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Temporal stability of free liquid threads with
surface viscoelasticity
A. Mart́ınez-Calvo† and A. Sevilla

Grupo de Mecánica de Fluidos, Departamento de Ingenierı́a Térmica y de Fluidos, 
Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés (Madrid), Spain

We analyse the effect of surface viscoelasticity on the temporal stability of a 
free cylindrical liquid jet coated with insoluble surfactant, extending the results 
of Timmermans & Lister (2002). Our development requires, in particular, deriving the 
correct expressions for the normal and tangential stress boundary conditions at a general 
axisymmetric interface when surface viscosity is modelled with the Boussinesq–Scriven 
constitutive equation. These stress conditions are applied to obtain a new dispersion 
relation for the liquid thread, which is solved to describe its temporal stability as a 
function of four governing parameters, namely the capillary Reynolds number, the 
elasticity parameter, and the shear and dilatational Boussinesq numbers. It is shown 
that both surface viscosities have a stabilising influence for all values of the capillary 
Reynolds number and elasticity parameter, the effect being more pronounced at low 
capillary Reynolds numbers. The wavenumber of maximum amplification depends 
non-monotonically on the Boussinesq numbers, especially for very viscous threads at 
low values of the elasticity parameter. Finally, two different lubrication approximations 
of the equations of motion are derived. While the validity of the leading-order model 
is limited to small enough values of the elasticity parameter and of the Boussinesq 
numbers, a higher-order parabolic model is able to accurately capture the linearised 
behaviour for the whole range of values of the four control parameters.

Key words: Capillary flows, Instability

1. Introduction

It has been known for a long time that the presence of surface-active molecules
modifies the dynamics of fluid interfaces – for a short historical account the reader is
referred to Scriven & Sternling (1960). The crucial importance of surfactants in the
respiratory system (Van Golde et al. 1988), as well as in many applications like the
generation and stabilisation of emulsions, foams and contrast agents for medical imag-
ing (Rodŕıguez-Rodŕıguez et al. 2015), justifies the intense research effort oriented to-
wards a quantitative understanding of their effects on the dynamics of interfaces. One
important effect associated with adsorbed surfactant molecules is their resistance to
surface deformation, which manifests macroscopically as an effective interfacial rhe-
ology (Langevin 2014). Experiments and theory have clearly demonstrated that sur-
face viscous effects play a central role in many interfacial flows like foams (Joye et al.

1994), liquid films (Scheid et al. 2010), liquid bridges (Ponce-Torres et al. 2016a,b) and
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drop breakup (Ponce-Torres et al. 2017), to cite a few. In particular, the conclusion
of Ponce-Torres et al. (2017) that surface viscosity dictates the amount of surfactant
present in the satellite droplets formed after pinch-off constitutes the main motivation
of the present work.
Similarly, the effects of surface elasticity induced by the presence of surfactants

have been studied in several configurations, e.g. liquid threads (Craster et al. 2002;
Timmermans & Lister 2002), dip coating (Campana et al. 2011; Seiwert et al. 2014;
Champougny et al. 2015), bubbles immersed in a viscous medium (Hameed et al. 2008)
or drop deformation and breakup (Stone & Leal 1990; Milliken et al. 1993).
Previous related studies have extended the seminal work of Tomotika (1935) on the

stability of liquid threads embedded in an immiscible unbounded liquid by including the
effects of surfactants. In particular, Hajiloo et al. (1987) considered surface viscosities
in the formulation but they did not account for surface tension gradients. The work
of Hansen et al. (1999) deals with soluble surfactants and also accounts for surface
diffusion and Marangoni stresses, but does not include the effect of surface viscosi-
ties. Kwak & Pozrikidis (2001) extended the problem for an insoluble surfactant by
including internal and external coaxial solid boundaries, and also retaining the effect of
surface diffusion, but not the effect of surface viscosities. Previously, Carroll & Lucassen
(1974) analysed both experimentally and theoretically the effect of solid oleophilic fila-
ments coated by a cylindrical oil film, observing that the presence of an insoluble surfac-
tant at the outer oil-air interface decreases the growth rate of instabilities substantially.
These authors also studied the nonlinear dynamics of drop growth and breakup, and
contemplated the solid-oil-water configuration, but they did not account for variations
in the surface tension coefficient, nor surface shear viscosity, including only the effect of
dilatational viscosity.
The nonlinear dynamics of liquid threads in the presence of insoluble and soluble

surfactants has also been studied by means of experiments (Roché et al. 2009), the-
ory (Timmermans & Lister 2002) and simulations (Dravid et al. 2006; Campana & Saita
2006). In particular, there are several works devoted to analyse the nonlinear dynamics by
developing one-dimensional (1D) long-wave approximations of the Navier-Stokes equa-
tions, thereby reducing the computational cost and facilitating analytical developments.
Following the same procedure as Eggers & Dupont (1994) and Garćıa & Castellanos
(1994) for a clean interface, several authors have derived leading-order 1D models ac-
counting for the presence of surfactant; for instance Ambravaneswaran & Basaran (1999)
study the effect of insoluble surfactant on the breakup of liquid bridges, and Craster et al.
(2002) and Craster et al. (2009) examine the capillary breakup of liquid jets. However, as
pointed out by Timmermans & Lister (2002), higher-order models are generally needed
since the leading-order equations fail at describing the linear stage of the Plateau-
Rayleigh instability when the elasticity parameter is sufficiently large. It is important
to point out that, to date, no attempt has been made to develop a nonlinear 1D model
that accounts for surface viscous effects, which constitutes one of the objectives of the
present work.
To the best of our knowledge, the only study of the effect of surface viscosity

on the Plateau-Rayleigh instability of a free liquid jet (Plateau 1873; Rayleigh
1878) is due to Whitaker (1976) who, as pointed out by Hansen et al. (1999) and
by Timmermans & Lister (2002), deduced an incorrect dispersion relation. The work
of Whitaker (1976) also includes the effect of solubility in the dispersion relation,
although it is neither analysed nor discussed. Besides, the results and conclusions
of Whitaker (1976) are restricted to the limit of dominant inertia.
Therefore, in the present work we extend the results of Timmermans & Lister (2002) by
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including the effect of shear and dilatational surface viscosities in the Boussinesq–Scriven
approximation (Boussinesq 1913; Scriven 1960), examining their influence in the linear
dispersion relation and also in the maximum temporal growth rate and its corresponding
wavenumber. Besides, since the literature is spotted with diverse mistakes and missing
terms in the normal and tangential stress balances at a general axisymmetric interface
when surface viscosities are considered, here we deduce both boundary conditions in
detail. We also derive a leading-order and a parabolic set of nonlinear 1D equations
accounting for Marangoni stresses and surface viscosities, showing that only the higher-
order parabolic approximation is able to accurately reproduce the exact linear dispersion
relation when the values of the surface shear and dilatational viscosities are large enough.
The remainder of the paper is organised as follows. In §2 we derive the interfacial stress

boundary conditions needed to study axisymmetric free surface flows in the presence
of insoluble viscous monolayers, correcting errors of previous works. The formalism is
then applied in §3 to study the canonical case of the capillary instability of a liquid
cylinder, focusing on the effect of surface viscosity on the temporal amplification of small
disturbances. In §4 we derive the 1D leading-order and parabolic sets of equations includ-
ing Marangoni stresses and surface viscosities, and compare their associated dispersion
relations with that derived in §3. Conclusions are drawn in §5.

