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Antonio Alcántara1 · Inés M. Galván2 · Ricardo Aler2

Accepted: 2 July 2022
© The Author(s) 2022

Abstract
Wind and solar energy forecasting have become crucial for the inclusion of renewable energy in electrical power systems.
Although most works have focused on point prediction, it is currently becoming important to also estimate the forecast
uncertainty. With regard to forecasting methods, deep neural networks have shown good performance in many fields.
However, the use of these networks for comparative studies of probabilistic forecasts of renewable energies, especially for
regional forecasts, has not yet received much attention. The aim of this article is to study the performance of deep networks
for estimating multiple conditional quantiles on regional renewable electricity production and compare them with widely
used quantile regression methods such as the linear, support vector quantile regression, gradient boosting quantile regression,
natural gradient boosting and quantile regression forest methods. A grid of numerical weather prediction variables covers
the region of interest. These variables act as the predictors of the regional model. In addition to quantiles, prediction intervals
are also constructed, and the models are evaluated using different metrics. These prediction intervals are further improved
through an adapted conformalized quantile regression methodology. Overall, the results show that deep networks are the
best performing method for both solar and wind energy regions, producing narrow prediction intervals with good coverage.

Keywords Deep neural networks · Prediction intervals · Probabilistic forecasting · Quantile estimation · Regional
renewable energy forecasting

1 Introduction

In the last few years, there has been a large increase in
the installed capacity of both wind and solar renewable
energy. Wind and solar energy are nondispatchable energy
sources, which means that they are not under the control
of an operator; instead, these energy sources depend on
weather conditions. This dependence makes the integration
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of wind and solar energy into the electricity grid more diffi-
cult than operable sources. Given that the amount of energy
to be generated cannot be controlled, the only alternative is
to forecast it with as much accuracy as possible. Numerical
weather prediction (NWP) systems, which are based on
mathematical/physical models of the atmosphere, are one of
the most accurate ways to predict meteorological variables.
However, in electricity generation, the most relevant depen-
dent variable is how much electricity will be generated. One
way of determining this is to couple NWP systems with
machine learning models. The goal of the latter is to find the
relation between NWP variables (the inputs to the model)
and the electricity produced (the output, which is the depen-
dent variable). An example of this approach can be found
in [1].

However, most works deal with point or deterministic
forecasts. It is currently becoming increasingly important to
estimate the uncertainty associated with renewable energy
forecasts [2]. Such forecasts, which are known as proba-
bilistic forecasts, are more informative than the forecasts
obtained from deterministic models. Several works have
shown how probabilistic renewable energy forecasts allow
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for improvements in the management of power systems [3],
the participation in the electricity market [4–6], and the
bidding strategy of ancillary services of renewable power
plants [7].

Probabilistic forecasts can be represented in different
ways. Sets of quantiles are one of the most widely used
representations of the predicted probability distribution [8].
A well-known method to estimate quantiles is to minimize
the quantile loss using (linear) quantile regression, where
linear models are trained for each of the quantiles to be
estimated. It is important to remark that these are con-
ditional quantiles (the model outputs the quantile, which
is conditioned to the inputs/independent variables). How-
ever, in quantile regression, it is assumed that the relation
between inputs and outputs is linear. For nonlinear rela-
tionships, other machine learning methods can be used. For
instance, support vector machines can be extended to quan-
tile regression by using quantile loss as a penalization term
[9]. Random forests can be easily extended so that quan-
tiles are output instead of deterministic predictions [10].
Gradient boosting techniques can be formulated as gradi-
ent descent optimization, and therefore, they can also return
conditional quantiles by minimizing quantile loss [11]. A
disadvantage of gradient boosting as well as linear quantile
regression and support vector machines is that a different
model has to be fit for each different quantile. The recently
introduced natural gradient boosting method, which follows
the general gradient boosting framework, can also be used
to estimate quantiles; in this case, all quantiles can be pro-
vided using a single model [12]. All the nonlinear methods
for quantile estimation described above have been used in
recent energy forecasting work [13–16] for SVRQR, QRF,
GBR, and NGB.

Deep neural networks (DNNs) are nonlinear models that
have been very successful in recent years in many research
fields, such as computer vision [17–20], natural language
processing [21, 22] and renewable energy forecasting [23–26].
In [27], the most widely used methods in power research,
such as convolutional neural networks (CNNs), autoen-
coders and deep belief networks, were reviewed. However,
deep learning has been mainly used for point forecasting.
For example, in [28], CNNs were employed for wind power
point prediction. In [29], similar research was carried out;
here, dense fully-connected neural networks were utilized
to forecast wind power for a single wind farm. A hybrid
LSTM-CNN method was employed in [30] to make point
predictions of solar power, and LSTM models were also
studied in [31] for short-term renewable electricity genera-
tion for a location. Apart from the most common renewable
energy sources (i.e., solar and wind sources), the model-
ing of hydrogen production has also been considered using
DNNs [32] but not from a probabilistic perspective.

Given that the most common training method of neural
networks is gradient descent, these networks can also be
used to obtain conditional quantiles by minimizing quantile
loss. As a result, probabilistic predictions can be obtained.
Despite their overall good performance, neural networks
have not received much attention for comparative studies of
probabilistic forecasting of renewable energies.

For instance, [33] made a comparison of several methods
for computing probabilistic forecasts, but no neural net-
works were used. They started with several point forecast
methods, including decision trees, nearest neighbors, gra-
dient boosting, random forests, and lasso/ridge regression,
and used some ensemble techniques to obtain quantiles for
probabilistic solar energy forecasting. Additionally, in [34],
different methods, such as decision trees, random forests
and gradient boosting together with bootstrapping, were
compared for the construction of probabilistic forecasts, but
again, no neural networks were used in the study. In other
studies [35, 36], in addition to random forests and gra-
dient boosting decision trees, neural networks were used
for quantile estimation. However, these neural architectures
only contained one or two hidden layers [37, 38], and deep
network performance was not studied.

In this article, we propose the use of deep neural net-
works (networks with more than 2 layers) for the quan-
tile estimation of renewable energy (both solar and wind
energy). Instead of estimating a single quantile as in other
works [39, 40], the proposed quantile regression deep neu-
ral network (QRDNN) model has been designed to estimate
multiple quantiles. In previous works, a different network
was trained for each quantile to be estimated, which requires
a large computational effort. The QRDNN model outputs
all required quantiles using a single model, hence saving
computational time. The combination of multiple layers and
multiple output quantiles allows for complex nonlinear pro-
cessing in the initial layers, while the last layer is used to
adapt to each of the quantiles.

Pairs of quantiles can be used as the lower and upper
limits of prediction intervals (PIs), which are widely used
to represent the uncertainty of the dependent variable with
a given probability. PIs should be as narrow as possible.
However, this property is not directly considered when
estimating quantiles. Therefore, PIs obtained from quantiles
may be wider than necessary. In this work, QRDNN has
been extended using conformalized quantile regression
(CQR) [41], which allows the PIs obtained from the
quantiles to be calibrated. The CQR is a very recently
introduced calibration method that has seldom been used for
deep networks [42]. Additionally, CQR has been adapted
to the power generation problem addressed in this work by
using several time prediction horizons. This is achieved by
computing conformity scores that are dependent on the time



Deep neural networks for the quantile estimation of regional renewable energy production

horizon. This allows the separate adaptation of PIs to the
characteristics of each time horizon.

The field of application for this work is probabilistic
forecasting at the regional level. Most works deal with
energy forecasting at the local level (e.g., a single wind farm
or photovoltaic plant), but for some applications, electricity
production is required to be aggregated at the regional
level (e.g., areas, regions, or countries) [43–46]. In regional
forecasting, geographical dispersion of plants in the region
provides a balancing effect that results in a lower variability
on the energy production, compared to the production of
individual plants (solar or eolic). On the other hand, regional
forecasting has some particular issues, such as maintenance
operations, or down-regulation of individual plants, that add
noise to the electricity production data. To empirically study
regional forecasting, quantile models are obtained for the
electricity production in four provinces in Spain at different
forecasting horizons. To obtain a greater understanding
of deep networks for renewable probabilistic forecasting,
the two most important renewable energies, solar (Ciudad
Real and Córdoba provinces) and wind (Granada and Lugo
provinces) energies, are studied.

In summary, the main contributions of this article are:

• The combination of deep neural networks containing
multiple layers and multiple quantiles at the output
(QRDNN) are used to estimate a set of quantiles, which
allows the estimation of a set of PIs.

• The conformalized quantile regression method is
applied to calibrate multiple PIs obtained from the
quantiles at the network output and its adaptation is
applied to multiple time prediction horizons.

• An exhaustive comparative study in the context of
regional renewable energy forecasting for both solar
and wind energy is conducted. The performance of
QRDNN has been compared with linear quantile
regression (LQR) and state-of-the-art methods, such as
support vector quantile regression (SVQR), gradient
boosting quantile regression (GBQR), natural gradient
boosting (NGB) and quantile regression forests (QRFs).
Systematic hyperparameter tuning by a grid search is
used for all methods. This comparison has been made
using metrics related to quantile estimation as well as
metrics related to the goodness of the PIs obtained from
the quantiles.

The structure of this article is as follows. In Section 2,
the meteorological and production datasets are described.
In Section 3, the machine learning methods employed in
the article are introduced. In Section 4, the methodology,
models, metrics, and evaluation procedure are presented.
In Section 5, the obtained results are documented and
discussed. Finally, in Section 6, the main conclusions of this
work are drawn.

2 Data

As previously mentioned, NWP variables (independent vari-
ables) are used as the inputs to predict the amount of renew-
able energy (solar or wind) generated in a region. Regarding
the independent variables, an observational spatial grid is set
across different Spanish regions (“provincias”) from which
we will be able to obtain these variables. This means that
for every point on the observational grid, a complete set of
NWP variables will be collected.

Data in the netCDF4 format are provided by the Euro-
pean Centre forMedium-RangeWeather Forecasts (ECMWF)
in the ERA5 database [47]. Overall, it is possible to obtain
two data products: the ensemble mean and reanalysis data.
The former represents the actual meteorological forecasts
for each of the variables, which are provided as the mean
of a forecast ensemble (data from the variables forecast by
NWP at different time horizons and at several locations in
the spatial grid). Additionally, reanalysis data are posterior
calibrations produced with the aim of reducing forecasting
errors.

While a spatial resolution of 0.25◦ × 0.25◦ is allowed for
the reanalysis data, a resolution of 0.5◦×0.5◦ is provided for
the ensemble mean data. Furthermore, reanalysis data are
provided hourly, while the ensemble mean data are obtained
every 3 hours beginning at 00:00 hours. However, in this
article, some preliminary tests were made, suggesting that
the uncertainty of the ensemble mean data allows for better
modeling of the energy generation uncertainty. Therefore,
the dataset has been constructed with the ensemble mean
data. The NWP variables are extracted from a spatial grid
with a 0.5◦ × 0.5◦ resolution.

We define four grid extensions to cover the majority
of the four regions (Spanish provinces). The grids in the
regions of Córdoba and Ciudad Real are employed for
solar energy prediction. In addition, the grids in Lugo and
Granada are used for wind energy prediction.

Figure 1 shows the observational grid for these four
regions. The grid in Lugo includes longitudes from -8o¯ to
-6.5o¯ and latitudes from -8o¯ to 44o¯. In Córdoba, the grid
includes longitudes from -5.5o¯ to -4o¯ and latitudes from
37o¯ to 39

o
¯. In Granada, the grid spans LON from -4.5o¯ to

-2o¯ and LAT from 36.5o¯ to 38
o
¯. Finally, the grid in Ciudad

Real includes LON from -5o¯ to -2.5
o
¯ and LAT from 38.5o¯

to 39.5o¯.
Additionally, data for the dependent variable (generated

energy) is obtained from the open data portal ESIOS of the
Spanish regulator Red Eléctrica Española [48]. Within this
portal, users can obtain data related to energy consump-
tion, generation, and exchange, among other indicators.
Electricity generation data are provided in hourly intervals.
In addition, data can be filtered by the type of production
(solar or wind in our design) and by region. Therefore, we
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Fig. 1 Observational grids for (a) Lugo, (b) Córdoba, (c) Granada, (d) Ciudad Real
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have selected the type of energy and the desired temporal
set according to our selected regions.

We now explain how the complete dataset is built. The
data provided by ECMWF must be transformed to obtain
a 2-dimensional data matrix with observations in the rows
and variables in the columns. NWP variables, which were
provided by ECMWS in netCDF4 format, are contained in
a three dimensional array. Each variable is measured at a
specific latitude, longitude, and time. An arrangement is
made so that every time point is an observation and every
different variable Xi in each latitude j and longitude k is an
input. For example, if we have N meteorological variables
in a j × k spatial grid, the procedure will allow us to obtain
a set of T observations (rows) and N × j × k independent
variables (columns).

Specifically, for our purpose, the variables shown in
Table 1 are utilized. These selections are made according to
other research in regional point energy prediction [1] that
resulted in successful outcomes.

