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temporal stability analysis. The subject experienced a renaissance 50 years ago that has
lasted to the present due to its central role in industrial and medical applications such as
chemical reactors, ink-jet and three-dimensional printing, additive manufacturing, drug
and protein encapsulation, and cytometry, to cite a few (the reader is referred to the
reviews of Bogy 1979; Eggers 1997; Christopher & Anna 2007; Eggers & Villermaux
2008; Derby 2010; Anna 2016).

The theoretical approach to the study of the dynamics of jet break-up was first based
on the linear stability analysis of infinite liquid threads. As already mentioned, the
local temporal approach was pioneered by Rayleigh (1892). About 80 years later, the
local spatial and spatiotemporal problems, in which the liquid jet moves with uniform
velocity U with respect to the injector, were solved (Keller et al. 1973; Leib & Goldstein
19864a,b). In particular, it was demonstrated by Keller et al. (1973) that the spatial
and temporal stability analyses are equivalent if U is sufficiently larger than the speed of
small-amplitude capillary instability waves, U,. In the spatial setting, the latter condition
means that the relative growth of the wave amplitude along one wavelength is small.
Thus, in a frame of reference moving with the jet, the amplitude growth is spatially
uniform to a first approximation, which explains the equivalence of the temporal and
spatial approaches if U > U,. Since the wavelength of the unstable capillary waves
is much larger than the unperturbed cylinder radius, R, the scaling of U, depends on
the value of the associated Reynolds number, Re, = pU, R/, where p and u are the
liguid density and viscosity, respectively. In the limit of Euler flow, Re, > 1, the value
of U, is given by the balance og/R ~ pU2, where oq is the surface tension, yielding
U, ~ \/oo/(pR), usually referred to as the capillary velocity, and U/U, ~ v/ We, where
We = pU%R /0oy is the Weber number. Note that, in this case, Re, = v/La > 1, where

La = pRoo/p? is the Laplace number, which may also be written as La = Oh 2in
terms of the usual Ohnesorge number, Oh = u1/+\/pRog. In the opposite limit of Stokes
flow, Re, < 1, the appropriate balance is 0g/R ~ pU, /R, whence U, ~ ¢/, usually
referred to as the visco-capillary velocity. In this limit, U/U, ~ Ca, where Ca = uU/oy
is the capillary number, and Re, = La < 1. Therefore, the condition that must be
satisfied for the temporal and spatial approaches to be equivalent is that v We > 1
when v/La > 1, or that Ca >> 1 when La < 1. It is also important to point out that the
formation of a slender jet from a nozzle requires that We > We, ~ O(1) when VLa> 1,
or that Ca > Ca, ~ O(1) when La < 1, where We, and Ca, are the critical Weber
and capillary numbers for the transition from convective to absolute instability (Leib &

Goldstein 1986a,b).

Many experimental studies have been carried out, from the first investigations of Savart
(1833), Magnus (1859), Plateau (1873), Rayleigh (1882), and Donnelly & Glaberson
(1966), to the highly accurate measurements of Gonzalez & Garcia (2009), whose aim was
to describe the mechanism of instability and to measure the growth rate of the associated
waves in the linear regime. These experiments have shown an excellent agreement with
the dispersion relation obtained by Rayleigh (Rayleigh 1878, 1892) and by Chandrasekhar
(1961). It is important to emphasise that, although linear stability theory cannot describe
the final stages of the dynamics prior to pinch-off, it can be used to predict the break-up
time #;, with small relative errors, provided that the initial amplitude of the disturbance,
g, satisfies € = £/ R < 1. In the spatial setting, this fact can be used to estimate the break-
up length as Ut, in close agreement with experiments (Kalaaji et al. 2003; Gonzalez &
Garcia 2009).

However, to describe the satellite formation process, which is the main objective of
the present study, a nonlinear approach is needed. In particular, Goedde & Yuen (1970)
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Figure 1: (Colour online) (a) Dimensional sketch of the flow configuration. (b) Example of
a liquid thread approaching pinch-off for La =0.01, 83=1,¢ =10 3 and k = k,, = 0.516
at time ¢ = 123. The contour map represents the dimensionless pressure field p, and the
arrows show the dimensionless velocity field u, both at the top, while the deformed mesh
is shown at the bottom.

are small, namely %, = p./(pR) < 1 and B, = k./(pR) < 1 (Martinez-Calvo &

Sevilla 2018). The problem is non-dimensionalised with the visco-capillary time, uR /oy,

as characteristic time and with R as characteristic length, og being the surface tension

associated with the initial concentration of insoluble surfactant at the interface I'(z,0) =

I'y, which are used to scale the surface tension and the surface concentration, respectively.
The flow is governed by the dimensionless Navier-Stokes equations

V.ou=0 atV, (2.1)

at

where u(x,t) = ue, + we, is the velocity field, and u, w, and e,, e, are the radial
and axial velocity components and the corresponding unit vectors, respectively. In
equation (2.2), T = —pl + [Vu + (Vu)7] is the stress tensor for an incompressible
Newtonian liquid, I is the standard identity tensor and p(x,t) is the pressure field. The
numerical simulations reported herein were performed using an arbitrary Lagrangian—
Eulerian (ALE) method, in which the domain z(X,t) € V(t) is parametrised by the
initial position X = x(X,0) € V(0), defining a time-dependent displacement field,
x — X which is enforced to satisfy the Laplace equation with proper boundary conditions
specified below. The local time derivatives are evaluated in the spatial reference frame
as

