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Transport dynamics of self-consistent, near-marginal drift-wave turbulence.
Part I. Investigation of the ability of external flows to tune the non-diffusive
dynamics.
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1)Department of Physics, University of Alaska, Fairbanks, AK 99775-5920, USA
2)Departamento de F́ısica, Universidad Carlos III, Leganés 28911, Madrid, SPAIN

(Dated: 23 April 2017)

The reduction of turbulent transport across sheared flow regions has been known for a long time in mag-
netically confined toroidal plasmas. However details of the dynamics are still unclear, in particular in what
refers to the changes caused by the flow on the nature of radial transport itself. In a companion paper, we
have shown in a simplified model of drift wave turbulence that, when the background profile is allowed to
evolve self-consistently with fluctuations, a variety of transport regimes ranging from superdiffusive to subd-
iffusive open up depending on the properties of the underlying turbulence [D. Ogata et al, Physics of Plasmas
(submitted, 2016)]. In this paper, we show that externally applied sheared flows can, under the
proper conditions, cause the transport dynamics to be diffusive or subdiffusive.

I. INTRODUCTION

Radial transport in magnetically confined fusion plas-
mas has been an area of active investigation for many
years. Methods for regulating radial turbulent transport
could provide a balance between improved confinement
and ash removal. There is a large body of work with
experiments on various devices and plasmas simulations
of different kinds have shown that sheared flows tend to
suppress transport across the flow1–3. In fact, it is this
type of transport reduction that is believed to be respon-
sible for the access to improved confinement in current
tokamak configurations, where a large radially-sheared
poloidal flow appears at the so-called pedestal region near
the plasma edge.

However, there are still many aspects of the process by
which sheared flows reduce transport across them that re-
main unclear. Traditionally, it has been thought that the
main action of a sheared flow on turbulent fluctuations
is to reduce its size perpendicular to the direction of the
flow, which leads to a reduced effective transport coeffi-
cient in that direction. However, recent studies with ion-
temperature-gradient (ITG) gyrokinetic turbulence in a
tokamak geometry have shown that, if the radial shear in
the poloidal flow is sufficiently large, the intimate nature
of the transport process changes, becoming subdiffusive
instead of just diffusive4,5. An important limitation of
these simulations, though, was that they were carried out
using the commonly used fixed-gradient setup, in which
the background profiles are kept fixed while turbulence
is evolved. Background evolution is however important
in this context, particularly if the background profiles
remain close to near-marginal conditions, when the sep-
aration of timescales between turbulence and profile evo-
lution narrows. In near-marginal conditions, coherent
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relaxations of the profile can propagate both down and
up the background gradients (the so-called “avalanches”)
leading to superdiffusive transport6,7. There are theoret-
ical reasons to expect that sheared flows should have an
important impact on these coherent relaxations8. Re-
gretfully, the kind of flux-driven numerical plasma simu-
lations needed to explore these questions, in which back-
ground profiles, turbulence and flows should be advanced
simultaneously and self-consistently, remain very expen-
sive numerically, specially in a gyrokinetic context. Thus,
studies on the nature of radial transport in these condi-
tions, although relevant for next-step tokamaks such as
ITER, have remained scarce9.

In order to shed some light onto this matter, we have
constructed a simpler two-dimensional flux-driven model,
based on drift-wave turbulence in a bi-periodic slab ge-
ometry, that includes the simultaneous, self-consistent
evolution of profiles, turbulence and flows, whose rela-
tive simplicity allows for sufficiently long simulations. In
a companion paper10, we characterized the transport dy-
namics of the model that may exhibit a whole range of
transport dynamics, going from superdiffusive to subd-
iffusive simply by varying the parameters that define it.
The mechanisms responsible for this behavior were easily
identified, being related to the ability of the turbulence-
induced transport can relax supramarginal profiles back
below the local thresholds, the degree of competition of-
fered by other transport mechanisms and the importance
of the flows self-generated by the turbulence. In this pa-
per, we explore instead the possibilities of control offered
by externally applied flows in order to tune at will the
desired transport dynamics of the system.

With that idea in mind, we have included an external
poloidal flow within the simple drift-wave model as is de-
scribed in Sec. II. The changes induced in the transport
dynamics by the external flows are monitored by means
of a characteristic transport exponent, H, that is intro-
duced in Sec. III, as well as the technique to measure it
using tracer particles11. The next sections discuss the
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results obtained with the model. First, in order to con-
nect the results with previous work, Sec. IV presents the
modifications of the characteristics of transport induced
by the externally imposed flows in the case in which tur-
bulence is evolved with a fixed-profile. Then, in Sec. V,
the same cases are re-analyzed but using instead a flux-
driven setup in which proper background evolution is en-
abled. Finally, Sec. VI summarizes the main results of
the work.