2. Stress boundary conditions at an axisymmetric viscoelastic

interface

Let us consider the axisymmetric interface between an incompressible liquid of density
ρ and viscosity µ and a passive surrounding gaseous atmosphere at uniform pressure pa.
The interface is coated with a surface concentration of insoluble surfactant molecules,
Γ (z, t), and a cylindrical coordinate system is adopted to describe the flow, as depicted
in figure 1. Note that r, z and t stand for the radial and axial coordinates and time,
respectively. Hereinafter, every surface quantity will be denoted by the subscript s,
whereas the tangential and normal projections will be referred to with the subscripts
t and n, respectively.
The role of the surfactant is twofold. First, it reduces the surface tension coefficient,

σ, by an amount that depends on Γ . Second, it induces an effective surface rheology
through elastic and viscous stresses. The former are the Marangoni stresses generated
by the imbalances of σ produced by the variations of Γ along the interface, which leads
to the surface elasticity. The surface viscous stresses are usually described through two
surface viscosity coefficients, namely the surface shear and dilatational viscosities, µs(Γ )
and κs(Γ ), respectively. Hence, the liquid-gas interface of radius r = a(z, t) is described
as a compressible two-dimensional Newtonian surface with negligible surface density and
obeying the Boussinesq–Scriven constitutive equation. To derive the latter equation the
free surface is parametrised in terms of the axial coordinate z and the azimuthal angle θ
as

xs = xs(z, θ, t) = a(z, t) er + z ez , (2.1)

where xs is the position vector of an arbitrary point lying on the surface, and er and ez
are the unit radial and axial vectors, respectively. For the following development surface
operators need to be defined. To that end we build an orthonormal curvilinear basis
{t, eθ,n} intrinsic to the surface, where

n =
1√

1 + a′2
(er − a′ ez), t =

1√
1 + a′2

(a′ er + ez), (2.2)
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Figure 1. Sketch of the flow configuration.

with n the unit normal vector and t, eθ the unit meridional and azimuthal tangent
vectors. Throughout the paper, primed variables denote their partial derivatives with
respect to z. The latter basis introduces a covariant metric tensor of components g11 =
1+(a′)2, g22 = a2, g12 = g21 = 0, whose determinant is given by g = a2[1+(a′)2]. Hence,
the surface gradient operator, ∇s, is defined as

∇s =
1√

1 + a′2
t
∂

∂z
+

1

a
eθ

∂

∂θ
. (2.3)

The velocity field of the fluid at the surface, us, can be decomposed into a tangential
velocity ut, and a normal velocity un,

us = u(xs, t) = ut(xs, t) + un(xs, t) = ut(xs, t) + un(xs, t)n, (2.4)

where ut = Is · us, un = nn · us, Is = I −nn is the surface projection operator and I is
the three-dimensional identity tensor. Note that the surface gradient operator given by
equation (2.3) can also be written as∇s = Is·∇ in terms of the standard gradient and the
surface projection operator. Since the interface is axisymmetric, ut(xs, t) = ut(xs, t) t,
and thus the normal and the meridional tangent velocity components read, respectively,

un =
u− a′w√
1 + a′2

, ut =
w + a′u√
1 + a′2

, (2.5)

where u and w are the radial and axial components of the fluid velocity respectively. For
simplicity, in equation (2.5) we have omitted the evaluation of u and w at r = a(z, t).
To derive the stress balance for the fluid interface we apply the integral momentum

conservation equation to a surface element S,
∫ ∫

S(T̂ −T )·n dA+
∫

C Ts ·nl dl = 0, where

T̂ and T are the stress tensors of the outer and inner fluids evaluated at the interface,
respectively, and Ts is their superficial counterpart, which is proportional to the line
element enclosing the surface, C, whose unitary normal vector embedded in S is nl, and
thus n·nl = 0. The generalised Stokes theorem is applied to the line integral to give (T̂ −
T )·n+∇s·Ts−(∇s·n)n·Ts = 0 (see appendix A of Rivero-Rodŕıguez & Scheid 2018). In
the present work, the surface stress tensor Ts is modelled with the well-known Boussinesq–
Scriven approximation (Boussinesq 1913; Scriven 1960) in the limit of negligible surface
density, which disregards complex interfacial rheology and assumes that the deviatoric
component of Ts is isotropic, linear and instantaneous in the surface rate-of-strain tensor,

Ts = Is [σ + (κs − µs)(∇s · us)] + µs

[

(∇sus) · Is + Is · (∇sus)
T
]

. (2.6)
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According to (2.6), Ts is restricted to be tangent to the interface, i.e. n · Ts = 0, and
thus the interfacial stress balance in differential form simplifies to

(T̂ − T ) · n+∇s · Ts = 0. (2.7)

Finally, introducing (2.6) for Ts into (2.7), the surface equation of motion reads

(T̂ − T ) · n+∇sσ − n(∇s · n)σ +∇s [(κs − µs)(∇s · us)]

− n(∇s · n)(κs − µs)(∇s · us) +∇s ·
{

µs

[

(∇sus) · Is + Is · (∇sus)
T
]}

= 0, (2.8)

which is Newton’s second law for a fluid surface with negligible surface density. Since
the flow is considered axisymmetric, (2.8) results in two boundary conditions at the free
surface. Hence, taking the inner product of (2.8) with n and t, and considering that the

outer fluid remains at constant pressure, T̂ = −paI , the normal and tangential stress
balances in cylindrical coordinates read, respectively,

(

p
∣

∣

r=a(z,t)
− pa

)

− 2µ

1 + a′2

[

∂u

∂r
+ a′2

∂w

∂z
− a′

(

∂w

∂r
+

∂u

∂z

)]

∣

∣

∣

∣

∣

r=a(z,t)

= C
[

σ + (κs − µs)

(

(aut)
′

a
√
1 + a′2

+ Cun

)]

+
2µs

1 + a′2

[

a′ut + un

a2
− a′′

1 + a′2

(

u′

t −
a′′un

1 + a′2

)]

, (2.9)

and

µ√
1 + a′2

[(

∂w

∂r
+

∂u

∂z

)

(1− a′2) + 2a′
(

∂u

∂r
− ∂w

∂z

)]

∣

∣

∣

∣

∣

r=a(z,t)

=
∂σ

∂z

+
∂

∂z

[

(κs − µs)

(

(aut)
′

a
√
1 + a′2

+ Cun

)]

+

√
1 + a′2

a

∂

∂z

[

2µsa

1 + a′2

(

u′

t −
a′′un

1 + a′2

)]

− 2µsa
′

√
1 + a′2

[

a′ut + un

a2
− a′′

1 + a′2

(

u′

t −
a′′un

1 + a′2

)]

