gob.es/opencms/

es/proceso- electoral/preguntas- frecuentes/como-

votar / voto - desde - fuera - de - espana/ (Last accessed
03/26/2022) (cit. on p. 8).

[Min06] Ministerio del Interior. La Subsecretaria Soledad López ex-
plica en el Senado las caracteŕısticas del DNI electrónico.
2006. url: https : / / goo . gl / r6MVYJ (Last accessed
03/26/2022) (cit. on p. 9).

https://www.forbes.com/sites/bernardmarr/2016/03/16/why-data-minimization-is-an-important-concept-in-the-age-of-big-data/
https://www.forbes.com/sites/bernardmarr/2016/03/16/why-data-minimization-is-an-important-concept-in-the-age-of-big-data/
https://www.forbes.com/sites/bernardmarr/2016/03/16/why-data-minimization-is-an-important-concept-in-the-age-of-big-data/
https://www.forbes.com/sites/bernardmarr/2016/03/16/why-data-minimization-is-an-important-concept-in-the-age-of-big-data/
https://mareagranate.org/2019/02/calendario-electoral-voto-exterior-2019/
https://mareagranate.org/2019/02/calendario-electoral-voto-exterior-2019/
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1109/IJCB.2011.6117552
https://www.nytimes.com/2019/12/10/technology/whatsapp-barr-encryption.html
https://www.nytimes.com/2019/12/10/technology/whatsapp-barr-encryption.html
https://doi.org/10.1109/SP.2013.34
https://infoelectoral.interior.gob.es/opencms/es/proceso-electoral/preguntas-frecuentes/como-votar/voto-desde-fuera-de-espana/
https://infoelectoral.interior.gob.es/opencms/es/proceso-electoral/preguntas-frecuentes/como-votar/voto-desde-fuera-de-espana/
https://infoelectoral.interior.gob.es/opencms/es/proceso-electoral/preguntas-frecuentes/como-votar/voto-desde-fuera-de-espana/
https://goo.gl/r6MVYJ

BIBLIOGRAPHY 163

[Min17] Web Accessibility In Mind. Screen Reader User Survey #7
Results. 2017. url: https : / / webaim . org / projects /

screenreadersurvey7/ (Last accessed 03/26/2022) (cit. on
p. 29).

[Min20] Ministère de l’Europe et des Affaires étrangères. Vote par
correspondance. 2020. url: https : / / www . diplomatie .

gouv . fr / fr / services - aux - francais / voter -

a - l - etranger / modalites - de - vote / vote - par -

correspondance/ (Last accessed 03/26/2022) (cit. on p. 8).

[MK17] Shailin Dhar Mikko Kotila Ruben Cuevas Rumin. Com-
pendium of ad fraud knowledge for media investors. 2017.
url: https://wfanet.org/knowledge/item/2016/06/
03/Compendium-of-ad-fraud-knowledge-for-media-

investors (Last accessed 03/26/2022) (cit. on p. 6).

[MN06] Tal Moran and Moni Naor. “Receipt-Free Universally-
Verifiable Voting with Everlasting Privacy”. In: Proceedings
of the 26th Annual International Conference on Advances in
Cryptology - CRYPTO. Vol. 4117. LNCS. Springer-Verlag,
2006, 373–392. doi: 10.1007/11818175_22 (cit. on p. 34).

[Mon19] Monsoon Solutions Inc. High Voltage Power Monitor. 2019.
url: https : / / www . msoon . com / online - store /

High- Voltage- Power- Monitor- Part- Number- AAA10F-

p90002590 (Last accessed 03/26/2022) (cit. on p. 58).

[MSH17] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao.
“A Smart Contract for Boardroom Voting with Maximum
Voter Privacy”. In: Financial Cryptography and Data Secu-
rity. Ed. by Aggelos Kiayias. Vol. 10322. LNCS. Springer,
2017, pp. 357–375. doi: 10.1007/978-3-319-70972-7_20
(cit. on p. 76).

[MW19] Joe Myers and Kate Whiting. These are the biggest risks
facing our world in 2019. Jan. 2019. url: https://www.
weforum.org/agenda/2019/01/these-are-the-biggest-

risks-facing-our-world-in-2019/ (Last accessed 2021)
(cit. on p. 4).