La (8—u+u-Vu) =V-T atV, (2.2)

ou 0a Oz
E_E_E‘Vu at V, (23)
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where (X ,t) = u(x,t) is the velocity in the material reference frame.
Since the interface AV is coated with surfactant, a surface transport equation is needed

for I'(x,t):

ar

E + Vg . (F ’u,s) =0 at 3V, (24)
where u, = u(x,) is the liquid velocity at the interface and x, represents any position
at the surface x,(X,,t) € OV(t), which is parametrised by its initial position X, =
x:(Xs,0) € 8V(0). Here Vi = I, - V is the surface gradient operator, where I, = — nn
is the surface projection tensor and n is the outer unit normal vector at the surface. The
local time derivatives at the interface are evaluated in the spatial reference frame as

or _or o=,
ot ot ot

V.  atdV, (2.5)

where I'(X,,t) = I'(x,,t) is the concentration of surfactant in the material frame of
reference, which is needed in order to be implemented with the ALE method that is used
in the present work. The reader is referred to the works of Stone (1990), Wong et al.
(1996) and Pereira & Kalliadasis (2008) for further details of the time derivative of a
surface quantity.

Note that the surface diffusion of surfactant has been neglected in the transport
equation (2.4). Indeed, in the present work we only consider the limit where the surface
Péclet number Pe, = Ug.R/D¢ — oo, where D, is the surface diffusion coefficient and U,,
is the characteristic liquid velocity at the free surface. The correct scaling for U, depends
on the value of La. In the limit of dominant inertia, La > 1, the appropriate velocity
scale is the capillary velocity, [o0/(pR%)]*/?, so that Pe, = [ooR/(pD?)]*/2. For instance,
if we consider a water thread of radius within the range 1-100 pum, the corresponding
Laplace numbers lie in the range 10? < La < 10*. Typical values of D, for SDS, SB12
and other monomers in aqueous solution are within the range 10 ? < D, < 10 ® m?
s ! when I' is below the critical micelle concentration (CMC) (Siderius et al. 2002),
providing values of the surface Péclet number in the range 10* < Pe, < 10°. Therefore,
in configurations where La > 1, it is expected that surface diffusion has a very small
effect. In the opposite limit of dominant viscous forces, La < 1, the appropriate velocity
scale is the visco-capillary velocity, og/u, leading to Pe, = oo R/(uD;). Considering, for
instance, a polydimethylsiloxane silicon oil of dynamic viscosity in the range 0.1-10 Pa
s, density p =~ 970 kg m 3 and surface tension og ~ 21.1 mN m !, the Laplace number
takes values in the range 10 * < La < 1. Although we are not aware of experimental
studies reporting typical values of D, in highly viscous solutions, if we assume that they
are of the same order of magnitude as those of aqueous solutions, the Péclet number lies
in the range 1 < Pe, < 10°. It is thereby deduced that, when La < 1, there may be
cases where surface diffusion cannot be neglected in the analysis. Therefore, although the
influence of surface diffusion on the satellite droplet formation process is not addressed
in the present work, it clearly deserves further study, particularly in the case of highly
viscous threads.

The presence of surfactant at the interface modifies o by decreasing its value as I'
increases, and thus the stress balance at the interface takes the following form in the
limit 8, < 1, B, < 1 (Martinez-Calvo & Sevilla 2018):

T-n=Vo—n(V:-n)o at 9V, (2.6)

where the viscous stress exerted by the ambient fluid on the interface has been neglected
and the ambient pressure p, has been set to zero without loss of generality. Additionally,
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the temporal approach adopted herein we only consider half a perturbation wavelength
subjected to the following symmetry conditions:

du or
3 E = 0, aﬂd E =0 at z = 0., T[/k. (2.12)

where k is the dimensionless axial wavenumber, together with the axisymmetry condition

w=20

7}
Ew:o, and u=0 atr=0. (2.13)
Finally, regarding the initial conditions imposed at £t = 0, we perturb the position of

the liquid cylinder with a harmonic disturbance of amplitude e:
T, = ze, + [R — ecos(kz)|e,, (2.14)

where R = (1 — €2/2)'/2 is a dimensionless radius defined in terms of ¢, such that the
liquid volume remains constant as € varies (Ashgriz & Mashayek 1995). We also assume
that the liquid thread is initially at rest and that the surfactant concentration is uniform

u(x,0) =0, I'(xs,0)=1. (2.15)
Note that the assumption of a uniform initial concentration of surfactant is a good
approximation, since our main results have been obtained in the limit € < 1 in which the
deviations from a uniform concentration can be neglected. As explained in §1, our results
can also be applied to describe the spatial instability and subsequent downstream break-
up of liquid jets moving with uniform velocity U with respect to the injector reference
frame, provided that U > U,, where U, is the speed of small-amplitude capillary waves.
If the latter condition is satisfied, the spatial evolution of the jet is obtained by the
downstream advection of the temporal results presented herein with a uniform velocity
U. In particular, the jet break-up length is given by U#, to a first approximation.