, (2.10)

where p is the pressure, C = ∇s ·n = a−1(1+a′2)−1/2−a′′(1+a′2)−3/2 is twice the mean
curvature of the interface and the identity ∇s · us = ∇s · ut + Cun has been used. To
clarify the derivation of equations (2.9) and (2.10), several terms of (2.8) are deduced in
detail in appendix A. Note that the left-hand sides of (2.9) and (2.10) are terms arising
from the bulk evaluated at r = a(z, t), whereas the terms on their right-hand sides are
interface quantities and thus they are previously evaluated at the interface, a fact that
must be considered when taking the derivatives of ut and un defined in (2.5). For instance,
the z derivative of the axial velocity at the interface reads, ∂w(r = a(z, t), z, t)/∂z =
∂w/∂z|r=a(z,t) + a′∂w/∂r|r=a(z,t).
Equation (2.8) and its normal and tangential projections in tensor notation are in

agreement with those derived by Aris (1962) and Slattery et al. (2007), which correct
the typographical errors in Scriven (1960). However, inasmuch as the boundary condi-
tions (2.9) and (2.10) are necessary for the derivation of the dispersion relation deduced
in §3 and the 1D models derived in §4, we present them here in terms of u, w, p and a,
and their spatial derivatives. Indeed, to the best of our knowledge, (2.9) and (2.10) have
not been reported in the literature in their complete and correct form. Indeed, Whitaker
(1976) only presents the equations in tensor notation and their linearisation, Aris (1962)
and Slattery et al. (2007) considered the particular case of a cylinder, r = R and r = R(t),



6

and (Slattery et al. 2007, p. 732) presents the projections of the surface equation of
motion onto the radial, axial and azimuthal directions in cylindrical coordinates, but not
the normal and tangential stress balances.
Furthermore, recent studies in similar axisymmetric configurations have considered

surface viscosities in the formulation, e.g. Ponce-Torres et al. (2016b,a) in the field of
liquid bridges, and Ponce-Torres et al. (2017) on the breakup of liquid drops. However, in
all these cases there are missing terms in both the normal and tangential stress balances.
The latter mistakes are the reason why the particular case of a cylinder, r = R(t) (Aris
1962; Slattery et al. 2007) is not recovered, whereas (2.9) and (2.10) correctly reproduce
this limit.

3. Capillary instability of a liquid cylinder with surface viscoelasticity

3.1. Derivation of the dispersion relation

First of all, it is important to emphasise that in the present work we are only concerned
with axisymmetric disturbances, since they are the only unstable modes in the case of
clean interfaces. Therefore, the axisymmetric continuity, radial momentum and axial
momentum equations,

∂u

∂r
+

∂w

∂z
+

u

r
= 0, (3.1)

ρ

(

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)

= −∂p

∂r
+ µ

(

∂2u

∂r2
+

∂2u

∂z2
+

1

r

∂u

∂r
− u

r2

)

, (3.2)

ρ

(

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)

= −∂p

∂z
+ µ

(

∂2w

∂r2
+

∂2w

∂z2
+

1

r

∂w

∂r

)

, (3.3)

are satisfied by the velocity and pressure fields in the liquid thread. In addition to the
stress balances (2.9) and (2.10), the kinematic condition has to be satisfied at the free
surface r = a(z, t),

∂a

∂t
+ a′w = u. (3.4)

Since we also assume isothermal flow, σ, µs and κs are functions only of the surface
concentration of surfactant Γ (z, t), which satisfies the following transport equation at
r = a(z, t):

∂Γ

∂t
+ w

∂Γ

∂z
+

Γ

a
√
1 + a′2

∂(aut)

∂z
+ CΓun = 0. (3.5)

Note that the time derivative in (3.5) is referred to a frame of reference fixed in space,
i.e. the laboratory frame – for details on the subtleties of the time derivative of a
surface quantity, see Stone (1990); Wong et al. (1996); Pereira & Kalliadasis (2008).
Furthermore, the surface diffusion has been neglected due to the large typical values
of the associated Péclet number (Timmermans & Lister 2002). Indeed, the typical values
of surfactant surface diffusivities Ds are in the range of 10−10 − 10−9 m2 s−1 (Tricot
1997; Valkovska & Danov 2000; Liao et al. 2006), which leads to surface Péclet numbers,
defined as Pes = R2/(Dstc) = [σ0R/(ρD2

s)]
1/2, of order Pes ∼ 106 − 105 for a

water thread of 1 mm radius and taking the capillary time as characteristic time scale,
tc = (ρR3/σ0)

1/2.
All the flow variables are assumed to be slightly perturbed around a stationary and

uniform state in which the liquid thread is considered infinitely long with an initial
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cylindrical shape of radius R (see figure 1),

(u,w, p, σ, Γ, a, κs, µs) = (0, 0, pa + σ0/R, σ0, Γ0, R, κs0, µs0)

+ǫ (δu, δw, δp, δσ, δΓ, δa, δκs, δµs), (3.6)

where ǫ ≪ 1 and σ0, κs0 and µs0 are the uniform values of surface tension, dilatational
and shear surface viscosity respectively, associated with an initially uniform superficial
surfactant concentration, Γ0. Note that the reference frame has been selected such that
the unperturbed thread is at rest. The linearised continuity, radial momentum and axial
momentum equations read, respectively,

∂(δu)

∂r
+

∂(δw)

∂z
+

δu

r
= 0, (3.7)

ρ
∂(δu)

∂t
= −∂(δp)

∂r
+ µ

(

∂2(δu)

∂r2
+

∂2(δu)

∂z2
+

1

r

∂(δu)

∂r
− δu

r2

)

, (3.8)

ρ
∂(δw)

∂t
= −∂(δp)

∂z
+ µ

(

∂2(δw)

∂r2
+

∂2(δw)

∂z2
+

1

r

∂(δw)

∂r

)

, (3.9)

with a harmonic pressure disturbance field,

∇2(δp) =
∂2(δp)

∂r2
+

1

r

∂(δp)

∂r
+

∂2(δp)

∂z2
= 0. (3.10)

Finally, the linearised boundary conditions at the free surface, r = R, are

δp− 2µ
∂(δu)

∂r
=

δσ

R
− σ0

(

∂2(δa)

∂z2
+

δa

R2

)

+
κs0 − µs0

R

∂(δw)

∂z
+

κs0 + µs0

R2
δu,(3.11)

µ

(

∂(δw)

∂r
+

∂(δu)

∂z

)

=
∂(δσ)

∂z
+ (κs0 + µs0)

∂2(δw)

∂z2
+

κs0 − µs0

R

∂(δu)

∂z
, (3.12)

∂(δa)

∂t
= δu, (3.13)

∂(δΓ )

∂t
+ Γ0

(

∂(δw)

∂z
+

δu

R

)

= 0, (3.14)

δσ = − E

Γ0
δΓ, (3.15)

representing, respectively, the normal and tangential stress conditions, the kinematic
condition, the surfactant transport equation and the constitutive equation for the depen-
dence of surface tension on surfactant concentration, σ(Γ ), where E = −Γ0 (∂σ/∂Γ )|Γ0

is the Gibbs elasticity. The linearised versions of the stress boundary conditions taking
into account the effect of surface viscosities, i.e. (3.11) and (3.12), are identical to those
of Whitaker (1976). To derive a dispersion relation D(k, ω) = 0 between the axial
wavenumber k and the temporal growth rate ω, the disturbances are decomposed as
normal modes,

(δu, δw, δp, δσ, δΓ, δa) = (û(r), ŵ(r), p̂(r), σ̂, Γ̂ , â) exp(ikz + ωt). (3.16)

where the pressure amplitude p̂ satisfies the modified Bessel equation,

d2p̂

dr2
+

1

r

dp̂

dr
− k2p̂ = 0, (3.17)

with regular solution

p̂(r) = AI0(kr), (3.18)
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where A is an integration constant and In(kr) is the nth-order modified Bessel function
of the first kind. The linearised system of (3.7)–(3.9) and (3.13)–(3.15) can be straight-
forwardly solved for û(r), ŵ(r), â, Γ̂ and σ̂, to give