[Nem+17] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and
Vashek Matyas. “The Return of Coppersmith’s Attack: Prac-
tical Factorization of Widely Used RSA Moduli”. In: 24th
ACM Conference on Computer and Communications Secu-

https://webaim.org/projects/screenreadersurvey7/
https://webaim.org/projects/screenreadersurvey7/
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/modalites-de-vote/vote-par-correspondance/
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/modalites-de-vote/vote-par-correspondance/
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/modalites-de-vote/vote-par-correspondance/
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/modalites-de-vote/vote-par-correspondance/
https://wfanet.org/knowledge/item/2016/06/03/Compendium-of-ad-fraud-knowledge-for-media-investors
https://wfanet.org/knowledge/item/2016/06/03/Compendium-of-ad-fraud-knowledge-for-media-investors
https://wfanet.org/knowledge/item/2016/06/03/Compendium-of-ad-fraud-knowledge-for-media-investors
https://doi.org/10.1007/11818175_22
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-Part-Number-AAA10F-p90002590
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-Part-Number-AAA10F-p90002590
https://www.msoon.com/online-store/High-Voltage-Power-Monitor-Part-Number-AAA10F-p90002590
https://doi.org/10.1007/978-3-319-70972-7_20
https://www.weforum.org/agenda/2019/01/these-are-the-biggest-risks-facing-our-world-in-2019/
https://www.weforum.org/agenda/2019/01/these-are-the-biggest-risks-facing-our-world-in-2019/
https://www.weforum.org/agenda/2019/01/these-are-the-biggest-risks-facing-our-world-in-2019/

164 BIBLIOGRAPHY

rity (CCS’2017). ACM, 2017, pp. 1631–1648. doi: 10.1145/
3133956.3133969 (cit. on p. 9).

[Net+18] André Silva Neto, Matheus Leite, Roberto Araújo, Mar-
celle Pereira Mota, Nelson Cruz Sampaio Neto, and Jacques
Traoré. “Usability Considerations For Coercion-Resistant
Election Systems”. In: IHC 2018 (2018). doi: 10 . 1145 /

3274192.3274232 (cit. on p. 73).

[Net20] Nym Network. Incentivised test-net. 2020. url: https://
nymtech.net/docs/stable/run-nym-nodes/incentives/

(cit. on p. 27).

[O’R15] Lara O’Reilly. Google’s new CAPTCHA security login raises
’legitimate privacy concerns’. 2015. url: https : / / www .

businessinsider . com / google - no - captcha - adtruth -

privacy- research- 2015- 2?r=US&IR=T (Last accessed
03/26/2022) (cit. on p. 28).

[Ove18] Jarrod Overson. Bypassing CAPTCHAs with Headless
Chrome. 2018. url: https://medium.com/@jsoverson/
bypassing - captchas - with - headless - chrome -

93f294518337 (Last accessed 03/26/2022) (cit. on p. 7).

[Pap+17] Elias P. Papadopoulos, Michalis Diamantaris, Panagiotis Pa-
padopoulos, Thanasis Petsas, Sotiris Ioannidis, and Evange-
los P. Markatos. “The Long-Standing Privacy Debate: Mo-
bile Websites vs Mobile Apps”. In: Proceedings of the 26th
International Conference on World Wide Web. WWW ’17.
2017, pp. 153–162. doi: 10.1145/3038912.3052691 (cit. on
p. 29).

[Par+09] SangHwan Park, Haeryong Park, YooJae Won, JaeIl Lee, and
Stephen Kent. Traceable Anonymous Certificate. Tech. rep.
5636. Internet Engineering Task Force, 2009 (cit. on p. 76).