The problem depends on four dimensionless parameters, namely the Laplace number,
La, the elasticity parameter, 3, the axial wavenumber, k, and the amplitude of the initial
perturbation, e. However, in the present work we are concerned with the unforced break-
up of cylindrical threads due to small-radius disturbances. Therefore, all the results
were obtained by setting k = k;;,, where kp,(La, 8) is the most unstable wavenumber
(see §3.1). Moreover, it will be shown that, in the small-disturbance limit, € < 1, the
only result that depends on € is the break-up time of the thread, #,(La, 3, €). However,
our results have revealed that the functional dependence of t; can be split into a
contribution predicted by linear theory in explicit form, ¢y 1.(La, 8,€), plus a nonlinear
correction, Atyr,(La, 3), which does not depend on e. Consequently, only two independent
dimensionless parameters appear in our formulation, namely La and /.

To perform the numerical simulations, the liquid domain 0 < r < a(z,t),0 < z < /k
is partitioned into a rectangular or triangular finite-element mesh which is dynamically
deformed using the ALE method. In particular, the displacement field,  — X, is enforced
to satisfy the Laplace equation, and the normal mesh velocity, nn-u, solves the kinematic
condition (2.7). To that end, equations (2.1)—(2.4), together with the boundary and initial
conditions (2.12)—(2.15), are written in weak form following the methodology described
by Rivero-Rodriguez & Scheid (2018a,b), and the spatial discretisation is carried out
using the finite-element method (FEM) provided by COMSOL, where Lagrange linear
(P1) elements are used for p and quadratic (P2) elements are used for #, u and I
The time discretisation was performed using the first-order backward Euler method
with adaptive time stepping. Figure 1(b) shows a representative deformed mesh for a
simulation with La = 0.01, 8 =1, ¢ = 10 ? and k = k,,, = 0.516 at time ¢ = 123,
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together with the pressure field as a contour plot and the velocity field represented by
arrows. All the results reported were carefully checked as being mesh-independent, with
an integration tolerance of the order of 10 6-10 7. In addition, it was checked that the
relative variations of liquid volume and surfactant mass where smaller than 10 ° during
each simulation. The numerical code has been validated with the linear theory in §3.1. In
the nonlinear regime, the validation was performed by comparing our results with those
of Ashgriz & Mashayek (1995) for a clean interface and with those of McGough & Basaran
(2006) and Kamat et al. (2018) for a surfactant-laden thread (not shown). In particular,
the Appendix is devoted to show the performance of our numerical framework close to
pinch-off, comparing our results with the different theoretical scalings of the minimum
radius as a function of time to break-up.

3. Results and discussion

Since we are interested in the spontaneous break-up of the surfactant-laden thread, all
the results were computed from an initial condition where the liquid cylinder is perturbed
with the wavenumber of maximum amplification, kp,(La, 3). Hence, the results of a linear
stability analysis are first summarised in §3.1 to obtain ky, and wy,, the latter being the
maximum temporal growth rate. Note that k,, is needed to define the initial geometry
and the initial condition (2.14), while wy, is used to compute the nonlinear correction
to the linear break-up time, which is defined in §3.2. In addition, the linear theory has
also been used to validate the numerical code by comparing the associated maximum
temporal growth rate, w,,, with the results extracted from the numerical simulations
during the initial transient of exponential amplitude growth. Sections §3.2 and 3.3 are
devoted to the analysis of the nonlinear break-up and the satellite formation dynamics,
separating the weak-elasticity limit, and the surfactant-laden case. To that end, we have
performed direct numerical simulations of equations (2.1)—(2.15) until times very close
to pinch-off. In particular, we report a parametric study for different values of La and
3, computing the volume of the satellite droplet, the mass of surfactant trapped at its
interface, the satellite shape at pinch-off, and the break-up time.

At this point, it has to be pointed out that a similar phenomenology was previously
reported by Dravid et al. (2006) for La = 0.01 and 100, although using the linearised
equation of state o(I') = 1 — 8(I" — 1). In addition, those authors did not consider the
natural break-up of the thread, since the disturbance wavenumber k was restricted to
fixed values different from the most amplified one, k,,.

3.1. Linear stability analysis

To obtain the dispersion relation D(w, k) = 0 relating the temporal growth rate w and
the axial wavenumber k, all the flow variables are slightly perturbed around a uniform
stationary state and decomposed as temporal normal modes:

(u)w:pa a, J:F) = (0: 0: ]-1 ]-) ]-: 1) + E(ﬁ:ﬁ)ﬁ: a’: &: f‘) exp(ikz + wt) (31)

Introducing (3.1) into the system (2.1)—(2.4) and keeping terms proportional to €, the
following dispersion relation is obtained:

Law®F (k) — k*(1 — k%) + BK*[1 + F(k)(F (k) — 2)]

LS { _ g (2 1 ;kz)] [F(k) — F(B)] + 20k2(2F (k) — 1) = 0, (3.2)

La
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Figure 2: (Colour online) (a) Semi-logarithmic plot of the radius amplitude A(t) as
a function of time, extracted from two numerical simulations for e = 10 4, 8 =1

and two values of the Laplace number, namely La = (0.01,100). The corresponding
optimal wavenumbers, kp,(La, 3), highlighted in (b) with stars, are used to build the
initial conditions, and their values are indicated near each curve together with the
associated linear temporal growth rates, wy,(La,3) and La. (b) Temporal growth rate
w as a function of the axial wavenumber k, computed with the dispersion relation (3.2)
(solid lines) and with the numerical simulations (circles), for § = 1 and two different
values of La = (0.01,100), indicated near each curve. The maximum growth rates wp,
computed in (a) are marked with stars. (c) Isocontours of the most amplified wavenumber
km(La, 8) and its corresponding growth rate wy,(La, 8) in (d).

