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Abstract

An algorithm to place ghost particles across the domain boundary in the con-

text of Smoothed Particle Hydrodynamics (SPH) is derived from basic prin-

ciples, and constructed for several simple, three-dimensional, geometries. The

performance of the proposed algorithm is compared against the commonly used

”mirrored with respect to the local tangent plane” approach and shown to con-

verge to it whenever the distance of the particles to the reflecting boundary is

much smaller than a local measure of the surface’s curvature. The algorithm

is tested and compared against the usual approach via simulations of a com-

pressible flow around a cylinder, and the numerical cost of implementing it is

also estimated. We conclude that use of ghost particles to enforce boundary

conditions is not only viable in the presence of smoothly curved boundaries, but

more robust than the usual method for low-resolution scenarios.

Keywords: SPH, Smoothed Particle Hydrodynamics, Ghost Particles,

Boundary Conditions

1. Introduction

Smoothed Particle Hydrodynamics, or SPH for short, was introduced in the

70’s by Gingold and Monnahan [1] together with Lucy [2] as a Lagrangian nu-

merical method to solve the equations of Hydrodynamics [3]. Since its creation

it has had great success in studying not only Hydrodynamical systems[4, 5, 6]

∗luvelav@fis.uc3m.es



but also in the context of Magnetohydrodynamics [7, 8, 9, 10]. In SPH a num-

ber of particles are considered to serve as interpolation nodes where the value

of any field of interest (density, velocity, etc) can be easily found. This interpo-

lation permits the discretisation of the spatial derivatives on a co-moving frame

to obtain evolution equations for the particle’s position, velocity, mass density,

internal energy and magnetic field. In contrast to what is done in other meth-

ods such as particle-in-cell where the electromagnetic fields are calculated over

a well-structured grid, in SPH all the fields are ”carried by the particles” and

are evaluated via interpolation formulas.

In spite of the relative success that SPH has had, it is yet not clear what is the

most appropriate approach for handling the presence of boundaries. Astrophys-

ical applications do not have to worry about this since most of these simulations

take place in infinite (fully periodic) domains, but industrial applications of non-

conducting fluids, or the study of laboratory plasmas do since hard boundaries

and conducting walls are ubiquitous. One common approach to deal with the

presence of boundaries is the use of ghost particles [11, 12, 13, 14, 15]. This

approach was inspired by the ghost cells of finite-difference methods and it relies

on the placing of extra particles on the outer side of the boundary with tailored

properties of their fields so they mimic the effects of a solid boundary. The

precise implementation of ghost particles changes widely across the literature,

but here we will use the approach taken by Colagrossi [11] and by Monaghan

[12] as our reference.

In their implementation ghost particles are a reflection of the closest inner

particles to the boundary with respect to the local tangent plane. The density,

temperature and pressure fields of the ghost particle are then set to be equal

to their inner counterpart, while the normal component of the velocity vector

receives the opposite sign and the tangential component can remain the same

(free-slip condition) or can also be reversed (no-slip condition). These authors

show that this simple principle effectively enforces appropriate boundary con-

ditions on the fluid in the presence of planar walls. The presence of curved

boundaries however, must be handled with care since its not a trivial matter.
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In his paper, Colagrossi [11] considers the case of a wall that is smoothly con-

vex and shows that this causes an accumulation of mass, or ghost-mass to be

precise, on the outside of the boundary due to the ”lensing” effect that such

wall has on the mirrored ghost particles. Colagrossi alerts of the dangers of this

accumulation and states that a correction must be put in place although this

correction is never specified.

In this paper we will try to contribute to the current understanding of how

to use ghost particles in the vicinity of smoothly-curved surfaces in a manner

consistent with the SPH equations. The present paper is organised as follows.

First, we address in Sec. 2 the problem of using ghost particles with curved

boundaries and identify the basic characteristics that any solution to the prob-

lem must have. In Sec. 3 we introduce the algorithm that will allows us to con-

struct such solution for a restricted set of geometrical scenarios. We explicitly

solve the problem in Sec. 4 for three common, three-dimensional, geometries.

In Sec. 5 we show that our solutions converge to the typical one in the limiting

case where the curvature of the surface is negligible. A static comparison of our

solutions with the typical mirror map is done in Sec. 7 while Sec. 8 offers a

dynamical example where our method is shown to outperform the traditional

approach. Finally, some conclusions are given in Sec. 9.

2. The ghost particle approach

The implementation of ghost particles in SPH can be divided into two main

steps: I.) For a given internal, or inner, particle i whose position is ri, one has

to determine the precise position ri′ of the ghost particle corresponding to it.

II.) Once this has been done, one assigns to the ghost particle the same values

of the fields as the inner particle (except the velocity field where the normal

component ought to be reversed and the tangential component may or may not

depending on the type of boundary condition required).