û(r) = BI1(k̃r) −A
k

ρω
I1(kr), (3.19)

ŵ(r) = B
ik̃

k
I0(k̃r) −A

ik

ρω
I0(kr), (3.20)

â =
û(R)

ω
= B

I1(k̃R)

ω
−A

k

ρω2
I1(kR), (3.21)

Γ̂ = B
Γ0

ω

[

k̃I0(k̃R)− I1(k̃R)

R

]

−A
kΓ0

ρω2

[

kI0(kR)− I1(kR)

R

]

, (3.22)

σ̂ = −B
E

ω

[

k̃I0(k̃R)− I1(k̃R)

R

]

+A
kE

ρω2

[

kI0(kR)− I1(kR)

R

]

, (3.23)

where B is another integration constant and k̃2 = k2 + ρω/µ. Finally, the normal and
tangential stress conditions given by equations (3.11) and (3.12) provide, respectively,

p̂(R) = 2µ
dû

dr
(R)+

σ̂

R
− σ0

ωR2
(1−k2R2)û(R)+

κs0 − µs0

R
ikŵ(R)+

κs0 + µs0

R2
û(R), (3.24)

µ

[

dŵ

dr
(R) + ikû(R)

]

= ikσ̂ − k2(κs0 + µs0)ŵ(R) +
ik(κs0 − µs0)

R
û(R). (3.25)

Once the normal-mode variables evaluated at r = R are substituted in (3.24) and (3.25),
these provide a homogeneous linear system for A and B, namely M · φ = 0, where
φ = (A,B)T . The four entries of M can be found in appendix B. Non-trivial solutions
require that det(M) = 0, finally leading to the desired dispersion relation,

Rω2F (k)− k2(1− k2) + βk2[1 + F (k)(F (k̃)− 2)] +
k4

R

[

4− β

ω

(

2− 1− k2

ω
+ 4Bµ

)

+6Bµ +
1− k2

ω
(Bµ + Bκ)− 2Bκ(1 + 2Bµ)

]

[F (k)− F (k̃)] + ωk2 [2(Bµ − Bκ)F (k)

+(Bµ + Bκ)(F (k)F (k̃) + 1) + 2(2F (k)− 1)
]

= 0, (3.26)

where k̃2 = k2 + Rω and F (x) = xI0(x)/I1(x). Equation (3.26) has been non-
dimensionalised taking R as characteristic length and the viscocapillary time, µR/σ0

as characteristic time, where, for the sake of clarity, we have kept the same notation
ω and k for the dimensionless growth rate and wavenumber, respectively. According
to (3.26), the dispersion relation depends on four dimensionless parameters: the capillary
Reynolds number, R = Oh−2 = ρσ0R/µ2, where Oh is the Ohnesorge number; the
elasticity parameter β = E/σ0; and the shear and dilatational Boussinesq numbers,
Bµ = µs0/(µR) and Bκ = κs0/(µR), respectively. In presenting the results below,
the parameter Bκ will be substituted by the ratio of surface shear to dilatational
viscosity, µs0/κs0 = Bµ/Bκ. Note that the dispersion relation (3.26) reduces to
that of Timmermans & Lister (2002) in the limit Bµ → 0 and Bκ → 0, and to the
Rayleigh–Chandrasekhar dispersion relation when, in addition, β → 0 (Rayleigh 1892;
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Figure 2. Growth rate ω as a function of wavenumber k for R = 0.01 and β = 0 (a,b), β = 1
(c,d), µs0/κs0 = 0.1 (a,c) and µs0/κs0 = 10 (b,d). The values of Bµ are indicated near each
curve. The symbols are extracted from figure 4 of Timmermans & Lister (2002).

Chandrasekhar 1961). However, there are several differences between (3.26) and the
dispersion relation deduced by Whitaker (1976) in the insoluble limit due to several
mistakes made in the latter work (Hansen et al. 1999; Timmermans & Lister 2002).

3.2. Temporal stability analysis

To illustrate the effect of surface viscosities on the growth rate of infinitesimal dis-
turbances on the liquid cylinder, figures 2 and 3 show the amplification function ω(k)
for R = 0.01 and R = 100, respectively, with the value of Bµ indicated near each
curve. In figures 2 and 3, panels (a,b) and (c,d) correspond to values of the elasticity
parameter β = 0 and β = 1, while panels (a,c) and (b,d) show the results obtained
with values of the surface viscosity ratio µs0/κs0 = 0.1 and 10, respectively. Our results
were validated by comparing them with four amplification curves extracted from figure 4
of Timmermans & Lister (2002), represented by symbols, for the particular case Bµ = 0,
finding perfect agreement.
As revealed by figures 2 and 3, surface viscosity stabilises the liquid cylinder, since the

values of ω decrease monotonically for all values of k as Bµ increases. The stabilising
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Figure 3. Same as figure 2 for R = 100.

effect is more pronounced for small values of R and β. Indeed, in the particular case with
R = 0.01 and β = 0, figure 2(a,b) shows that, for a value of Bµ = 1, the maximum growth
rate decreases by factors of approximately 3.8 and 2.4, respectively, compared with the
case with Bµ = 0. These factors are reduced to approximately 1.5 in figures 2(c) and 2(d),
showing that an increase in the surface elasticity decreases the relative importance of
surface viscosity.
It is important to point out that increasing the value of β also has a stabilising effect,

as studied in detail by Timmermans & Lister (2002), and also clearly seen in figures 2
and 3. However, in contrast with the fact that a finite value of ω is achieved when β → ∞,
our results reveal that ω → 0 when Bµ → ∞, a behaviour similar to that observed for
R → 0, and clearly due to the dissipative nature of the surface shear viscosity (see
§3.2.1). In particular, the effect of Bµ is important for both for low- and high-viscosity
threads although, as happens with the effect of β (Timmermans & Lister 2002), the
effect is more pronounced at low capillary Reynolds numbers, as can be deduced by
comparing the results of figure 2 for R = 0.01 with those of figure 3 for R = 100.
Indeed, the reduction factors in the maximum growth rate between the cases Bµ = 0 and
Bµ = 1 are substantially smaller for R = 100 compared with those stated before for R =
0.01. In particular, these factors are approximately 1.3 and 1.2 in figures 3(a) and 3(b),
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respectively. The latter limit of dominant inertia, R ≫ 1, was studied by Whitaker
(1976), whose conclusions about the effect of the surface viscosities on ω were correct
and coincide with the ones presented herein.
By comparing the left and right columns of figures 2 and 3 it is deduced that ω is

only slightly affected by µs0/κs0, with the general trend that an increase in Bκ decreases
the growth rate, as expected. In particular, for β . 1 the maximum growth rate, ωm,
is smaller when Bκ is greater than Bµ, as depicted by figures 2(a,b) and 3(a,b), this
phenomenon being more noticeable for R ≪ 1. This result is expected, since for a fixed
Bµ the overall surface viscosity increases when µs0/κs0 decreases, as already noticed
by Whitaker (1976) in the limit R ≫ 1. Figures 2 and 3 also reveal that the wavenumber
of maximum amplification, km, depends non-monotonically on Bµ for a fixed value of
the surface viscosity ratio, most notably at low capillary Reynolds numbers and large
values of µs0/κs0.