where k = k2 + Law and F(z) = zlo(z)/I1(z). Here, I,(z) denotes the nth-order
modified Bessel function of the first kind. Note that dispersion relation (3.2) is exactly
the same as the one deduced by Timmermans & Lister (2002), and is also a particular
case of the one provided by Martinez-Calvo & Sevilla (2018) in the limit of negligible
surface viscosities. The Rayleigh—Chandrasekhar dispersion relation is recovered when
B — 0 (Rayleigh 1892; Chandrasekhar 1961).

As shown experimentally by Goedde & Yuen (1970), and numerically by Mansour &
Lundgren (1990) and Ashgriz & Mashayek (1995), a convenient way to compute the
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temporal growth rate of small disturbances is through the radius amplitude, extracted
from the present simulations as A(t) = (max;[a(z, t)]—min, [a(z,t)]) /2. Figure 2(a) shows
the temporal evolution of A(t) in semi-logarithmic scale, extracted from two numerical
simulations for an initial perturbation amplitude e = 10 %, an elasticity parameter 8 = 1,
and two values of the Laplace number, La = 0.01 and La = 100, close to the Stokes and
Euler regimes, respectively. In each case, the most amplified wavenumber, ki, (La, 3), is
used to build the initial condition. As expected due to the smallness of €, figure 2(a) shows
that during most of the time the amplitude grows exponentially, i.e. A o< exp(wnt), and
thus the maximum temporal growth rate, wy, (La, 8), can be easily computed as the slope
of the linear region in the semi-logarithmic plot, wy,, = d1n(A)/dt. It can also be deduced
from figure 2(a) that there is an initial transient during which the growth of A(t) is not
exponential, which can be explained by the fact that the initial conditions in the numerical
simulations are imposed on the shape of the interface, but disregard the associated
disturbances in the velocity, pressure and surfactant concentration fields. As shown in
figure 2(b), this procedure was used to obtain w for different values of &k (symbols), and the
results are compared with the amplification curves w(k) computed from the dispersion
relation (3.2) (solid lines), affording an excellent agreement that validates the numerical
code in the linear regime. Finally, figures 2(c, d) show the isocontours of ky, and wp,,
respectively, as a function of La and 8 extracted from equation (3.2), whose values will

be used hereafter.

3.2. Satellite formation regimes and transitions in the (La, 3) parameter plane

Let us first present the structure of the (La, 3) parameter plane in terms of the satellite
formation process. To that end, we conducted an exhaustive parametric study in which
the Laplace and elasticity parameters were varied in small steps within wide ranges,
namely 0.01 < La < 100 and 0 < 8 < 1. Thus, for each pair of values of La and 3, we
simulated the instability-driven time evolution of the thread from an initial condition
with € < 1 until a time ¢, very close to break-up. In total, around 10* time-dependent
simulations were carried out to characterise the ( La, ) parameter plane shown in figures 3
and 5.

At this point, it is important to emphasise that the fate of the main and satellite drops
after pinch-off is outside the scope of the present work, and therefore we do not explore
the possible successive break-up events that may take place and lead to the formation of
sub-satellites. Keeping this in mind, we have extracted the satellite volume at the last
numerical step, t = t;. Normalising its value with the total volume provides the definition

Zmin _2
fu a“dz

Vaat = — 77—,
fuﬁxk’“ a2dz

(3.3)

where zpi, is the axial position where the liquid column reaches its minimum radius,
Qmin, at ¢ = t;. A more common measure of the satellite size is its equivalent radius,
Rsat, which is the radius of a spherical drop of the same volume as the satellite (Rutland
& Jameson 1971; Mansour & Lundgren 1990; Ashgriz & Mashayek 1995; Mashayek &
Ashgriz 1995). All the results reported herein in terms of Vg, can be easily converted
to Rsat through the equation Rgay = [37Vias/ (ka)]lf 3. Following the same procedure,
we have also computed the mass of surfactant trapped at the satellite surface which,
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Figure 3: The structure of the (La, 8) parameter plane. An abrupt transition takes place
along the solid line, 8 = 8,(La), across which both the satellite volume and the entrapped
mass of surfactant experience a discontinuous jump, such that both magnitudes are larger
above the solid line. The inset shows the jumps in the satellite volume, AV y(La) =
Veat(B—B, = 07)—Viue(B—B, — 0 ), and in the associated entrapped mass of surfactant,
AXgi. Both jumps, together with 3., increase monotonically as La decreases, and reach
respective Stokes asymptotes as La — 0, namely AV, — 0.022, AX,; — 0.045, and
B — 0.98. The filled circle indicates the origin of the discontinuous transition, (La, 3,) =
(7.5,0.55), at which both jumps become zero. For La > 7.5, the satellite volume is a
continuous function of 5. The open circles correspond to the values of La and 8 of the
shapes just before pinch-off shown in figure 4.

normalised with the total mass of surfactant, provides the definition

foﬂxk’" al'\/1+ (%)Zdz‘ .