Applying this recipe to the density field, however, is a subtle matter. Con-

sider again the inner particle ri. The value of the density field here ρi is given
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by:

ρi =
∑
j∈Ni

mj W (|ri − rj |, Hi) (1)

Here, the summation is carried over all the j-particles who happen to lie in the

neighbourhood of i (that is, j ∈ Ni), mj are their masses, the function W is

the usual SPH interpolation kernel (we use the 4th-order Wendland Kernel[16])

and Hi is the support radius of W .

One can clearly see from Eq.1 that the value of the density field of the i-

th particle is a direct consequence of the relative distance to its neighbours

and their respective masses. This is of categorical importance because if this

particular arrangement of particles around i were not to be the same as the one

around its ghost particle i′, then ρi′ would not coincide with the value of ρi and

the density boundary condition would not be enforced properly. This can lead

to a myriad of spurious results, some of which will be illustrated later.

One can advance by making the following approximation:

ρi ≈ mi

∑
j∈Ni

W (|ri − rj |, Hi) = mini (2)

where ni stands for the node density:

ni =
∑
j∈Ni

W (|ri − rj |, Hi). (3)

This approximation is valid whenever the value of the mass doesn’t change

very much across the neighbouring particles of i and becomes an equality when

all the particles have the same mass. In this case, one can fiddle with either mi′

or ni′ in order to enforce ρi′ = ρi.

At this point we find three different ways in which to enforce boundary

conditions on the density field using ghost-particles:

A) Position the ghost particle so that it mirrors the position of the inner

particle with respect to the local tangent plane and simply assign it equal

values:

ρi′ = ρi (4)
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B) Position the ghost particle so that it mirrors the position of the inner

particle with respect to the local tangent plane. Then compute the local

node-density using Eq. 3 and set the value of the mass of the ghost particle

to achieve equal mass-density values:

ρi′ = mi′ni′ (5)

where,

mi′ =
ρi
ni′

(6)

and ni′ is computed via Eq.3.

C) Keep the masses of the all particles in the simulation equal (inner and

ghost alike) and construct a map ri′ = Ψ(ri) such that ni′ equals ni (with

ni′ given by Eq. 3)

In the presence of planar boundaries the map Ψ reduces to a simple reflec-

tion (this reflecting map or ”mirror-map” will be denoted from now on as Ψ0)

and all previous approaches are equivalent. The presence of smoothly-curved

boundaries however can, and will, distort the patterns of the particles as they

are mapped onto their ghost counterparts. It is in these cases when the three

ways presented here are no longer equivalent.

The first approach (A) is the ”quick and dirty” solution to the problem.

The density field does give the correct solution, that is ρi′ = ρi, but it is not

consistent with the SPH density estimate (Eq.1) in the ghost region.

Approach (B) seems to give the simplest correct answer at the expense of

having to treat every particle with a different mass. This is not a heavy burden to

carry when a code is being developed, but one has to be careful with this option.

Method (B) relies on the approximation made in Eq. 2 which, as discussed

before, might not always hold true. Also, there have been numerous studies

pointing at the necessity of keeping the masses of the SPH particles equal to each

other. Failing to do so often results in spurious numerical artefacts[17, 18]. For

this reason most modern implementations avoid this ”different mass” approach

for the inner particles.
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One could, however, make the case that such cautionary measures need only

apply to inner particles but not to ghost particles. This would tempt us to

maintain constant mass among the inner particles and vary the masses of the

ghost particles in accordance to option (B). This is however not a good idea since

the energy of the system would not be conserved. To illustrate this, consider

an internal particle heading towards the boundary at a right angle with mass

m and velocity v = vnn̂ where n̂ is the outward pointing normal at the impact

point. Ideally, one such particle should bounce off from the wall in an elastic

manner, that is vaftern = −vbeforen . However, if the effect of such wall is going

to be replicated via a ghost particle of mass m′ and velocity −vn then vaftern

for the inner particle will be:

vaftern = vbeforen

(
1− 4

1 +m/m′

)
(7)

This means that the effect of an elastic collision against the wall (that is

vaftern = −vbeforen ) can only be replicated via ghost particles of mass m′ such

that m′ = m. We discard option B altogether.

The third approach (C) is difficult to implement since it introduces the

map Ψ for which there seems to be infinite freedom to choose it from. In this

manuscript we will attempt to derive a differential equation for the map Ψ that

will allow us to solve it analytically for simple geometries like cylinders (or 2D

circles), spheres and tori. We will also prove that all the solutions resemble the

mirror map Ψ0 in the limiting case when ri lies very close to the boundary such

that the effects of the wall-curvature can be neglected.