The ECMWF provides 8 daily time horizon forecasts
for each variable: 00:00, 03:00, 06:00, 09:00, 12:00, 15:00,
18:00, and 21:00 (8 is therefore the temporal resolution

Table 1 Solar and wind energy meteorological input variables for
quantile estimation

NWP variable Usage

100 m u-component of wind Solar & Wind
100 m v-component of wind Solar & Wind
100 m wind norm Wind
10 m u-component of wind Wind
10 m v-component of wind Wind
10 m wind norm Wind
2 m temperature Solar & Wind
Maximum 2 m temperature since previous Solar
postprocessing
Minimum 2 m temperature since previous Solar
postprocessing
Surface pressure Solar & Wind
Mean surface downward longwave radiation flux Solar
Mean surface downward shortwave radiation flux Solar
Mean surface net longwave radiation flux Solar
Mean surface net shortwave radiation flux Solar
Mean top downward shortwave radiation flux Solar
Mean top net longwave radiation flux Solar
Mean top net shortwave radiation flux Solar
Total cloud cover Solar
Total precipitation Solar

Usage column indicates whether the variable is used for solar energy,
wind energy, or both

of the ensemble mean data). Therefore, there will be a
maximum number of 8 observations per day in our dataset.

As previously explained, the independent variables for
each observation (i.e., each row in the dataset) are obtained
from ECMWF [47]. In addition, the dependent variable
(electrical energy produced) is obtained from the ESIOS
system [48] by matching the time horizons of each
observation with the times from the ESIOS system (e.g.,
data from the 15:00 time horizon from ECMWF is matched
with energy produced during the 15:00-16:00 time period
from the ESIOS system). For wind energy, all forecast
horizons are used. For solar energy, only those time horizons
that correspond to year-round daylight hours (i.e., 09:00,
12:00, and 15:00) are used.

3Methods

Given the independent variables x = (x1, x2, . . . , xp),
the conditional distribution function (1) indicates the
probability that the dependent variable Y is less than or
equal to a given value. The α-quantile (2) is defined as the
probability that Y is smaller than Qα(x) is α.

F(y | X = x) = P(Y ≤ y | X = x) (1)

Qα(x) = inf {y : F(y | X = x) ≥ α} (2)

In the following subsections, the machine learning meth-
ods used in this article to estimate the quantiles conditioned
to the independent variables are described. In general,
these quantile models will be represented by Q̂α(x). In
these methods, a training set with Nins instances Itrain =
{(x1, y1), . . . , (xNins

, yNins
)} is used to fit Q̂α(x).

3.1 Linear quantile regression

The general framework of the linear quantile regression
(LQR) model is derived from the linear regression model,
which allows us to make predictions and inferences over the
quantiles for some given dependent variables. Therefore, the
α-quantile for a dependent variable is modeled as the linear
combination of predictors:

Q̂α(x; β0; β) = β0 + βx (3)

where x = (x1, x2, . . . , xp) is the set of predictors, β =
(β1, β2, . . . , βp) is the set of coefficients and p is the
number of predictors.

In contrast, classical linear regression models are built
according to the minimization of the residuals from fitted
values. Therefore, LQR has the quantile loss (or pinball
loss) function (5) as the element to minimize, which is
defined in terms of the residual (4). The LQR loss, which
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is asymmetrical, has a different penalty for residuals above
(u ≥ 0) or below (u < 0), and it can be shown that its
minimization converges to the required α-quantile.

u = y − Q̂α(x) (4)

Lα(u) =
{

αu, u ≥ 0
(α − 1)u, u < 0 (5)

Here, (5) is applicable for a single (x, y) pair, but
generally, it is defined over a set of Nins instances T =
{(xi , yi)

Nins

i=1 }, as shown in (6).

Lα(T ) = 1
Nins

Nins∑
i=1

Lα(yi − Q̂α(xi; β0; β̂)) (6)

Thus, analogously to the linear model regression, the
fitting process for LQR becomes a minimization process so
that the parameters β̂ can be obtained.

minimize
β̂0,β̂∈Rp+1

Nins∑
i=1

Lα(yi − Q̂α(xi; β0; β̂)) (7)

whereNins is the size of the training data (i.e., the number of
instances or observations). The LQR requires one model per
quantile be trained: Q̂α1 , Q̂α2 , . . . , Q̂αNquan

, where Nquan is
the number of quantiles to be estimated.

During this study, the R package quantreg is imple-
mented to fit the different LQR models and obtain an
estimation of the conditional quantiles. Information about
this package implementation can be found in [49].

3.2 Support vector quantile regression

Support vector quantile regression (SVQR) is a technique
for estimating quantiles and is based on the idea of support
vector regression (SVR) [50].

Standard SVR can be used for classification and
regression. In the simplest approaches, linear models f are
constructed, as shown in (8).

f̂ (x) = ωT x+ b (8)

where ω is a vector of weights, which are obtained by
solving the minimization problem formulated in (9). This
optimization process is utilized to find a balance between
the simplicity of the model (the first term of (9)) and the loss
of the model for each of the instances (the second term of
(9)).

minimize
ω,b

λ||ωT ω + 1
Nins

Nins∑
i=1

L(yi − (ωT xi + b)) (9)

where λ is a regularization hyperparameter that represents
the tradeoff between these terms (sometimes C, or Cost, is
used instead, where C = 1

λ
), and L(u) is the loss function.

For classification problems, the loss is usually the hinge

loss, while for regression problems, the ε-insensitiveL1 loss
is commonly used.

Nonlinear models f̂ (x) = ωT χ(x) + b can also be
obtained by using nonlinear mappings χ . These nonlinear
mappings are not explicitly applied. Instead, kernels and
the kernel trick allow us to solve the optimization process
required to train the SVR model without actually carrying
out the mapping. The most widely used kernel is the radial
basis function kernel (i.e., the Gaussian kernel), which is
defined in (10). Nonlinear models can be defined in terms
of the kernel in (11).

KRBF (xa, xb) = exp
(

−‖xa − xb‖2
2γ 2

)
(10)

f̂ (x) =
i=Nins∑

i=1
aiKRBF (x, xi ) (11)

where ai are coefficients obtained by the optimization pro-
cess once the kernel has been included and γ is the kernel
bandwidth parameter.

The concepts from SVR have been extended to quantile
estimation [9] and used in recent work related to the energy
field [13] by using the quantile loss Lα , which was defined
in the previous section in (5), in the SVR optimization
defined in (9). This extension allows us to use the SVR
mechanism to extend quantile regression to nonlinear
models. Given that the loss function Lα is different for
different α values, a different model Q̂α has to be obtained
for each α. The liquidSVM library is a recent and fast
implementation of SVRs that provides methods for SVR-
based quantile estimation [51] and is used for this study.

3.3 Gradient boosting quantile regression

Gradient boosting (GB) is an ensemble machine learning
method. The GB models have the mathematical form shown
in (12).

FM(x) =
j=M∑
j=1

γihi(x) (12)

where hi(x) are the members of the ensemble (called weak
models) and γi ≥ 0 are the weights of each model in
the ensemble. M is the size of the ensemble (i.e., the total
number of weak models).

The GB training method is sequential in the sense that
a sequence of partial ensembles F1, F2, . . ., Fm, . . . are
constructed until the final ensemble FM is obtained. This
process is carried out by computing Fm+1(x) = Fm +
γihm(x) so that Fm+1 improves the previous ensemble Fm

by adding a new ensemble member hm. This process is
repeated until the ensemble is complete.
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Each new hm model added to the ensemble is trained in
a way that ensures that the transition from ensemble Fm to
ensemble Fm+1 follows a gradient descent procedure. This
means that by adding hm to ensemble Fm, the transition
to Fm+1 goes in the direction opposite that of the loss
function gradient, i.e., in the direction in which the error
decreases the most. This is achieved by training each hm

with a modified dataset, in which the inputs are the same as
those in the original dataset, but the outputs are the negative
gradients represented in (13).

ri = −∂(L(yi, F (xi))

∂F (xi)
|F(x)=Fm(x) (13)

Thus, every hm model added to the ensemble is trained
with the {(x1, r1), (x2, r2), . . . , (xNins

, rNins
)} dataset. This

general formulation of gradient boosting allows the method
to optimize any loss function for which partial derivatives
can be computed. Typically, loss functions such as the
mean square error (MSE) or mean absolute error (MAE)
are used, and this allows GB ensembles that optimize those
loss functions to be obtained. However, this mechanism
also allows us to obtain ensembles that optimize quantile
loss, which is the function of standard gradient boosting
software packages (for this article, LightGBM [52] is used).
Given that different α values lead to different quantile loss
functions, a different ensemble has to be trained for every
α-quantile.

In this section, the main ideas of GB as applied to
quantile regression have been illustrated. Other technical
details have not been discussed, but a complete overview
of GB can be found in [11]. Additionally, although in
principle the ensemble member hi can be any kind of model,
most implementations have used regression trees as base
models, which have been shown to be very powerful and
efficient approaches. Finally, in this study, we have used the
LightGBM implementation, which has its advantages and
technical issues. While slightly different to the foundational
ideas discussed in this section, LightGBM can be examined
in [52].

The main hyperparameters of GB are the number of
ensemble members M , the maximum depth of the trees
in the ensemble, and the shrinkage (or learning rate) ν.
If a learning rate different than 1.0 is used, then the
GB ensemble becomes (14). All these hyperparameters
allow us to regularize the ensemble and control overfitting.
Large M values, large maximum depth, or large learning
rates usually lead to overfitting, and their values must be
carefully adjusted so that models with good generalization
are obtained.

FM(x) =
j=M∑
j=1

νγihi(x) (14)

Similarly to LQR, GBQR requires that one model per
quantile be trained: Q̂α1 = Fα1,M , Q̂α2 = Fα2,M , . . .

3.4 Natural gradient boosting

Natural gradient boosting (NGBoost) is a recent method
that uses boosting models for computing probabilistic pre-
dictions in regression problems [12, 16, 53]. The first
difference between NGBoost and standard boosting is
that the ensemble model is used in NGBoost to estimate
the parameters of the conditional probability distribution
(e.g., the mean μ and standard deviation log(σ ) of the
normal distribution f(μ,σ)(y|X = x)) rather than the depen-
dent variable Y . In other words, the output(s) of the boosting
ensemble described in 12 are the parameters of the prob-
ability distribution for the dependent variable and not the
dependent variable itself. For instance, if the parameters are
μ and log(σ ), a model with two ensembles, one ensem-
ble per parameter, are obtained (see 15). Quantiles can be
then obtained from these probability distributions (namely,
N(F

(μ)
M (x), exp(F (log(σ ))

M (x)), where N is the normal distri-
bution).

μ̂ = F
(μ)
M (x) =

j=M∑
j=1

γih
(μ)
i (x)

ˆlog(σ ) = F
(log(σ ))

M (x) =
j=M∑
j=1

γih
(log(σ ))
i (x) (15)

The second difference between NGBoost and standard
boosting is that rather than using the standard gradient,
as shown in 13, NGBoost uses the natural gradient. The
reason is that to obtain gradients for this formulation, dis-
tances between different probability distributions must be
computed. However, the distances between the parame-
ters that represent distributions (e.g. (μ, log(σ ))) do not
represent the differences between their associated proba-
bility distributions well. Thus, natural gradients, which use
divergences such as the Kullback·Leibler divergence or the
L2 divergence are defined as the proper way to consider
the differences between the actual probability distributions.
Natural gradients are used instead of standard gradients for
the GB algorithm.

3.5 Quantile regression forests

Random forests (RFs) are another ensemble machine
learning method. Unlike gradient boosting, the ensemble in
RFs is not based on the improvement of a weak learner;
instead, it is based on fitting a large number of learners and
bagging to make a joint prediction.

One of the particularities of this method is that it relies
on randomization to prevent overfitting. From training data
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{(x1, y1), ..., (xNins
, yNins

)} of size Nins , each one of the
M base learners {h1(x), h2(x), . . . , hM(x)} (regression
trees for this project) takes a bootstrapped sample with
replacement. Furthermore, only a random subset of m

features from the p available features are employed to grow
the trees. Trees are grown until the minimum sample size
required for splitting a node is reached [54]. The number
of trees M , the maximum number of selected features m,
and the minimum number of observations required to split
a node of the tree are important hyperparameters of this
method.

Following [10], predictions are made using standard
random forests by averaging the individual predictions of
each of the trees in the ensemble ({h1, h2, . . . , hM}). Each
tree hi makes a prediction by sending a new instance x
down the tree until it reaches a leaf. The leaf contains
all the observations {(xi , yi)} that reached it during the
training process. The prediction of the forest is simply the
average of the dependent variable of those instances (ŷ(x) =
1
M

∑j=M

j=1 hj (x)).
This process can be used for point prediction, and

random forests can easily be used for estimating quantiles
[10]. Given that the leaf reached by a new instance x
contains a set of observations, {(xi , yi)}, {yi} can be
used for constructing an empirical distribution. These
empirical distributions can be averaged across all trees in
the ensemble. From this average distribution, quantiles can
be computed.

More formally, let:

• l(x, hj ) be the leaf of ensemble tree hj , which is
reached by new instance x.

