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Abstract

We report experiments on the dripping dynamics and jetting transitions that
take place when a liquid is injected vertically downwards at a constant flow
rate, for wide ranges of the liquid viscosity and injector radius. We explore
values of the Bond number significantly larger than in previous works, revealing
the existence of period-2 dripping regimes with satellite formation that do not
exist at small Bond numbers. In addition, we quantify the influence of liquid
viscosity on the hysteresis associated with the dripping-jetting transition, that
had previously been studied only for the particular case of water.
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1. Introduction

Drop formation is a phenomenon present in nature, everyday life situations,
industrial processes and medical, pharmaceutical and food applications (see
e.g. Barrero and Loscertales, 2007; Eggers and Villermaux, 2008; Rodriguez-
Rodriguez et al., 2015; Anna, 2016, and references therein). Fiber spinning (Pear-
son and Matovich, 1969; Stokes et al., 2014), electro spinning (Doshi and Reneker,
1995; Loscertales et al., 2002), or coflows (Ganan-Calvo, 1998; Gordillo et al.,
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2014; Evangelio et al., 2016) are examples of techniques widely used to stretch
a liquid jet with the purpose of generating either tiny threads, or small drops
with sizes significantly smaller than that of the injector. In addition, gravity
can also be used as the stretching mechanism when a liquid is injected though
a vertically orientated tube, if the flow rate is above a certain threshold (Clanet
and Lasheras, 1999; Ambravaneswaran et al., 2004; Rubio-Rubio et al., 2013;
Chakraborty et al., 2016). Below this jetting threshold, drops start growing at
the outlet until the surface tension forces cannot longer balance their weight,
and the pinch-off takes place, in a repetitive process known as dripping regime.
As an example, Figure 1 shows the evolution of a pendant drop of 20 ¢St poly-
dimethylsiloxane (PDMS) oil, issuing from a tube of radius R = 1.75 mm at a
constant flow rate @ = 11 ml/min.

Not only micron- and sub-micron-sized drops are of interest in applications.
Pharmaceutical and alimentary industries face the problem of accurately dis-
pensing doses of liquids with different properties (Chen, 2009). In addition,
millimetric drops are routinely used for the characterisation of fluid-fluid inter-
faces. For instance, in the drop weight method, the static equilibrium between
surface tension forces and the weight of a pendant liquid drop allows to extract
the surface tension coefficient. In fact, in many practical applications, the in-
ertia of the flow is not negligible, and its competition with the gravitational
and surface tension forces may lead to chaotic behaviours, depending on the
damping effect of the liquid viscosity. The simplest and most common example
is a dripping faucet, which has been studied as a paradigm of chaotic system
for many years (Shaw, 1984). For instance, Coullet et al. (2005) proposed a
mechanical explanation for this chaotic behaviour through modelling and nu-
merical simulations.

In the inviscid limit, drop formation was studied numerically by Schulkes
(1994) using an axisymmetric boundary integral method. Taking advantage
of the development of several one-dimensional (1D) model equations, the first
attempts to simulate the formation of viscous drops at a very reduced com-

putational cost dealt with the quasi-steady growth of the droplet (Eggers and



Dupont, 1994; Brenner et al., 1997). The drop formation process at a nonzero
Weber number was thoroughly studied in the works of Prof. Basaran’s group,
both from the numerical and the experimental points of view, e.g. in the work
of Wilkes et al. (1999) where the phenomenon is explored for wide ranges of the
governing parameters. Later on, to show the capabilities and limitations of the
1D model, Ambravaneswaran et al. (2002) compared their results with simula-
tions of the axisymmetric Navier-Stokes equations, finding that the agreement
between the two models is remarkably good, especially when surface tension
forces are dominant.