3. Outline of the problem, and sketch of a solution

We begin by considering a flat surface. Every particle inside the boundary

will be mirrored to the other side of the boundary in a rather uneventful way.

If the particle is at position {x, y, z} with z > 0, and the boundary in question

is the plane z = 0, then its ghost particle will be placed at {x, y,−z}. Every

particle close to the surface will undergo this map and due to the flatness of
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the boundary the relative positions of the ghost particles will mimic the relative

positions of their corresponding inner counterparts. This is indeed fortunate

because, if we have used Eq.1 to compute the density of the inner particles,

then there is no need to do it again for the ghost particle. We simply have to

copy/paste the values of the density field inside to the outside particles.

Convex Wall Flat Wall Concave Wall

Inside

Outside

Outside

Outside

Inside Inside

Figure 1: Illustration of the spurious ”lensing” effect created whenever the ”reflect with respect

to the local tangent plane”-principle is used in the presence of curved walls. Flat walls do

not disturb the relative positions of the particles and therefore the particle density remains

the same in both the inside and the outside. Concave and convex walls however, create an

accumulation/dispersion of particles which affect the SPH estimation of the density field in

the ghost region.

However, in the event of a surface which is not exactly flat, a simple map

like this will in fact distort the relative positions of the ghost particles (as in

Colagrossi’s case [11] where the convex wall created a lensing effect and an excess

of ghost mass across the boundary), and the density estimate will not give the

same value when evaluated over the ghost particle since all its neighbours are

in a slightly different configuration (See Fig.1). As illustrated in Fig. 2, this

distortion has nothing to do with the ”border effect” that particles feel when

they happen to be at the border of a particle cloud and all their neighbours are

disproportionally distributed to one side of its vicinity.
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Inside Outside

Inner particles

Ghost Particle Layer

Ghost particles

enforcing BCs

Ghost particles

 suffering 

"Border effects"

Figure 2: Three distinct regions are identified in the vicinity of the boundary of an SPH

simulation: 1.) The inside is populated by regular particles. 2.) Adjacent to it we have ghost

particles which have suffered a deformation in their relative positions due to the map Ψ but

do not suffer border effects. 3.) At the very end we have particles where the border effect is

dominant.
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When constructing the map Ψ in the non-planar case, we must ensure that

the density estimate, when evaluated on the ghost particle, gives the same result

as the inner particle. That is, ρi′ = ρi. Now, given that m is the same over

all the particles (ghost and inner), the mapping has to be such that the node-

density remains constant: ni′ = ni. To construct such a map, we reason as

follows: Consider a particle whose position is given by ri = {xi, yi, zi}, while

the ghost particle will be placed at ri′ = {x′i, y′i, z′i}. The mapping Ψ will then

be given, in general, by the functions ψx, ψy and ψz:
x′i

y′i

z′i

 =


ψx(xi, yi, zi)

ψy(xi, yi, zi)

ψz(xi, yi, zi)

 (8)

The geometry of the problem must now be considered. In particular, we will

assume possible to switch from our coordinates {x, y, z} to a set of coordinates

{s, u, v} such that:

• The boundary can be approximated by the surface s = 0, with s < 0 for

the inside volume, and s > 0 for the outside.

• The shortest line joining ri with the boundary surface can be approxi-

mated by the intersection of the surfaces v = Cv and u = Cu with Cv and

Cu appropriate constants.

In this set of coordinates we can restrict the map Ψ to only affect the s-

coordinate while leaving both u and v untouched. This fact guarantees the

absence of tangential components in the interaction between inner and ghost

particles.

Locally, the set of coordinate {s, u, v} can always be chosen to be flat, that

is Euclidean with unit Jacobian, however the idea behind the algorithm here

is to go beyond this and chose the next best system of coordinates that fulfils

conditions 1 and 2, we will see examples of how this can be done in the following

sections. In the {s, u, v} coordinates the mapping becomes:
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
s′i

u′i

v′i

 =


ψ(si, ui, vi)

ui

vi

 (9)

The fact that node-density estimate must remain constant along such map

can be expressed, in terms of the SPH density estimator, as:

∑
j∈Ni

Wij(Hi) =
∑
k∈N ′

i

Wki′(H
′
i). (10)

To find the constraints imposed on the function ψ by this condition, we

proceed to take the continuum limit, in the SPH sense, of Eq.10. This can be

done by letting H 7→ 0 while ensuring Nnei 7→ ∞, where Nnei is the number of

interacting neighbours of each particle. This leads to:

∫ vi+∆vi

vi

∫ ui+∆ui

ui

∫ si+∆si

si

n(si, ui, vi)J (si, ui, vi) ds du dv =

=

∫ vi+∆vi

vi

∫ ui+∆ui

ui

∫ ψ(si,u,vi)

ψ(si+∆si,ui,vi)

n(ψ(si, ui, vi), ui, vi)J (ψs(si, ui, vi), ui, vi) ds du dv

(11)

where the node density is integrated over a small region around the points

ri and r′i taking into account the jacobian of the coordinate system J .