II. DRIFT-WAVE TURBULENCE MODEL

The model that will be used in this paper is based on
a collisional drift-wave model for plasma turbulence12.
The model is formulated in a bi-periodic slab geometry
that assumes a constant perpendicular magnetic field.
The spatial domain is a periodic square in the xy plane.
The coordinate x ∈ [0, 1] mimics the radial direction (in
a magnetic toroidal configuration), while the coordinate
y ∈ [0, 1] emulates the poloidal direction. The governing
evolution equations for this electrostatic model are three:

d

dt

[(
1−
√
ε− ρ2s∇2

⊥
)
φ
]
= −

(
1−
√
ε ξ
)
CsρsΨ (n, φ, P )

+ν
√
ε (n− φ)− µρ2s∇4

⊥φ

dn

dt
= −ξCsρsΨ (n, φ, P ) (1)

+νeff (φ− n)

dP

dt
= S +DP∇2

⊥P

where n is the fluctuating density, φ is the fluctuat-
ing potential, and P is the background profile. The
advective derivative is defined with an external
flow u0 as d/dt = ∂t + (u0 + u) · ∇. The first two
equations are essentially the same as those of the stan-
dard DTEM model12,13, except in that they include an
additional dependence on the background profile P via
the nonlinear function Ψ (n, φ, P ), that we discuss later.
The third equation, on the other hand, gives the evo-
lution of the background profile P in the presence of
an external drive S. The definitions and meanings of
the coefficients appearing in the model are also quite
standard: ρs = (kBTe/eB) /Cs is the ion gyroradius,

Cs =
√
kBTe/mi is the ion sound speed, ξ = (1 + αηe)

where ηe = ∂ (lnT ) /∂ (lnn) = 2 and α = 3/2 for the
instability criterion for destabilization of DTEM modes
by electron collision12, ε is the inverse aspect-ratio that
gives the trapped electron fraction, µ is the viscosity co-
efficient, ν is the electron collisional relaxation due to
trapping and detrapping, and νeff = ν/ε. The trapped
electron fraction ε affects the instability of the drift-waves
in relations to the regime of collisionality ν12.

The adiabatic limit of the model is achieved when
ν → ∞, in which the relationship between n and φ
reduces to the “iδk” approximation14 that specifies the
nonadiabatic trapped electron response. The turbulence

evolution is then described through a single equation
where n responds to φ nonlocally12,15,16. Mid-sized toka-
maks operate in this high collisional regime where the
ion detrapping occurs before banana orbits are formed12,
which then allows for a phase shift between n and φ.
The coupling term n − φ is defined to evolve with the
ky = 0 modes unlike models with zonal flows2 such as
the modified Hasegawa-Wakatani model17. This means
that the adiabatic response for ky = 0 is not set to
zero. According to previous works on zonal flows
on a fixed-gradient setup, the elimination of the
ky = 0 modes allow a more efficient formation of
zonal flows17–19. Comparisons between transport
due to restricted and self-consistent zonal flows
have been explored under fixed-gradient setup4,5,
but this has not been explored in this model. The
hydrodynamic limit occurs when ν → 0, which decouples
the n from the φ evolution equation. The equation for φ
resembles a 2D neutral fluid equation while the n equa-
tion becomes that of a passive scalar. Large tokamaks
are in this low collisional regime12.

In the evolution of the background profile, P , S is the
source term and DP is a classical diffusion coefficient. It
must be noted that the inclusion of an evolution equa-
tion for P makes the simulation flux-driven, which means
that the local flux ΓP = uP , where u = Csρsẑ ×∇φ,
adapts itself to balance the incoming net drive. This
drive is constructed as the sum of a Gaussian of a fixed-
width, Gw(x), and prescribed positive height, S0, located
at xsource = 0.25 and another Gaussian equal in magni-
tude but of reversed sign at xsink = 0.75:

S(x) = S0 [Gw(x− xsource)−Gw(x− xsink)] . (2)

S0 represents the injection rate. It is set to S0 = 5 in all
simulations in this paper.

The model permits the self-generation of flows via the
Reynolds stress term, that expresses itself in the form
of two non-linearities, but requires turbulence to be suf-
ficiently inhomogeneous and anisotropic for significant
flow generation1,20. The first nonlinearity is the E × B
nonlinearity, that appears in the n evolution equation
and represents the advection on the fluctuating density
n, given by the term u·∇⊥n = Csρsẑ×∇⊥φ·∇⊥n. The
second is the polarization drift nonlinearity, that arises
from the advection on the vorticity, ∇2

⊥φ, and is given
by the term u ·∇⊥

(
∇2
⊥φ
)

= Csρ
3
sẑ×∇⊥φ ·∇⊥

(
∇2
⊥φ
)
.

The interplay of these two nonlinearities has been stud-
ied extensively in simulations that, in contrast to the
ones performed here, assumed a fixed background gradi-
ent13,15,16,21. The polarization drift nonlinearity is found
to be dominant at large wave numbers due to difference
in the k2 coming from the vorticity term.

The self-generation of flows can be directly
driven by the E × B nonlinearity. To the first
approximation, it can be seen by noting that the
poloidal velocity is uy = ∂xφ and performing the
flux-average on the φ equation in Eq. 1, which
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gives(
1−
√
ε
) ∂
∂t
〈uy〉y − ρ

2
s

∂

∂x

〈
∂

∂x

(
ux∇2φ

)〉
y

=

ν
√
ε

(
∂

∂x
〈n〉y − 〈uy〉y

)
− µρ2s∇4 〈uy〉y . (3)

The second term in the left hand side represents
the advection on the vorticity, which can provide
the asymmetry necessary to generate sheared
flows. Hence, the model inherently generates
sheared flows that are amplified under the flux-
driven setup. There is no free parameter in this
model that directly regulates the self-generated
flows.