For small enough flow rates, main droplets as well as tiny satellite drops
are formed periodically. As the flow rate is increased, satellites are no longer
present, giving way to a period-1 dripping regime without satellite droplets
(Zhang and Basaran, 1995; Zhang, 1999; Ambravaneswaran et al., 2002). If the
flow rate is further raised, the transition to jetting takes place. Depending on
the liquid viscosity, this transition can be preceded by more complex regimes,
namely period-2, period-4, chaotic dripping etc. as mentioned above.

Ambravaneswaran et al. (2004) studied the effect of viscosity in the tran-
sition from dripping to jetting by numerically simulating the 1D equations.
Their work revealed that, in a liquid with high enough viscosity, the dripping
to jetting transition takes place without exhibiting intermediate chaotic drip-
ping regimes, otherwise present in the case of low viscosity ones (Clanet and
Lasheras, 1999; Coullet et al., 2005). In addition, and making use of simple scal-
ing arguments, Ambravaneswaran et al. (2004) derived criteria to predict the
transition to jetting. In a more extensive work, accompanied by experiments,
Subramani et al. (2006) characterised the dripping regimes through bifurcations
and phase diagrams, showing the high complexity of the phenomena when vary-
ing the governing parameters. However, all these works were performed at small
Bond numbers, Bo < 0.5, far below the values studied in the present study.

As a natural continuation of the work by Rubio-Rubio et al. (2013), where
the important role of the injector diameter in the jetting-to-dripping transition

was demonstrated, the main objective of this paper is to extend the works of Am-



bravaneswaran et al. (2004) and Subramani et al. (2006) to substantially higher
values of the Bond number. The paper is structured as follows: in Section 2 we
describe the flow configuration and the variables used for the experimental anal-
ysis. The results are presented an discussed in Section 3, addressing specifically:
the dripping and jetting transitions, including the hysteresis of the forward and
reverse processes, the classification of regimes in the governing parameter space,
and the existence of satellite droplets. Finally, the conclusions are summarised

in Section 4.

2. Problem description

To characterise the dynamics of the dripping regimes as well as the jetting
transition, the same parameters as in Ambravaneswaran et al. (2004) have been
used. Consider a Newtonian liquid of constant and uniform properties, namely
density p, kinematic viscosity v and surface tension coefficient ¢ issuing from
a capillary tube of radius R, at a constant flow rate ). In the presence of
the gravitational acceleration g, and in a quiescent surrounding atmosphere
at pressure p,, the drops growing and detaching from the injector outlet can
be characterised by the volume of the detached drop Vj, the volume of the
liquid that remains pending attached to the outlet V,, and the limiting length
Lg4, defined as the distance from the tube at pinch-off. The definition of the
relevant variables can be observed in Figure 1.

The experimental setup was the same as the one used in Rubio-Rubio et al.
(2013), where the jetting to dripping transition was experimentally studied,
and therefore it is also similar to those used in previous studies of jet and drop
formation (Wilkes et al., 1999; Subramani et al., 2006). Basically, it consists
of a vertical capillary tube of radius R through which different PDMS silicone
oils from Sigma-Aldrich are injected at a constant flow rate, thanks to the use
of a Harvard Apparatus PhD Ultra syringe pump. The experimental images
are acquired using a Red Lake Motion Pro X high-speed camera. Both the

injector and the camera are mounted on vibration-isolation table and enclosed



Figure 1: Sequence of images showing the evolution of a pendant drop of PDMS silicone oil

of kinematic viscosity v = 20 ¢St, injected at a constant flow rate @ = 11 ml/min through a
tube of radius R = 1.75 mm, and variables used for the analysis of the experiments. The time

interval between two consecutive frames is 6 ms

within a chamber to avoid ambient disturbances. The liquid is supplied through
stainless steel tubes whose outlet is sharpened, so that the contact line is pinned
at the inner diameter, avoiding the existence of two different radii to define the
injection conditions. The inner radii of the capillary tubes were between 1.0
and 3.25 mm, with a length-to-diameter ratio large enough to ensure a fully
developed velocity profile at the exit plane. The properties of the different
liquids used in the present work can be found in Table 1.