To understand better the meaning of Eq. 11 we refer the reader to Fig. 3

where a 2D version of the problem is illustrated. In it, it is shown how the blue

region, that is, a small region around point {si, ui}, is being mapped into the red

region around {s′i, u′i}. It is important to notice that the map ψ will necessarily

distort the shape of the regions (due to the curvature of the boundary) in order

to keep the areas of the two regions constant.

It is also worth noting that the limits of the integrals on the right hand side

of Eq. 11 seem to have been inverted. This is a consequence of the fact that, at

the boundary, we must have:

ψ(0) = 0 or Ψ(ri) = ri (12)
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Inside Outside

s=si
s=ψ

(si,ui
)

u=ui+dui

u=ui

s=si
+dsi s=ψ

(si+
dsi,

ui)

s=0

Figure 3: Two-Dimensional illustration of how the continuum-limit expression in eq.11 must

be understood. The map ψ is such that the blue region, when mapped across the boundary

into the red region, is deformed but maintains the same area. Thus guaranteeing that the

node density field will remain invariant under ψ.

That is, points that are closer to the boundary will be mapped to positions

that are close to the boundary, while points that are far away will be mapped

into far away positions (see Fig. 3). Dropping the integrals over u and v and

taking the limit ∆s 7→ 0 one can write:

∂ψ(s, u, v)

∂s
= − J (s, u, v)

J (ψ(s, u, v), u, v)
(13)

The function ψ, and consequentially the map Ψ, can be obtained by solving

Eq. 13, with the boundary conditions given by Eq. 12.

11



4. Some explicit solutions

4.1. A flat surface

Eq. 13 can be easily evaluated near a flat surface. In this case the Jacobian

is the same at both sides of the boundary and the ODE transforms into:

∂ψ(s, u, v)

∂s
= −1 (14)

Upon integration and taking into account the boundary conditions in Eq.12,

one finds the solution:

ψ(s, u, v) = −s (15)

In this particular case the map ψ(s, u, v) is only a function of s since the cur-

vature is constant along the surface. This means, an inner particle a distance d

from the surface (that is s = −d) will have its corresponding ghost particle at a

distance d on the other side of the boundary. For the flat surface one concludes:

Ψ = Ψ0 = −s (16)

It is worth noting that since any curved surface resembles a flat plane when

looked upon sufficiently close, all solutions of Eq. 13 should necessarily look

like a mirror-map when sufficiently near to the surface, that is, for values of the

coordinate s that are close to zero. Next, we will explore some curved geometries

that are of interest and that can be solved analytically.

4.2. Cylinder

For the case of the cylinder of radius R one can choose our {s, u, v} coordi-

nates in terms of cylindrical coordinates {r, θ, z}:

r = R+ s θ = u z = v (17)

The Jacobian is then given by J = r and the differential equation that

defines the map is:
∂ψ(s, u, v)

∂s
= − R+ s

R+ ψ(s, u, v)
(18)
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The solution can be found by straightforward integration after taking into

account the boundary conditions given by Eqs.12. The final result can be written

implicitly using the function g(x):

g(R+ ψ) + g(R+ s) = 2g(R) (19)

where g(x) = x2. The explicit shape of ψ can be found by inverting the

function g(x):

ψ = g−1

(
2g(R)− g(R+ s)

)
−R (20)

This can be explicitly written as:

ψ(s, u, v) =
√

2R2 − (R+ s)2 −R (21)

As expected, the map does not depend on the angular coordinate u, nor on the

longitudinal coordinate v. Also, notice how this solution is applicable to two

dimensional circular domains as well.

4.3. Sphere

In the case of the sphere of radius R a similar procedure is followed. The

coordinates to be used are:

r = R+ s θ = u φ = v (22)

where {r, θ, φ} are the usual spherical coordinates. The Jacobian is given by

J = r2 sinφ and the differential equation that defines the map becomes:

∂ψ(s, u, v)

∂s
= − (R+ s)2

(R+ ψ(s, u, v))2
(23)

Its solution can be written as:

ψ = g−1

(
2g(R)− g(R+ s)

)
−R (24)

although this time g(x) = x3. The expression for ψ then becomes:

ψ(s, u, v) = 3
√

2R3 − (R+ s)3 −R (25)

that is again independent of u and v.
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4.4. Torus

The last example that will be examined is a torus of circular cross section and

aspect ratio R/a. The coordinates {s, u, v} in terms of the toroidal coordinates

{r, θ, φ}, are:

r = a+ s θ = u φ = v (26)

with a Jacobian J = r(R+ r cos θ). The resulting differential equation for Ψ is:

∂ψ(s, u, v)

∂s
= − (s+ a)(1 + (s+ a)Bu)

(ψ + a)(1 + (ψ + a)Bu)
(27)

where the parameterBu = cos(u)/R contains the dependency on the poloidal

angle. The analytical solution, again, can be expressed as:

ψ = g−1

(
2g(a)− g(a+ s)

)
− a (28)

with:

g(x) = Bu
x3

3
+
x2

2
(29)

Interestingly, an angular dependency appears in the solution for the torus.