3.2.1. The limit Bµ → ∞ for finite β and Bµ/Bκ.

As depicted in figures 2 and 3, in the limit Bµ → ∞ the temporal growth rate ω → 0
for every value of k within the unstable range, 0 6 k 6 1. This result indicates that
the viscocapillary time, µR/σ0, is not the characteristic time of the Plateau-Rayleigh
instability when Bµ ≫ 1. Instead, the appropriate time scale in this limit is the surface-
shear viscocapillary time, µs0/σ0. If the latter is used to define a new dimensionless
growth rate, ω̄ = ωBµ, the dispersion relation (3.26) reduces, in the limit Bµ ≫ 1, to

ω̄ =

(

1 +
Bµ

Bκ

)

1− k2

8
−β

2

Bµ

Bκ
+

√

β
Bµ

Bκ

1− k2

4
+

[

β

2

Bµ

Bκ
−
(

1 +
Bµ

Bκ

)

1− k2

8

]2

+O(B−1
µ )

(3.27)
where only leading-order terms have been retained. Note that (3.27) depends on β
and Bµ/Bκ = µs0/κs0, but it is independent of the capillary Reynolds number, R.
Consequently, neither the inertia of the liquid nor the bulk viscous stress play any role
in the limit Bµ → ∞, since the flow is dominated by surface stresses. It is also deduced
from (3.27) that the amplification curve ω̄(k) reaches its maximum at k = 0, similarly to
what happens in the Stokes limit R → 0. This fact is illustrated in figure 4, which shows
the amplification curves obtained from the exact dispersion relation provided in (3.26) for
several values of Bµ and two different values of µs0/κs0 and of β, and where the dashed
line with open circles represents (3.27). The insets show that the rescaled maximum
growth rates, ω̄m (solid lines), tend to a finite value when Bµ → ∞, which can be easily
computed as a function of β and µs0/κs0 evaluating (3.27) at k = 0 (dashed lines).

3.2.2. Analysis of the maximum growth rate ωm and its associated wavenumber km

To illustrate the parametric dependence of ωm and km we have computed figures 5
and 6, where the maximum growth rate, ωm (a–c), and the corresponding wavenumber,
km (d–f), are plotted as functions of Bµ for several values of β indicated in the legends,
and three different values of the surface viscosity ratio, namely µs0/κs0 = 0.1, 1 and 10
in panels (a,d), (b,e) and (c,f), respectively. The value of R = 0.01 in figure 5, while
R = 100 in figure 6. The insets show isocontours of ωm (a–c) and of km (d–f), in
the (Bµ, β) parameter plane. Firstly, as already mentioned, when Bµ → ∞, ωm → 0
due to the dissipative nature of the surface viscosities, in contrast with the finite value
of ωm reached when β → ∞ (Timmermans & Lister 2002). It can also be observed in
figures 5(a-c) and 6(a-c) that, for β . 1, ωm decreases faster when µs0/κs0 ≪ 1. Hence,
when both surface viscosities increase and κs0 > µs0, the growth rate of perturbations is
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Figure 4. Rescaled growth rate ω̄ = ωBµ as a function of k, computed with (3.26), for β = 0
(a,b), β = 1 (c,d), µs0/κs0 = 0.1 (a,c) and µs0/κs0 = 10 (b,d). The dashed line with open
circles is the amplification curve given by (3.27) in the limit Bµ ≫ 1. The insets show the
dependence of the rescaled maximum growth rate, ω̄m, on Bµ, while the dashed line is the
horizontal asymptote predicted by (3.27) evaluated at k = 0.

smaller, as already deduced from figures 2(a,b) and 3(a,b), and also by Whitaker (1976)
in the limit R ≫ 1.
With regard to km, and starting with the influence of β in the limit Bµ → 0, our

results reveal that km first slightly decreases for 0 6 β . 0.1, and that an increase in β
upon this limit, i.e. β & O(1), implies a sudden increase in km. As shown by figures 5(d-f)
and 6(d–f), the former effect is more pronounced for R ≫ 1, and the latter effect, which
was already highlighted by Timmermans & Lister (2002), is more noticeable for R ≪ 1.
Concerning the effect of surface viscosities on km, figure 5(d–f) for R = 0.01 shows

that, when β . 0.3 and Bµ increases for a fixed value of µs0/κs0, there is a slight decrease
of km. As µs0/κs0 increases, the latter phenomenon is more pronounced and occurs at
higher values of Bµ. When Bµ increases past these limits, there is a sudden growth of km,
which is more noticeable for higher values of µs0/κs0, also taking place in a larger range of
Bµ. Hence, for these intervals of Bµ surface viscosity provides an alternative mechanism
for short-wavelength selection, which can also be seen in figure 2(a,b). Furthermore, when
the maximum value of km is reached, an increase of Bµ decreases km monotonically. On
the contrary, when R ≫ 1, this non-monotonic behaviour only appears when β ≪ 1
and µs0/κs0 ≫ 1, i.e. when the flow is dominated by the shear viscosity, as depicted by
figures 6(d–f). Indeed, for values of β & 1, the dependence of km on Bµ is monotonically
decreasing, independently of R and µs0/κs0, as shown in figures 5(d–f) and 6(d–f).
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Figure 5. (Colour online) (a–c) Maximum growth rate, ωm, and (d–f) corresponding
wavenumber, km, as functions of Bµ for R = 0.01 and several values of β indicated in the
legend, for (a,d) µs0/κs0 = 0.1 (b,e) µs0/κs0 = 1 and (c,f) µs0/κs0 = 10. The insets show the
contours of constant ωm (a–c) and of constant km (d–f) in the (Bµ, β) parameter plane.

Another interesting feature observed in figures 5(d–f) and 6(d–f) is that there is a
certain value of Bµ at which ωm and the corresponding km are independent of β, since
all the curves intersect at this point. For R = 0.01 this value is approximately Bµ ∼ 8.1,
and for R = 100, Bµ ∼ 6.8. Above these values, the dependence of km on β changes,
since an increase of β reduces the value of km. Additionally, past these values of Bµ and
for µs0/κs0 . 1, every ωm curve collapses as Bµ increases, indicating that ωm becomes
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Figure 6. (Colour online) Same as figure 5 for R = 100.

independent of β. On the contrary, for µs0/κs0 & 1 and β . 1, the maximum growth rate,
ωm, is higher than in the latter case for the same value of Bµ, which can also be noticed
in figures 2(a,b) and 3(a,b) for Bµ = 50, with a more pronounced effect for R ≫ 1.
Finally, the values of the surface shear and dilatational Boussinesq numbers may seem

unrealistically overestimated in figures 5 and 6. However, if we take as an example a liquid
thread of 400 µm radius, and an aqueous octanoic acid solution with a bulk concentration
of 9×10−5 mol ml−1 and the bulk properties of water at 25◦C, the surface shear viscosity
takes the value of µs = 4 × 10−5 Pa sm, and the dilatational viscosity κs = 2.7 × 10−4
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Pa sm (Ting et al. 1984), providing values of the Boussinesq numbers of Bµ = 100 and
Bκ = 675, and thus a ratio µs/κs = 0.148. Since the liquid is water, R ≫ 1 and thus
this example would correspond approximately to figures 6(a) and (d), with a maximum
growth rate of ωm ∼ 2 × 10−3 and its corresponding wavenumber km ∼ 0.33. Indeed,
the surface shear Boussinesq number for this solution can be higher; for example, if we
consider a concentration of 4.5 × 10−5 mol ml−1, Bµ = 150, Bκ = 950, and thus
µs/κs = 0.158, ωm ∼ 1.46× 10−3 and km ∼ 0.3. Therefore, these two realistic examples
show that the values of Bµ and Bκ may be large enough to produce a substantial decrease
in ωm.