The governing parameters of the experiments are the liquid properties p,
v and o, the injector size R and the injection flow rate @, apart from the
gravitational acceleration g. In dimensionless terms, the dripping and jetting
dynamics can be described through the values of three parameters, namely the
Bond, Bo = pgR?/o, Weber, We = pU?R/o, and Kapitza, I = 3v(p3g/c®)'/*,
numbers defined as in Rubio-Rubio et al. (2013), with U = Q/(wR?) the mean
exit velocity. Traditionally, the Ohnesorge number Oh = n/v/pRo, being n = pv
the dynamic viscosity of the liquid, has been used in these type of studies. Never-
theless, the use of I', which is similar to the Morton number Mo = gv*p3/o3,
often used in the bubble literature, results a more natural choice, because its

value depends only on the liquid properties for a given value of g, and not on



v [mm? s plkgm™3] o [mN m™} r

2 833 18.3 3.31 x 1072
5 915 19.7 8.40 x 1072
10 935 20.1 1.68 x 107!
20 950 20.6 3.34 x 107!
50 960 20.8 8.36 x 107!

Table 1: Properties at 25 9C of the Sigma-Aldrich silicon oils used in the present study. The

last column represents the Kapitza number, I' = 3v(p3g/a?)!/4

g=9.81 ms—2.

, computed using a value of

the length scale. Thus, a change in the value of I" implies only a variation of the
working fluid. In contrast, when using Oh as a governing parameter, its change
can be associated either with a variation of the liquid properties or a change in
the injector size. This fact can be readily observed either from the definition of

Oh or from the relation Oh = Bo'/*/(3I").

3. Results

The rich nonlinear dynamics of the dripping regime can be appreciated by
observing the wide diversity of responses present in a dripping faucet when the
governing parameters are varied. The results presented in Figure 2(a) show an
example of periodic dripping, in which all the main drops detached from the
tube are of equal size and the pinch-off occurs at the same point. This fact
means that there is a single value of both Ly/R and of V;/V,, for a given value
of We. This regime is known in the literature as period-1 or P1, and constitutes
the simplest possible dripping behaviour. In contrast, if the drops alternatively
detach at two different lengths from the outlet, with two different shapes re-
spectively, the regime is known as period-2, or P2. There are also examples
of odd-dynamics, such as period-3 regime or P3, reported in the literature. In
addition, apart from these periodic regimes, the ejected drops may exhibit a

chaotic behaviour, CD, with different volumes and detachment lengths without



Figure 2: Examples of consecutive drops in the case of P1 regime (a), P2 (b), P3 (c) and jetting
(d). The values of the governing parameters in each case are Bo = 2.2, We = 1.11 x 102,
I' = 0.17 (a), Bo = 0.7, We = 6.65 x 1072, I' = 0.33 (b), Bo = 1.0, We = 4.69 x 1072,
I'=0.17 (c) and Bo = 2.2, We = 2.11 x 1072, I = 0.084 (d).

exhibiting any periodicity.

The periodic regimes P1, P2 and P3 described in the previous paragraph are
depicted in Figures 2(a), (b) and (c) respectively, while a faucet in the jetting
regime is shown in Figure 2(d), for illustrative purposes. Figure 3(a) shows an
example of chaotic dripping while in Figure 3(b) the values of the dimension-
less detachment length for ¢ consecutive droplets are represented, revealing the
chaotic behaviour of this regime. The values of the governing parameters in
each case can be found in the corresponding figure captions.

The presence of satellite droplets will be specifically addressed in Section 3.3.

Therefore, in the dripping regimes mentioned above, and summarised in the
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Figure 3: Consecutive drops in the chaotic dripping regime (a) and values of the dimensionless

limiting length (b) for Bo = 2.2, We = 1.46 x 1072, I = 0.084.

phase maps presented in the following sections, there is no explicit differentia-
tion between cases with and without satellites, provided that the main droplets

exhibit the same behaviour.