This is a consequence of the different curvature values that exist along the

surface of the torus. It also means that our map ψ will behave differently for

different poloidal angles. Also notice how the function g(x), now a third degree

polynomial, is not so easily inverted (See the appendix for details).

4.4.1. Special considerations regarding the toroidal geometry

As mentioned before, the resulting map has a poloidal dependence implying

that ghost particles with different poloidal angle will be placed in different ways.

It can be proven (see appendix for details) that the toroidal map at points with

coordinate u = θ = ±π/2 is exactly the cylindrical-map, and this result is

independent of the torus’ aspect ratio.

Another interesting behaviour appears for a torus with aspect ratio equals

to 2 at points with coordinates u = θ = ±π, that is, for points close to the inner

hole of the torus. For these points the map ψ becomes identical to the mirror

map. This behaviour can also be seen graphically in Fig. 5, where the torus
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Poloidal Angle

Toroidal angle

Axis of symmetry

Trespassing Ghost Particle

Figure 4: The case of a torus with circular cross section and aspect ratio R/a < 2. We can see

how particles with poloidal coordinate θ ≈ π can get mapped beyond the axis of symmetry of

the torus. At this point they will interact with the inner particles on the opposite part of the

domain introducing spurious forces on the system.

branch θ = π will drift towards the mirror map as the aspect ratio approaches

two.

When the aspect ratio becomes smaller than two, the toroidal branch drifts

past the mirror map and the ghost particles will be positioned beyond the axis

of symmetry of the torus. This situation (illustrated in Fig. 4) is completely un-

desirable and should be avoided at all costs. Therefore, the use of ghost particles

must be handled with care when dealing with toroidal geometries whose aspect

ratio is smaller than two. This could be achieved, for instance, by increasing

the number of particles sufficiently as to make the thickness of the ghost layer

thin enough so this trespassing never takes place.

5. Behaviour near the surface

While deriving the previous solutions, the function g(x) was introduced.

This function is convenient because it makes it easy to prove that the three ex-

plicit solutions converge to the mirror-like behaviour near the domain boundary

s = 0. We begin by noticing that all three solutions have the same canonical
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form:

g(R+ ψ) + g(R+ s) = 2g(R) (30)

Near the surface the following approximations can be made:

g(R+ ψ) = 2g(R)− g(R+ s) (31)

g(R+ ψ) = g(R)− s
(
g(R+ s)− g(R)

s

)
(32)

g(R+ ψ) ≈ g(R)− sg′(R) (33)

g(R+ ψ) ≈ g(R− s) (34)

ψ ≈ −s (35)

where, in the case of the torus, the quantity R must be replaced by its minor

radius a. This proves that all the previous examples behave like a mirror near the

surface. This is better illustrated in Fig. 5 where the three solutions (Cylinder,

Sphere and Torus) are plot together with the mirror-map solution. We see

how close to s = 0 they all converge to Ψ0. It is also noticeable how the two

branches of the torus (θ = 0 and θ = ±π) are always below and above the

cylinder solution respectively. This remains true even in the event of R/a 7→ ∞

where each branch converges to the cylinder solution, as one would expect.

6. Numerical cost of the non-linear solutions

The maps found so far imply that ghost particles will be positioned in a

slightly more complicated manner: Instead of calculating the ghost particle

position through the linear map ψ0 = −s, we will need to evaluate the corre-

sponding non-linear Ψ functions given in Eqs. 21, 25 and 28. In this section we

address the question of the numerical cost of such evaluation in the geometries

considered here.

We will place N = 106 particles inside i.) A sphere of radius r = 1, ii.) A

cylinder or radius r = 1 and length Lz = 2π, and iii.) A torus of minor radius

a = 1 and outer ratio R = 3. In each case, we will place the inner particles in

a random initial position, and compute the time needed to place all the ghost

particles. The results are displayed in Table 1.
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Figure 5: The analytical solution of ψ is shown for the simple geometries of a cylinder, a

sphere and a torus of circular cross section and aspect ratio R/a = 2.5 (for the poloidal

positions θ = 0 and θ = π). The solutions are all compared against the mirror-map to which,

as expected, all converge towards the mirror map near the boundary (s=0). Also the toroidal

maps for θ = π and R/a = 2.00± 0.01 have been included to demonstrate the behaviour of ψ

in tori with aspect ratio smaller than two.