[Ped91a] Torben P. Pedersen. “Non-Interactive and Information-
Theoretic Secure Verifiable Secret Sharing”. In: Proceed-
ings of the 11th Annual International Cryptology Confer-
ence on Advances in Cryptology. Ed. by Joan Feigenbaum.
Vol. 576. CRYPTO ’91. Springer-Verlag, 1991, 129–140. doi:
10.1007/3-540-46766-1_9 (cit. on p. 21).

https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/3274192.3274232
https://doi.org/10.1145/3274192.3274232
https://nymtech.net/docs/stable/run-nym-nodes/incentives/
https://nymtech.net/docs/stable/run-nym-nodes/incentives/
https://www.businessinsider.com/google-no-captcha-adtruth-privacy-research-2015-2?r=US&IR=T
https://www.businessinsider.com/google-no-captcha-adtruth-privacy-research-2015-2?r=US&IR=T
https://www.businessinsider.com/google-no-captcha-adtruth-privacy-research-2015-2?r=US&IR=T
https://medium.com/@jsoverson/bypassing-captchas-with-headless-chrome-93f294518337
https://medium.com/@jsoverson/bypassing-captchas-with-headless-chrome-93f294518337
https://medium.com/@jsoverson/bypassing-captchas-with-headless-chrome-93f294518337
https://doi.org/10.1145/3038912.3052691
https://doi.org/10.1007/3-540-46766-1_9

BIBLIOGRAPHY 165

[Ped91b] Torben Pryds Pedersen. “A Threshold Cryptosystem with-
out a Trusted Party”. In: Advances in Cryptology—
EUROCRYPT’91. Ed. by Donald W. Davies. Vol. 547.
LNCS. Springer Berlin Heidelberg, 1991, pp. 522–526. doi:
10.1007/3-540-46416-6_47 (cit. on p. 20).

[Pes+20] Gonçalo Pestana, Iñigo Querejeta-Azurmendi, Panagiotis
Papadopoulos, and Benjamin Livshits. THEMIS: Decentral-
ized and Trustless Ad Platform with Reporting Integrity.
2020. arXiv: 2007.05556 [cs.CR] (cit. on p. vi).

[Phi15] Drew Phillips. What is Securimage? 2015. url: https://
www.phpcaptcha.org/ (Last accessed 03/26/2022) (cit. on
pp. 7, 29).

[Pre20] Ted Pretty. Terrorist Attacks in France and Austria are the
Cause of the New Changes in the Encryption Field. Nov.
2020. url: https://cipherpoint.com/blog/encryption-
ban-france-austria/ (Last accessed 03/26/2022) (cit. on
p. 3).

[QA+17] Iñigo Querejeta-Azurmendi, Jorge L. Hernandez-Ardieta,
Vı́ctor Gayoso Mart́ınez, Luis Hernandez Encinas, and David
Arroyo. “A coercion-resistant and easy-to-use Internet e-
voting protocol based on traceable anonymous certificates”.
In: III Jornadas Nacionales de Investigación en Ciberseguri-
dad. Selected Best Research Article. May 2017 (cit. on
pp. iv, 71).

[QA+19] Iñigo Querejeta-Azurmendi, Luis Hernández Encinas, David
Arroyo Guardeño, and Jorge L. Hernandez-Ardieta. “An In-
ternet Voting Proposal Towards Improving Usability and
Coercion Resistance.” In: CISIS-ICEUTE. Vol. 951. Ad-
vances in Intelligent Systems and Computing. Springer, 2019,
pp. 155–164. doi: 10.1007/978-3-030-20005-3_16 (cit. on
p. iv).

[QA+20] Iñigo Querejeta-Azurmendi, David Arroyo Guardeño, Jorge
L. Hernández-Ardieta, and Luis Hernández Encinas.
“NetVote: A Strict-Coercion Resistance Re-Voting Based In-
ternet Voting Scheme with Linear Filtering”. In: Mathemat-
ics 8.9 (2020). doi: 10.3390/math8091618 (cit. on pp. iv,
71).

https://doi.org/10.1007/3-540-46416-6_47
https://arxiv.org/abs/2007.05556
https://www.phpcaptcha.org/
https://www.phpcaptcha.org/
https://cipherpoint.com/blog/encryption-ban-france-austria/
https://cipherpoint.com/blog/encryption-ban-france-austria/
https://doi.org/10.1007/978-3-030-20005-3_16
https://doi.org/10.3390/math8091618

166 BIBLIOGRAPHY

[QAHEHA18] Iñigo Querejeta-Azurmendi, Luis Hernández Encinas, and
Jorge L. Hernández Ardieta. “Don’t shoot the messenger,
How a trusted channel may not be a necessary assumption
for remote code-voting”. In: IV Jornadas Nacionales de In-
vestigación en Ciberseguridad. 2018 (cit. on p. vi).

