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It is well known that quasi-symmetric configurations have a better neoclassical confinement com-
pared to that of standard stellarators. It has also been suggested that quasi-symmetries should
also result in a better confinement in regards to the radial turbulent transport. In particular, the
expected reduction of the neoclassical viscosity along the direction of quasi-symmetry should facil-
itate the self-generation of zonal flows and, consequently, the suppression of turbulent fluctuations
and the ensuing transport. In this paper we show that, at least for quasi-poloidal configurations,
the influence of quasi-symmetry on transport exceeds the mere reduction of the fluctuation levels,
and that the intimate nature of transport itself is affected. Radial turbulent transport becomes
increasingly subdiffusive as the degree of quasi-symmetry becomes larger, whilst transport within
the magnetic surface becomes increasingly superdiffusive.

PACS numbers: 52.25.Fi, 52.35.Ra, 52.25.Gj, 05.40.-a

I. INTRODUCTION

An effective manner to confine neoclassical guiding
centre orbits is by endowing the confining magnetic field
with a hidden symmetry (usually referred to as quasi-
symmetry), even if just approximately1,2. This is best
achieved by expressing first the field in Boozer coordi-
nates3 (s, θB , φB), so that the guiding center motion de-
pends solely on the field magnitude, B = |B|, and its
derivatives4. Then, the configuration is designed so that
the harmonic content of B is dominated by some linear
combination, MθB−NφB , over as much of the radius as
possible. Quasi-poloidal symmetry requires that M = 0.
Quasi-axisymmetry (or quasi-toroidicity), that N = 0,
bringing the configuration closer to a tokamak. Finally,
quasi-helical symmetry, assumes that M/N = mh/nh, for
some prescribed pair of integers. Examples are provided,
respectively, by the QPS5 (quasi-poloidal) and NCSX6

(quasi-axisymmetric) projects, that were regretfully can-
celled before construction could be started, and by the
HSX quasi-helical (mh = 1, nh = 4) stellarator currently
at operation at the University of Wisconsin7. Experi-
mental results from HSX have already provided evidence
that confirms the improved neoclassical confinement as-
sociated to quasi-helical symmetry8 and the reduced neo-
classical viscosity along the quasi-symmetry direction9.
However, the low-β of HSX plasmas makes it very dif-
ficult to characterize if quasi-symmetry has any impact
on the radial turbulent transport. It is however expected
that, thanks to the reduced neoclassical viscosities, zonal
flows able to suppress turbulent fluctuations might be

self-generated more easily in these conditions10. The
available numerical evidence suggests that this seems to
be the case, as found for some recent gyrokinetic sim-
ulations of electrostatic ITG turbulence in HSX11 and
NCSX12 numerical equilibria, carried out in computa-
tional domains restricted to the neighborhood of a single
magnetic surface, for which reduced ion turbulent con-
ductivities have been reported.

In principle, one would expect that turbulence in quasi-
poloidal symmetric configurations should be more sensi-
tive to these effects since strong radially-sheared poloidal
zonal flows affect radial fluxes the most in configurations
with large safety factor. The investigation of whether this
is the case is one of the objectives of this paper. How-
ever, our study extends beyond the quantification of the
level of reduction of the effective ion conductivity due to
quasi-poloidal symmetry. Our main objective is to find
out whether quasi-symmetries do also alter the intimate
nature of radial transport itself, beyond reduced effective
transport coefficients. This question is inspired by recent
studies reporting a change in the nature of radial turbu-
lent transport across strong, radially-sheared zonal flows
in tokamaks13–15. In these works, it was found that radial
transport became endowed with strong subdiffusive fea-
tures as the average radial shear of the poloidal angular
flow velocity was increased. At the same time, the statis-
tics of the radial velocity fluctuations became strongly
non-Gaussian, exhibiting divergent algebraic tails that
pointed to the establishment of non-local correlations.
From these findings, it was concluded that a phenomeno-
logical description of radial transport in terms of effective
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coefficients was probably insufficient to capture the trans-
port dynamics in tokamaks the presence of sufficiently
strong sheared-flows, and that other models would have
to be looked for in order to maintain good predictive ca-
pabilities16–20.