We see how the increase in CPU time is directly proportional to the complex-

ity of the function g(s) and its inverse g−1(s): The spherical and cylindrical cases

notice an increase of about 1% in CPU time, while the toroidal case, where the

g−1(s) is detailed in the appendix, suffers an increase of about 10%. The imple-

mentation of the toroidal function g−1(s) has been done in the straightforward

manner sketched in the Appendix where no optimisation has been considered.

Finally, notice how this is not a CPU increment of the total time-step but only

on the fraction corresponding to the ghost-particle positioning.
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3D Geometry CPU Time Increment [%]

Cilinder 0.63± 0.02

Sphere 1.36± 0.03

Torus 10.3± 0.3

Table 1: Percentage of increased CPU time in positioning the ghost particles when using the

non-linear solution with respect to the time needed while using the linear map Ψ0. It can

be seen that in the cylindrical and spherical cases the use of the non-linear map means a 1%

increase in the CPU time required to do the positioning, while in the toroidal case, where the

complexity of the g(s) function increases, the CPU time increase is of about 10%. The error

bars have been calculated as the standard deviation of a set of 10 different measurements,

each coming from a different random initial configuration.

7. Static test of the solutions

7.1. Cylinder

To show the performance of the map found for the cylindrical case, we have

initialised 50K particles inside a periodic cylinder of unit radius which extends

from zmin = −3 to zmax = +3. The particles have been positioned following

the ALARIC algorithm [18] to give rise to a flat density profile, that is ρ =

constant. All the particles in this scenario have the same mass which, in turn,

guarantees that the node-density field will also be constant n = constant. We

then proceeded to place the ghost particles across the boundary using the usual

mirror map Ψ0 and the newly constructed map Ψ. 50K ghost particles were

used to guarantee that every internal particles has a ghost counterpart.

Fig.6 shows the resulting node-density estimate (computed from Eq.3) for all

the ghost particles across the boundary. The figure clearly illustrates the ability

of the map Ψ to maintain the node density field constant outside of the domain

boundary. It also shows how the mirror map Ψ0 creates a rapidly decaying field

outside of the boundary as shown in the small zoomed-in rectangle inside Fig.6.

It is also visible in the graph that, while the values of the map Ψ are indeed

the correct ones at first, the values start to diverge once one goes away from

the domain boundary. This variation can be attributed to a.) The distortions
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Figure 6: Resulting node density field both inside and outside of the boundary for the cylin-

der. The constant inside values were constructed with ALARIC, while the outer values were

calculated using Eq. 3 after the ghost particle positions were determined using both Ψ0 and

Ψ for the cylindrical case. The results offered by Ψ remain constant around the desired value

while the ones offered by Ψ0 rapidly decay (see zoomed-in region).

that are created by the map Ψ in the ”angular” variables u and v and b.) To

the accumulation of particles at the outer most positions of the map. The first

cause, as mentioned in the earlier sections, is related to the fact that the map Ψ

was forced to act only on the coordinate s while leaving u and v untouched. This

allowed us to simplify the constrains on Ψ and come up with an equation for it,

namely Eq. 13. The consequence of this choice is illustrated in Fig. 3 where, in

order to maintain the areas of the two regions equal, the mapped region becomes

an elongated/contracted version of the original region. The related distortion in

u and v however never affects the SPH kernel, which remains perfectly spherical.

As a result of this asymmetry, noise appears in the resulting values of the node
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density field.

The second cause is the accumulation of ghost particles at the outermost

radial positions. This can be seen in Fig.5 where the cylindrical solution becomes

almost flat around s ≈ −1. This causes inner particles near the axis of the

cylinder to be mapped to ghost particles with similar radial positions explaining

the divergent values on the node density field shown in Fig. 6.

7.2. Sphere

In the spherical case we have also used 50K internal and 50K ghost particles.

The positions of the internal particles have been relaxed using ALARIC to reach

a constant density value. Apart from the change in geometry, the spherical

case is very similar to the cylindrical one (see Fig. 7). The node density field

calculated on ghost particles mapped with Ψ0 decays rapidly while our solution

delivers correct values near the boundary. A divergent behaviour of the node

density field values for outer radial positions is also present much like in the

cylindrical case, and because of the same reasons.

7.3. Torus (Aspect ratio R/a=3)

The same conditions are used to examine the toroidal case: 50K internal

particles in a flat density configuration with 50K ghost particles outside. The

results obtained for the torus, shown in Fig. 8, offer one new feature: the values

of the node density field (for both Ψ0 and Ψ) have been broadened horizontally.