[Que17] Iñigo Querejeta. “A different approach to code voting”. In:
PhD Colloquium of Electronic Voting. Ed. by Robert Krim-
mer, Melanie Volkamer, Nadja Braun Binder, Norbert Ker-
sting, Olivier Pereira, and Carsten Schürmann. Springer In-
ternational Publishing, 2017 (cit. on p. vi).

[Que+21] Iñigo Querejeta-Azurmendi, Panagiotis Papadopoulos, Mat-
teo Varvello, Antonio Nappa, Jiexin Zhang, and Benjamin
Livshits. “ZKSENSE: A Friction-less Privacy-Preserving Hu-
man Attestation Mechanism for Mobile Devices”. In: Proc.
Priv. Enhancing Technol. 2021.4 (2021), pp. 6–29. doi: 10.
2478/popets-2021-0058 (cit. on pp. v, 35, 43).

[RC13] Gerardo Reynaga and Sonia Chiasson. “The usability of
CAPTCHAs on smartphones”. In: 2013 International Con-
ference on Security and Cryptography (SECRYPT). IEEE,
2013, pp. 1–8. url: https : / / ieeexplore . ieee . org /

document/7223194 (cit. on p. 28).

[Reu17] Reuters. France drops electronic voting for citizens abroad
over cybersecurity fears. 2017. url: http : / / www .

reuters . com / article / us - france - election - cyber -

idUSKBN16D233 (Last accessed 03/26/2022) (cit. on p. 8).

[RO+16] Jorge-L. Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier
Parra, and Davide Anguita. “Transition-Aware Human Ac-
tivity Recognition Using Smartphones”. In: Neurocomputing
171 (2016). Ed. by T. Heskes, pp. 754–767. doi: 10.1016/
j.neucom.2015.07.085 (cit. on p. 29).

[Røn+20] Peter B. Rønne, Arash Atashpendar, Kristian Gjøsteen, and
Peter Y. A. Ryan. “Short Paper: Coercion-Resistant Vot-
ing in Linear Time via Fully Homomorphic Encryption”. In:
Financial Cryptography and Data Security. Ed. by Andrea
Bracciali, Jeremy Clark, Federico Pintore, Peter B. Rønne,
and Massimiliano Sala. Vol. 11599. LNCS. Springer Cham,
2020, pp. 289–298. doi: 10.1007/978-3-030-43725-1_20
(cit. on p. 135).

https://doi.org/10.2478/popets-2021-0058
https://doi.org/10.2478/popets-2021-0058
https://ieeexplore.ieee.org/document/7223194
https://ieeexplore.ieee.org/document/7223194
http://www.reuters.com/article/us-france-election-cyber-idUSKBN16D233
http://www.reuters.com/article/us-france-election-cyber-idUSKBN16D233
http://www.reuters.com/article/us-france-election-cyber-idUSKBN16D233
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.1007/978-3-030-43725-1_20

BIBLIOGRAPHY 167

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems”.
In: Communications ACM 21.2 (Feb. 1978). Ed. by Robert
L. Ashenhurst, 120–126. doi: 10.1145/359340.359342 (cit.
on pp. 19, 27).

[Rya20] Johnny Ryan. https://brave.com/dpa-report-2020/. Apr.
2020. url: https://brave.com/dpa-report-2020/ (Last
accessed 03/26/2022) (cit. on p. 2).

[Sch19] Katharine Schwab. Google’s new reCAPTCHA has a dark
side. 2019. url: https : / / www . fastcompany . com /

90369697/googles- new- recaptcha- has- a- dark- side

(Last accessed 03/26/2022) (cit. on pp. 7, 29).

[Sch22] Berry Schoenmakers. Lecture Notes, Cryptographic Pro-
tocols. https : / / www . win . tue . nl / ~berry /

CryptographicProtocols / LectureNotes . pdf. Technical
University of Eindhoven, 2022. (Last accessed 03/26/2022)
(cit. on p. 13).