In addition to self-generated sheared flows, the pos-
sibility of having externally-imposed flows has also been
introduced in the model through the advective derivative
operator, d/dt = ∂t + (u0 + u) ·∇. The external flow is
defined as u0 = Csρsẑ × ∇φ0, being φ0 an externally
defined electrostatic potential with a radial profile given
by φ0 = Φ0 cos (2πx). In this way, the velocity profile
is uext ∼ Φ0 sin (2πx) ŷ, reaching its maximum shear at
x = 0.5. The external flow remains incompressible since
∇ · u0 = 0. It must be noted that the external elec-
trostatic profile φ0 is not included in the nonadiabatic
collisional detrapping; therefore, φ0 is not added to
the term proportional to the difference n− φ in the evo-
lution equation for φ.

We discuss next the nonlinear function Ψ (n, φ, P ),
that includes the threshold condition that introduces the
possibility of profiles being near-marginal. The term is
defined as:

Ψ (n, φ, P ) = fd

[
g
(
L−1〈P 〉y,x

)
L−1〈P 〉y,x

(
−∂φ
∂y

)]
+ (1− fd)

[
g
(
L−1P,y

)
L−1P,y

∂φ

∂x
+ g

(
L−1P,x

)
L−1P,x

∂φ

∂y

]
(4)

Its meaning is explained in depth in the companion pa-
per10, but we repeat the fundamentals here for clarity.
The main ingredient is the function g(L−1s,z), defined as:

g(L−1s,z)=
1

2

[
2 + tanh

(
κ
(
L−1s,z − L−1c,s,z

))
−

− tanh
(
κ
(
L−1s,z + L−1c,s,z

))]
(5)

where L−1c,s,z is a prescribed critical value for the gra-
dient of field s in the z direction, κ[= 20] prescribes
the steepness of the hyperbolic tangent function, and
L−1s,z := ∂zs/s0 is the local gradient (s0 is an arbitrary
normalization constant). The main point is that g(Ls,z)
essentially vanishes if L−1s,z < L−1c,s,z, and is equal to one

if L−1s,z > L−1c,s,z, thus introducing a threshold for the ex-
citation of turbulence in the problem. It is the combi-
nation of the presence of this term and the flux-driven
setup that permits the system to stay near-marginality
if the proper conditions are met. Eq. 4 includes however
several possible thresholds, weighted by the fd ∈ (0, 1)

factor. The first line introduces a threshold on the radial
gradient of the poloidally averaged background profile;
the second line, two thresholds, one on the local radial
gradient of the background profile, another on the lo-
cal poloidal gradient. This combination has been intro-
duced to make possible the study of the importance of a
partial parallel equilibration across magnetic surfaces10,
which might be an issue in tokamaks, particularly closer
to the edge where dynamics are more collisional, or in the
neighborhood of rational surfaces. Indeed, if fd = 1, it
is assumed that any inhomogeneities along y are quickly
equilibrated, and that only the poloidally-averaged back-
ground profile (denoted by 〈·〉y) matters in terms of pro-
viding the turbulence with free energy. On the other
hand, fd = 0 means that there is no parallel equilibra-
tion whatsoever, and only local gradients matter.

Fixed background gradient scenarios can also be easily
run in this model. One just needs to solve Eq. 1 with

dP/dt = 0, set fd = 1, impose g
(
L−1〈P 〉y,x

)
= 1.0 and, fi-

nally, prescribe a fixed value for the background gradient,
L−1〈P 〉y,x

= ∂x 〈P 〉y /P0. With these choices, the nonlinear

function reduces to Ψ (n, φ, P ) = L−1〈P 〉y,x
∂yφ such that

CsρsΨ (n, φ, P ) = VD∂yφ where VD = Csρs/L〈P 〉y,x =

(kBTe/eB)L−1〈P 〉y,x
, a common form for the diamagnetic

drift. In this case, assuming a constant external flow
u0 = U0x̂ yields a linear dispersion for perturbations of
the form ∝ exp [i (kxx+ kyy)− iωt] given by:

0 = (ω′)
2 − ω′

[(
1−
√
ε ξ
)
ω∗ − iνeffζ

]
− iνeffω∗ (6)

where k2 = k2x + k2y, the frequency shift ω′ =
ω − U0kx, the electron diamagnetic drift frequency
ω∗ = kyVD/

(
1−
√
ε+ ρ2sk

2
)
, and the ε depen-

dent contribution of the resistive coupling ζ =(
1 + ρ2sk

2
)
/
(
1−
√
ε+ ρ2sk

2
)
. This linear dispersion re-

lation, except for the U0-shift, is identical to that of the
standard DTEM model16, as it should be.