4. Long-wave expansion

Despite the usefulness of the linear stability analysis presented in §3, it cannot describe
the nonlinear dynamics of the liquid column, namely the final stages of its breakup
and the possible formation of satellite droplets. Besides, even in the axisymmetric
case, integrating the complete Navier–Stokes equations in the presence of surfactant
molecules is computationally expensive. Hence, the present section is devoted to derive
two different 1D approximations that take into account the effects of Marangoni stresses
and surface viscosities when the liquid column is covered with insoluble surfactant. It is
well known that many features of the dynamics of viscous liquid jets and bridges can be
accurately described using this long-wave limit, both in the linear regime and close to
breakup with and without the presence of surfactant (see e.g. Eggers 1993; Craster et al.
2002; Timmermans & Lister 2002; Craster et al. 2009). Here, following the same spirit
as Garćıa & Castellanos (1994), we consider the dimensionless parameter ε = R/L, where
L is the characteristic axial length of the liquid thread. Assuming that L ≫ R, ε ≪ 1 is
the appropriate small parameter to derive the 1Dmodels. To this end, it proves convenient
to make the flow variables dimensionless using the following characteristic scales:

rc = zc =
R

ε
, tc =

µR

ε σ0
, uc = wc =

σ0

µ
, ac = R, (4.1a)

pc =
σ0

R
, σc = σ0, Γc = Γ0, µs,c = µs0, κs,c = κs0 (4.1b)

Hereafter, for simplicity, the dimensionless variables have the same notation as the
dimensional ones used in §2 and §3.
The regularity of the solution at r = 0 together with the axisymmetry condition require

that the pressure and the axial velocity fields have to be even functions of r, whilst the
radial velocity field has to be an odd function of r, suggesting the following expansion in
the radial coordinate r ∼ ε (Eggers & Dupont 1994; Garćıa & Castellanos 1994),

w(r, z, t) = w0(z, t) +
1

2
r2w2(z, t) + ...+

1

(2j)!
r2jw2j , (4.2)

p(r, z, t) = p0(z, t) +
1

2
r2p2(z, t) + ...+

1

(2j)!
r2jp2j , (4.3)

u(r, z, t) = −1

2
rw′

0(z, t)−
1

8
r3w′

2(z, t)− ...− 2j + 1

(2j + 2)!
r2j+1w′

2j , (4.4)

for j ∈ N and (4.4) satisfying the continuity equation (3.1).
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4.1. Leading-order model

Introducing (4.2)–(4.4) into the dimensionless versions of (3.4) and (3.3), the leading-
order kinematic condition and the axial momentum equation read, respectively,

∂a2

∂t
+

∂(a2w0)

∂z
+ O(ε2) = 0, (4.5)

R

(

∂w0

∂t
+ w0w

′

0

)

= −p′0 + ε(w′′

0 + 2w2) +O(ε2), (4.6)

where p0 and w2 can be obtained from (2.9) and (2.10), respectively, which at leading
order yield the following normal and tangential stress balances at r = εa:

p0 = −εw′

0+C
[

σ + ε
(Bκκs − Bµµs)

a

(

(aw0)
′ − C(a2w0)

′

2

)]

−ε
Bµµsw

′

0

a
+O(ε2), (4.7)

w2 =
σ′

εa
+

w′′

0

2
+

3a′w′

0

a
+

1

a

∂

∂z

[

(Bκκs − Bµµs)

a

(

(aw0)
′ − C(a2w0)

′

2

)]

+
2Bµ(µsaw

′

0)
′

a2
+

Bµµsa
′w′

0

a2
+O(ε2). (4.8)

Additionally, the transport equation (3.5) for the surfactant concentration, Γ (z, t), reads,
at leading order,

∂Γ

∂t
+

1

a

∂(aw0Γ )

∂z
− CΓ

2a

∂(a2w0)

∂z
+O(ε2) = 0. (4.9)

Although it does not affect the linear regime, (4.9) retains the full curvature,
C, unlike the leading-order expressions for the surfactant concentration derived
by Timmermans & Lister (2002),Liao et al. (2006) and Craster et al. (2009), which
include the approximation C ≃ a−1. Finally, eliminating the small parameter ε from the
formulation via the substitutions z → εz, t → εt, and w2j → w2j/ε

2j, the leading-order
1D model consists of the following three coupled equations:

∂a2

∂t
+

∂(a2w0)

∂z
= 0, (4.10)

R

(

∂w0

∂t
+ w0

∂w0

∂z

)

=
3

a2
∂

∂z

(

a2
∂w0

∂z

)

− ∂

∂z

{

C
[

σ +
(Bκκs − Bµµs)

a

(

∂(aw0)

∂z
− C

2

∂(a2w0)

∂z

)]}

+
2

a

∂

∂z

[

σ +
(Bκκs − Bµµs)

a

(

∂(aw0)

∂z
− C

2

∂(a2w0)

∂z

)]

+
5Bµ

a2
∂

∂z

(

µsa
∂w0

∂z

)

, (4.11)

∂Γ

∂t
+

1

a

∂(aw0Γ )

∂z
− CΓ

2a

∂(a2w0)

∂z
= 0. (4.12)

These must be complemented with three equations of state, σ(Γ ), µs(Γ ) and κs(Γ ),
relating the surface tension coefficient and the two surface viscosities with the sur-
factant concentration. However, note that explicit expressions for the three equations
of state are not needed in the linearised analysis presented herein. Equations (4.10)–
(4.12) recover the limit when only gradients of σ are considered by setting Bµ → 0
and Bκ → 0 (Timmermans & Lister 2002; Liao et al. 2006; Craster et al. 2009), and
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also the limit of a clean liquid thread when Γ → 0, σ → 1, Bµ → 0 and Bκ →
0 (Eggers & Dupont 1994; Garćıa & Castellanos 1994).

4.2. Parabolic model

The accuracy of the 1D approximation deduced in §4.1 can be improved by retaining
terms of order O(ε2), leading to the so-called parabolic model, whose relative error is of
order O(ε4) (Garćıa & Castellanos 1994). At order O(ε2), the kinematic condition, the
surfactant transport equation and the axial momentum equation read, respectively,

∂a2

∂t
+

∂(a2w0)

∂z
+

ε2

4

∂(a4w2)

∂z
+O(ε4) = 0. (4.13)

∂Γ

∂t
+

(aw0Γ )′

a
− C(a2w0)

′Γ

2a
+

ε2

2a

[

(a3w2Γ )′ − a′2(aw0)
′Γ − (aa′(aw0)

′)′Γ

− C Γ
2

(

(a4w2)
′

2
− a′2(a2w0)

′

)]

+O(ε4) = 0, (4.14)

R

(

∂w2

∂t
+ w0w

′

2

)

= −p′2 + ε

(

w′′

2 +
4w4

3

)

+O(ε2). (4.15)

Here w4(z, t) can be obtained from the second-order truncation of the tangential stress
balance,

a

(

w2 −
w′′

0

2

)

− 3a′w′

0 + ε2
(

a3w4

6
− a3w′′

2

8
− 7a2a′w′

2

4
− 3aa′2w2

2
+

3aa′2w′′

0

4

+
3a′3w′

0

2

)