[Sch90] Claus P. Schnorr. “Efficient Identification and Signatures
for Smart Cards”. In: Advances in Cryptology — CRYPTO’
89 Proceedings. Ed. by Gilles Brassard. Vol. 435. LNCS.
Springer New York, 1990, pp. 239–252. doi: 10.1007/0-
387-34805-0_22 (cit. on p. 19).

[Seb19] Armin Sebastian. Buster: Captcha Solver for Humans. 2019.
url: https://github.com/dessant/buster (Last accessed
03/26/2022) (cit. on p. 29).

[Seg19] Cuadernos de Seguridad. Una de cada cuatro pymes europeas
sufren brechas de datos en 2019. Oct. 2019. url: https://
cuadernosdeseguridad.com/2019/10/informe-brecha-

datos-pymes/ (Last accessed 03/26/2022) (cit. on p. 4).

[SHD10] Olivier Spycher, Rolf Haenni, and Eric Dubuis. “Coercion-
resistant hybrid voting systems”. In: 4th International Con-
ference - EVOTE. Ed. by Robert Krimmer and Rüdiger
Grimm. Vol. 167. LNI. GI, 2010, pp. 269–282 (cit. on p. 33).

[Sig21] Signal Technology Foundation. Signal. Version 5.3.12. Feb.
2021. url: https://signal.org/ (cit. on p. 27).

[Smi05] W.D. Smith. “New cryptographic election protocol with
best-known theoretical properties”. In: Workshop Frontiers
in Electronic Elections (FEE). 2005 (cit. on p. 32).

https://doi.org/10.1145/359340.359342
https://brave.com/dpa-report-2020/
https://www.fastcompany.com/90369697/googles-new-recaptcha-has-a-dark-side
https://www.fastcompany.com/90369697/googles-new-recaptcha-has-a-dark-side
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://github.com/dessant/buster
https://cuadernosdeseguridad.com/2019/10/informe-brecha-datos-pymes/
https://cuadernosdeseguridad.com/2019/10/informe-brecha-datos-pymes/
https://cuadernosdeseguridad.com/2019/10/informe-brecha-datos-pymes/
https://signal.org/

168 BIBLIOGRAPHY

[SOG20] SOG-IS. SOG-IS Crypto Evaluation Scheme. Agreed Cryp-
tographic Mechanisms. Version 1.2. https://www.sogis.
eu/uk/supporting_doc_en.html. Senior Officials Group-
Information Systems Security, Crypto Working Group. 2020
(cit. on p. 9).

[SPK16] Suphannee Sivakorn, Iasonas Polakis, and Angelos D.
Keromytis. “I Am Robot: (Deep) Learning to Break Seman-
tic Image Captchas”. In: IEEE European Symposium on Se-
curity and Privacy (EuroS&P). IEEE. 2016, pp. 388–403.
doi: 10.1109/EuroSP.2016.37 (cit. on pp. 7, 28).

[SRA81] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman.
“Mental Poker”. In: The Mathematical Gardner. Ed. by
David A. Klarner. Springer US, 1981, pp. 37–43. doi: 10.
1007/978-1-4684-6686-7_5 (cit. on p. 27).

[SS+18] Rubén San-Segundo, Henrik Blunck, José Moreno-Pimentel,
Allan Stisen, and Manuel Gil-Mart́ın. “Robust Human Ac-
tivity Recognition using smartwatches and smartphones”.
In: Engineering Applications of Artificial Intelligence 72
(2018). Ed. by A. Abraham, pp. 190–202. doi: 10.1016/
j.engappai.2018.04.002 (cit. on p. 29).

[SSH13] Babins Shrestha, Nitesh Saxena, and Justin Harrison.
“Wave-to-Access: Protecting Sensitive Mobile Device Ser-
vices via a Hand Waving Gesture”. In: Cryptology and Net-
work Security. Ed. by Michel Abdalla, Cristina Nita-Rotaru,
and Ricardo Dahab. Vol. 8257. LNCS. Springer International
Publishing, 2013, pp. 199–217. doi: 10.1007/978-3-319-
02937-5_11 (cit. on pp. 28, 29).