We conclude this section by providing some details
about the numerical scheme used to solve Eq. 1. The
spatial domain considered is a doubly-periodic grid of
256 × 256 nodes in the Fourier space spanned by kx
and ky. The scheme used is a standard spectral one,
properly modified to avoid any aliasing problems, that
uses the pseudo-spectral method to deal with nonlinear-
ities. The temporal integration is done implicitly, using
a scaled preconditioned Generalized Minimal Residual
(GMRES) solver that combines well-established integra-
tion schemes22. Parallelization is achieved by using MPI
and by taking advantage of parallel Fast Fourier Trans-
form (FFT) routines, as well as other parallel numerical
integration routines. All simulations have been initial-
ized with random phases for all Fourier harmonics, and
they have been advanced in time until a suitable quasi-
steady state, with approximate balance between drive
and losses, is established.
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III. TRANSPORT CHARACTERIZATION

Removed the introduction with Fick’s law.
There are many ways to define the characterize the na-
ture of transport in a system23,24. By extension of stan-
dard diffusion, some authors define nondiffusive trans-
port as any situation in which the evolution of P in Eq. 1
follows instead a transport equation of the form:

∂βP

∂tβ
= χα,β

∂αP

∂|x|α
. (7)

for x ∈ R and t ∈ R+ where χα,β is a scaling constant.
The exponent ranges are α ∈ (0, 2) and β ∈ (0, 1). This
equation is a generalization of the more usual classical
diffusive equation, where β = 1 and α = 2, based on
fractional derivatives. These fractional operators provide
a smooth interpolation in between integer derivatives25.
Thus, the type of transport that can be captured by Eq. 7
may be non-local (if 0 < α < 2) and non-Markovian (if
0 < β < 1). The exponent of interest to us, however, is
H := β/α. Transport is called superdiffusive if H > 1/2,
diffusive if H = 1/2 and subdiffusive if H < 1/2. The
reason for this name is that any population of particles,
whose transport is governed by Eq. 7 and that are ini-
tially localized in x, will spread faster (if H > 1/2) or
slower (if H < 1/2) than its diffusive counterpart.

The transport exponent H can be estimated in many
ways. A very useful way is to take advantage of the fact
that the transport equation like Eq. 7 can be derived
from “microscopic considerations” that relate to the dis-
tribution of particle motion23,24,26. It can also be derived
as the long-term, long-distance limit of the generalized
Langevin equation11,27

x(t)= x0 +

+
1

Γ(H − 1/α+ 1)

∫ t

0

(t− t′)H−1/αξα(t′)dt′, (8)

that assumes a non-random forcing with symmetric α-
Lévy statistics and a correlation in time characterized
with a Hurst exponent H ∈ (0, 1)28. H is also the self-
similarity exponent of the trajectory, x(t). In that case,
the resulting temporal exponent in the transport equa-
tion Eq. 7 is given by β = αH.

The connections of Eq. 7 with these “microscopic for-
mulations” can be exploited to come up with methods
to determine the fractional exponents in practical situa-
tions, and thus to provide ways to characterize the nature
of transport. Among the different methods available, in
this paper we will focus on one that exploits the connec-
tion with Eq. 8 to determine H. It just requires following
the trajectories of massless tracer particles as they are ad-
vected by the turbulence. That is, to integrate in time
their velocity, that is given by,

Ṙ(t) = E ×B/B2 = Csρsẑ ×∇⊥φ, R(t0) = r0,(9)

since the advection in our model is done by the turbulent
fluctuating E × B velocity. Removed discussion of
CTRW.

Removed the definition of R/S. SinceH represents
the self-similarity exponent of the trajectory described
by Eq. 8, it must also happen that it is the correlation
(or Hurst) exponent of its derivative, or time series of
the increments of the process. Or, in discrete form, H
also represents the velocity series along the Lagrangian
trajectory. The method we have chosen to determine this
correlation exponent is the well-known R/S technique,
that has been reliably used for more than sixty years28. It
then happens that, if the signal is correlated with Hurst
exponent H (and therefore, its integrated path is self-
similar with the same exponent), one finds that,

(R/S)n ∝ n
H , (10)

from which the exponent is readily obtained. It is fair
to say that the R/S method has been criticized in the
literature because it tends to somewhat overestimate ex-
ponents (for instance, R/S tends to yield H ∼ 0.55 for
random signals instead of 0.5), but it is extremely re-
silient to both noise and periodic perturbations29, which
is why it is our method of choice. It is also worth to note
that the statistics of the determination of H are greatly
improved by averaging the rescaled range for time n over
all non-overlapping segments of size n in which the full
time series can be broken, procedure that we have exten-
sively used in this work.

IV. TRANSPORT CHARACTERISTICS OF CASES RUN
WITH A FIXED BACKGROUND PROFILE IN THE
PRESENCE OF AN EXTERNALLY-IMPOSED SHEARED
FLOW

An externally-imposed sheared flow can act as a decor-
relation mechanism when the shear strain rate produced
by the external sheared flow is greater than the eddy
turnover rate1. The added decorrelation acts to inhibit
the transport across the sheared region, while enhancing
advection in the flow direction. This inhibited transport
has been recently shown to exhibit subdiffusive features
across the flow, and to behave superdiffusively along the
flow in recent gyrokinetic simulations with fixed back-
ground gradients4,5. Removed the discussion about
shear strain rate.

In order to better understand the action of an exter-
nal flow in situations in which profile turbulent modifi-
cation and flow generation happen simultaneously, self-
consistently and in near-marginal conditions, we have
started our analysis by looking first at the simpler (and
more traditional) case in which profile modification is
disabled. To do that, we have run the DTEM model in
a fixed-background-mode. That is, we set dP/dt = 0,

fd = 1, impose g
(
L−1〈P 〉y,x

)
= 1 and choose a value

L−1〈P 〉y,x
= 0.5, so that a constant, fixed gradient pro-

vides free energy for the turbulence. These choices also
bring us close to the majority of previous work by many
authors, which should allow for a more meaningful com-
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parison when we allow profile modification to happen in
the next section.