=
σ′

ε
+

∂

∂z

[

(Bκκs − Bµµs)

a

(

(aw0)
′ − C(a2w0)

′

2

)]

+
2Bµ(µsaw

′

0)
′

a

+
Bµµsa

′w′

0

a
+ ε2

∂

∂z

[

(Bκκs − Bµµs)

2a

(

(a3w2)
′ − a′2(aw0)

′ − (aa′(aw0)
′)′

−C
2

(

(a4w2)
′

2
− a′2(a2w0)

′

))]

+ ε2
Bµa

′2(µsaw
′

0)
′

a
+

ε2Bµ

a

∂

∂z

[

µsa((a
2w2)

′

− 4a′2w′

0 − aa′w′′

0 )

]

+ ε2Bµµsa
′

(

aw′

2

4
+ 2a′′w′

0

)

+O(ε4), (4.16)

and p2(z, t) can be deduced from the first-degree approximation in ε of the radial
momentum equation (3.2),

p2 = R

(

1

2

∂w′

0

∂t
+

w0w
′′

0

2
− w′2

0

4

)

− ε

2
(w′′′

0 + 2w′

2) +O(ε3). (4.17)

Equation (4.15) is coupled to (4.6), i.e. the first-order momentum equation for w0(z, t),
whose unique unknown is p0(z, t). A higher-order approximation of p0 can be obtained
from the second-order normal stress balance,

p0 + ε2
a2p2
2

= Cσ + ε

[

−w′

0 +
C(Bκκs − Bµµs)

a

(

(aw0)
′ − C(a2w0)

′

2

)

− Bµµsw
′

0

a

+ε2
(

3a′2w′

0 −
3a2w′

2

4
− 2aa′w2 + aa′w′′

0

)

+ ε2
C(Bκκs − Bµµs)

2a

(

(a3w2)
′ − a′2(aw0)

′

−(aa′(aw0)
′)′ − C

2

(

(a4w2)
′

2
− a′2(a2w0)

′

))

− ε2Bµµs

(

aw′

2

4
+ 2a′′w′

0 −
a′2w′

0

2a

)]

+O(ε4).

(4.18)
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Hence, introducing the expressions for p2 and w4 into (4.15), and those for p0 and
p2 into (4.6), and eliminating the small parameter ε from the formulation via the
substitutions z → εz, t → εt and w2j → w2j/ε

2j , the four equations of the parabolic
model read

∂a2

∂t
+

∂(a2w0)

∂z
+

1

4

∂(a4w2)

∂z
= 0, (4.19)

R
∂w0

∂t
+ w0w

′

0 −
[

a2

4

(

∂w′

0

∂t
+ w0w

′′

0 − w′2
0

2

)]′
)

= 2w′′

0 + 2w2 − 6a′a′′w′

0

− (4a′2 + aa′′)w′′

0 − 3aa′w′′′

0

2
− a2w′′′′

0

4
+ 2(a′2 + aa′′)w2 +

5aa′w′

2

2
+

a2w′′

2

4

− ∂

∂z

[

Cσ +
C(Bκκs − Bµµs)

a

(

(aw0)
′ +

(a3w2)
′ − a′2(aw0)

′ − (aa′(aw0)
′)′

2

−C
2

(

(a2w0)
′ +

(a4w2)
′

4
− a′2(a2w0)

′

2

))

− Bµµs

(

w′

0

a
+

aw′

2

4
+ 2a′′w′

0 −
a′2w′

0

2a

)]

,

(4.20)

R

(

∂w2

∂t
+ w0w

′

2 +
w0w

′′′

0

2
+

1

2

∂w′′

0

∂t

)

=
4w′′

0

a2
+

24a′w′

0

a3
− 8w2

a2
+

w′′′′

0

2
− 6a′2w′′

0

a2

− 12a′3w′

0

a3
+ 3w′′

2 +
14a′w′

2

a
+

12a′2w2

a2
+

8

a3
∂

∂z

[

σ +
(Bκκs − Bµµs)

a

(

(aw0)
′

+
(a3w2)

′ − a′2(aw0)
′ − (aa′(aw0)

′)′

2
− C

2

(

(a2w0)
′ +

(a4w2)
′

4
− a′2(a2w0)

′

2

))]

+
8Bµµsa

′

a3

(

aw′

2

4
+ 2a′′w′

0

)

+
8Bµ

a4
∂

∂z

[

µsa(2w
′

0 + (a2w2)
′ − 4a′2w′

0 − aa′w′′

0 )

]

+
8Bµµsa

′w′

0

a4
+

8Bµa
′2(µsaw

′

0)
′

a4
, (4.21)

∂Γ

∂t
+

(aw0Γ )′

a
+

(a3w2Γ )′ − a′2(aw0)
′Γ − (aa′(aw0)

′)′Γ

2a

− C Γ
2a

(

(a2w0)
′ +

(a4w2)
′

4
− a′2(a2w0)

′

2

)

= 0. (4.22)

Note that equations (4.19)–(4.22), together with the three equations of state σ(Γ ), µs(Γ )
and κs(Γ ), form a closed system which determines the temporal evolution of a(z, t),
w0(z, t), w2(z, t) and Γ (z, t).

4.3. Temporal stability analysis of the 1D models

Performing numerical simulations of the temporal evolution of the liquid thread using
the 1D models derived above is beyond the scope of the present work. Hence, as a
first step, it is interesting to check the validity of both 1D approximations in the linear
regime by comparing their temporal stability properties with those provided by the
full axisymmetric dispersion relation derived in §3. Linearising equations (4.10)–(4.12)
and (4.19)–(4.22), and expanding in normal modes, the dispersion relations associated
with the leading-order model and the parabolic model are straightforwardly obtained, as
follows.
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Figure 7. Comparison between the full axisymmetric dispersion relation (3.26) (solid lines)
and the dispersion relation associated with the leading-order 1D model (4.23) (dashed lines) for
R = 0.01 and varying the value of β (a), Bµ (b) and Bκ (c). The values of the parameters are
indicated near each curve.

(i) Leading-order model:

2ω2R

k2
− 1 + k2 + β + ω(6 + 9Bµ + Bκ) = 0. (4.23)

(ii) Parabolic model:

Rω3(16 + 4k2) + ω2[128 + k2(96 + 40Bκ + 104Bµ) + k4(18 + 9Bκ + 25Bµ)]

+ ωk2[−8 + 40β + 384R
−1 (1 + 3Bµ/2 + Bκ/6) + k2(7 + 9β + R

−1 (96 + 80Bκ

+ 144Bµ + 64BκBµ)) + k4(1 + R
−1 (14 + 9Bκ + 25Bµ))] + R

−1 k2[64(β − 1)

+ k2(48 + 80β − 16Bκ − 16Bµ + 64βBµ) + k4(15 + 9β + 16Bκ + 16Bµ) + k6]

− 16β

R ω
k4(1− k2) = 0. (4.24)