[Str21] Sebastian Strangio. Singapore Backtracks on COVID-19
Tracking App Privacy Pledge. Jan. 2021. url: https://
thediplomat.com/2021/01/singapore-backtracks-on-

covid-19-tracking-app-privacy-pledge/ (Last accessed
03/26/2022) (cit. on p. 3).

[Sü21] Ahmet Ali Süzen. “UNI-CAPTCHA: A Novel Robust and
Dynamic User-Non-Interaction CAPTCHA Model Based on
Hybrid biLSTM+Softmax”. In: Journal of Information Se-
curity and Applications 63 (2021). doi: 10.1016/j.jisa.
2021.103036 (cit. on p. 28).

https://www.sogis.eu/uk/supporting_doc_en.html
https://www.sogis.eu/uk/supporting_doc_en.html
https://doi.org/10.1109/EuroSP.2016.37
https://doi.org/10.1007/978-1-4684-6686-7_5
https://doi.org/10.1007/978-1-4684-6686-7_5
https://doi.org/10.1016/j.engappai.2018.04.002
https://doi.org/10.1016/j.engappai.2018.04.002
https://doi.org/10.1007/978-3-319-02937-5_11
https://doi.org/10.1007/978-3-319-02937-5_11
https://thediplomat.com/2021/01/singapore-backtracks-on-covid-19-tracking-app-privacy-pledge/
https://thediplomat.com/2021/01/singapore-backtracks-on-covid-19-tracking-app-privacy-pledge/
https://thediplomat.com/2021/01/singapore-backtracks-on-covid-19-tracking-app-privacy-pledge/
https://doi.org/10.1016/j.jisa.2021.103036
https://doi.org/10.1016/j.jisa.2021.103036

BIBLIOGRAPHY 169

[Tam+09] Jennifer Tam, Jiri Simsa, Sean Hyde, and Luis V Ahn.
“Breaking audio captchas”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by D. Koller, D. Schuur-
mans, Y. Bengio, and L. Bottou. Curran Associates Inc.,
2009, pp. 1625–1632 (cit. on p. 29).

[Tas+12] Aimilia Tasidou, Pavlos S Efraimidis, Yannis Soupionis, Lil-
ian Mitrou, and Vasilios Katos. “Privacy-preserving, user-
centric VoIP CAPTCHA challenges: An integrated solution
in the SIP environment.” In: Information and Computer Se-
curity. Vol. 24. 1. Emerald Group Publishing Limited, 2012,
pp. 2–19. doi: 10.1108/ICS-07-2014-0046 (cit. on p. 28).

[The17] The Guardian. Dutch will count all election ballots by hand
to thwart hacking. 2017. url: https://www.theguardian.
com / world / 2017 / feb / 02 / dutch - will - count - all -

election-ballots-by-hand-to-thwart-cyber-hacking

(Last accessed 03/26/2022) (cit. on p. 8).

[Thr18] ThreatMetrix. H2 2018 Cybercrime Report. 2018. url:
https : / / www . threatmetrix . com / info / h2 - 2018 -

cybercrime- report/ (Last accessed 03/26/2022) (cit. on
p. 6).

[Tro+20] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux,
Marcel Salathé, James Larus, Edouard Bugnion, Wouter
Lueks, Theresa Stadler, Apostolos Pyrgelis, Daniele Anto-
nioli, Ludovic Barman, Sylvain Chatel, Kenneth Paterson,
Srdjan Čapkun, David Basin, Jan Beutel, Dennis Jackson,
Marc Roeschlin, Patrick Leu, Bart Preneel, Nigel Smart,
Aysajan Abidin, Seda Gürses, Michael Veale, Cas Cremers,
Michael Backes, Nils Ole Tippenhauer, Reuben Binns, Ciro
Cattuto, Alain Barrat, Dario Fiore, Manuel Barbosa, Rui
Oliveira, and José Pereira. Decentralized Privacy-Preserving
Proximity Tracing. arXiv. https://arxiv.org/abs/2005.
12273. 2020 (cit. on p. 3).