• T (x, hj ) be the set of training instances {(xi , yi)} that
reach leaf l(x, hj ) during the training process.

• w(x, hj , y) = |{(xi ,yi )}∈T (x,hj )|yi=y |
|T (x,hj )| be the proportion of

instances in T (x, hj ) for which yi = y. If no instance
in T (x, hj ) has the value y for the dependent variable,
then w(x, hj , y) = 0

• w(x, y) = 1
M

∑M
j=1w(x, hj , y) be the average of w

across all M trees in the random forest ensemble.

The final conditional distribution function can be
estimated by the empirical distribution of the unique values
yi ∈ L(x, hj ), assuming that each value has probability
w(x, yi), as can be seen in (16).

F̂ (y | X = x) =
uv∑
i=1

w(x, yi)1yi≤y (16)

where uv is the number of unique values of the dependent
variable present in leaves l(x, hj ) and {y1, y2, . . . , yuv} are
the unique values. Unlike LQR and GBQR, QRF allows the
extraction of all desired quantiles (α1, α2, . . . , αNquan ) from
a single model.

During the development of this article, the scikit-garden
in Python was implemented to fit the different QRF
models [55].

3.6 Quantile regression deep neural networks

Neural networks have been proven to be powerful methods
for both classification and regression. In this work, DNNs
are used to estimate a set of quantiles, and the model named
QRDNN (see Fig. 2) has been introduced. Like most fully-
connected DNNs, QRDNN can be visualized with an input
layer, which contains predictors or inputs x, several hidden
layers, where each layer has a defined number of neurons,
and an output layer, which, in this work, are the estimated
quantiles.

The operation of the hidden layers can be understood
as matrix multiplication followed by a nonlinear activation
function g (e.g., ELU, ReLU or sigmoid). If x is the vector
of inputs, L1 is the weight matrix from the input layer to the
first layer, and b1 is the vector of biases from the first hidden
layer. Then, the output of the first layer is given by (17).

a1 = g(L1x+ b1) (17)

With the exception that the activation of the previous
layer is utilized, the same structure is followed for the
remaining hidden layers until the output layer is reached.
Thus, the output of the i-th layer (i=2,3,...) is given by (18).

ai = g(Liai−1 + bi) (18)

where Li is the weight matrix from the layer i − 1 to layer i

and bi is the bias vector of layer i.
The outputs of the neural network (activation of the

output layer) are the estimated quantiles and the network
will have one neuron output for each α-quantile to be
estimated, as can be seen in Fig. 2.

Training large neural networks that contain several hid-
den layers with many neurons in each layer may lead to
overfitting. A common approach to prevent overfitting is to
use dropout layers. These additional layers randomly hide or
ignore some outputs from a hidden layer with a probability
p. Thus, the DNN will not employ all weights. Therefore, it
is more difficult to overfit the training data, which results in
a network with better generalization.

Loss functions usually used for training neural networks
are the mean square error (for regression) and cross-entropy
(for classification). However, when the neural network is
used to estimate quantiles, these functions are not useful.
Given that quantile estimation can be formulated as the
minimization of quantile loss ((5) and (6)), the approach
followed in this work is based on the optimization of these
functions.

However, instead of using (5) and (6) in a straightforward
way, (19), an equivalent formulation, is used. The reason



Deep neural networks for the quantile estimation of regional renewable energy production

Fig. 2 QRDNN architecture to
estimate Nquant quantiles

is that a straightforward implementation of (5) and (6)
would require a loop over the instances, where for every
instance, a check on whether the residual (4) is positive or
negative must be completed, and then αu and (α − 1)u can
be computed. In (19), the explicit loop is removed, which
allows for a more efficient execution when using PyTorch
[56] and graphical processing units (GPUs).

Lα(T ) = 1
Nins

∑
max(αUα, (α − 1)Uα) (19)

where Uα = (uα,1, uα,2, . . . , uα,Nins
)T is a column vector

containing the residuals uα,i = yi − Q̂α(xi ) for all
instances in the training set. max returns a column vector
(max(αuα,1, (α − 1)uα,1),max(αuα,2, (α − 1)uα,2), . . .)

T .
Given that 0 < α < 1 and (α − 1) is always negative, max
will return αuα,i if the residual ui is positive, and (α−1)uα,i

otherwise. Hence, it is equivalent to (5).
∑

represents the
addition of all elements in the vector.

Deep networks have several hyperparameters that are
important to tune. In this work, these are:

• The number of layers, and the number of neurons per
layer. If the model is too complex, there is a risk of
overfitting in the network, but if the model is too simple,
underfitting might occur.

• The learning rate. The learning rate controls the size of
the learning step. If it is too large, the optimum can be
missed.

• The batch size. Generally, the loss and parameter updates
are completed in packets called minibatches, which are
smaller than the complete dataset. Finding the right
minibatch size can be important.

• Activation layer. Different nonlinear layers may work
better for particular problems; hence, it is important to
find the right one. In this article, sigmoid, tanh, ELU
and ReLU are tested. The ELU, which has a parameter
α that controls its shape, is a (soft) alternative to ReLU.

• Optimizer. Whereas stochastic gradient descent (SGD)
is the most widely used optimizer, for some problems,

better results may be obtained using advanced optimiz-
ers. In this article, we also test Adam, an optimizer that
is well-known for its excellent results [57].

To program the neural networks for this work, the PyTorch
framework is used [56].

4Methodology

4.1 Models: conditional quantiles and prediction
intervals

In this article, the model Q̂α(x) takes inputs x (i.e., the inde-
pendent variables) and returns the conditional α-quantile
for the inputs. Some methods (e.g., QRF and QRDNN) can
return multiple quantiles α = {α1, α2, . . . , αNquan} from a
single model Q̂α .

For QRDNN, better results may be achieved in terms of
quantile loss when training only one conditional quantile
rather than training a set of quantiles. However, this requires
training one deep neural network for every conditional
quantile. As the goal of this article is to propose an efficient
method where several PIs can be built from the multiple-
quantile output, training QRDNN with a set of α quantiles
is preferred.

The inputs x of the model are the selected meteorological
variables on the grid that cover the regions of interest. For
instance, for the Lugo region, a grid of size 5× 4 is defined
(see Fig. 1(a)). Given that Lugo is a wind region, and 8
meteorological variables have been selected for wind, the
model will have 5 × 4 × 8 = 160 variables. For Córdoba,
which is a solar region, x will contain 5 × 4 × 15 = 300
meteorological variables.

In this article, conditional PIs are also constructed from
the (conditional) quantiles. A conditional PI for inputs x is
a pair of lower and upper bounds that contain the dependent
variable with a probability called the prediction interval
nominal probability (PINP). Alternatively, the probability
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of not covering the dependent variable can also be used.
Note that in other works, α is used to represent this
probability. However, in this work, α represents the α-
quantiles. Therefore, in this study, this probability will be
referred to as ε = 1 − PINP . PIs can be computed
by using quantiles ε

2 and 1 − ε
2 as lower and upper

bounds, respectively. Using these quantiles, a probability of
ε
2 remains uncovered to the left of the lower bound and ε

2
remains uncovered to the right of the upper bound. This type
of interval covers exactly 1− ( ε

2 + ε
2 ) = 1− ε = PINP .

P̂ I 1−ε(x) =
[ ˆLowε(x), ˆUppε(x)

]

=
[
Q̂ ε

2
(x), Q̂1− ε

2
(x)

]
(20)

For instance, a 99% prediction interval can be built as
shown in (21).

P̂ I 0.99(x) =
[
Q̂.005(x), Q̂.995(x)

]
(21)

4.2 Evaluation procedure

To train and evaluate the models, three datasets are con-
structed: the training, validation, and test sets. Two full years
of data are used for the training set, one different year is
used for the validation set and hyperparameter tuning, and
another year is used for the test set. A 4-year period is
selected so that the maximum generation remains approx-
imately constant for the whole period. As a result, models
that are trained using some years can be tested without
having to adapt the remaining years.

The datasets created for each of the four Spanish regions
considered in this work are described below:

• Lugo (wind energy). Training set: years 2015 and 2016.
Validation set: year 2017. Test set: year 2018. A total of
160 inputs (20 grid points times 8 NWP variables).

• Granada (wind energy). Training set: years 2015 and
2016. Validation set: year 2017. Test set: year 2018.
A total of 192 inputs (24 grid points times 8 NWP
variables).

• Córdoba (solar energy). Training set: years 2016 and
2017. Validation set: year 2018. Test set: year 2019.
A total of 300 inputs (20 grid points times 15 NWP
variables).

• Ciudad Real (solar energy). Training set: years 2015
and 2016. Validation set: year 2017. Test set: year 2018.
A total of 270 inputs (18 grid points times 15 NWP
variables).

All independent variables in the three sets were stan-
dardized by computing the required standard deviation and
mean of the training and validation sets for each region and
using them on the training, validation, and test partitions.

Concerning the dependent variable, some transformations
were applied to address normality issues. A decimal log-
arithm transformation was applied and was followed by a
standardization using the same procedure as that used for
the independent variables. In Fig. 3, the transformation pro-
cess of the dependent variable can be seen. In Fig. 3 (a)
and (c), the histograms of the dependent test variable are
shown for Granada (wind energy) and Ciudad Real (solar
energy), respectively. The Ciudad Real dependent variable
histogram, which has an almost bimodal distribution (i.e.,
small and large amounts of energy generated), suffers from a
larger shape change. In Fig. 3, (3(b) and (d)), the histograms
of the transformed dependent variable are presented.

This transformation allows us to reduce the skewness of
the distribution.

Standardizing the complete dataset may potentially improve
the training process as both dependent and independent
variables have the same range of values and similar shapes.
In addition, some model weights will no longer dominate
others.

In the training process, 10 quantiles are modeled by
each method for every region. These quantiles are given as
follows: Q.005, Q.025, Q.05, Q.075, Q.1, Q.9, Q.925, Q.95,
Q.975 and Q.995. This enables the possibility of building 5
PIs that have different coverage: PI80%, PI85%, PI90%, PI95%
and PI99%.

To select the best possible combination of hyperparam-
eters, an exhaustive grid search is completed. We explore
all possible combinations of hyperparameter values within a
predefined space. The sets of values are presented in Table 2.

It is important to note the differences between the
methods used in the fitting process. While LQR and GBQR
can obtain one conditional quantile per model, QRF, NGB,
and SVQR can fit the complete conditional distribution
function and QRDNN can obtain all ten quantiles at once by
means of the set structure.

The evaluation procedure has been developed by choos-
ing the hyperparameter set with the smallest average quan-
tile loss across the ten selected quantiles (24). Thus, we
extract the 10 conditional quantiles from the methods and
calculate the mean quantile loss across them for all the
hyperparameter values. Therefore, this means that GBQR
is modeled with the same hyperparameter configuration for
all the quantiles so that a homogeneous selection can be
obtained.

Thus, the best hyperparameter values for each method,
region and type of energy (wind/solar) are given in Table 3.

In some methods, such as LQR, GBQR and QRDNN,
predicting close multiple conditional quantiles may intro-
duce the problem of quantile crossing. This may specifically
occur when quantiles are very close (e.g.Q0.975 andQ0.995).
To solve this problem and when evaluating the models on
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Fig. 3 (a) Histogram of the
generated wind energy in
Granada during 2018, and (b)
histogram after transformation
(of the dependent variable). (c)
Histogram of the generated solar
energy generated in Ciudad Real
during 2018, and (d) histogram
after transformation (of the
dependent variable). After a
logarithmic transformation is
applied, data are standardized by
subtracting the mean and scaling
by the standard deviation

the test sets, model predictions (i.e., the list of quantiles) are
sorted in ascending order.

4.3 Metrics

During the development of this work, several metrics were
employed to evaluate the different models. First, quantile
loss was used to evaluate models on the test set and to
select the best performing model during the hyperparameter

Table 2 Hyperparameter values explored during the grid search for
each method

Method Hyperparameter space

LQR -
GBQR & Learning rate: j × 10−i , where j ∈ {1, 5} and
NGB i ∈ {1, 2, 3, 4}

Number of trees: 500 to 5000 in steps of 500
Max depth: 2 to 14 in steps of 2

SVQR Cost (C): 0.1, 0.5, 1, 10, & 50 to 500 in steps of 50
Gamma (γ ): 0.1, 0.5, 1, 10, & 50 to 500 in steps of 50

QRF Min samples for splitting: 5, 10, 20, 30, 40, 50, & 100
Number of trees: 10, 50, 75, & 100 to 700 in
steps of 100
Max features: 10%, 20%, ..., 100% of possible
attributes

QRDNN Hidden layers: 1,2,3,...,10
Neurons per layer: 50, 100, 150, 200,&250
Learning rate: j × 10−i , where j ∈ {1, 5} and
i ∈ {1, 2, 3, 4, 5}
Batch size: 2i , where i ∈ {4, 5, 6, ..., 10}
Optimizers: SGD & Adam
Activation layers: sigmoid, tanh, ELU & ReLU

tuning on the validation set. This metric was already defined
in (4), (5), and (6), but it is reproduced in (22) and (23)
below for convenience.