This is a direct consequence of the poloidal dependence of the surface curvature

(captured by the parameter Bu). Notice how in this case as well, our solu-

tion deliver values of the node density field that properly enforce the required

boundary conditions.

8. Dynamic test of the solutions

As a dynamical test, we consider the flow of a compressible liquid in a lattice

of cylindrical obstacles. In our test, we consider the two-dimensional periodic

computational domain {x, y} ∈ [−0.5, 0.5]× [−0.5, 0.5] with a circular obstacle

20



Figure 7: Resulting node density field both inside and outside the boundary for the sphere.

The outer values were calculated using Eq.3 after the ghost particle positions were determined

using both Ψ0 and Ψ for the spherical case. The results offered by Ψ remain constant around

the desired value while the ones offered by Ψ0 not only rapidly decay but introduce small

errors on the internal particles (see zoomed-in region).

of radius r = 0.2 at the origin. The evolution equation for the velocity field has

been modified to include a driving term of the form:

dva
dt

=
v0 − vx
τ

x̂ (36)

which1 effectively creates a constant flow in the x-direction with velocity v0.

We run the simulation using both the usual mirror-map and the non-linear map

from Eq. 21 to position the ghost particles and simulate the effect of a circular

obstacle. The results are presented in the following subsections.

1We will use τ = 1.0 for all our simulations.
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Figure 8: Resulting node density field both before and after the boundary for the toroidal

case. The behaviour of Ψ is very similar to the spherical and cylindrical cases with one visible

difference: the values of the density field have broadened horizontally due to the poloidal

dependence of the surface curvature’s.

8.1. Medium-to-High resolution regime

We began by running the simulation with 10K particles for 10 seconds with

v0 = 0.5 and a free-slip boundary condition around the object. The results,

shown in Fig. 9, show that there is no appreciable difference between using the

mirror-map and the non-linear map.

In fact, as the resolution of the system is increased and the inter-particle

spacing decreases, the ghost particle layer needed to enforce proper boundary

conditions inside the circular object will become thinner and thinner. This

means that the map Ψ will be evaluated at very small values of the radial

coordinate s, and given that Ψ converges to Ψ0 for small values of s, similar

results are to be expected for well-resolved scenarios.
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Figure 9: Contour plots of the vy field for the compressible flow around a circular obstacle

where a free-slip condition on the velocity field has been enforced. The background heat map

depicts the solution using the usual mirror-map. The red lines are contour lines around the

values {0,±1/12,±1/6,±1/4}. The blue contour lines correspond to the solution found with

the non-linear map from Eq. 21. In spite of the noise, it is clear that both methods arrive at

the same stationary solution.

8.2. Low resolution regime

The benefits of the non-linear map is better observed when the resolution

of the system is decreased and the agreement between Ψ and Ψ0 is no longer

guaranteed. To illustrate this, we have decreased the number of particles down

to N = 100 and run the same simulation with different values of the reference

velocity v0 ∈ {0.05, 0.10, · · · , 0.75} until t = 10. For each value of v0 we run

20 simulations with a different random initialization, and kept track of the

maximum simulation time tmax defined as:

tmax = min{tfinal, tpenetration, taccumulation} (37)

where tfinal is 10s, tpenetration marks the instant when a particle penetrates
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the circular obstacle for the first time and taccumulation marks the moment when

an unusually high accumulation of ghost particles near the origin {0, 0} shrinks

their support radius H close to zero causing numerical instabilities.

Fig. 10 shows the mean value of tmax as a function of the driving velocity

v0. We can clearly see from the trends how the use of the linear map results

in particle penetration or spurious mass-accumulation at the origin that can

potentially terminate the simulation and crash it. On the other hand, the graph

also shows how the runs where the non-linear map was used almost always reach

the desired 10s of simulated time without any mishap.

Figure 10: Maximum Simulated time as a function of the driving velocity v0. We see how

the simulations run with the mirror-map suffer from mishaps that quite often impedes the

simulation to complete its simulation time without any mishaps. The blue line however, shows

how the number, and frequency, of this mishaps is reduced whenever the non-linear solution

is used.

This result is very important since, in general, where flows are compressible

and density can vary notoriously in space, any smoothly curved wall that is left

with few particles around, and therefore is poorly resolved, our method guar-
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antees a proper functioning of the SPH engine by avoiding particle penetration

and mass accumulation around the centre of curvature of the surface. Using

the non-linear method allows the simulation to deliver correct results, and more

importantly not to crash, in low-resolution regimes.

9. Conclusions

The subtleties of the ghost particle approach to enforce appropriate bound-

ary conditions on the density field around smoothly curved surfaces have been

explored within the SPH framework.