We point out that, since Vgt and Xy, are always obtained when aiy is within the range
Gmin ~ 10 4 —8 x 10 3, the sensitivity of these magnitudes to the exact value of am;, is
negligible, such that both represent very robust measures. Similarly, the corresponding
break-up time ¢, is barely sensitive to the value of ay;y.

In contrast with Vi, and X,¢, which do not depend on the initial amplitude in the
limit € < 1, the break-up time is a function of the form ¢,(La, 3, €) such that t, — oo
as € — 0. Indeed, the break-up time can be easily estimated from linear theory through
the equation amin(t) ~ 1 — eexp (wmt), where wy, is the growth rate associated with
the most amplified wavenumber k,,, shown in figures 2 (¢, d), leading to the estimation

Esa.t =
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Figure 4: (Colour online) The satellite shapes just prior to pinch-off in the (La,j)
parameter plane (see open circles in figure 3). The vertical lines indicate the axial
positions, zmyin, of the minimum thread radii, amip.

ty ~ In(e !)/wm. Based on the latter result, we define the nonlinear correction to the
linear break-up time as

In(e 1)

Wm

where t; is obtained by extrapolating ap;, to zero using the last few computed time
steps. Unlike t5, Afny, only depends on La and 3, but not on €, provided only that € < 1.
The latter fact is demonstrated in §3.3. Finally, we have also computed the sphericity of
the satellite droplet at pinch-off as

AtNL =1y — " (3.5)

2 (% Fmin azdz)w3

Jime a1+ (82)a

which is the ratio between the surface of a sphere of the same volume as the satellite and
its actual surface. The quantification of the satellite formation process will be based on the
four functions Viae, Xaat, Afnp and S, extracted from the numerical simulations. These
four functions only depend on La and 8 when ¢ is sufficiently small, as is demonstrated
in §3.3. Thus, the main results reported herein have been computed in the limit e — 0.

S= (3.6)
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Figure 5: (Colour online) Isocontours in the ( La, 3) parameter plane of (a) the normalised
satellite volume Va4, (b) the normalised mass of surfactant trapped at its interface Xy,
(¢) the nonlinear correction to the break-up time, Atyy,, and (d) the sphericity of the
satellite droplet, S.

The structure of the (La,3) parameter plane is summarised in figures 3 and 4 in terms
of the satellite formation process. In particular, figure 3 depicts the most salient features
of the parameter plane, and figure 4 displays several satellite shapes at the last computed
numerical step just prior to pinch-off, whose associated values of La and 8 are indicated
with circles in figure 3. The most important feature of the parameter plane is the solid
line shown in figure 3, which represents a discontinuous transition that takes place for a
critical elasticity, 8 = 8,.(La) for La < 7.5. In particular, both the satellite volume and
the associated entrapped mass of surfactant experience sudden jumps from certain values
Veat(B—B, — 0 ) and X (B—B,. — 0 ) to larger values Vai(8— B8, — 07) and Xear (B —
B, — 07). Indeed, the inset of figure 3 shows the jumps experienced by the satellite
volume, AViai(La) = Vear (B — B, — 0F) — Veat(B — B. — 0 ), and by the associated
entrapped mass of surfactant, AX,;. Both jumps and S, increase monotonically as La
decreases, and reach respective Stokes asymptotes as La — 0, namely AV,,; — 0.022,
AXge — 0.045, and 8. — 0.98. The filled circle in figure 3 indicates the origin of the
discontinuous transition, (La,8,) = (7.5,0.55), at which both jumps become zero. For
values of La > 7.5, Vit and Y, are continuous functions of La and S.

As shown in figure 4, for values of 3 = 0 < B, and 8 = 0.5 < 3, the sequence
of interface shapes at pinch-off depends continuously on La, with the trend that larger
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satellites are formed as La increases, reaching the regular limit of inviscid flow as La — oo.
For f < ., and small values of La, figure 4 reveals that the main drops are separated
by very thin threads of tiny volume whose break-up behaviour has been characterised in
previous studies (see e.g. Kowalewski 1996). For 8 < 3, and intermediate values of La,
the main drops are separated by a satellite centred at z = 0 that is connected to the main
drops by very thin threads (see e.g. the case for La = 1 and 8 = 0 in figure 4). Finally, for
B < B, and large values of La, the satellite drop is directly connected to the main drops.
In contrast, when 8 =1 > f,, figure 4 shows a different picture, where large satellites
are formed for all values of La. These results have also been analysed quantitatively, and
are discussed in detail below.

From figures 3 and 4 it is deduced that, although the physical mechanisms are different,
both the liquid inertia and the interfacial elastic stress favour the formation of satellites.
In particular, surface elasticity tends to form spherical-shaped satellites at pinch-off,
whereas the increase of the liquid inertia generates oval-shaped satellites. In the set of
shapes close to pinch-off shown in figure 4, a discontinuous transition is observed for
La = 0.01 and 1, as § increases. However, for La = 10 > 7.5 a continuous transition
of the thread shape is observed as 8 increases. Finally, for La = 100, the upper row
evidences that the influence of the elastic stress on the shape of the thread is much
weaker when the value of La is large enough. The physics underlying these transitions
can be explained in terms of the coupling between the liquid inertia, the viscous stress, the
surface tension, and the interfacial elastic stress. The competition between these forces is
discussed in §3.3, based on the trends exhibited by the functions Viat, Ysat, Atnr and S,
and also by analysing the temporal evolution of the interface shapes starting from small
disturbances, depending on the values of La and S.