Lα(u) =
{

αu, u ≥ 0
(α − 1)u, u < 0 (22)

Lα(T ) = 1
Nins

Nins∑
i=1

Lα(yi − Q̂α(xi )) (23)

where T = {(x1, y1), . . .} is a test (or validation) set with
Nins instances.

In general, we are interested in obtaining models not just
for a specific quantile α but for a set of quantiles α =
{α1, . . . , αq, . . . , αNquan}. In this case, the average quantile
loss across all different quantiles can be used.

Lα(T ) = 1
Nquan

Nquan∑
q=1

Lαq (T ) (24)

The continuous ranked probability score (CRPS) is a
metric that measures the quality of a probability distribution
[58]. When the distribution is represented by multiple
quantiles, as it is in our case, CRPS is defined by (25).

CRPS(T)

= 1
Nins

Nins∑
i=1

⎛
⎝ 1

Nquan

Nquan∑
k=1

| Q̂αk
(xi ) − yi |

− 1
2N2

quan

Nquan∑
k=1

Nquan∑
l=1

| Q̂αk
(xi ) − Q̂αl

(xi ) |
⎞
⎠ (25)

It can be seen that CRPS is the addition of two compo-
nents. The first component measures the distance between
each of the quantiles and the actual value of the dependent
variable. The value of this component will be minimized
when the quantiles accurately reflect the data distribution.
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The second component, which is independent of the data,
measures the distance between the quantiles. The minimiza-
tion of this component leads to sharper distributions (i.e.
quantiles are closer to each other). The lower the CRPS is,
the better. In fact, when quantile predictions degenerate to
point predictions (i.e. all quantiles become the same value,
and a single prediction is produced), CRPS becomes the
mean absolute error (MAE).

Other metrics have been used in this work to evaluate
PIs. The prediction interval coverage probability (PICP)
[59] measures the proportion of instances covered by the
interval, and it is given by (26).

PICP = 1
Nins

Nins∑
i=1
1
yi∈P̂ I (xi ) (26)

where 1
yi∈P̂ I (xi ) is an indicator function whose value is 1

when yi ∈ P̂ I (xi ) for a given xi and 0 otherwise. P̂ I (xi ) is
the prediction interval associated with instance xi . The PICP
is expected to be larger than the actual probability, which
is known as the prediction interval nominal probability
(PINP), but should be as close to it as possible.

Another important metric is the width of the generated
intervals. The average interval width (AIW) [59] is shown
in (27) and it is normalized for the maximum possible width
of every set.

AIW = 1
Nins(ymax − ymin)

Nins∑
i=1

ˆUpp(xi ) − ˆLow(xi ) (27)

where ˆUpp(xi ) and ˆLow(xi ) are the upper and lower
bounds of the prediction interval for xi , respectively.

Given that it is trivial to attain high coverage by increas-
ing the interval width, a simple but effective metric is the
ratio between the coverage and width [15], as shown in
(28). When there are similar PICPs among different mod-
els, a larger ratio provides a better understanding of model
performance.

Rc−w = PICP

AIW
(28)

The Winkler score (WS) (see (29)) is a widely used
metric to evaluate PIs. It is basically the width of the PI with
an added penalty for those observations outside the interval
bounds [60]. Therefore, the smaller the WS is, the better.

Table 3 Best hyperparameter values selected by grid search for each method and region

Method Hyperparameter Lugo (wind) Granada (wind) Córdoba (solar) C. Real (solar)

GBQR Learning rate 1× 10−3 1× 10−2 1× 10−3 5× 10−4

Number of trees 5000 1000 5000 4500
Max depth 2 2 2 4

NGB Learning rate 1× 10−4 5× 10−4 1× 10−4 1× 10−4

Number of trees 3000 1500 4500 3500
Max depth 6 4 8 6

SVQR Cost 50 50 100 100
Gamma 200 150 300 500

QRF Min obs. for splitting 10 5 5 10
Number of trees 600 300 600 100
Max features 10% 50% 10% 10%

QRDNN Hidden layers 7 5 4 5
Neurons per layer 50 200 250 150
Learning rate 1× 10−6 1× 10−6 1× 10−6 1× 10−6

Batch size 29 29 28 28

Optimizer Adam Adam Adam Adam
Activation layers ELU(α = 1) ELU(α = 1.5) ELU(α = 1) ELU(α = 1)

Wi,ε =

⎧⎪⎨
⎪⎩

( ˆUppε(xi ) − ˆLowε(xi )) + 2
ε
( ˆLowε(xi ) − yi), if yi < ˆLowε(xi )

( ˆUppε(xi ) − ˆLowε(xi )), if ˆLowε(xi ) ≤ yi ≤ ˆUppε(xi )
( ˆUppε(xi ) − ˆLowε(xi )) + 2

ε
(yi − ˆUppε(xi )), if yi > ˆUppε(xi )

(29)
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where ˆUppε(xi ) and ˆLowε(xi ) represent the upper and lower
bounds of the interval for xi , and ε is defined for the PIs by
(1 − ε) = PINP the desired coverage. Wε is obtained as
the average of the Wi,ε over all the instances in a test set.

4.4 Conformalized quantile regression
for prediction interval estimation

As seen in Section 4.1, the properties of the associated
prediction interval, such as the coverage or width, are
not directly take into account when constructing PIs from
estimated conditional quantiles. In other words, we rely on
a good estimation of the quantiles, but the PI itself is not
directly optimized.

To consider these properties in our estimated PIs, we
apply conformalized quantile regression (CQR) [41] in our
methodology. The CQR framework is based on the posterior
adjustment of conditional quantiles by means of a validation
set. This has been recently applied to wind power estimation
in a time series context with good results [42].

Let Q̂α(x) be a model obtained from training set Itrain

for estimating two quantiles to construct a PI with a target
coverage of 1− ε = PINP , as depicted in (30).[
Q̂ ε

2
, Q̂1− ε

2

]
← Q̂ ({xi , yi} : i ∈ Itrain) (30)

Then, conformity scores are computed by evaluating PIs
on the validation set Ival :

Ei :=max
{
Q̂ ε

2
(xi )−yi, yi −Q̂1− ε

2
(xi )

}
, i ∈ Ival (31)

This score represents the distance from the value yi to
the PI when the target value is not covered by the PI and
the maximum distance to one of the PI bounds when the PI
includes the target variable. Therefore, this score considers
both undercoverage and overcoverage.

Finally, we can build a PI with calibrated quantiles for
yi+1 from data xi+1 as[
Q̂ ε

2
− q1−ε(E, Ival), Q̂1− ε

2
+ q1−ε(E, Ival)

]
(32)

where q1−ε(E, Ival) represents the (1 − ε)-th empirical
quantile of {Ei : i ∈ Ival}. The PIs constructed from
calibrated quantiles are supposed to better approach the
PINP, reducing their width in case of overcoverage and
increasing it in case of undercoverage.

We note that this is a general approach. In our problem,
we estimate PIs for different PINPs and time horizons.
Therefore, we propose adapting the CQR methodology by
computing different conformity scores for each PINP and
time horizon considered. Therefore, the resulting calibrated
PI for a specific PINP and time t is shown in (33).
[
Q̂ ε

2
− q1−ε(E1−ε,t , Ival,t ), Q̂1− ε

2
+ q1−ε(E1−ε,t , Ival,t )

]
(33)

Note that Ival,t is the validation set, but only for obser-
vations at time t . Overall, this approach is useful for solar
energy regions, where PIs present more differences depend-
ing on the time horizon.

5 Results

In this section, we discuss the results obtained on the test
sets. First, model performance is evaluated in terms of
the accuracy of the quantiles. Next, PIs are built from the
quantiles and tested according to their coverage, width, and
WS. Then, PIs are estimated from the calibrated quantiles as
explained in Section 4.4 to show their improvement. Finally,
an analysis by season is presented for the PIs generated by
the QRDNN.

5.1 Quantile estimation

We present the average quantile loss (Fig. 4) obtained by
the 10 quantiles and report the results by the time horizon
(hours), method, and region. Results have also been aver-
aged across all time horizons, as displayed in the rightmost
columns of Fig. 4.

Regarding wind energy forecasting (Fig. 4(a)), the largest
loss in all cases is observed when LQR is used. The
performance of NGB is usually the second worst, followed
by GBQR. Regarding the best performing methods, the best
results on the Lugo data are achieved using QRDNN and
QRF, whereas on the Granada data, the best results are
achieved using QRDNN and SVQR; slightly less loss is
observed for the majority of the time horizons and also
on average for QRDNN. Furthermore, we note that the
four methods perform better on the Lugo data than on the
Granada data.

With respect to solar energy forecasting, as shown in
Fig. 4(b), the largest loss for every time horizon is always
observed when using LQR. On average, NGB and QRF are
the second worst performing methods on the Ciudad Real
and Córdoba data, respectively. The most accurate method
is again QRDNN, where slightly less loss is observed except
for on the Ciudad Real data at 12:00.

Another metric that gives a general understanding of the
method performance regarding the accuracy of quantiles is
CRPS (Fig. 5). It can be seen that the results are similar
to those of quantile loss: the lowest loss is mainly obtained
using QRDNN, both for solar and wind energy predictions.

However, there are some changes in the rest of the
methods. For example, a low CRPS is obtained using LQR
for solar energy prediction (Fig. 5(b)). However, we will
later see that this result comes at the cost of low coverage.

Favorable performance is not obtained for this metric
when QRF is used because in solar energy prediction,
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Fig. 4 Average quantile loss for the different methods based on the
time horizon. (a) Wind energy regions and (b) solar energy regions.
The rightmost column shows the average across all time horizons. On

average, the best results are obtained using QRDNN, except on the
Lugo data, where similar results for QRDNN and QFR are achieved

the worst CRPS values are obtained. For wind energy
prediction, QRF has worse results than those obtained using
GBQR. Similar CRPS values are achieved using NGB and

SVQR in the wind energy regions. In solar regions, SVQR
is slightly better than NGB on the Ciudad Real data, and the
opposite behavior is observed on the Córdoba data.
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Fig. 5 CRPS values obtained by the different methods based on the
time horizon. (a) Wind energy regions and (b) solar energy regions.
The rightmost column is the average across all time horizons. On

average, the best results are achieved using QRDNN, except on
the Ciudad Real data, where similar performances are obtained for
QRDNN, GBQR and SVQR
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5.2 Prediction interval estimation

Methods studied in this work are used to build PIs from their
estimated quantiles, as described in Section 4. Therefore,
the PI metrics PICP and AIW are presented for the regions
of Granada, Lugo, Ciudad Real and Córdoba in Tables 4, 5,
6 and 7, respectively.

Each of these tables contains 5 subtables, one per PINP
target value. There is one row per method and one column
per time horizon. The table cells show both the PICP value
and AIW value (the latter is shown in parentheses). The
rightmost column is the average of the PICP and AIW
values (the latter is shown in parentheses) across all time
horizons. Note that in all the resulting tables, when a PICP
equal to or higher than the target PINP is achieved for a
given method, the corresponding value is shown in bold.

First, the PICP and AIW results from Granada (wind
energy) are presented in Table 4. Generally, the desired
coverage is not able to be achieved using LQR, GBQR,
and NGB, whereas it can be achieved using SVQR on a
few occasions. In contrast, reasonable coverage is obtained
using QRF and QRDNN at most of the times and on average
(rightmost column). Coverage is achieved for all PIs at all
hours using QRF, except at 09:00. However, the desired
coverage is not obtained in some cases using QRDNN: this
mostly occurs in the first half of the day (00:00, 03:00,
06:00, 09:00) and also for high PINP values. However, it
is important to note that the difference between PICP and
PINP is quite small in these cases. In contrast, the AIW
is the smallest among the rest of the methods for every
target PINP and at hour analyzed. Additionally, in terms of
the mean (rightmost column of Table 4), only when using
QRDNN and QRF can the target PINP (or close to it) be
obtained, but the narrowest intervals (smallest AIW) are
obtained using QRDNN.

In Table 5, the results on the Lugo data (wind energy)
are shown. A similar behavior, one in which the desired
coverage is not reached, is observed for LQR and GBQR.
Except for the PINP at 99%, coverage is also not obtained
using SVQR. In this region, the performance of NGB is
improved and the method is able to be used to achieve
the desired coverage (on average) for PINP at 80%, 85%,
and 90% with a relatively low interval width, whereas it
is achieved using QRF for all PINP values and times.
The PINP in all cases for the 80% and 85% PIs, and
in most cases for the 90% and 95% PIs are met using
QRDN. Nevertheless, the only PINP where coverage is
not reached on average (rightmost column) by QRDNN
is the 99% PINP, but even in this case, it is very close
(PICP=98.7%). On average, QRDNN intervals are still
generally narrower.