To illustrate the performance of the two different 1D models deduced in the present
work, figures 7 and 8 compare, respectively, the amplification curves obtained with the
leading-order model (4.23) and with the parabolic model (4.24), with those given by
the full axisymmetric dispersion relation (3.26), for several values of β, Bµ and Bκ.
In the case of the elasticity parameter, β, figure 7(a) shows that the leading-order 1D
model fails at predicting the linear behaviour of the liquid column as β increases, as
was already pointed out by Timmermans & Lister (2002). In fact, according to this 1D
approximation, the liquid column is stable for every value of k if β > 1. With regard to
Bµ and Bκ, figure 7(b,c) shows that the leading-order 1D approximation also fails at
predicting the growth rate ω(k), especially when Bµ ≫ 1 and Bκ ≫ 1.
In contrast, the parabolic model captures the linear regime with high accuracy for every

value of β, Bµ and Bκ, as evidenced by the results of figure 8. The agreement between
both ω(k) curves is slightly worse when β → ∞, whereas it improves when (Bκ,Bµ) ≫ 1
independently of the value of β. In particular, we have checked that in the limit Bµ → ∞,
the dispersion relation (4.24) is identical, at leading order, to equation (3.27) deduced
from the exact dispersion relation (3.26).
It is worth mentioning that Timmermans & Lister (2002) also derived a higher-order

approximation usually known as the averaged-parabolic model, but only accounting
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Figure 8. Comparison between the full axisymmetric dispersion relation (3.26) (solid lines) and
the dispersion relation associated to the parabolic 1D model (4.24) (dashed lines) for R = 0.01
(a,b) and R = 100 (c,d). Panels (a,c) show the amplification curves for Bµ = Bκ = 0 and
several values of β, and (b,d) those for β = 5, µs0/κs0 = 1 and several values of Bµ indicated
near each curve.

for gradients of σ and not surface viscosities. These authors demonstrated that, for
a very viscous thread, i.e. R → 0, the averaged-parabolic model shows a very good
agreement with the full expression of the dispersion relation (3.26) for Bµ = Bκ = 0 and
different values of β. Indeed, the accuracy of their averaged-parabolic model is slightly
better than that of the parabolic model developed herein in the limit (Bµ, Bκ) → 0,
when only surface elasticity is considered. Note that, in the case of a clean interface,
a similar conclusion was obtained by Garćıa & Castellanos (1994), who found that the
1D averaged-parabolic model performs slightly better than the 1D parabolic model in
predicting the linear amplification curve.

In summary, the leading-order 1D equations are suitable for small values of β, Bµ and
Bκ, including the limit of a clean interface (Eggers & Dupont 1994; Garćıa & Castellanos
1994). However, when (β,Bµ,Bκ) & 1, a higher-order approximation like the parabolic
model derived herein, or the averaged-parabolic model due to Timmermans & Lister
(2002), is needed to obtain good quantitative results in the linear regime.
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5. Conclusions

We have provided the full expressions for the normal and tangential stress boundary
conditions at a general axisymmetric interface coated with insoluble surfactant, with
surface viscosity effects correctly taken into account in the Boussinesq–Scriven approxi-
mation (Boussinesq 1913; Scriven 1960). These boundary conditions have been applied
to obtain the dispersion relation between growth rate and wavenumber for the canonical
case of the capillary instability of a free uniform thread of Newtonian liquid coated with
an insoluble monolayer. Through a modal temporal analysis we have shown that the
maximum growth rate decreases monotonically with the surface shear and dilatational
viscosities, while the corresponding wavenumber displays a more complex non-monotonic
dependence.
In addition, we have presented two different 1D approximations that account for the

effect of surface viscoelasticity due to the presence of insoluble surfactants, namely a
leading-order model and a second-order parabolic one. By comparing the dispersion rela-
tions associated with these 1D models with the exact one, it is deduced that the validity
of the leading-order model is limited to small enough values of the elasticity parameter
and of the shear and dilatational Boussinesq numbers. In contrast, the parabolic model
provides a dispersion relation in close agreement with the temporal amplification curves
of the exact dispersion relation for the whole range of dimensionless parameters.
Although a nonlinear analysis of surface viscous effects, including their influence on

the breakup of the thread and on the formation of satellite drops, is beyond the scope
of the present study, it clearly deserves further investigation. To that end, the parabolic
1D model developed herein could well be a very useful tool to obtain the nonlinear time
evolution of the liquid thread at a reduced computational cost compared with numerical
simulations of the full conservation equations.

The authors thank the Spanish MINECO, Subdirección General de Gestión de Ayudas
a la Investigación, for its support through projects DPI2014-59292-C3-1-P, DPI2015-
71901-REDT and DPI2017-88201-C3-3-R. These research projects have been partly
financed through European funds. A.M.-C. also acknowledges support from the Spanish
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Appendix A. Details on the derivation of the interfacial stresses

For completeness, several terms of equation (2.8) of the main text are deduced in detail:

∇s · us =
1√

1 + a′2
∂us

∂z
· t+

1

a

∂us

∂θ
· eθ =

(aut)
′

a
√
1 + a′2

+
un

a
√
1 + a′2

− a′′un

(1 + a′2)3/2

=
1√
g

∂(
√
g22ut)

∂z
+ Cun = ∇s · ut + Cun, (A 1)

(∇sus)11 =
1√

1 + a′2
∂us

∂z
· t =

u′

t√
1 + a′2

− a′′un

(1 + a′2)3/2
, (A 2)

(∇sus)13 =
1√

1 + a′2
∂us

∂z
· n =

u′

n√
1 + a′2

+
a′′ut

(1 + a′2)3/2
, (A 3)
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(∇sus)22 =
1

a

∂us

∂θ
· eθ =

a′ut

a
√
1 + a′2

+
un

a
√
1 + a′2

, (A 4)

(∇sus)12 = (∇sus)21 = (∇sus)23 = (∇sus)31 = (∇sus)32 = (∇sus)33 = 0, (A 5)

∇s ·
{

µs

[

(∇sus) · Is + Is · (∇sus)
T
]}

=

{

1

a

∂

∂z

[

2µsa

1 + a′2

(

u′

t −
a′′un

1 + a′2

)]

− 2µsa
′

1 + a′2

[

a′ut + un

a2
− a′′

1 + a′2

(

u′

t −
a′′un

1 + a′2

)]}

t

− 2µs

1 + a′2

[

a′ut + un

a2
− a′′

1 + a′2

(

u′

t −
a′′un

1 + a′2

)]

n (A 6)

Appendix B. Matrix of the homogeneous linear system

The substitution of normal-mode variables evaluated at r = R in (3.24) and (3.25)
provides a homogeneous linear system for the constants of integration A and B of the
form M · φ = 0, where φ = (A,B)T and the following four entries of M:

M11 = I0(kR)

[

1 +
k2

ρω

(

2µ− E

ωR
− ks0 − µs0

R

)]

+
kI1(kR)

ρωR

[

E − σ0(1 − k2R2)

ωR
− 2µ+

κs0 + µs0

R

]

, (B 1)

M12 = k̃I0(k̃R)

[

E

ωR
− 2µ+

ks0 − µs0

R

]

+
I1(k̃R)

R

[

2µ+
σ0(1− k2R2)− E

ωR
− κs0 + µs0

R

]

, (B 2)

M21 =
ik2

ρω

[

−kI0(kR)

(

E

ω
+ ks0 + µs0

)

+ I1(kR)

(

E

ωR
− 2µ+

κs0 − µs0

R

)]

, (B 3)

M22 = i

[

kk̃I0(k̃R)

(

E

ω
+ ks0 + µs0

)

+ I1(k̃R)
µk̃2

k
+ µk − kE

ωR
− k(κs0 − µs0)

R

)]

.

(B 4)
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