[TVD17] Theja Tulabandhula, Shailesh Vaya, and Aritra Dhar.
Privacy-preserving Targeted Advertising. arXiv. 2017. url:
http://arxiv.org/abs/1710.03275 (cit. on p. 30).

[Val+15] Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried,
Satya Bodduluri, and Nadia Heninger. Factoring as a Ser-
vice. Cryptology ePrint Archive, Report 2015/1000. https:
//eprint.iacr.org/2015/1000. 2015 (cit. on p. 3).

https://doi.org/10.1108/ICS-07-2014-0046
https://www.theguardian.com/world/2017/feb/02/dutch-will-count-all-election-ballots-by-hand-to-thwart-cyber-hacking
https://www.theguardian.com/world/2017/feb/02/dutch-will-count-all-election-ballots-by-hand-to-thwart-cyber-hacking
https://www.theguardian.com/world/2017/feb/02/dutch-will-count-all-election-ballots-by-hand-to-thwart-cyber-hacking
https://www.threatmetrix.com/info/h2-2018-cybercrime-report/
https://www.threatmetrix.com/info/h2-2018-cybercrime-report/
https://arxiv.org/abs/2005.12273
https://arxiv.org/abs/2005.12273
http://arxiv.org/abs/1710.03275
https://eprint.iacr.org/2015/1000
https://eprint.iacr.org/2015/1000

170 BIBLIOGRAPHY

[Var+19] Matteo Varvello, Kleomenis Katevas, Wei Hang, Mihai Plesa,
Hamed Haddadi, Fabián E. Bustamante, and Benjamin
Livshits. “BatteryLab, a Distributed Power Monitoring Plat-
form for Mobile Devices: Demo Abstract”. In: Proceedings
of the 17th Conference on Embedded Networked Sensor Sys-
tems. SenSys ’19. Association for Computing Machinery,
2019, 386–387. doi: 10.1145/3356250.3361946 (cit. on
p. 58).

[Var+21] Matteo Varvello, Iñigo Querejeta Azurmendi, Antonio
Nappa, Panagiotis Papadopoulos, Gonçalo Pestana, and
Benjamin Livshits. “VPN-Zero: A Privacy-Preserving De-
centralized Virtual Private Network”. In: 2021 IFIP Net-
working Conference (IFIP Networking). 2021, pp. 1–6. doi:
10.23919/IFIPNetworking52078.2021.9472843 (cit. on
p. vi).

[VCA04] Ana Viseu, Andrew Clement, and Jane Aspinall. “Situating
Privacy Online”. In: Information, Communication & Society
7.1 (2004), pp. 92–114. doi: 10.1080/1369118042000208924
(cit. on p. 1).

[VYA20] Henry de Valence, Cathie Yun, and Oleg Andreev. Bullet-
proofs. Version 2.0.0. 2020. url: https : / / crates . io /

crates/bulletproofs (cit. on p. 56).

[Win19] Davey Winder. Data Breaches Expose 4.1 Billion Records
In First Six Months Of 2019. Aug. 2019. url: https://
www.forbes.com/sites/daveywinder/2019/08/20/data-

breaches-expose-41-billion-records-in-first-six-

months-of-2019/ (Last accessed 03/26/2022) (cit. on p. 4).

[WKY10] Chamila Walgampaya, Mehmed Kantardzic, and Roman
Yampolskiy. “Real time click fraud prevention using multi-
level data fusion”. In: Proceedings of the World Congress on
Engineering and Computer Science. Vol. 1. 2010, pp. 20–22
(cit. on p. 28).

[Ye+21] Kaili Ye, Dong Zheng, Rui Guo, Jiayu He, Yushuang Chen,
and Xiaoling Tao. “A Coercion-Resistant E-Voting System
Based on Blockchain Technology”. In: International Journal
of Network Security 23.5 (2021), pp. 791–806. doi: 10.6633/
IJNS.202109_23(5).06 (cit. on p. 31).