The present paper follows this line of reasoning and in-
vestigates whether transport could be similarly affected
by the reduction in neoclassical viscosities associated to
a larger degree of local quasi-symmetry of a magnetic
configuration. We explore this question by character-
izing the transport properties of a population of tracer
particles as they are advected by electrostatic ITG turbu-
lence computed by the GENE/GIST gyrokinetic code21

in a quasi-symmetric numerical configuration. Instead of
a traditional flux-tube geometry, the computational do-
main here encompasses all toroidal and poloidal angles,
but with a radial domain that is restricted to the radial
neighborhood of a reference magnetic surface11,12, that
is labeled by the Boozer radial coordinate s = s0 (see
Fig. 1). The degree of quasi-poloidal symmetry at the
reference surface s0 is quantified in terms of the quasi-
symmetry ratio,

σqp(s0) =

∑
n

|B0,n(s0)|

M∑
m=0

N∑
n=−N

|Bm,n(s0)|

≤ 1. (1)

Perfect quasi-poloidal symmetry would naturally require
that σqp = 1. For real quasipoloidal configurations, how-
ever, σqp is typically a decreasing function of s. We have
taken advantage of this fact and restricted the simula-
tions to a single magnetic configuration, carrying out the
gyrokinetic simulations in the neighbourhood of different
radial locations(see Fig. 2). In this way, we can maintain
a relatively modest variation of the harmonic content of
the magnetic field, and still explore a wide range of values
of the quasi-symmetry ratio.

The paper is then organized as follows. First, in Sec.
II, we will describe the configuration used and the sim-
ulations carried out for this study. We will also discuss
the fundamentals of TRACER, the new code that has
been developed to advance the tracer particles as they
are advected by the turbulent potential fields GENE pro-
vides. Sec. III will then review some theoretical aspects
of fractional transport theory that provide the basis of
the diagnostics that will be used to characterize the na-
ture of transport. The characterization of the properties
of tracer motion for different quasisymmetry ratios is de-
scribed in Sec. IV. The interpretation of these results will
be discussed in Sec. V. Finally, some main conclusions
will be presented in Sec. VI.

II. CONFIGURATION UNDER STUDY

The quasi-poloidal equilibrium configuration chosen
for this investigation belongs to a set of cases explored

FIG. 1. Cross-sections at four different toroidal angles of the
quasi-poloidal configuration used for the GENE simulations
discussed in this paper. Number of field periods, Nfp = 2.

FIG. 2. Safety factor q (red in left axis) and percentage of
Quasi-symmetry QS (blue in right axis) for QPS along the
radial direction.

during the design phase of the QPS project5 (see Fig. 1).
It is a configuration with two periods (i.e., Nfp = 2),
aspect ratio A = R0/a = 2.6, β =

〈
2µ0p/B

2
〉
∼ 2.5%,

toroidal current I ∼ 40kA and magnetic field on axis,
B0 ' 0.9T. Regarding the magnetic harmonic content,
the case examined includes poloidal modes varying from
m = 0 up to m = M , with M = 8. Regarding toroidal
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modes, they run from n = −N to n = N with N = 7.
The safety factor decreases smoothly with radius, from
q(0) ' 7 to q(a) ' 4.5. The quasi-symmetry ratio for
this configuration, on the other hand, decreases steadily
from slightly below 0.9 close to the axis, to about ∼ 0.6
as we reach the edge (see Fig. 2). The poloidal nature
of the symmetry can be easily seen when plotting the
contour levels of B (see Fig. 1, above frame), that are
aligned with the poloidal direction (even when, strictly
speaking, the quasi-symmetric alignment is with θB , not
the geometrical poloidal angle).