We continue with the solar energy regions, starting with
the Ciudad Real data (Table 6). As can be seen, the desired

coverage for any target PINP cannot be achieved using
LQR and GBQR, although GBQR comes close to achieving
coverage for the 99% PINP (98% on average). Similar
results are observed for the wind energy prediction, as QRF
is the best performing method regarding PICP coverage:
PICP coverage is achieved using QRF for every hour at
PINP values of 80%, 85%, 90%, and 95%. For the PINP
target of 99% at 15:00, the coverage is close to but does
not meet the desired coverage (98.90%) when using QRF.
However, on average (rightmost column), coverage is met
using this method. When using NGB, the target coverage is
achieved on average for the PINP at 80%, 85%, and 90%,
whereas when using SVQR, target coverage is achieved
for the PINP at 99%. Lastly, the coverage at all hours is
met using QRDNN, and on average, coverage is met for
the 80%, 85% and 90% targets. Furthermore, although the
coverage is not satisfactory for the 95% and 99% PIs using
QRDNN, it is fair to say that it is not far away on average
(94.9% and 98%, respectively), and the width is generally
lower compared to the rest of the nonlinear methods.

Finally, results for Córdoba (solar energy) are presented
in Table 7. Once again, accurate coverage is not achieved
using LQR. However, Córdoba is the first region where
reasonable coverage for some hours is achieved using
GBQR. For example, using this method, coverage is
achieved at 09:00 for both the 80%, 85% and 90% PIs,
but coverage is not achieved for the rest of the hours.
For the 95% and 99% PIs, the PINP for the first 2 and
3 time horizons, respectively, are achieved using GNQR,
and coverage is also achieved on average for the 95.5%
and 99.5% PIs. As expected, the target coverage at most
of the hours for every PI is achieved using QRF, and it is
always achieved on average for the other PIs. The behavior
of QRDNN is similar to those in the rest of the regions: the
coverage is achieved for every hour at the 80% and 85%
PIs. For the 90% and 95% PIs, coverage is only not met
at 09:00 (the case at 90% PI is close). For the 99% PI,
the desired coverage is only reached at 12:00, although it
stays quite close to the PINP in the remaining cases. Good
performance is achieved for NGB regarding the coverage
target (it is achieved for the mean PINP values at 80%,
85% and 90%) while PIs are kept narrow. In addition,
almost all PINP values are met on average (except 80%)
for SVQR with a PI of similar width to those obtained by
QRDNN. We can say that this is the only region where
other nonlinear methods (SVQR and NGB) compete with
QRDNN regarding PI width (and coverage). However, we
will see in the following section how the results can be
improved by calibrating the PIs.

In summary, according to the previous analyses, two
methods stand out overall, QRF and QRDNN. Using QRF,
the target coverage is always achieved, and using QRDNN,
the coverage is either achieved or close to being achieved,
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Table 4 PICP and AIW results (the latter is shown in parentheses) on the Granada data (wind energy) based on the time horizon for all methods

Method 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 Mean

PINP 80% Prediction Interval

LQR 0.729 0.780 0.699 0.728 0.816 0.715 0.712 0.712 0.737
(0.156) (0.167) (0.192) (0.209) (0.280) (0.186) (0.169) (0.189) (0.194)

GBQR 0.696 0.698 0.633 0.624 0.719 0.674 0.696 0.627 0.671
(0.129) (0.142) (0.163) (0.161) (0.196) (0.132) (0.134) (0.157) (0.152)

NGB 0.740 0,734 0,715 0,659 0,775 0,789 0,786 0,715 0.739
(0.132) (0.143) (0.166) (0.155) (0.199) (0.147) (0.141) (0.161) (0.156)

SVQR 0.742 0.734 0.704 0.714 0.827 0.775 0.775 0.734 0.751
(0.131) (0.138) (0.163) (0.165) (0.207) (0.143) (0.139) (0.159) (0.156)

QRF 0.836 0.857 0.803 0.758 0.841 0.874 0.885 0.841 0.837
(0.166) (0.181) (0.206) (0.197) (0.252) (0.184) (0.178) (0.199) (0.195)

QRDNN 0.819 0.813 0.795 0.756 0.874 0.825 0.838 0.792 0.814
(0.138) (0.144) (0.166) (0.163) (0.208) (0.147) (0.141) (0.165) (0.159)

PINP 85% Prediction Interval
LQR 0.770 0.821 0.767 0.783 0.860 0.827 0.789 0.775 0.799

(0.175) (0.188) (0.216) (0.233) (0.315) (0.217) (0.195) (0.216) (0.219)

GBQR 0.797 0.791 0.723 0.698 0.789 0.778 0.770 0.734 0.760
(0.152) (0.166) (0.192) (0.187) (0.229) (0.157) (0.160) (0.183) (0.178)

NGB 0.792 0.797 0.762 0.706 0.819 0.822 0.847 0.778 0.790
(0.148) (0.161) (0.187) (0.174) (0.224) (0.165) (0.159) (0.181) (0.175)

SVQR 0.808 0.808 0.797 0.755 0.847 0.786 0.819 0.770 0.799
(0.152) (0.160) (0.187) (0.187) (0.233) (0.158) (0.157) (0.183) (0.177)

QRF 0.890 0.896 0.858 0.808 0.888 0.921 0.918 0.890 0.884
(0.189) (0.207) (0.234) (0.223) (0.286) (0.210) (0.203) (0.226) (0.222)

QRDNN 0.855 0.838 0.844 0.816 0.921 0.888 0.882 0.838 0.860
(0.156) (0.162) (0.187) (0.185) (0.236) (0.168) (0.161) (0.186) (0.180)

PINP 90% Prediction Interval

LQR 0.852 0.871 0.819 0.841 0.901 0.849 0.855 0.844 0.854
(0.206) (0.220) (0.250) (0.267) (0.363) (0.250) (0.229) (0.255) (0.255)

GBQR 0.855 0.857 0.811 0.750 0.844 0.838 0.858 0.844 0.832
(0.182) (0.197) (0.227) (0.219) (0.269) (0.190) (0.192) (0.220) (0.212)

NGB 0.836 0.852 0.827 0.761 0.866 0.890 0.890 0.849 0.846
(0.169) (0.184) (0.213) (0.199) (0.256) (0.188) (0.181) (0.207) (0.200)

SVQR 0.858 0.865 0.855 0.821 0.923 0.896 0.877 0.838 0.867
(0.179) (0.185) (0.216) (0.219) (0.283) (0.198) (0.190) (0.216) (0.211)

QRF 0.910 0.937 0.921 0.863 0.918 0.953 0.951 0.926 0.922
(0.221) (0.241) (0.273) (0.259) (0.333) (0.242) (0.237) (0.261) (0.258)

QRDNN 0.880 0.882 0.899 0.843 0.940 0.915 0.918 0.880 0.894
(0.176) (0.182) (0.210) (0.207) (0.265) (0.189) (0.183) (0.209) (0.203)
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Table 4 (continued)

Method 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 Mean

PINP 95% Prediction Interval
LQR 0.901 0.920 0.896 0.885 0.943 0.915 0.904 0.915 0.910

(0.258) (0.279) (0.313) (0.324) (0.442) (0.318) (0.296) (0.317) (0.318)

GBQR 0.896 0.920 0.874 0.827 0.888 0.893 0.923 0.912 0.892
(0.223) (0.238) (0.271) (0.259) (0.323) (0.232) (0.231) (0.266) (0.255)

NGB 0.893 0.915 0.888 0.832 0.910 0.932 0.940 0.910 0.902
(0.202) (0.219) (0.254) (0.237) (0.305) (0.224) (0.216) (0.246) (0.238)

SVQR 0.915 0.951 0.923 0.901 0.945 0.942 0.951 0.918 0.931
(0.224) (0.238) (0.275) (0.271) (0.353) (0.252) (0.243) (0.272) (0.266)

QRF 0.948 0.975 0.959 0.931 0.962 0.967 0.984 0.970 0.962
(0.274) (0.301) (0.341) (0.320) (0.407) (0.296) (0.294) (0.323) (0.320)

QRDNN 0.923 0.940 0.934 0.931 0.973 0.948 0.956 0.937 0.943
(0.211) (0.219) (0.252) (0.247) (0.318) (0.230) (0.220) (0.251) (0.243)

PINP 99% Prediction Interval

LQR 0.959 0.964 0.943 0.956 0.975 0.948 0.959 0.953 0.957
(0.349) (0.373) (0.417) (0.415) (0.576) (0.423) (0.416) (0.441) (0.426)

GBQR 0.973 0.978 0.973 0.953 0.970 0.975 0.986 0.975 0.973
(0.323) (0.350) (0.404) (0.377) (0.490) (0.371) (0.351) (0.391) (0.3820)

NGB 0.932 0.973 0.948 0.940 0.962 0.978 0.978 0.962 0.959
(0.265) (0.288) (0.334) (0.311) (0.401) (0.295) (0.284) (0.323) (0.313)

SVQR 0.989 0.992 0.992 0.978 0.984 0.986 0.978 0.984 0.985
(0.383) (0.414) (0.475) (0.418) (0.571) (0.441) (0.415) (0.461) (0.447)

QRF 0.992 0.995 0.995 0.981 1 0.995 0.997 0.992 0.993
(0.393) (0.424) (0.482) (0.448) (0.574) (0.421) (0.423) (0.459) (0.453)

QRDNN 0.984 0.986 0.975 0.981 0.992 0.995 0.992 0.989 0.987
(0.288) (0.300) (0.344) (0.337) (0.445) (0.331) (0.315) (0.348) (0.339)

This table is divided into 5 subtables, one per PINP target value. The rightmost column of each subtable is the average of the PICP and AIW
values across all time horizons. Values in bold indicate that the target PINP is achieved using the method. In terms of the mean, only when using
QRDNN and QRF can the target PINP (or close to it) be obtained, but the narrowest intervals (smallest AIW) are obtained using QRDNN

while generally narrower PIs are obtained. From Table 8,
the differences between these methods are further explored.
For every region in Table 8, there are two rows. The first
row presents information on whether QRDNN can be used
to obtain the desired coverage (-) and how far off it is
(in percentage): min

(
0, P ICP−PINP

PINP

)
%. The second row

shows (between brackets) the decrease of AIW for QRDNN
vs. QRF: AIWQRF −AIWQRDNN

AIWQRF
%. Only the average results

across all time horizons are considered. It can be seen that
the desired PINP is achieved using QRDNN in most cases,
and even when coverage is not attained, the difference is
smaller than 1.02% in the worst case, which is much smaller

in general. However, the intervals using QRDNN are 8% to
29% narrower than those using QRF (8% to 24% if only
intervals where PICP ≥ PINP are considered).

To complete the PI coverage and width analysis, an
example of the 95% PINP for July 2018 using the Lugo data
is provided in Fig. 6. The red area represents the interval
generated by QRDNN, and the blue area represents the
interval generated by QRF.

The real wind power production data is represented by
black points.

It is easily noted that the QRF intervals are wider for the
majority of the points in the set.
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Table 5 Results on the Lugo data (wind energy), which are similar to those in Table 4

Method 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 Mean

PINP 80% Prediction Interval
LQR 0.756 0.737 0.781 0.786 0.729 0.792 0.740 0.729 0.756

(0.223) (0.175) (0.207) (0.193) (0.239) (0.234) (0.261) (0.189) (0.215)

GBQR 0.698 0.660 0.715 0.715 0.740 0.693 0.696 0.701 0.702
(0.161) (0.129) (0.150) (0.124) (0.159) (0.143) (0.154) (0.125) (0.143)

NGB 0.867 0.825 0.838 0.836 0.808 0.814 0.816 0.825 0.829
(0.180) (0.143) (0.170) (0.135) (0.169) (0.161) (0.179) (0.141) (0.160)

SVQR 0.734 0.759 0.745 0.775 0.775 0.729 0.745 0.767 0.754
(0.175) (0.136) (0.159) (0.133) (0.165) (0.147) (0.171) (0.137) (0.153)

QRF 0.839 0.841 0.849 0.830 0.863 0.844 0.847 0.844 0.845
(0.197) (0.155) (0.179) (0.147) (0.187) (0.171) (0.191) (0.157) (0.173)

QRDNN 0.825 0.803 0.822 0.811 0.849 0.852 0.833 0.841 0.827
(0.173) (0.134) (0.154) (0.135) (0.172) (0.161) (0.178) (0.136) (0.155)

PINP 85% Prediction Interval

LQR 0.826 0.797 0.836 0.827 0.803 0.874 0.816 0.808 0.823
(0.265) (0.205) (0.244) (0.221) (0.277) (0.279) (0.315) (0.228) (0.254)

GBQR 0.784 0.745 0.795 0.803 0.811 0.778 0.759 0.767 0.780
(0.188) (0.152) (0.177) (0.146) (0.184) (0.166) (0.178) (0.145) (0.167)

NGB 0.900 0.874 0.874 0.868 0.847 0.852 0.855 0.868 0.867
(0.203) (0.161) (0.191) (0.151) (0.190) (0.181) (0.201) (0.158) (0.179)

SVQR 0.825 0.803 0.803 0.811 0.830 0.803 0.814 0.814 0.813
(0.197) (0.154) (0.179) (0.151) (0.189) (0.172) (0.195) (0.154) (0.174)

QRF 0.864 0.882 0.896 0.866 0.904 0.890 0.907 0.888 0.887
(0.224) (0.176) (0.205) (0.168) (0.213) (0.195) (0.218) (0.178) (0.197)