3.3. Nonlinear dynamics of a surfactant-laden interface: satellite drop formation

To unveil the effect of liquid inertia, viscous stresses and surface elasticity on the
satellite droplet formation regimes, here we present and discuss the quantitative results
of the detailed numerical analysis that has been carried out in the present work.

Figure 5 shows the isocontours of Viat, Xsat, Aény, and S in the (La, ) parameter
plane. We first observe that, at the discontinuous transition that occurs for La < 7.5,
the value of Via increases from 10 3-1.5 % to 2-2.3 %, whereas Yi,; increases from
10 3-1.5 % to 3.5-4.7 %. The exact value of both jumps as functions of La can be seen
in the inset of figure 3. In contrast, for La > 7.5 or 8 > 8,(La), the values of Vs, Xiat,
Atyy, and 8§ vary continuously.

As a first general observation, it is deduced from figure 5 that the linear theory
may either underestimate or overestimate the break-up time, in a way that does not
necessarily coincide with the transitions in the satellite formation process. Indeed, t; is
underestimated for La > 1 independently of the value of 3. However, for La < 1, t3 is
overestimated for 0.28 < 8 < 1, while it is underestimated outside this range. Regarding
the sphericity S, figure 5 confirms the trend deduced from figure 4: the most spherical
satellite shapes, with § 2 0.9, take place for § 2 B, and La < 10. In contrast, the
shapes become most elongated, with § < 0.2 , when 8 < 3, and La < 0.1 (grey area in
figure 5d).

3.3.1. Analysis of the temporal evolution of clean interfaces

To present the dynamics of satellite droplet formation, we take as reference cases the
two canonical temporal evolutions of clean interfaces (8 = 0) illustrated in figure 6, for
La = 0.01 in (a—d), close to the Stokes limit, and for La = 100 in (e-h), an almost
inviscid case close to the Euler limit (as shown in §3.3.4). Specifically, we plot snapshots
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Figure 6: (Colour online) Temporal evolution of the liquid thread radius a (upper row), of
the axial velocities at the free surface, w,, and at the axis, w, (middle row) and the radial
surface velocity u, (bottom row), for e =10 3, 3 =0, (a—d) La = 0.01, k = k,, = 0.150,
and (e-h) La = 100, k = ky, = 0.635. The vertical lines in each last snapshot indicate
the axial position zmin of minimum radii @min, being zmin = 1.49 and ami, = 3.63 x 10 °
for La = 0.01, and zpip = 3.12 and amin = 1.29 x 10 4 for La = 100. (i) Zoomed region
close to the neck at the instant shown in (h).

at different times, indicated in the labels, of the jet radius a (upper rows), the axial
surface velocity w, (middle rows, black lines), the axial velocity at the centreline wj,
(middle rows, green lines) and the radial surface velocity u; (bottom rows). In both cases
the initial disturbance amplitude is very small, e = 10 3, and thus the initial evolution
is triggered by the Plateau—Rayleigh instability mechanism, and can be described with
linearised theory. This initial stage is not shown in figure 6 for conciseness, but it can
be appreciated in figure 2(a). The initial disturbance, of most amplified wavelength ki,
creates an axial capillary pressure gradient that induces a flow from the valley to the
crest of the wave. The latter mechanism finally leads to the break-up of the liquid thread
and the formation of two main drops with either a liquid thread or a satellite droplet in
between.

A key feature that determines the nonlinear evolution of the destabilised thread is the
fact that the axial curvature makes the capillary pressure gradient to be locally larger
in the regions that connect the central part of the thread with the growing crests, as
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Figure 8: (Colour online) Temporal evolution of the liquid thread radius a (first row),
surfactant concentration I" (second row, black lines), surface tension o (second row, blue
lines), axial velocity at the interface w, (third row, black lines) and at the centreline
w, (third row, green lines), and radial surface velocity u, (fourth row), for La = 0.01,
e=10 3 and 8 =0.960 < 8.(La = 0.01), with k = k,, = 0.508. The vertical line in the
last snapshot of @ indicates the position of zpiy. Here zmin = 0.33 and ami, = 7.29x 10 4.

(second row), the axial velocity at the interface, w,, and at the centreline, w, (third row),
and the radial surface velocity ug (fourth row). Time is indicated in the labels.

The presence of surfactants introduces two main effects. The advection of surfactant
molecules outside the central region of the thread increases the local surface tension in
this region, as can be observed in the figures 8(a) and 9(a). This surfactant depletion
generates two opposed effects. First, the axial capillary pressure gradient is enhanced,
since the value of o becomes larger in the central region, where I' is smaller, while o
becomes smaller away from the centre, where I' is larger. Second, there is a stabilising
effect induced by the elastic or Marangoni stress, which competes with the destabilising
Plateau-Rayleigh mechanism enhanced by the first effect. Actually, the gradient of o
generates a tangential stress at the interface directed towards increasing values of o,
which opposes the drainage flow and tends to replenish the central zone with surfactant.