We have carried nonlinear gyrokinetic simulations at
eight different radial locations for this configuration us-
ing the GENE code21. These positions have been chosen
as to provide a sufficiently wide variation of the qua-
sisymmetry ration (see Fig. 2). At each of them, GENE
solves the nonlinear gyrokinetic equations22 using an Eu-
lerian δf approach with a fixed grid in the 5D phase space
(x, y, z, v‖, µ). It uses a special field-aligned system in
which y = q(s0)θB − φB is constant along a field line,
z = θB runs parallel to the magnetic field and x =

√
s

is a normalized radial coordinate. Although originally
a flux-tube tokamak code, GENE has been recently ex-
tended to be able to deal with fully three-dimensional
magnetic configurations23, such as the one being exam-
ined here. In these simulations, the spatial domain con-
sidered is an annulus, centered at the reference surface
s0 with x ∈ [

√
s0 − Lx,

√
s0 + Lx]. Equilibrium quan-

tities (i.e., gradients, safety factor, etc) are however as-

FIG. 3. GENE simulation carried out for the radial posi-
tion s=0.49 of the quasi-poloidal configuration discussed in
the text. All three-dimensional plots are shown in the field-
aligned (x, y, z) coordinate system. Left, above: |B| showing
the (approximated) quasi-poloidal symmetry; Right, above:
instantaneous potential fluctuations; Left, below: instanta-
neous heat flux; Right, below: time evolution of heat flux;
black arrows signal the times at which tracer seeding is done.

sumed to be independent of x, keeping their value at
s0 across the whole domain. Periodic boundary condi-
tions in x are also enforced for all perturbed fields. The
dominant instability in all simulations is the electrostatic
ITG mode (in particular, a/LTi = 4 and a/Ln = 0 were
used), and assumed adiabatic electrons. The resolution
in all cases was set to 126 × 64 × 256 × 32 × 8 points
in GENE’s (x, y, z, v‖, µ) phase space. These numbers
were chosen after having completed systematic linear and
nonlinear convergence studies, in which we monitored
the saturation levels of various physical variables such as
ion heat flux, parallel and perpendicular temperatures,
among others. The radial size of the computational do-
main, for the parameter values used, contains roughly
a/ρs ' 250. Finally, the length of all simulations was
of the order of several hundreds of Lagrangian turbulent
decorrelation times. This was done to ensure that the
tracer analysisis could be carried deep into the nonlin-
ear saturated phase, so that long-term transport features
could be studied meaningfully.

The techniques that have been used to characterize
the nature of transport, and that will be described in
Sec. III, require that the trajectories of individual trac-
ers be monitored as they are advected by the electro-
static turbulence calculated by GENE. Advecting parti-
cles within modern Vlasov gyrokinetic codes is not trivial
due to their large computational cost and their sophisti-
cated but fragile parallel optimization24. As a result, the
most straightforward way to carry out this type of stud-
ies –namely, to include the tracer evolution within the
normal Vlasov-Poisson time-stepping– is not very practi-
cal. Indeed, it would require a major overhaul of the GK
code, specially in order to maintain its internal balance
for optimal parallelization and performance. In addition,
every time that a different tracer initialization is needed,
the whole GK simulation would have to be rerun, thus
incurring in a huge waste of computational resources.

For all these reasons, we have developed TRACER,
a new parallel code that can carry out, as a post-
processing, the advection of as many tracer particles as
needed. TRACER obtaines from GENE’s standard out-
put all the relevant information that is needed to com-
plete this task including, but not restricted to, the met-
ric tensor and the jacobian (i.e., geometry), the (time-
varying) electrostatic potential, the magnetic field and
its gradients. TRACER interpolates all these fields in
space and in time. The trajectory of each tracer par-
ticle, as it is advected by the turbulent E × B drift, is
calculated by integrating its equation of motion,