QRDNN 0.878 0.855 0.858 0.863 0.888 0.871 0.877 0.877 0.877
(0.193) (0.145) (0.172) (0.150) (0.192) (0.180) (0.199) (0.152) (0.174)

PINP 90% Prediction Interval
LQR 0.881 0.847 0.880 0.871 0.849 0.912 0.858 0.866 0.870

(0.310) (0.242) (0.291) (0.261) (0.326) (0.325) (0.369) (0.268) (0.299)

GBQR 0.853 0.825 0.863 0.866 0.858 0.841 0.830 0.838 0.847
(0.220) (0.177) (0.207) (0.169) (0.217) (0.197) (0.210) (0.173) (0.196))

LQR 0.881 0.847 0.880 0.871 0.849 0.912 0.858 0.866 0.870
(0.310) (0.242) (0.291) (0.261) (0.326) (0.325) (0.369) (0.268) (0.299)

GBQR 0.853 0.825 0.863 0.866 0.858 0.841 0.830 0.838 0.847
(0.220) (0.177) (0.207) (0.169) (0.217) (0.197) (0.210) (0.173) (0.196))

NGB 0.942 0.910 0.929 0.915 0.896 0.885 0.907 0.904 0.911
(0.232) (0.184) (0.218) (0.173) (0.217) (0.207) (0.230) (0.181) (0.205)

SVQR 0.873 0.836 0.882 0.888 0.871 0.868 0.847 0.847 0.864
(0.234) (0.184) (0.213) (0.176) (0.214) (0.193) (0.219) (0.180) (0.202)
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Table 5 (continued)

Method 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 Mean

QRF 0.920 0.921 0.934 0.934 0.937 0.932 0.943 0.937 0.932
(0.263) (0.207) (0.239) (0.196) (0.250) (0.227) (0.254) (0.208) (0.230)

QRDNN 0.906 0.882 0.899 0.904 0.910 0.912 0.918 0.926 0.907
(0.222) (0.172) (0.197) (0.172) (0.221) (0.207) (0.223) (0.175) (0.200)

PINP 95% Prediction Interval
LQR 0.936 0.912 0.934 0.932 0.926 0.945 0.912 0.910 0.926

(0.417) (0.328) (0.390) (0.341) (0.414) (0.414) (0.485) (0.354) (0.393)

GBQR 0.911 0.921 0.926 0.932 0.943 0.918 0.918 0.921 0.924
(0.278) (0.223) (0.263) (0.209) (0.266) (0.250) (0.273) (0.220) (0.248)

NGB 0.972 0.953 0.964 0.942 0.942 0.915 0.926 0.953 0.946
(0.276) (0.219) (0.260) (0.206) (0.258) (0.246) (0.274) (0.215) (0.244)

SVQR 0.934 0.910 0.940 0.940 0.926 0.929 0.942 0.923 0.930
(0.303) (0.240) (0.278) (0.227) (0.275) (0.256) (0.292) (0.238) (0.264)

QRF 0.975 0.967 0.970 0.975 0.973 0.973 0.967 0.970 0.971
(0.326) (0.256) (0.300) (0.243) (0.310) (0.281) (0.314) (0.259) (0.286)

QRDNN 0.953 0.936 0.936 0.953 0.956 0.956 0.962 0.951 0.950
(0.265) (0.206) (0.236) (0.205) (0.263) (0.247) (0.274) (0.209) (0.238)

NGB 0.942 0.910 0.929 0.915 0.896 0.885 0.907 0.904 0.911
(0.232) (0.184) (0.218) (0.173) (0.217) (0.207) (0.230) (0.181) (0.205)

SVQR 0.873 0.836 0.882 0.888 0.871 0.868 0.847 0.847 0.864
(0.234) (0.184) (0.213) (0.176) (0.214) (0.193) (0.219) (0.180) (0.202)

QRF 0.920 0.921 0.934 0.934 0.937 0.932 0.943 0.937 0.932
(0.263) (0.207) (0.239) (0.196) (0.250) (0.227) (0.254) (0.208) (0.230)

QRDNN 0.906 0.882 0.899 0.904 0.910 0.912 0.918 0.926 0.907
(0.222) (0.172) (0.197) (0.172) (0.221) (0.207) (0.223) (0.175) (0.200)

PINP 95% Prediction Interval
LQR 0.936 0.912 0.934 0.932 0.926 0.945 0.912 0.910 0.926

(0.417) (0.328) (0.390) (0.341) (0.414) (0.414) (0.485) (0.354) (0.393)

GBQR 0.911 0.921 0.926 0.932 0.943 0.918 0.918 0.921 0.924
(0.278) (0.223) (0.263) (0.209) (0.266) (0.250) (0.273) (0.220) (0.248)

NGB 0.972 0.953 0.964 0.942 0.942 0.915 0.926 0.953 0.946
(0.276) (0.219) (0.260) (0.206) (0.258) (0.246) (0.274) (0.215) (0.244)

SVQR 0.934 0.910 0.940 0.940 0.926 0.929 0.942 0.923 0.930
(0.303) (0.240) (0.278) (0.227) (0.275) (0.256) (0.292) (0.238) (0.264)

QRF 0.975 0.967 0.970 0.975 0.973 0.973 0.967 0.970 0.971
(0.326) (0.256) (0.300) (0.243) (0.310) (0.281) (0.314) (0.259) (0.286)

QRDNN 0.953 0.936 0.936 0.953 0.956 0.956 0.962 0.951 0.950
(0.265) (0.206) (0.236) (0.205) (0.263) (0.247) (0.274) (0.209) (0.238)

PINP 99% Prediction Interval
LQR 0.953 0.959 0.981 0.975 0.967 0.981 0.970 0.934 0.965

(0.585) (0.459) (0.544) (0.445) (0.568) (0.591) (0.683) (0.494) (0.546)



Deep neural networks for the quantile estimation of regional renewable energy production

Table 5 (continued)

Method 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 Mean

GBQR 0.986 0.989 0.992 0.984 0.981 0.975 0.986 0.986 0.985
(0.452) (0.363) (0.422) (0.336) (0.429) (0.401) (0.440) (0.359) (0.400)

NGB 0.989 0.981 0.984 0.981 0.975 0.964 0.975 0.981 0.979
(0.363) (0.287) (0.341) (0.271) (0.339) (0.323) (0.360) (0.283) (0.321)

SVQR 0.992 0.989 0.989 0.986 0.992 0.997 0.995 0.997 0.992
(0.562) (0.435) (0.505) (0.388) (0.497) (0.513) (0.603) (0.464) (0.496)

QRF 0.995 0.992 0.989 0.995 0.997 0.995 1 0.997 0.995
(0.466) (0.363) (0.431) (0.342) (0.437) (0.395) (0.447) (0.370) (0.406)

QRDNN 0.981 0.975 0.984 0.986 0.997 0.995 0.995 0.986 0.987
(0.364) (0.282) (0.323) (0.281) (0.362) (0.343) (0.380) (0.288) (0.328)

In terms of the mean PICP (rightmost column), QRF, QRDNN, and NGB can be utilized to achieve the required coverage or are close to it, but
the intervals generated using QRDNN are generally narrower

Table 6 Results on the Ciudad
Real data (solar energy), which
are similar to those in Table 4

Method 09:00 12:00 15:00 Mean

PINP 80% Prediction Interval
LQR 0.529 0.471 0.512 0.504

(0.167) (0.178) (0.193) (0.179)

GBQR 0.726 0.775 0.677 0.725
(0.232) (0.204) (0.165) (0.200)

NGB 0.792 0.866 0.847 0.835
(0.277) (0.245) (0.195) (0.239)

SVQR 0.764 0.718 0.699 0.727
(0.225) (0.202) (0.182) (0.203)

QRF 0.882 0.912 0.849 0.879
(0.310) (0.298) (0.245) (0.284)

QRDNN 0.830 0.874 0.849 0.821
(0.227) (0.234) (0.214) (0.225)

PINP 85% Prediction Interval
LQR 0.606 0.564 0.595 0.588

(0.199) (0.213) (0.226) (0.217)

GBQR 0.825 0.844 0.789 0.819
(0.286) (0.246) (0.196) (0.243)

NGB 0.836 0.893 0.868 0.866
(0.311) (0.275) (0.219) (0.268)

SVQR 0.816 0.816 0.762 0.798
(0.264) (0.234) (0.208) (0.235)

QRF 0.921 0.937 0.885 0.914
(0.362) (0.339) (0.279) (0.327)

QRDNN 0.874 0.918 0.888 0.893
(0.261) (0.266) (0.242) (0.256)
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Table 6 (continued)
Method 09:00 12:00 15:00 Mean

PINP 90% Prediction Interval
LQR 0.682 0.671 0.669 0.674

(0.236) (0.253) (0.261) (0.250)

GBQR 0.863 0.890 0.869 0.874
(0.371) (0.298) (0.231) (0.300)

NGB 0.874 0.937 0.899 0.903
(0.355) (0.314) (0.250) (0.307)

SVQR 0.858 0.858 0.822 0.846
(0.313) (0.268) (0.242) (0.274)

QRF 0.956 0.959 0.940 0.952
(0.438) (0.397) (0.325) (0.387)

QRDNN 0.904 0.945 0.904 0.918
(0.301) (0.306) (0.277) (0.295)

PINP 95% Prediction Interval

LQR 0.740 0.751 0.753 0.748
(0.277) (0.302) (0.303) (0.294)

GBQR 0.929 0.932 0.926 0.929
(0.464) (0.364) (0.281) (0.370)

NGB 0.932 0.964 0.921 0.939
(0.423) (0.374) (0.298) (0.365)

SVQR 0.932 0.918 0.874 0,908
(0.400) (0.330) (0.294) (0.349)

QRF 0.978 0.984 0.970 0.977
(0.568) (0.495) (0.399) (0.488)

QRDNN 0.948 0.964 0.934 0.949
(0.361) (0.362) (0.324) (0.349)

PINP 99% Prediction Interval

LQR 0.784 0.792 0.803 0.793
(0.298) (0.329) (0.325) (0.317)

GBQR 0.986 0.989 0.964 0.980
(0.788) (0.579) (0.448) (0.605)

NGB 0.984 0.984 0.951 0.973
(0.556) (0.492) (0.392) (0.480)

SVQR 0.986 0.992 0.992 0.990
(0.789) (0.597) (0.490) (0.625)

QRF 1 0.997 0.989 0.995
(0.821) (0.688) (0.546) (0.685)

QRDNN 0.978 0.981 0.981 0.980
(0.508) (0.504) (0.443) (0.485)

In terms of the mean PICP (rightmost column), QRF, QRDNN, and NGB can be used to achieve the required
coverage or close to it, but QRDNN PIs are generally narrower
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Table 7 Results on the Córdoba data (solar energy), which are similar
to those in Table 4

Method 09:00 12:00 15:00 Mean

PINP 80% Prediction Interval
LQR 0.696 0.674 0.627 0.666

(0.136) (0.183) (0.148) (0.156)

GBQR 0.827 0.696 0.641 0.722
(0.180) (0.174) (0.118) (0.157)

NGB 0.786 0.849 0.836 0.824
(0.188) (0.198) (0.128) (0.171)

SVQR 0.792 0.775 0.745 0.771
(0.163) (0.182) (0.135) (0.160)

QRF 0.885 0.869 0.800 0.851
(0.217) (0.250) (0.168) (0.212)

QRDNN 0.836 0.874 0.808 0.839
(0.252) (0.188) (0.143) (0.194)

PINP 85% Prediction Interval

LQR 0.773 0.795 0.729 0.765
(0.166) (0.229) (0.182) (0.192)

GBQR 0.880 0.786 0.748 0.805
(0.225) (0.212) (0.144) (0.193)

NGB 0.838 0.901 0.868 0.869
(0.211) (0.222) (0.144) (0.193)

SVQR 0.855 0.877 0.836 0.856
(0.198) (0.221) (0.162) (0.193)

QRF 0.923 0.896 0.838 0.886
(0.256) (0.289) (0.197) (0.248)

QRDNN 0.866 0.934 0.880 0.893
(0.286) (0.215) (0.161) (0.248)

PINP 90% Prediction Interval
LQR 0.841 0.838 0.803 0.827

(0.198) (0.274) (0.216) (0.229)

GBQR 0.943 0.877 0.852 0.890
(0.303) (0.261) (0.176) (0.247)

NGB 0.879 0.942 0.904 0.909
(0.241) (0.254) (0.165) (0.220)

SVQR 0.899 0.923 0.915 0.912
(0.240) (0.266) (0.194) (0.234)

QRF 0.953 0.940 0.915 0.936
(0.317) (0.349) (0.234) (0.300)

QRDNN 0.899 0.964 0.915 0.926
(0.333) (0.255) (0.189) (0.259)

Table 7 (continued)

Method 09:00 12:00 15:00 Mean

PINP 95% Prediction Interval

LQR 0.882 0.860 0.858 0.867
(0.231) (0.317) (0.251) (0.267)

GBQR 0.975 0.951 0.940 0.955
(0.428) (0.337) (0.220) (0.328)