We have formulated the problem in terms of the node-density field and have

shown that a map Ψ that places the ghost particles in such an arrangement so

as to maintain the node-density constant can be constructed.

A differential equation to find such map, supplemented with appropriate

boundary conditions, has been derived and constitutes the main result of this

study. The differential equation has been solved for simple three dimensional

geometries and this resulting maps have been tested in static and dynamic

scenarios.

The static tests proved that adequate values of the node density field in the

region next to the domain surface where obtained. Far away from the surface

however, our solutions displayed a divergent behaviour which was explained in

terms of the limitations imposed on the map Ψ. This region with divergent

values of the field can be avoided as long as the ghost boundary layer is thin

enough so as to guarantee that the furthermost mapped ghost particle does not

enter such region.

The dynamical test with compressible flow around a lattice of cylindrical

obstacles showed that for medium-to-high resolution regimes there is no visible

difference between simulations that use the mirror-map and simulations that

used the non-linear map. This is no surprise since the non-linear map Ψ con-

verges to Ψ0 for small values of the s-coordinate (as shown in Sec. 5) and the

values of s are proportional to the inter particle spacing which decreases with
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the number of particles N . In the low resolution regime however, the difference

is striking. Simulations run with the mirror-map were prone to particle pen-

etration and numerical instabilities related to particle accumulation near the

origin while the simulations run with the non-linear map almost always end the

simulation without any mishap.

We believe that the proposed method, and the solutions found with it, allow

the successful simulation of scenarios with smoothly curved boundaries using

SPH-methods in a consistent manner, thus opening up the range of problems

where it might be applicable.

10. Aknowledgements

This research was sponsored in part by the DGICYT (Dirección General

de Investigaciones Cient́ıficas y Tecnológicas) of Spain under National Project

No. ENE2015-68265. Research also funded in part by the Erasmus Mundus

Program: International Doctoral College in Fusion Science and Engineering

FUSION-DC.

Appendix A. Explicit shape of the toroidal map

The explicit shape for the toroidal map is given by:

ψ = g−1(2g(a)− g(a+ s))− a (38)

where the function g(x) is given by:

g(x) = Bu
x3

3
+
x2

2
(39)

where,

Bu =
cos(u)

R
(40)

The inverse of g(x) can then be expressed in terms of several intermediate

definitions. In particular, the complex number z:

z = −1 + ı
√

3

2
, (41)
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the function p(x),

p(x) = 12xB2
u − 1, (42)

the function ∆(x)

∆(x) =
3

√
p(x) +

√
p2(x)− 1 (43)

and the three branches:

g−1
0 (x) =

√
2x (44)

g−1
+ (x) =

1

2Bu

(
1

∆(x)
+ ∆(x)− 1

)
(45)

g−1
− (x) =

1

2Bu

(
z̃

∆(x)
+ z∆(x)− 1

)
(46)

With all this in hand, one can express g−1 as:

g−1(x) =



g−1
+ (x) Bu > 0

g−1
0 (x) Bu = 0

<[g−1
− (x)] Bu < 0

(47)

where < stands for the real part of the function.

Appendix B. Certain proofs for the toroidal map

The canonical form of the toroidal map is:

g(a+ ψ) + g(a+ s) = 2g(a) (48)

This can be re-written as:[
(1 + ψ)2 + (1 + s)2 − 2

]
−D

[
(1 + ψ)3 + (1 + s)3 − 2

]
= 0 (49)

where,

D =
2

3

a

R
cos(u) (50)

and both quantitites, ψ and s, have been normalised to a. The expression can

be grouped as follows:

(2 + 3D)(ψ + s) + (1 + 3D)(ψ2 + s2) +D(ψ3 + s3) = 0 (51)
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The first interesting case comes from letting D = 0 (which is equivalent to

setting u = θ = ±π/2, or by letting R/a 7→ ∞). For this choice one can easily

obtain:

(ψ + 1)2 + (s+ 1)2 − 2 = 0 (52)

which is the same expression as the one used for the cylinder. This means the

torus behaves like a cylinder in the limit of infinite aspect ratio, as one should

expect, but also for points whose coordinates are u = ±π/2. This second

statement was already visible in the singular shape of g−1
0 (r) which was to be

used at those points exactly.

The next interesting case is D = −1/3 for which we find:

ψ3 + s3 = 3(ψ + s) (53)

The only viable solution is given by:

ψ = −s (54)

that is, a mirror map. The case D = 1/3 corresponds to points with coordinate

u = ±π and a toroidal geometry with aspect ratio R/a = 2, the importance of

this result is discusses in sec.4.4.1.

The last case, D = −2/3, doesn’t seem to give any new, nor relevant, infor-

mation about the behaviour of the toroidal map for different poloidal angles.
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