In the case of 8 < B.(La = 0.01), figure 8(b,c) shows that the Marangoni stress
reduces the axial surface velocity, w,, compared with the centreline velocity, w,, the
difference between both velocities being larger in the region where V.o is higher. As
the fluid is drained from the centre for increasing times, Vg o becomes larger. When
B < B.(La = 0.01) the capillary pressure gradient is able to remove most of the liquid
from the centre. Eventually, close to pinch-off, inertia becomes important and the flow is
reverted close to z = 0.33, so that the rate of thinning increases in this region and zpi,
moves towards the latter axial position where the liquid thread finally detaches forming
a tiny satellite droplet with V., < 10 °, as evidenced by figure 8(d). Note that, during
thread evolution, two bulges connecting the central and outer regions grow due to the
reduction of the surface velocity, and are finally connected by a thin liquid thread close
to pinch-off.

When 8 > 8,(La = 0.01) the foregoing explanation still holds, but the elastic stress
is large enough to revert the flow near the interface at early times far from break-up, as
shown in figure 9(a). The associated stagnation point diffuses radially inwards, and leads
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Figure 9: (Colour online) Same as figure 8 but for 8 = 0.979 > $,(La = 0.01), with
k =k = 0.512. The insets are zooms showing the normalised velocity vector field and
isocontours of the pressure field. Here zpmin = 1.93 and amin = 2.5 x 10 4.

to a counterflow separating a region where liquid flows towards the centre and induces
the formation of a satellite from another region where the incipient main drop is fed with
liguid. Consequently, the thread detaches in between these two regions. If # increases
further, the break-up time increases and the flow reversal occurs at earlier stages, so that
Viat and X, increase monotonically, as shown in figures 7(a,b).

When La = 100, figures 7(c,d) show that the effect of surface elasticity is much weaker
in the case of dominant inertia, as was anticipated both in figure 5 and also by the
shapes shown in the upper row of figure 4. The small influence of insoluble surfactants
in the inviscid limit, La > 1, had been already noted in the linear stability analyses
of Whitaker (1976), Hansen et al. (1999) and Timmermans & Lister (2002). Indeed,
the effect of Marangoni stresses is confined to a thin boundary layer at the free surface,
where the viscous stress rapidly restores any imbalance of ¢, and which does not have any
influence in the bulk liquid motion. Consequently, for La = 100, the satellite volume, Vg,
varies only slightly with respect to the value of a clean liquid thread, Vst (8 = 0, La =
100) ~ 0.03, with a minimum at 8 ~ 0.203, whereas Y,; increases monotonically as 3
increases. To explain this result, figures 10 and 11 show two sets of snapshots of a, I', o,
wg, Wy and ug for 8 = 0.203, at which V¢ is minimum, and for 8 = 1, respectively.

In the weak-elastic limit, 8 — 0, a satellite droplet with volume V5 ~ 3% is formed
at pinch-off, as already shown in figures 5 and 7(c). The satellite volume decreases as
B increases in the range 0 < S < 0.203. Indeed, when [ increases, the Marangoni
rigidification of the interface slows down the pinch-off process by decreasing the interfacial
velocities, as evidenced by the time evolution of wg, w, and u. in figure 10 with respect
to figure 6(e—h). The latter behaviour, together with the fact that the pressure gradient is
locally enhanced due to the variations of o, explain why a larger volume is drained out of
the satellite droplet compared to the case of a clean interface. However, the Marangoni
stress that opposes the drainage flow away from the centre reduces the advection of
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Figure 10: (Colour online) Same as figure 8 but for Le = 100 and 8 = 0.203, with
k= km, = 0.625. Here zmin = 3.09 and ami, = 7.89 x 10 4.

surfactant towards the main drops, and thus the value of X,; increases, as shown in
figure 7(d). The snapshot in figure 10(c) shows that the flow is reversed near the neck
region, as happens for a clean interface (see e.g. figures 6h and 6i). However, in the
elastic regime the flow reversal takes place earlier than in the clean interface limit. This
behaviour at high values of La and low values of 5 was previously noticed by Kamat et al.
(2018), who showed that the stagnation point occurs at earlier stages in surfactant-laden
interfaces compared with clean interfaces, due to the strong Marangoni stress in the neck
region.

A representative case of La = 100 and 8 > 0.203 is shown in the snapshots of figure 11
for 8 = 1. The main change with respect to the preceding case is the fact that for 5 =1
the Marangoni stress is strong enough to revert the surface flow at earlier stages, as
shown in panels (b) and (d). Therefore, the stagnation point appears earlier than in the
case of figure 10, and diffuses almost instantaneously in the radial direction, leading to a
satellite droplet with larger values of the normalised volume and of the surfactant mass.
It can thus be deduced that the minimum value of Vy,; displayed in figure 7(c) appears
due to a competition between the two aforementioned opposite effects induced by the
presence of surfactants.

For La < 7.5, the two effects described previously coexist when f3 is increased, as shown
by the isocontours of V¢ in figure 5. For instance, when La = 1, Vi, first decreases as
3 increases, and when the elastic stress is strong enough, the flow is reversed and the
discontinuous transition occurs. Note that, in the latter case, inertia is important since
La is of order unity, and a small but finite satellite droplet exists in the clean limit,
B — 0 (see e.g. the second row of figure 4), where Vg, = 0.394 % (a value significantly
larger than in the limit La < 1, as shown in the isocontours of figure 5). Hence, the
main difference with respect to the limit La >> 1 is that in this case, since Vge(8 — 0) is
small, the increase of 5 reduces the satellite volume and may even make it negligible. For
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Figure 11: (Colour online) Same as figure 10 but for 8 = 1 with k = k,, = 0.647. Here
Zmin = 2.94 and api, = 5.14 x 10 .