3.1. Dripping to jetting transition. Phase diagrams at constant Kapitza number

There are many examples in the literature in which qualitative or ad-hoc
criteria are used to decide when the transition to jetting takes place. As an ex-
ample, Clanet and Lasheras (1999) considered that the jetting regime occurred
when the value of the limiting length accomplished the criterion Lg/R ~ 20.
Nevertheless, this approach, which is valid in the case of water in a first approx-
imation, fails when the viscosity of the liquid increases due to the formation of
very long ligaments in the dripping regime. Therefore, the criterion used in the
present work follows that of Ambravaneswaran et al. (2004): the transition to
jetting can be easily identified because the values of Ly/R and V;/V, undergo
sudden and large changes at the same time, as clearly evidenced in Figure 4.

The detachment length increases abruptly at a value of We = We;, as can be
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Figure 4: Nondimensional limiting length Lg/R (a) and detached to pendant volume ratio
Via/Vp (b) as functions of We, for Bo = 1.39 and I' = 0.84. The vertical lines represent
the critical values of We at which the transition from dripping to jetting, We;, and from
jetting to dripping, Wey, take place. Hysteresis exists in the shaded region, where pointing

left triangles have been used to represent the experimental results.

appreciated in Figure 4(a), while the volume ratio suddenly decreases at the
same Weber number We;, as represented in Figure 4(b). Once a jet is formed,
the flow rate can be reduced below the value of We; prior to recovering the
dripping regime (Clanet and Lasheras, 1999). Thus, the jetting to dripping
transition occurs at a Weber number We; < We;. The shaded region in the
figure thus represents the hysteresis associated with the two transitions.

The same analysis has been performed for different values of Bo, as sum-
marised in Figure 5. The shadowed zones in Figure 5 correspond again to the
hysteresis of the transition for each value of Bo, but in these cases they have
been plotted only either in Figure 5(a) or (b), to avoid the overlapping of the
hysteretic regimes, and thus to ease the reading of the figures. The error bars
have been omitted for clarity, since the uncertainties are similar to those already
presented in Figure 4. It should be pointed out that this hysteresis had not been
previously quantified for any liquid different from water (Clanet and Lasheras,

1999).
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Figure 5: (Colour online) Dimensionless limiting length L4/R (a) and volume ratio Vy/Vj
(b) as functions of Weber number We, for I" = 0.84 and several values of Bo. The vertical
lines represent the transition to jetting, and the shaded areas correspond to the hysteresis
associated with the two transitions, shown for each Bond number only either in panel (a) or

(b) for clarity.

Figure 6(a) shows the experimental value of We; and the hysteresis present
in the transition as functions of Bo, for a given liquid, that is, for a fixed value
of I' = 0.84 corresponding to the silicone oil of kinematic viscosity v = 50 c¢St.
The boundary represented by the symbols A, divides the Bo-We plane into
two regions, yielding a phase map in which points above the curve correspond
to a jetting regime, labelled J in the figures. Below this critical curve, in the
zone labelled P1, the behaviour corresponds with the period-1 dripping regime.
Thus, this is an example of simple dynamics, as defined in Subramani et al.
(2006), being the possible responses either P1 or J. The hysteresis can also be
observed in Figure 6(a), where the symbols V represent the boundary for the
jetting to dripping transition. The shaded area shows the hysteretic region of
the Bo-We parameter plane where the regime is P1 when increasing the flow
rate. However, if the jet is previously formed, and then the value of We is
decreased, the corresponding regime is jetting inside the shaded area.