NGB 0.934 0.975 0.937 0.949
(0.287) (0.303) (0.196) (0.262)

SVQR 0.956 0.973 0.964 0.964
(0.334) (0.352) (0.260) (0.315)

QRF 0.978 0.975 0.984 0.979
(0.417) (0.452) (0.299) (0.389)

QRDNN 0.943 0.981 0.951 0.958
(0.400) (0.306) (0.223) (0.310)

PINP 99% Prediction Interval
LQR 0.915 0.890 0.877 0.894

(0.247) (0.341) (0.267) (0.285)

GBQR 0.997 0.995 0.995 0.995
(0.836) (0.708) (0.439) (0.661)

NGB 0.970 0.995 0.978 0.981
(0.378) (0.398) (0.258) (0.344)

SVQR 0.995 0.997 0.995 0.995
(0.637) (0.617 (0.411) (0.555)

QRF 1 0.997 0.995 0.997
(0.648) (0.670) (0.429) (0.582)

QRDNN 0.984 0.995 0.989 0.989
(0.563) (0.437) (0.307) (0.436)

Using QRF, QRDNN, SVQR, and NGB, the target coverage is reached
or is close to being reached. Here, NGB and SVQR compete with
QRDNN in terms of narrow PIs

The PICP is a crisp metric in the sense that for an
individual instance, its value is either 0 or 1. However, if
an instance is outside the PI but very close to the PI bound,
the PICP value will still be 0. A smoother understanding
of the obtained PIs is presented using WS ((29)). Its value
is basically the interval width plus a penalization value,
which is linear with the distance between the instance and
the PI bounds (the penalization value is zero if the instance
is within the PI). Thus, if the instance is outside the PI,
but not too far away from the lower or upper bounds, the
penalization will be low. However, the penalization value
grows quickly with distance, as it is weighted by 2

1−PINP
).
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Table 8 Comparison between QRDNN and QRF

Region 80% 85% 90% 95% 99%

Granada (wind) - - -0.62% -0.76% -0.34%
19% 19% 22% 24% 25%

Lugo (wind) - - - - -0.27%
10% 12% 13% 17% 19%

Ciudad Real (solar) - - - -0.12% -1.02%
21% 22% 24% 28% 29%

Córdoba (solar) - - - - -0.10 %
8% 11% 14% 20% 25%

For every region, there are two rows. First row: (-) means the target
coverage is achieved, otherwise, the difference (percentage) between
PICP and PINP for QRDNN are provided. Second row: decrease
(percentage) in AIW of QRDNN vs. QRF. The PINP is achieved in
all cases for QRDNN, except for high PINP values, which deviate no
further than 1.02%, while the AIW increases from 8% to 29%

In Table 9, the mean value of the Winkler score for each
region, method and PI are shown. The best WS value is
shown in bold. In the first wind region (Granada), the lowest
WS for all coverage is achieved using QRDNN, except for
WS99, where the best coverage is achieved using QRF.
For the Lugo data, the best score for every coverage using
QRDNN, except for WS90, where the performance of QRF
is slightly better. These results coincide with those in which
the target PINP is achieved or almost met for a given
method. In general, the worst values are obtained using LQR
and GBQR.

In addition, in the solar energy regions (Ciudad Real
and Córdoba), we find that QRDNN is the best performing

Fig. 6 Example of the 95% prediction interval using QRDNN (red area) and QRF (blue area) for the Lugo data (July 2018). The real wind energy
production data is represented by black points. The QRDNN provides narrower intervals for the majority of the points

method for every coverage and region, except for the PINP
at 99% for the Ciudad Real data, where SVQR performs
slightly better.

In summary, QRDNN is the best performer for the WS
metric, except for a few cases.

We conclude this section of the analysis by commenting
the final metric: the (mean) coverage-width ratio (Table 10).
First, we consider the fact that narrow intervals can be
achieved at the cost of large differences with respect to
the required coverage for some methods. Methods whose
coverage deviates from the target PINP by more than one
unit have been represented using a smaller font, and they are
not taken into account when computing the best ratio. Thus,
for example, for the PINP value of 99%, we only take into
account methods with a PICP value equal or greater than
98% to compute the best ratio (in bold).

It can be seen that QRDNN is clearly the best performing
method for both the wind energy regions (Granada and
Lugo), and for one solar energy region (Ciudad Real). This
DNN-based method is only surpassed on the Córdoba data
by NGB. As we will see in the next section, this may be
caused by a bad quantile calibration, where the constructed
PIs may be wider than necessary.

5.3 Prediction interval estimation with calibrated
quantiles

Given the results regarding quantile and PI estimation and
taking coverage, width and ratio into account, QRF and
QRDNN are considered to be the two best performing
methods in the regions of Granada, Lugo, and Ciudad Real,
where both methods have achieved robust performance.
However, in the region of Córdoba, NGB is considered
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Table 9 Mean Winkler score
by region and method for every
PINP target value

Region Method WS80 WS85 WS90 WS95 WS99

Granada (wind) LQR 2.05 2.24 2.55 3.23 5.77
GBQR 1.79 1.93 2.18 2.70 4.31
NGB 1.77 1.96 2.25 2.83 5.25
SVQR 1.67 1.83 2.06 2.49 4.00
QRF 1.68 1.85 2.07 2.45 3.48
QRDNN 1.54 1.69 1.90 2.29 3.62

Lugo (wind) LQR 1.64 1.77 1.99 2.43 3.53
GBQR 1.12 1.21 1.35 1.58 2.42
NGB 1.14 1.24 1.39 1.65 2.33
SVQR 1.13 1.22 1.37 1.64 2.82
QRF 1.07 1.15 1.27 1.50 2.02
QRDNN 1.06 1.15 1.28 1.48 1.93

Ciudad Real (solar) LQR 1.91 2.10 2.40 3.28 9.74
GBQR 1.32 1.45 1.66 2.04 3.47
NGB 1.43 1.57 1.78 2.17 3.57
SVQR 1.36 1.53 1.76 2.16 2.67
QRF 1.36 1.50 1.71 2.09 2.91
QRDNN 1.26 1.39 1.56 1.89 2.87

Córdoba (solar) LQR 1.31 1.45 1.65 2.05 4.57
GBQR 1.09 1.21 1.39 1.75 3.06
NGB 1.12 1.22 1.37 1.63 2.52
SVQR 1.09 1.19 1.33 1.68 2.57
QRF 1.13 1.28 1.47 1.83 2.72
QRDNN 1.04 1.15 1.29 1.52 2.06

The best value for each region is shown in bold. The best values are achieved using QRDNN in most cases

jointly with QRDNN due to its good results in relation to
the coverage-width ratio (Table 10).

In this section, we show how improvements in the PI
quality can be made by following the conformalized regres-
sion methodology presented in Section 4.4. For this purpose,
we report the coverage and width of the above mentioned
methods in their conformalized forms.

First, Table 11 shows the PICP and AIW results on
the Granada data using the conformalized forms of QRF
(CQRF) and QRDNN (CQRDNN). Generally, we can see
that conformalizing reduces the coverage. This may be due
to the fact that a larger coverage than required is obtained
using these methods, and calibration with the validation set
reduces it, which also results in narrower PIs. Nevertheless,
although in some cases the calibrated PIs do not achieve the
target PINP, there is never a large deviation, with the advan-
tage that AIW is reduced. DNN-based methods (QRDNN
and CQRDNN) remain the methods with the best perfor-
mance due to their narrow PIs.

In Table 12, the PICP and AIW results on the Lugo data
using CQRF and CQRDNN are shown. Similarly to the case
of the Granada data, the coverage tends to be reduced when
there an excess of coverage with respect to the target PINP
is found in the validation set for the conformalized methods.
As a result, the PICP values obtained by CQRF and
CQRDNN are closer to the PINP and in some cases below it.
However, the improvement in AIW makes conformalizing
worthwhile, especially for the PINP at 80%, 85%, and 90%,
where the improvement in AIW is exceptional (see the mean
column in Table 12). For the 99% PINP, the AIW value is
slightly larger, but the coverage is also increased, which is
what is required in this case.

Table 13 shows the PI estimation performance of the
conformalized methods, CQRF and CQRDNN, for the
Ciudad Real data (solar). For CQRF, there is only a slight
reduction in coverage from the calibration quantiles result,
but this still results in a significant improvement in the
PI width, especially for QRDNN and the 80%, 85%, and
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Table 10 Mean ratio score
(PICP/AIW) by region and
method for every target PINP

Region Method Ratio 80 Ratio 85 Ratio 90 Ratio 95 Ratio 99

Granada (wind) LQR 3.90 3.73 3.43 2.92 2.29

GBQR 4.50 4.34 3.99 3.55 2.58

NGB 4.82 4.59 4.30 3.85 3.11

SVQR 4.90 4.59 4.18 3.56 2.23
QRF 4.35 4.04 3.62 3.05 2.22
QRDNN 5.20 4.84 4.48 3.93 2.96

Lugo (wind) LQR 3.57 3.29 2.96 2.39 1.8

GBQR 4.96 4.71 4.36 3.77 2.49
NGB 5.25 4.89 4.49 3.92 3.09

SVQR 4.99 4.72 4.33 3.56 2.03
QRF 4.93 4.55 4.09 3.43 2.48
QRDNN 5.40 5.08 4.60 4.04 3.05

Ciudad Real (solar) LQR 2.82 2.78 2.70 2.55 2.50

GBQR 3.68 3.44 3.02 2.62 1.70
NGB 3.58 3.30 3.01 2.62 2.06

SVQR 3.59 3.42 3.11 2.69 1.65
QRF 3.13 2.83 2.50 2.05 1.49
QRDNN 3.79 3.49 3.12 2.73 2.03

Córdoba (solar) LQR 4.34 4.04 3.68 3.31 3.20

GBQR 4.68 4.28 3.77 3.12 1.62
NGB 4.99 4.68 4.28 3.75 2.95
SVQR 4.89 4.49 3.97 3.11 1.87
QRF 4.11 3.65 3.20 2.60 1.78
QRDNN 4.55 4.28 3.78 3.27 2.42

The best value for each region is shown in bold. Methods whose coverage deviates from the target PINP by
more than one unit have been represented using a smaller font. QRDNN is the best method for the Granada,
Lugo and Ciudad Real data

90% target PINPs. There is some AIW increase for the
95% and 99% PINPs, but for the 95% case, this result is
actually required to increase the coverage. Although both
methods benefit from calibration, conformalized QRDNN
is still better than CQRF in terms of AIW.

Results for the Córdoba data are displayed in Table 14.
As previously mentioned, NGB was chosen to compare
with QRDNN in this region. It is interesting to note that
calibration does not improve the PIs for NGB (CNGB),
as excessive coverage and a larger AIW are obtained. On
the other hand, PIs are greatly improved using CQRDNN:
coverage is closer to the PINP target, satisfying it, and the
AIW decreases. Furthermore, the employment of calibrated
quantiles makes CQRDNN the best performing method for
this region, and are superior to the original results using
NGB.

In summary, in most cases, calibrated quantiles (confor-
malized quantile regression) result in a PICP value that is
closer to the target PINP value and a decreased AIW. In
particular, CQRDNN benefits particularly from calibration,

as also shown in Table 15, which shows that the coverage-
width ratio improves when using CQRDNN instead of
QRDNN. As can be seen, improvements occur for most
PINP values and regions, especially for Córdoba. We note
that it is more difficult to improve the ratio for the PINP
at 99%, which is understandable due the high coverage
requirements. In general, we can confirm that employing
calibrated quantiles improves the PI quality. Overall, results
show the good performance of deep NN-based methods.