La < 7.5, Ysat also decreases monotonically together with Viae when 8 < 3., which can
be explained by the fact that V,; is already small when 8 = 0, so that X,; necessarily
decreases when f3 is increased.

Let us recall at this point that the critical elasticity, 8,(La), decreases as La increases
within the range 0 < La < 7.5, as shown in figures 3 and 5. The reason for the latter
trend is the fact that the advection of surfactant away from the central region is enhanced
by the liquid inertia, so that Vo also increases, and thus the value of 8 for which
the elastic stress reverts the flow is smaller. Furthermore, the value of V,,;(La, 8 — 0)
increases as La becomes larger, and therefore the jumps experienced by Vit and Y.
at the discontinuous transition, 8 = 3., decrease, as deduced from the inset of figure 3.
Finally, for La > 7.5, the discontinuous transition disappears.

3.3.4. Scaling laws for Vyy: and Xeg; as functions of La

Figure 12 shows Vg, and Y, as functions of La for different values of 8 indicated
in the legend. The circle with error bars corresponds to the experiment of Rutland &
Jameson (1971) of the natural break-up of a liquid jet of clean water, which is in close
agreement with our numerical result for 8 = 0. The inset displays the most unstable
wavenumber, k;,, as a function of La, showing the inviscid plateau k,, ~ 0.697 for
La > 1 (Rayleigh 1878), as well as the power-law dependence for small values of La. The
latter power law can be deduced from the long-wave approximation of the dispersion
relation (3.2) or, equivalently, from the leading-order one-dimensional model deduced
by Eggers & Dupont (1994) and Garcia & Castellanos (1994). In the clean case, 8 = 0,
the leading-order one-dimensional results are kn,, ~ (2 + 3v2La Y 2) 1/2 and wy, ~
(2v2+6La '/?) 1 (Eggers & Villermaux 2008). The latter long-wave result provides very
accurate results in the whole range of La, since k € (0,1) accomplishes the slenderness
assumption. In the inviscid limit, La — oo, both wy, and k,, are slightly overestimated
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Figure 12: (Colour online) Normalised satellite’s volume V4, and normalised mass of
surfactant trapped at its interface X,¢, as a function of the Laplace number La in log-log
for different values of 8 indicated in the legend. The inset shows the dependence of the
maximum amplification wavenumber k,,, with respect to La in log-log. The circle with
error bars corresponds to the experiments of the natural break-up of a liquid jet of water
performed by Rutland & Jameson (1970).

by the one-dimensional model, namely w,, — 2 3/2 and k,, — 2 /2. However, in the
Stokes limit, La < 1, the values of wy, —+ 1/6 and k,, =3 /22 1/4L,g % are in excellent
agreement with the exact linear theory. When 8 > 1/2, the elastic stress regularises ky,
in the limit of La — 0, as analysed in detail by Timmermans & Lister (2002) (see also
the isocontours of ky, in figure 2c).

In the limit of a clean interface, 8 = 0, Vi, increases monotonically with La, as
previously shown in figures 4 and 5, and explained in figure 6. In particular, our numerical
results reveals that the satellite volume scales as Vi, = 0.00421 La'*®* when La <2, and
thus Vet — 0 and Xsay — 0 as La — 0. When La is finite, a satellite drop is always
formed, since the liquid thread always experiences a transition to the inertial-viscous
regime (Eggers 1993; Castrején-Pita et al. 2015) and thus zp,;, moves from z = 0 towards
higher values when t is close enough to t;. The elongated satellite droplet formed when
La <« 1 can break up into more droplets after pinch-off as it relaxes, depending on
the value of La (Notz & Basaran 2004; Castrejon-Pita et al. 2012; Wang et al. 2019;
Anthony et al. 2019), unless La — 0 (Eggers & Fontelos 2005). Alternatively, using the
expression for the equivalent radius Rg,¢ developed in §3.2, which depends on k,,, and
since ky,, = 3 /22 1/ 4La'/* within the range of La for which Vg, exhibits power-law
scaling, it is deduced that Rg, = 0.34La"%3.
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Figure 13: (Colour online) (a) Minimum thread radius apiy as a function of the time to
break-up 7 for two different values of the Laplace number, namely La = 18.9 and 100,
and 8 = 0. The dashed lines indicate the scaling laws in the different regimes, and the
symbols correspond to the results extracted from the numerical simulations of Castrejon-
Pita et al. (2015). (b) Shape of the thread for the case La = 18.9 at ¢t = 138.017, where
@min = 1.43 x 10 % and 2z, = 3.65, and which corresponds to the star symbol in (a)
for 7 = 1.08 x 10 3. The zoomed region shows the micro-filament formed just prior to
pinch-off. (¢) Local mesh in the micro-filament region.

here for conciseness, we have checked that the unphysical singularity of the equation of
state (2.10) as I' — 0 leads to a spurious deviation from the asymptotic IV regime, which
precludes its use in correctly predicting the smallest scales prior to pinch-off for 8 # 0.
To that end, a different equation of state that provides the clean-interface constant value
of o as I' — 0 must be used (McGough & Basaran 2006; Kamat et al. 2018).
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