Figure 6(b) represents another phase map in the Bo-We plane for a smaller

10
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Figure 6: Phase maps showing the regimes in the (Bo, We) parameter plane when I = 0.84
(a) and I" = 0.33 (b). The symbols represent the experimental transition points. The regions
are labelled P1 for period-1 dripping, P2 for period-2 dripping and J for jetting. The shaded
areas correspond to the hysteresis of the dripping to jetting transition, marked with the symbol

V. The dashed lines show the fitted power law We; ~ Bo™™, with n = 1.3 (a) and n = 1.5
(b).

value of I' = 0.33, associated with a liquid of kinematic viscosity v = 20 cSt.
The responses present in this case are referred to as complex dynamics in Sub-
ramani et al. (2006). Indeed, there exists another regime besides the P1 and J
behaviours. Specifically Figure 6(b) reveals that there is a region delimited by
crosses in which the observed regime is P2. In agreement with the results of
Ambravaneswaran et al. (2004), the P2 zone is found when increasing the We-
ber number right after P1. It is also worth pointing out that there is a narrow
P1 zone before the transition to jetting for small Bond numbers, as reported in
Subramani et al. (2006) for a value of Bo = 0.3. The hysteresis of the jetting to
dripping transition is represented as well in Figure 6(b). It can be appreciated
that the decrease in We, leads to P1 regimes after the dripping transitions.
Hence, if the flow rate is decreased starting from a formed jet, the whole period-
2 zone is affected by the hysteresis, so that the P2 regime does not even appear

when the value of We is decreased.
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Making use of simple scaling arguments, Ambravaneswaran et al. (2004)
provided criteria to predict the dripping to jetting transition by comparing the
different time scales that appear in the problem. In particular, they argued
that the critical Weber number We; varies with the Ohnesorge number through
a power law, being We; ~ O(1) for Oh < 1; We; ~ Oh~6 for Oh ~ 1 and
We; ~ Oh™2 for Oh > 1. Nevertheless, these scalings, which are in agreement
with the simulations presented in Ambravaneswaran et al. (2004) and Subramani
et al. (2006) for small Bond numbers, are unable to capture the experimental
transitions reported herein for larger values of Bo. The results shown in Figure 6

can be fitted to a power law We; ~ Bo™"

, obtaining n &~ 1.3 in the case of
I' = 0.83, and n = 1.5 when I' = 0.33. These power laws are represented
with dashed lines in Figure 6. This strong dependence on the Bond number
for a fixed value of I' suggests that the scaling laws previously proposed in
the literature must be reconsidered to account for larger values of Bo. In fact,
making use of the relationship I" = 30hBo'/4, the fitting Wej ~ Bo~3/? for
the silicon oil of v = 20 ¢St yields We; ~ OhS, in marked contradiction with
the scaling law proposed in Ambravaneswaran et al. (2004) for intermediate
Ohnesorge numbers, namely We; ~ Oh~5.

Let us now present a scaling argument for the transition behaviour observed
in our experiments at large Bond numbers. In the dripping regime at small
Bond numbers, the size of the droplets is much larger than the injector radius.
In contrast, when Bo 2 1, the radius of the detached drop is similar to that
of the nozzle. Nevertheless, a more accurate estimation is needed to develop
a new scaling law for the jetting transition. Villermaux et al. (2013) showed
that, when Bo 2 1, the detached droplet radius scales with the capillary length
l, = m. As there are no other external forces apart from gravity, we
can consider that the drops are in free fall. Thus, after falling a distance of
order [, their velocity is of order vy ~ \/gl,. Now, consider a dripping faucet
from which droplets are continuously detaching. As can be easily observed if
increasing gradually the flow rate in a tap, when the flow rate is increased

the frequency of detachment increases and therefore, the space between two
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consecutive droplets is reduced. The latter argument suggests a picture of the
transition to jetting as the moment in which all the detached droplets of radius
rq ~ ly, falling at a speed v/gl, are so close to each other that they coalesce in
a continuous liquid column, giving way to jet formation. In the latter critical
conditions, the liquid issued by the injector accomplishes U2 R v;lg, leading to
We; & Bo~3/2, in fair agreement with the power laws shown in Figure 6. In our
toy model the liquid viscosity is not accounted for, but in a first approximation
the simple picture established in the present paragraph is able to explain the

strong dependence of We; on Bo, for values of Bo 2 1.