In drift-wave turbulence, however, one needs to be
careful. An additional mechanism exists, independent
of the presence of self-generated sheared flows, that can
yield subdiffusive radial transport, and superdiffusive
poloidal transport. It emerges after the nonlinearly satu-
rated state has been achieved due to the linear (poloidal)
diamagnetic drift30–34. Hence, in order to demonstrate
any subdiffusive influence of an externally-imposed flow,
the shear strain rate defined through Φ0 must overcome
that from the diamagnetic wave term. That is, the shear
strain rate imposed by the external flow must effectively
decorrelate the eddies faster than the effect from the dia-
magnetic drift. We have made sure that this is the case
by modifying some of the parameters that define the
DTEM model, while keeping Φ0 = 0, until the resulting
transport has diffusive features in all directions, imply-
ing that the action of the diamagnetic wave is negligible.
The two parameters that have been varied in this search
are ν and ε, that respectively represent the electron col-
lisionality and the trapped electron fraction. Removed
figure and discussion of the parameter scan of ν
and ε.

From the results from the tracer analysis, it is appar-
ent that, consistently with previous observations30–34, ra-
dial subdiffusion (and superdiffusive poloidal motion) de-
pends quite strongly on the value of ν. At the largest val-
ues of ν we have explored, the radial subdiffusive signa-
ture becomes quite strong. This subdiffusive signature,
as previously said, comes primarily from the temporal
decorrelation from the diamagnetic drift instead of from
the action of any self-consistently generated sheared flow.
At smaller values of ν close to the largest diamag-
netic drift frequency ω∗ ∼ 0.5, transport becomes
more diffusive. From these results, we decided to move
into a parameter regime in which the electron collisional
relaxation is on the order of the maximum diamag-
netic drift frequency ν → ω∗, and the trapped elec-
tron fraction becomes large ε→ 1 in order to isolate and
make easier the analysis of the effect of external flows
on transport in the model. The disadvantage of this pa-
rameter regime, on the other hand, is that the linear
growth rate becomes larger due to the quadratic nature
of the eigen-frequencies from Eq. 6. This means that
the turbulence becomes more susceptible to instabilities,
particularly those of the Kelvin-Helmholtz type35.

Next, we proceeded to add external flows of varying
amplitude Φ0 to simulations run in the regime we just
chose. The resulting vorticity fields, ∇2

⊥φ are shown in
Fig 1 for some representative cases. It can be appreci-
ated that the maximum value of Φ0 that can be used is
indeed limited by the onset of Kelvin-Helmholtz insta-
bilities, as expected. Due to the periodic bound-
ary conditions, the vortices appear at x = n/2
where n = 0, 1, 2, . . .. However, the vortices are
staggered since they are composed of staggered
chains of convection cells and unstable to rotat-

FIG. 1. Vorticity field ∇2φ in real space for three values of
Φ0: (a) Φ0 = 0, (b) Φ0 = 1.5, and (c) Φ0 = 3 in the regime
in which the linear wave contribution is weak. Transport is
diffusive in the absence of external flow (a). Elongation in the
poloidal direction becomes prominent with larger flow ampli-
tude Φ0 = 1.5 (b). A Kelvin-Helmholtz instability occurs
near the regions with largest shear at large enough external
flow amplitude Φ0 = 3 (c).

ing and tilting36,37. In this work, the vortices
move in the x-direction depending on the sign
and trigger turbulence when vortices of different
sign interact. This can be seen at x ∼ 0.25 and
x ∼ 0.75 in Fig. 1 (c). It has also been shown
in a previous work on a fixed-gradient setup that
Kelvin-Helmholtz instability reintroduces turbu-
lence when zonal flows are amplified17. Instead
of zonal flows, an external sheared flow is the
source of free energy for the Kelvin-Helmholtz in-
stability. As an illustration of the tracer analysis done,
Fig. 2 shows a few rescaled ranges for the series of the
x (or y) component of the tracer Lagrangian velocity.
Two distinct regions are clearly visible. The first one,
for timescales smaller than τΩi ∼ 1 corresponds to the
self-correlation of turbulence, and are of no interest for
the determination of the long-term properties of trans-
port. The second region, for τΩi � 1 is seen to scale
as τH , thus defining the Hurst exponent. The transi-
tion timescale between these regions is seen to move to
smaller values for larger Φ0, though, which points to the
reduction in the autocorrelation time of the turbulence
as the shear strain time imposed by the external flow in-
creases. At the larger timescales, it is clearly seen that
radial subdiffusion is enhanced by the presence of the ex-
ternal flow. Radial transport becomes more subdiffusive
with the stronger shear. In the poloidal direction, the
reverse behavior is observed. The level of superdiffusion
increases as the shear becomes stronger. In fact, the value
of the Hurst exponent exceeds even the upper limit of 1,
which we think is related to the presence of long-lived
eddies that then allows the signal to be non-stationary.

We have collected the Hurst exponents obtained from
all simulations in Fig. 3 as a function of the shear flow
strength. As advertised, it is clear that radial transport
can be forced to be more subdiffusive by means of ex-
ternally applied flows with larger shear values; at the
same time, poloidal transport becomes more superdiffu-
sive. The possibility of controlling the dynamics ends,
however, when the stability of the external flow is bro-
ken by the onset of Kelvin-Helmholtz instabilities at the
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FIG. 2. Transport exponents with varying external flow am-
plitude Φ0 on a fixed gradient setup show slight subdiffusion
in the cross-flow direction but superdiffusion in the poloidal
direction.