https://doi.org/10.1145/3356250.3361946
https://doi.org/10.23919/IFIPNetworking52078.2021.9472843
https://doi.org/10.1080/1369118042000208924
https://crates.io/crates/bulletproofs
https://crates.io/crates/bulletproofs
https://www.forbes.com/sites/daveywinder/2019/08/20/data-breaches-expose-41-billion-records-in-first-six-months-of-2019/
https://www.forbes.com/sites/daveywinder/2019/08/20/data-breaches-expose-41-billion-records-in-first-six-months-of-2019/
https://www.forbes.com/sites/daveywinder/2019/08/20/data-breaches-expose-41-billion-records-in-first-six-months-of-2019/
https://www.forbes.com/sites/daveywinder/2019/08/20/data-breaches-expose-41-billion-records-in-first-six-months-of-2019/
https://doi.org/10.6633/IJNS.202109_23(5).06
https://doi.org/10.6633/IJNS.202109_23(5).06

BIBLIOGRAPHY 171

[YEA08] Jeff Yan and Ahmad Salah El Ahmad. “A Low-cost At-
tack on a Microsoft CAPTCHA”. In: Proceedings of the 15th
ACM conference on Computer and communications secu-
rity. ACM. Machinery, New York, 2008, pp. 543–554. doi:
10.1145/1455770.1455839 (cit. on pp. 7, 28).

[ZBS19] Jiexin Zhang, Alastair R Beresford, and Ian Sheret. “Sen-
sorID: Sensor Calibration Fingerprinting for Smartphones”.
In: Proceedings of the 40th IEEE Symposium on Security and
Privacy (SP). IEEE, 2019. doi: 10.1109/SP.2019.00072
(cit. on p. 29).

[Zho+18] Yuan Zhou, Zesun Yang, Chenxu Wang, and Matthew
Boutell. “Breaking Google reCaptcha V2”. In: Journal
of Computational Sciences in Colleges 34.1 (Oct. 2018),
pp. 126–136 (cit. on p. 28).

[Zi+20] Yang Zi, Haichang Gao, Zhouhang Cheng, and Yi Liu. “An
End-to-End Attack on Text CAPTCHAs”. In: IEEE Trans-
actions on Information Forensics and Security 15 (2020),
pp. 753–766. doi: 10.1109/TIFS.2019.2928622 (cit. on
p. 28).

[ZoK19] ZoKrates community. ZoKrates: A toolbox for zkSNARKs
on Ethereum. Github. https://github.com/Zokrates/
ZoKrates. 2019 (cit. on p. 25).

https://doi.org/10.1145/1455770.1455839
https://doi.org/10.1109/SP.2019.00072
https://doi.org/10.1109/TIFS.2019.2928622
https://github.com/Zokrates/ZoKrates
https://github.com/Zokrates/ZoKrates

	Acknowledgements
	Published and Submitted Content
	Other Research Merits
	Summary
	Introduction
	Motivation
	Problem statement and objectives
	Privacy-preserving bot detection
	Internet voting

	Methodology
	Structure of this thesis

	Background
	Notation and Definitions
	Cryptographic Algorithms and Protocols
	Public Key Cryptosystems
	Commitment Schemes
	Zero-knowledge proofs

	State of the art
	Sub-linear zero-knowledge proofs - Bot detection
	Coercion resistance in internet voting

	zkSENSE—Private Human Attestation
	Human attestation
	Classification of Humanness

	Privacy-Preserving and Provable ML
	zkSVM—proving humanness with logarithmic complexity
	IP-ZKP

	Scheme
	Security analysis
	System Implementation
	Enclosing SVM Result in a ZKP
	Prototype of our Approach

	Performance Evaluation
	zkSENSE Vs. reCAPTCHA
	Summary

	Further improvements to zkSVM

	Internet Voting
	Fake Credentials vs. Re-Voting
	Parties and Cryptographic background
	Parties
	Cryptographic Background

	Overview
	Security Properties
	Ballot privacy
	Practical Everlasting Privacy
	Verifiability
	Coercion resistance
	Strict coercion resistance

	NetVote
	Scheme
	Including dummy votes
	Security Proofs

	VoteAgain
	Overview
	A different dummy strategy
	Scheme
	Hiding revoting patterns with dummies
	Security Analysis
	Performance Evaluation

	Wrapping up

	Conclusions, Contributions and Future Work
	Conclusions
	Contributions
	zkSENSE
	i-voting

	Future Work
	Closing remarks

	Bibliography