3.2. Phase diagrams at constant Bond number

To illustrate the effect of viscosity the results have also been represented
in a I'-We plane at a constant value of Bo. Figure 7(a) shows the results for
the case Bo = 1.0, while Bo = 2.2 in Figure 7(b). In agreement with the
results of Ambravaneswaran et al. (2004) and Subramani et al. (2006), it can be
observed that decreasing the liquid viscosity leads to more complex dynamics.
Thus, a region of chaotic dripping at small enough values of I' can be found
in Figure 7. In addition, it depicts that there exists a critical value I'. which
divides the phase diagrams into two zones, one with simple dynamics for I" > I,
and other for I' < I, where regimes other than P1 and J can be found. The
existence of this critical value is clear since the dynamics change from simple
to complex when decreasing the viscosity of the liquid. It is because of this
reason that the viscosities of the liquids used for the experiments reported in
this study are smaller than those considered in Rubio-Rubio et al. (2013). Note
that larger values of I" lead to simple phase maps qualitatively similar to that
of Figure 6(a). It should be noticed that the representation of I'. for the two
cases shown in Figure 7 is only qualitative, since its exact value lies within the
experimental points. A more precise characterisation of the relationship I.(Bo)
could be desirable, by means of new experiments or simulations.

The choice of Bo = 1.0 allows a comparison with the numerical results

of Subramani et al. (2006), where a few computations are reported to illustrate
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Figure 7: Phase maps showing the regimes present in the (I, We) parameter plane for Bo = 1.0
(a) and Bo = 2.2 (b). The symbols represent the experimental transition points. The regions
are labelled P1 for period-1, P2 for period-2 and P3 for period-3 dripping. CD stands for
chaotic dripping, and J for jetting. The shaded area corresponds to the hysteresis of the
dripping to jetting transition.

the dynamics for Bo ~ O(1). It should be highlighted that the value of Bo =
0.96 considered by Subramani et al. (2006), although high compared with the
values Bo = 0.3 and Bo = 0.5 thoroughly studied in previous works, is still much
smaller than the value of Bo & 5 reached in the present study. Figure 7(a) shows
a small region of P3 dynamics, in fair agreement with the values Bo = 0.97,
We = 0.05, I' = 0.3 reported by Subramani et al. (2006).

As done before, the hysteresis of the jetting transition is also represented in
figures 7(a) and (b). The shaded region corresponds to points of the Bo-We
plane where the regime is jetting when decreasing the Weber number from a
previously formed jet. It is clear from both figures that the hysteresis suppresses
any complex response of the faucet when dripping is achieved by reducing the

flow rate from the jetting regime.

3.8. Satellite drops

The experiments performed in the present work also allow to distinguish the

cases in which there exist satellites between the main drops. The occurrence of
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satellite drops has been previously analysed with different approaches. Using
the VOF numerical method, Zhang (1999) derived a correlation for the limiting
Weber number for satellites to exist, namely WeBo?3%2! = 0.0125. However,
this correlation does not take into account the effect of liquid viscosity, due to the
failure of the code by Zhang (1999) to converge at moderate to high values of the
Ohnesorge number. In Ambravaneswaran et al. (2002), the authors performed
1D computations to depict the boundary of satellite formation when varying
the value of Oh but, as previously mentioned, only for Bo = 0.3.

In a study of the viscous Savart sheet, Villermaux et al. (2013) performed
dripping experiments at high Bond numbers to explain the bimodality of the
droplet size distribution. In particular, by comparing the concomitant effects of
viscosity, capillary destabilisation and the recoiling of the filament that appears
after pinch-off, the authors provide an explanation both for the presence of
one small satellite droplet per main drop, and for the ratio of the satellite to
main drop size. The liquid used in their experiments corresponds to a value of
I' =2.19 > I, therefore observing only simple dynamics. In their experiment
they used a value of Bo = 2.15, with corresponding results in agreement with
those presented in the previous sections.