5.4 Analysis by season

Generally, a better overall performance in relation to pre-
diction interval coverage, width, and quality for the time
horizons analyzed is achieved using CQRDNN. To com-
plete this section of results, PIs obtained using this method
are studied from a seasonal perspective. Thus, predictions
made on the test set will be disaggregated into the four
seasons of the year to check for possible variability during
the year.
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Deep neural networks for the quantile estimation of regional renewable energy production

Table 13 PICP and AIW (in parenthesis) results on the Ciudad Real
data (solar energy) based on the time horizon for QRF and QRDNN
and their conformalized forms (CQRF and CQRDNN, respectively)

Method 09:00 12:00 15:00 Mean

PINP 80% Prediction Interval
QRF 0.882 0.912 0.849 0.879

(0.310) (0.298) (0.245) (0.284)

CQRF 0.877 0.888 0.841 0.868
(0.307) (0.294) (0.241) (0.281)

QRDNN 0.830 0.874 0.849 0.821
(0.227) (0.234) (0.214) (0.225)

CQRDNN 0.784 0.827 0.816 0.809
(0.220) (0.200) (0.200) (0.207)

PINP 85% Prediction Interval
QRF 0.921 0.937 0.885 0.914

(0.362) (0.339) (0.279) (0.327)

CQRF 0.912 0.929 0.877 0.906
(0.358) (0.335) (0.274) (0.322)

QRDNN 0.874 0.918 0.888 0.893
(0.261) (0.266) (0.242) (0.256)

CQRDNN 0.822 0.885 0.866 0.858
(0.244) (0.231) (0.228) (0.234)

PINP 90% Prediction Interval
QRF 0.956 0.959 0.940 0.952

(0.438) (0.397) (0.325) (0.387)

CQRF 0.956 0.956 0.921 0.944
(0.434) (0.393) (0.320) (0.382)

QRDNN 0.904 0.945 0.904 0.918
(0.301) (0.306) (0.277) (0.295)

CQRDNN 0.882 0.934 0.904 0.907
(0.290) (0.286) (0.283) (0.286)

PINP 95% Prediction Interval
QRF 0.978 0.984 0.970 0.977

(0.568) (0.495) (0.399) (0.488)

CQRF 0.975 0.978 0.967 0.974
(0.564) (0.490) (0.394) (0.483)

QRDNN 0.948 0.964 0.934 0.949
(0.361) (0.362) (0.324) (0.349)

CQRDNN 0.942 0.962 0.948 0.951
(0.369) (0.342) (0.352) (0.354)

PINP 99% Prediction Interval
QRF 1 0.997 0.989 0.995

(0.821) (0.688) (0.546) (0.685)

Table 13 (continued)

Method 09:00 12:00 15:00 Mean

CQRF 1 0.997 0.986 0.995
(0.816) (0.684) (0.541) (0.680)

QRDNN 0.978 0.981 0.981 0.980
(0.508) (0.504) (0.443) (0.485)

CQRDNN 0.979 0.979 0.981 0.980
(0.557) (0.468) (0.462) (0.496)

In terms of the mean, the coverage is reduced when using the
conformalized methods, but the resulting PICP values are not far from
the target PINP, with the advantage that AIW is reduced in most cases.
CQRDNN is generally the best performer in terms of AIW

Table 14 PICP and AIW (in parenthesis) results on the Córdoba data
(solar energy) based on the time horizon for NGB (second best method
on the Córdoba data) and QRDNN and their conformalized forms
(CNGB and CQRDNN, respectively)

Method 09:00 12:00 15:00 Mean

PINP 80% Prediction Interval
NGB 0.786 0.849 0.836 0.824

(0.188) (0.198) (0.128) (0.171)

CNGB 0.819 0.830 0.860 0.837
(0.202) (0.191) (0.136) (0.176)

QRDNN 0.836 0.874 0.808 0.839
(0.252) (0.188) (0.143) (0.194)

CQRDNN 0.844 0.805 0.800 0.816
(0.179) (0.171) (0.140) (0.164)

PINP 85% Prediction Interval

NGB 0.838 0.901 0.868 0.869
(0.211) (0.222) (0.144) (0.193)

CNGB 0.858 0.899 0.899 0.885
(0.221) (0.219) (0.164) (0.201)

QRDNN 0.866 0.934 0.880 0.893
(0.286) (0.215) (0.161) (0.248)

CQRDNN 0.877 0.874 0.863 0.871
(0.199) (0.194) (0.157) (0.183)

PINP 90% Prediction Interval

NGB 0.879 0.942 0.904 0.909
(0.241) (0.254) (0.165) (0.220)

CNGB 0.921 0.942 0.926 0.930
(0.273) (0.253) (0.186) (0.238)
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Table 14 (continued)

Method 09:00 12:00 15:00 Mean

QRDNN 0.899 0.964 0.915 0.926
(0.333) (0.255) (0.189) (0.259)

CQRDNN
0.921 0.948 0.910 0.926
(0.237) (0.224) (0.185) (0.215)

PINP 95% Prediction Interval

NGB 0.934 0.975 0.937 0.949
(0.287) (0.303) (0.196) (0.262)

CNGB 0.959 0.984 0.964 0.969
(0.320) (0.328) (0.238) (0.295)

QRDNN 0.943 0.981 0.951 0.958
(0.400) (0.306) (0.223) (0.310)

CQRDNN 0.962 0.981 0.975 0.973
(0.295) (0.324) (0.238) (0.286)

PINP 99% Prediction Interval

NGB 0.970 0.995 0.978 0.981
(0.378) (0.398) (0.258) (0.344)

CNGB 0.992 0.997 0.997 0.995
(0.497) (0.459) (0.413) (0.456)

QRDNN 0.984 0.995 0.989 0.989
(0.563) (0.437) (0.307) (0.436)

CQRDNN 0.989 0.992 0.989 0.990
(0.392) (0.368) (0.317) (0.359)

In terms of the mean, CQRDNN is the best method, achieving PICPs
closer to the target PINPs while reducing the AIW

We present the PICP and AIW results for every season,
region, and PINP in Table 16.

In summary, the results based on the season follow the
general trends displayed in the first part of this section,
although specific behaviors are observed for some seasons.

Table 15 Coverage-width ratio
improvement based on the use
of conformalized quantile
regression on DNNs
(CQRDNN vs. QRDNN) for
each region and for each target
PINP

Region 80% 85% 90% 95% 99%

Granada (wind) 2.25% 3.24% 2.26% 1.76% -0.55%

Lugo (wind) 4.57% 3.80% 5.80% 1.26% -6.13%

Ciudad Real (solar) 3.65% 5.05% 1.68% -1.33% -1.89%

Córdoba (solar) 10.83% 12.35% 15.02% 5.70% 15.08%

Calibrated quantiles improve the ratio, except in a few cases for large PINP values

Generally, good coverage is achieved using CQRDNN with
a few exceptions (e.g., the Granada data in the summer and
winter, the Lugo data in the spring and summer (wind), and
the Ciudad Real data in spring (solar)). However, the results
remain close to the PINP. Relatively narrow intervals are
still obtained using CQRDNN. For both solar regions, the
narrowest intervals are obtained during the summer as this
is the most stable season regarding solar radiation.

For the Granada data (wind energy), some PINP values in
the summer and winter were low for CQRDNN. Regarding
the width of the intervals, it can be seen that intervals for
summer are wider, while in autumn, winter, and spring the
AIW values are similar for equal values of the PINP. The
analysis by season for the second wind energy region (Lugo)
shows similar patterns, with the coverage being achieved,
except for some PINP values in the spring and summer.
However, the coverage remains close, especially for the
summer results. Regarding AIW, the highest values are
observed during the summer, while the narrowest intervals
are obtained during winter and autumn.

For the solar energy regions, the results on the Ciudad Real
data indicate a high coverage is achieved using CQRDNN
during summer and for most PINP values during autumn.
Coverage is lower during winter and spring. Regarding the
seasons, the AIW during winter and autumn is high com-
pared to spring and summer. Finally, for the Córdoba data,
the required coverage is generally achieved by CQRDNN
in each season. In this region, we cannot find significant
differences for the AIW across the presented seasons.

In summary, the results based on season follow the
general trends displayed in the first part of this section,
although some specific behaviors are observed during some
seasons. Generally, CQRDNN performs well with respect
to coverage, with a few exceptions (Granada in summer
and winter (wind), Lugo in spring and summer (wind),
and Ciudad Real in spring (solar)). However, the results
remain close to the PINP. Relatively narrow intervals are
still achieved using CQRDNN. For both solar regions, the
narrowest intervals are obtained during summer, as this is
the most stable season regarding solar radiation.
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Table 16 Analysis of the PICP and AIW (in parentheses) values based on the season, region, and target PINPs for CQRDNN

Region Season PINP 80% PINP 85% PINP 90% PINP 95% PINP 99%

Granada (wind) Winter 0.7880 (0.1188) 0.8300 (0.1359) 0.8653 (0.1557) 0.9326 (0.1895) 0.9849 (0.2778)

Spring 0.8241 (0.1093) 0.8791 (0.1247) 0.9176 (0.1426) 0.9657 (0.1753) 0.9918 (0.2575)

Summer 0.7679 (0.1872) 0.8178 (0.2116) 0.8551 (0.2404) 0.9150 (0.2902) 0.9827 (0.4091)

Autumn 0.8101 (0.1283) 0.8636 (0.1453) 0.9072 (0.1657) 0.9534 (0.2000) 0.9902 (0.2844)

Lugo (wind) Winter 0.8280 (0.1023) 0.8569 (0.1154) 0.9051 (0.1360) 0.9519 (0.1694) 0.9931 (0.2766)

Spring 0.7594 (0.1176) 0.8105 (0.1319) 0.8640 (0.1533) 0.9148 (0.1879) 0.9876 (0.2908)

Summer 0.7919 (0.1591) 0.8490 (0.1782) 0.8910 (0.2059) 0.9402 (0.2509) 0.9880 (0.3773)

Autumn 0.8251 (0.1076) 0.8702 (0.1213) 0.9069 (0.1423) 0.9577 (0.1763) 0.9944 (0.2875)

Ciudad Real (solar) Winter 0.8022 (0.2828) 0.8425 (0.3154) 0.8974 (0.3785) 0.9507 (0.4589) 0.9744 (0.6236)

Spring 0.7253 (0.2470) 0.7913 (0.2817) 0.8606 (0.3447) 0.9231 (0.4314) 0.9670 (0.6014)

Summer 0.9007 (0.1504) 0.9468 (0.1787) 0.9610 (0.2354) 0.9858 (0.3146) 1 (0.4933)

Autumn 0.8052 (0.2440) 0.8455 (0.2736) 0.9064 (0.3290) 0.9438 (0.3996) 0.9738 (0.5455)

Córdoba (solar) Winter 0.8059 (0.2190) 0.8755 (0.2470) 0.9341 (0.2844) 0.9717 (0.3745) 0.9890 (0.4771)

Spring 0.8351 (0.2595) 0.8827 (0.2977) 0.9157 (0.3448) 0.9634 (0.4564) 0.9927 (0.5518)

Summer 0.7660 (0.2081) 0.8972 (0.2452) 0.9291 (0.2852) 0.9574 (0.4008) 0.9894 (0.5341)

Autumn 0.8314 (0.2117) 0.8727 (0.2330) 0.9288 (0.2662) 0.9700 (0.3316) 0.9925 (0.4086)

Values in bold indicate that a PICP equal to or higher than the target PINP is achieved for this method. Regarding the PICP, differences across
seasons are observed. For solar regions, the narrowest intervals are obtained in summer, which is the most stable season regarding solar radiation

6 Conclusions

In this work, deep neural networks (QRDNNs) were uti-
lized to estimate multiple quantiles in the context of regional
renewable energy production forecasting in Spain. These
networks were compared with methods that have been used
recently in the energy forecasting field, such as support vec-
tor quantile regression (SVQR), gradient boosting quantile
regression (GBQR), natural gradient boosting (NGB) and
random forests (RFs). The NWP variables were extracted
from a spatial grid that encompasses the region and its
extension for this purpose. Four regions were selected
because they are representative of each type of renewable
energy: Granada and Lugo for wind energy; and Ciudad
Real and Córdoba for solar energy. Models were used to
predict 10 conditional quantiles. The methodology involved
systematic hyperparameter tuning by a grid search, where
the best performing models were selected according to
the mean quantile loss. In addition, from the 10 quantiles
estimated, 5 PIs were constructed for different nominal
probability coverage (80%, 85%, 90%, 95% and 99%).

Both quantiles and intervals were evaluated by the appro-
priate metrics (quantile loss, CRPS, interval coverage and
width (PICP and AIW, respectively), coverage-width ratio,
and WS).

With respect to quantile estimation, the best performing
method for the quantile loss metric for all regions, on
average (across all time horizons), is QRDNN. This method
is followed by QRF (wind) and by GBQR and SVQR
(solar). Regarding CRPS, the lowest values are obtained
using QRDNN and this time is followed by GBQR (wind)
and NGB/SVQR (solar). In summary, QRDNN shows
consistently good performance across both metrics and
energy types/regions, whereas the performance of the other
methods may depend on the metric and/or region.

Regarding PIs obtained from the quantiles and the cov-
erage (PICP) and width (AIW) metrics, QRF and QRDNN
are the two most consistent methods. The desired coverage
(PINP) is always obtained (on average across all time hori-
zons) using QRF in both solar and wind energy regions,
whereas the PINP is obtained for most cases on average
using QRDNN, and in any case, it never deviates from the
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desired value by more than 1%. An important advantage of
QRDNN is that the intervals it generates are 8% to 29%
narrower than the ones generated by QRF.

Another metric that displays the quality of QRDNN
intervals is the WS. In solar energy regions, QRDNN is
always the method with the lowest score, except for the
PINP at 99% on the Ciudad Real data. For predicting wind
energy, these results hold true for the majority of cases.
Finally, concerning the ratio of PICP and AIW, QRDNN is
always the best performing method, except on the Córdoba
data (once the methods that are far away from the desired
coverage are excluded).

In this work, conformalized quantile regression has been
applied to further improve the quality of PIs. This is based
on the calibration of the estimated conditional quantiles
using a validation set. The general methodology has been
extended by taking into account the time horizon of the
prediction leading to an improvement in interval width.
Overall, the conformalized version of QRDNN (CQRDNN)
tends to perform better.

In summary, QRDNNs and especially their conformal-
ized form, achieve consistently good performance across
the different metrics, for both regional wind and solar
electricity production, and are remarkable with respect to
the narrowness of the generated PIs while offering good
coverage.
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