FIG. 3. Hurst parameters with varying external flow ampli-
tude on a fixed gradient show subdiffusion in the cross-flow
direction but strongly superdiffusion in the poloidal direc-
tion. The radial subdiffusive transport signature saturates
at H ∼ 0.35 due to the onset of a shear-driven instability.

positions of maximum flow shear. It is interesting to
note that, in the case with fixed-gradients just examined,
the value of H for radial transport (before any instabil-
ity of the flow kicks in) saturates at around H ∼ 0.35.
This value is interestingly similar to the value obtained
in pure Hasegawa-Wakatani models with self-consistent
zonal flows18. This similarity points to the structure
of the flow, and not the self-consistent interaction with
the turbulence, as the more important factor in setting
the value of the transport exponent H, at least in fixed-
gradient simulations, as previously hinted at elsewhere5.

V. TRANSPORT CHARACTERISTICS OF CASES RUN
WITH PROFILE EVOLUTION IN THE PRESENCE OF
AN EXTERNALLY-IMPOSED SHEARED FLOW

In this section, we proceed to explore the possibil-
ity of controlling the transport dynamics by means of
externally-imposed sheared flows in the more realistic
case in which a self-consistently evolving flux-driven pro-
file replaces the fixed gradient used in the previous sec-
tion. We have chosen as the base case with parameters
fd = 0 and L−1c,P,x = 1, so that a threshold local gradi-
ent exists in the radial direction. The source is chosen
so that, in the case with no externally-imposed flows,

radial transport is superdiffusive and poloidal transport
subdiffusive. Again, the poloidal self-generated
flows arising from the asymmetry in the Reynolds
stress (Eq. 3) are only restricted by the choice
of L−1c,P,x, which corresponds to the case when
radial relaxation events dominate over the self-
generated flows. This case is then used as the
base case in order to investigate the effect of an
external poloidal sheared flow on the radial trans-
port.

FIG. 4. Proxies for total energy Wturb (left) and WP (right)
reach quasi steady-states when the local turbulence balances
the sources. Radial relaxations are inhibited with increasing
Φ0, which is reflected by the increase in 〈WP 〉. However, the
turbulence decreases with increasing Φ0. For large enough
flow amplitude, flow-driven instabilities induce relaxations in
WP , also reflected as oscillations in Wturb.

In order to better quantify what is going on, we will
use several proxy functions. In particular, we monitor

WP ∝
∫ 1

0
|P |2 dxdy and Wturb ∝

∫ 1

0
|n|2 + |φ|2 dxdy.

The first one represents the energy stored in the back-
ground; the second, the energy in the turbulence. In ad-
dition, we use δWturb/ 〈Wturb〉t and δWP / 〈WP 〉t where

(δWturb)
2

=
〈

(Wturb − 〈Wturb〉t)
2
〉
t

and (δWP )
2

=〈
(WP − 〈WP 〉t)

2
〉
t

to respectively measure the bursti-

ness (or activity) of the turbulence and of the pro-
file modification processes. Here, 〈·〉s means average
over s. Typically, an steady-state means that both
WP ∼ constant and Wturb ∼ constant. In fixed-
gradient simulations, δWP / 〈WP 〉t = 0, whilst the value
of δWturb/ 〈Wturb〉t increases with the importance of
turbulence-induced transport. In simulations where pro-
files are evolved, δWP / 〈WP 〉t > 0, being small in cases in
which there is scarce profile modification (for instance, in
supramarginal cases where profile stay well above thresh-
old everywhere), and large when profile modification is
intense (as in near-marginal regimes).

Fig. 4 shows the time traces of some of these func-
tions for several flux-driven simulations with externally-
applied sheared flows of varying amplitude. As it is
easily seen, the steady state is reached for times tΩi >
200− 300. Several other conclusions can be drawn from
these traces. First, the saturated value of Wturb decreases
with a non-zero Φ0, which reflects the turbulence sup-
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FIG.5. Vorticity∇2φforthreevaluesofΦ0areshown:
(a)Φ0 =0.0,(b)Φ0 =0.6,and(c)Φ0 =1.0. Radially
elongatedstructurescorrespondingtoradialrelaxationsare
moreprominentforΦ0=0.0in(a)thanwhentheexternal
flowproducesashearingeffectin(b)forΦ0=0.6.Turbulence
suppressionisalsoprominentin(b). AtalargerΦ0=1.0,
individualeddiesreturnin(c). Dashedredlinesdenotethe
sourceatxsource=0.25andthesinkatxsink=0.75.