Figure 8 shows the regions where satellite drops are present in the We-
Bo plane for two different values of I'. The shadowed areas correspond to
experimental points of this study in which satellite formation is observed, and
the dashed line is the correlation derived by Zhang (1999) through numerical
simulations. The points from Subramani et al. (2006) are also included in the
figure for completeness.

It is clear from Figure 8 that the increase of the injector radius leads to
the presence of satellite droplets in regions different from P1. As an example,
Figure 9 shows a new type of P2 regime that has been reported recently in a
numerical study (Chakraborty et al., 2016), but not confirmed experimentally
up to date. While Figure 2(b) depicts the classical period-2 regime without
satellite droplets, the experiments performed in the present work reveal that if

the Bond number is high enough, satellite droplets detach just behind the drop
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I' = 0.84 (a) and I' = 0.33 (b). The results of Subramani et al. (2006) have been included

with filled symbols, and the dashed line represents the correlation numerically derived by

Zhang (1999).

that pinches-off at a larger distance from the outlet. This new regime, called
P2S1, can be clearly observed in Figure 9(a) and in movie 1 of the supplemen-
tary material. Moreover, for still larger values of Bo, another kind of P2 regime
takes place with satellite formation after each detachment of a main drop, re-
ferred to as P2S2 regime, and illustrated in Figure 9(b) and in movie 2 of the
supplementary material. It should be pointed out that the presence of satellite
droplets in period-2 dripping had not been reported before experimentally, since
all the previous studies were done for values of the Bond number too small for
the appearance of these regimes reported herein for the first time. Indeed, the
P3 regime depicted in Figure 2(c) and found in the (I, We) parameter plane for
Bo = 1.0 in Figure 7(a) actually is a regime with satellite droplets, as can be
observed in movie 3 of the supplementary material. The presence of satellites in
this period-3 regime was not mentioned in the work by Subramani et al. (2006),

where the P3 appearance was numerically addressed.
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Figure 9: Example of satellites presence in period-2 regime, showing the case of P2S1 for
Bo = 1.38, We = 2.93 x 1072 and I = 0.17 (a) and P2S2 for Bo = 2.2, We = 1.53 x 102
and I' = 0.17 (b).

4. Conclusions and future works

In this paper, we have revisited both the dripping dynamics and the tran-
sition to jetting experimentally, reaching values of the Bond number, Bo, sig-
nificantly larger than in previous studies of drop formation. As suggested by
Subramani et al. (2006), it has indeed been shown in the present work that
larger injector sizes increase the complexity exhibited by a leaky faucet, to such
an extent that the previous scaling laws (Ambravaneswaran et al., 2004) break
down when the value of Bo varies in a wide range. This influence of the injector
radius has been accounted for through a new scaling law for the transition to
jetting in the limit of negligible viscous effects. Finding a scaling law that is
also able to include the effect of liquid viscosity clearly deserves further theo-
retical effort. The comprehensive experimental work performed in the present
work has been summarised through new phase diagrams, based on dimension-

less parameters more adequate than those used in previous studies, using the
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Kapitza number I', which depends only on the liquid properties, instead of the
Ohnesorge number Oh. The phase maps reported herein could be improved by
adding points in the regions where the dynamics is more interesting. This could
be done either by means of numerical simulations (Chakraborty et al., 2016),
or by performing new experiments, with the purpose of overcoming the limita-
tions associated with the discrete experimental points reported in this study:
smooth variations in the parameter space through experiments imply the need
of an even more intensive experimental sweep than those already performed in
this work. In addition, the hysteresis of the dripping to jetting transition has
been quantified for the first time for working liquids different from water. In all
the cases shown here, the regime present after the jetting to dripping transition
was found to be P1, as a consequence of the hysteresis of the phenomenon.
Finally, new regimes with satellite droplet formation, reported before only nu-
merically (Chakraborty et al., 2016), have been found at high enough values
of Bo. In particular, the existence of a period-2 regime with one satellite per
double period for intermediate Bond numbers, and a period-2 regime with two

satellites per double period for higher values of Bo.
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