pressioncarriedoutbytheexternally-drivenflow(for
instance,Wturb(Φ0=0.4)/Wturb(Φ0=0) 0.3,which
correspondstoareductionofturbulentenergybyabout
70%). ThisisalsoevidentinFig.5,thatshowsthe
vorticityspatialfield,∇2φ,forseveralofthesimula-
tions. Clearly,smallervorticalstructuresarepresent
whencomparingframes(a)(Φ0=0)and(b)(Φ0=0.6),
asaresultoftheradialdecorrelationfeltbythetur-
bulenteddiesintheradialshearoftheimposedflow.
CorrespondingtothedecreaseinWturbforΦ0>0.4,
transportbecomesinhibitedinthecross-flowdirection,
whichsteepensthelocalgradients(asrevealedbythe
increasingratiosWP(Φ0=0.4)/WP(Φ0=0) 8.8,or
WP(Φ0=1)/WP(Φ0=0) 48). Thereisalsoasig-
nificantoscillationobservedinthetimetracesofenergy
forlargerexternalamplitudesΦ0≥0.6. Thereasonis
that,asthecross-flow(i.e.,radial)transportdecreases
forincreasingΦ0,thefreeenergyinthegradientsalso
increases,whichinturnincreasestheturbulenceuntilit
canovercometheshearedflow. Alsoinresponsetothe
increaseinthefreeenergy,vorticesstarttobecomemore
prominentatlargerflowamplitudesΦ0≥0.6(Fig.5
(c))sincevorticescantransportmorematerialdueto
self-trapping12,32. ThebackgroundenergyWP alsore-
flectstheburstsoffluctuation-inducedtransportcorre-
spondingtotheoscillationsinWturb.Theseoscillations
arereminiscenttotheradialrelaxationeventsinduced
byafixedcriticalgradient(Φ0=0). Withanexter-
nallydrivenshearedflow,thethresholdisinsteadestab-
lishedbythebalancebetweentheshearedflowandthe
growthratesthataredeterminedbythelocalgradients.
Whenthelocalgradientisbelowthissetthresholdvalue,
theshearedfloweffectivelyreducestheturbulence.But,
whenthelocalgradientexceedsthethresholdvalue,the
turbulencerelaxestheexcessfreeenergy.Asaresult,a
similarturbulentrelaxationisnaturallyestablishedina
flux-drivensystemwithanexternalshearedflow.

Theimpactoftheexternally-imposedradially-sheared
poloidalflowonthebackgroundprofilePisshownin
Fig.6,inwhichthetimeandpoloidalaveragedradial
gradientofthebackgroundprofile,∂xPy,t,canbeseen.

FIG.6. Timeandpoloidalaveragedbackgroundgradi-
entprofilesforvaryingamplitudesoftheexternally-imposed
radially-shearedpoloidalflow. Redlinescorrespondtothe
criticalgradientparameterused,L 1

c,P,x=1.Orangelinesde-
notetheapproximatesaturatedgradientestablishedatsuf-
ficientlylargeexternalflows(Φ0>0.6)aroundL

1
P,x =5.5.

Thesourceislocatedatxsource=0.25,andthesinkisat
xsink=0.75

Thediffusiondominatedprofileisobtainedbysolving
Eq.1forPwithouttheadvectiontermu·∇Pfora
constantinjectionrateS0=5. Theresultingaverage
profilehasanalmostconstantslopebetweensourceand
sink,determinedbyS0. Forthebasecase(i.e.,the
onewithΦ0=0),theaveragegradientprofile(shown
withdowntriangles)sitsnearmarginalityaspreviously
stated.Themainconsequenceoftheexternally-imposed
flowis,asseenclearlyinFig.6,toincreasetheaver-
ageslopewhichbecomes,onaverage,supermarginal,al-
thoughstilllessthanthediffusiveprofile,implyingthat
asignificantamountofradialtransportstillgoesthrough
theturbulentchannel. Thisisaresultofthecombina-
tionoftheinhibitionofcross-flowtransportcarriedout
bytheexternalflowandtheflow-driveninstabilitythat
triggerstheturbulence.Theexternalshearedflowisan-
othersourceoffreeenergythatcaninduceturbulence.In
consequence,theslopedoesnotincreasewithoutbound.
Instead,itsaturatesduetotheexternalflow-inducedin-
stabilityatanewlevel(markedinorangeinFig.6)that
correspondstoapproximatelyL−1P,x 5.5. Thispossi-
blycorrespondstotheestablishmentofanewbalance
betweentheturbulencedrivenatthatvalueofthegra-
dientandtheactionoftheexternally-imposedsheared
flow.ThisvalueofL−1P,xisbasedontheassumption
thatthesystemtendstobeatanear marginal
stateonaverageduetothecombinationofthe
reducedcross-flowtransportcarriedoutbythe
externalflowandtherelaxationsthataretrig-
geredbytheflow-driveninstability. Thecloseto
marginalstate,onaverage,hasbeenestablished
intheno-flowcase(Φ0=0).

Wehavealsoprobedthechangesinthenatureoftrans-
portcausedbytheexternally-inducedshearedflowsby
calculatingthefractionalexponentH,bothintheradial
andpoloidaldirections. Thetracerrescaledrangeob-
tainedforseveralofthesimulationsareshowninFig.7,
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both for the radial and poloidal directions. The obtained
exponents are shown, as a function of Φ0, in Fig. 8.
Similarly to the case with fixed-gradients, the region
for timescales τΩi < 1 represents the self-correlation of
transport events, and is thus not interesting for long-
term dynamics. For τΩi � 1, one can see that the su-
perdiffusive radial transport characteristic of the no-flow
case (Φ0 = 0) transitions to subdiffusive at finite flow
intensities. It is interesting to see that, for all intensi-
ties, the value of the exponent is very similar and around
H(vx) ∼ 0.4. This suggests that the overall radial trans-
port dynamics are relatively insensitive to the establish-
ment of the limiting gradient imposed through the ex-
ternal sheared flow, as we discussed previously (Fig. 9).
Similarly, the mildly subdiffusive poloidal transport of
the no-flow case becomes strongly superdiffusive. Again,
the non-stationarity of the tracer velocities that
gives an average of H > 1 is due to the presence
of long-lived eddies generated by the flow-driven insta-
bility. However, the deviation is less than the fixed-
gradient set up since the instability can trigger relax-
ations in the profile, which, in turn, decreases the free
energy in the gradient. The threshold value of Φ0 for
this flux-driven setup and this flow profile has not
been documented due to the dependence on the
time-dependent local gradients. The competition
between relaxation events and the self-generated
sheared flows already present a complex interplay,
and the addition of an external flow profile fur-
ther convolutes the conventional interpretation
of threshold values. Hence, the focus is on the
change in the transport rather than the modifica-
tions on the linear stability due to the externally
imposed flow profile.

FIG. 7. Transport exponents with varying external flow am-
plitude Φ0 with a flux-driven background profile also show
subdiffusion in the cross-flow direction but superdiffusion in
the poloidal direction. A non-zero external flow imme-
diately inhibits the radial transport.

We show a last glimpse into the change in the radial
dynamics caused by the externally-imposed flow by look-
ing at the evolution of the poloidal averaged radial flux
〈ΓP,x〉y, that can be calculated using ΓP,x = Pvx =

−P∂yφ where P > 0 always (thus, the sign of the flux
follows that of the flow). Fig. 9 shows the temporal evo-
lution of these fluxes for increasing external flow am-
plitudes, from Φ0 = 0 (frame (a)), to Φ0 = 1 (frame

FIG. 8. Transport exponents with varying external flow
amplitude Φ0 with a flux-driven background profile also show
subdiffusion in the cross-flow direction but superdiffusion in
the poloidal direction. Dashed red line denotes the diffusive
limit for R/S analysis.

(d)). In the no-flow case, diagonal features are appar-
ent that reflect the ongoing coherent transport events
(i.e., avalanches) that propagate down (and sometimes
up) the near-marginal gradient, reminiscent of what one
observes in critical-threshold sandpile models8. When
the externally-imposed flow is present, correlated trans-
port events still occur but are increasingly more scarce.
Diagonal features in 〈ΓP,x〉y are now interspersed without

correlated events. This shows the impact of an external
sheared flow on the cross-flow transport. Corresponding
to the reduction in correlated flux events, the 〈∂xP 〉y,t
also becomes steeper on average as shown in Fig. 6. With
a larger external flow amplitude of Φ0 = 0.6, 〈ΓP,x〉y now

shows regions of suppressed flux with down-gradient ac-
tivity lasting about tΩi ∼ 100 (Fig. 9 (c)). At Φ0 = 1
in Fig. 9 (d), the duration of flux events 〈ΓP,x〉y be-

comes somewhat shorter than Φ0 = 0.6 to approximately
tΩi ∼ 50. Down-gradient correlated flux events become
relatively suppressed with larger enough external flow in-
terspersed with bursts of correlated events. Bursts in the
radial flux occur due to an additional critical gradient el-
ement naturally imposed by the external sheared flow. In
this regime, the local non-zero critical gradient parame-
ter L−1c,P,x = 1 is insufficient to decorrelate the external
poloidal sheared flow. However, a new limiting gradient
is established at about L−1c,P,x ' 5.5 that weakly induces
down-gradient transport. Once ∂xP is large enough to
trigger a radial transport event, correlated radial trans-
port temporarily overcomes the imposed sheared exter-
nal flow. Although the gradient steepens, the values
for 〈ΓP,x〉y stays about the same, which means that

the total time integrated poloidal averaged flux becomes
smaller. Smaller and lesser fluxes down-gradient reduces
the transport from the sink to the source region with
increasing Φ0.
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FIG. 9. Poloidal averaged radial flux 〈ΓP,x〉y with increasing

values of the external flow amplitude Φ0: (a) Φ0 = 0, (b)
Φ0 = 0.4, (c) Φ0 = 0.6, and (d) Φ0 = 1. Increasing Φ0

suppresses 〈ΓP,x〉y for Φ0 < 0.6 and becomes less frequent.

VI. CONCLUSIONS

In this work, we have explored the possibility of using
externally-induced radially-sheared poloidal flows to tune
the dynamics of radial turbulent transport in realistic,
flux-driven conditions. Several lessons have been learnt.
First, externally-imposed flows readily decorre-
late radial transport events and, under the proper
conditions, could make the nature of transport
across them diffusive or subdiffusive, even in cases
of near-marginal turbulence that drive strong su-
perdiffusive transport. The ability to use these flows,
however, has been shown to be limited by the triggering
of flow-driven instabilities, of the Kelvin-Helmholtz type,
that are excited when the radial shear in the flow becomes
too large. The appearance of these instabilities does not
impede, however, the reaching of a steady-state in which
radial transport retains its subdiffusive character.

In addition, the analysis presented here illustrates the
fact, once more, that the proper study of turbulent trans-
port in near-marginal conditions necessitates of a proper
evolution of background profiles simultaneously with the

turbulence, and of a wider framework to describe the
overall transport dynamics that goes beyond the usual
diffusive paradigm.
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