ṙ = vE×B = −∇φ×B

|B|2
, (2)

in GENE (x, y, z) own coordinates, using an explicit 4-th
order Runge-Kutta (RK4) scheme. Here, φ is the turbu-
lent electrostatic potential provided by GENE. Parallel
motion and other drifts, although included in TRACER,
are not considered in this first study in order to focus on
the effects of quasi-symmetry for cross-field turbulence-
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induced transport. The initial distribution of tracer par-
ticles throughout the computational box can be set at
will by the user. Since the annular, local setup of the
GENE/GIST runs yields relatively homogeneous turbu-
lence, we have initialized our tracers so that they are
uniformly distributed throughout the domain. This ini-
tialization is particularly convenient for the Lagrangian
diagnostic technique16,20 that will be used in this work,
and that is described in the next section. Its advantage
is that it only requires following a few tens of tracer par-
ticles (∼ 10− 102) over very long periods of time. Many
other intializations are however also possible. For in-
stance, tracers could also be positioned at x = y = 0
at the start, randomly distributed along the z direction.
This setup is more convenient in order to estimate propa-
gators, that have also been used often to characterize the
nature of transport16,19. However, a much larger num-
ber of tracer particles (∼ 105 − 106) is often required
in that case to get sufficiently good statistics, since the
relevant information is retrieved from the tails of these
propagators, that have a much smaller probability.

III. DIAGNOSTICS FOR FRACTIONAL
TRANSPORT

The main diagnostic we use in this work to character-
ize the nature of transport along any particular direction
will be the analysis of the statistical and correlation prop-
erties of the projection of Lagrangian velocity on that
direction. This Lagrangian analysis is one of several con-
strasted techniques that can be used to characterize the
nature of transport in turbulent systems16,20. It can be
applied very easily to numerical simulations by following
in time the evolution of a reduced population of tracer
particles as they are advected by the background turbu-
lence.

The technique is based on comparing the properties of
the tracer motion with those of fractional Lévy motion
(fLm), that we discuss in this section. fLm is a very
interesting stochastic model that generalizes the popular
Langevin equation from which classical diffusion is often
derived. As will be remembered, the Langevin equation
for the position of a single particle is given by:

x(t) = x0 +

∫ t

0

ξ2(t′)dt′ (3)

where ξ2(t) is a Gaussian, uncorrelated noise with a corre-
lation function given by < ξ2(t)ξ2(t′) >= Dδ(t− t′). The
connection with diffusion is established, for example, by
computing the propagator of Eq. 3. Or, in simpler words,
the probability of finding the particle at any position x
at time t > 0. It is given by,

PLE(x, t|x0) =
1√

2πDt
exp

(
− (x− x0)2

2Dt

)
(4)

That is, a Gaussian with standard variation growing as
σLE = (Dt)1/2. The connection is made after realizaing

that this is also the propagator of the classical diffusion
equation,

∂n

∂t
= D

∂2n

∂x2
. (5)

In a real system, the role of the noise is played by the
Lagrangian velocity of the particle, that often follows a
correlation function of the form,

〈v(t)v(t′)〉 ' v2
c exp

(
− t− t

′

τc

)
. (6)

In this case, the long-term, long-distance limit of trans-
port is also well described by classical diffusion with
D ' v2

cτc. It follows then that diffusion is ultimately
related to the existence of finite characteristic scales for
the transport process, vc and τc. Clearly, vc is related
to the (square root of the) variance of the Lagrangian
velocitiy; τc, on the other hand, determines for how long
memory (in the velocity) is maintained as the particle
advances along its Lagrangian trajectory.

However, there are situations in which finite transport
scales may be absent in a system. In these cases, the
Langevin equation is not appropriate to model its trans-
port dynamics. A suitable generalization in these cases
is provided by the stochastic equation:

x(t) = x0 +
1

Γ(H − 1/α+ 1)

∫ t

0

(t− t′)H−1/αξα(t′) (7)

where Γ(x) the Euler’s gamma function. The exponent
H ∈ (0,max(1, 1/α)] is often referred to as the Hurst
exponent. On the other hand, ξα(t) is an uncorrelated,
symmetric Lévy (becoming Gaussian, if α = 2) noise with
a tail exponent α ∈ (0, 2], that is no longer a surrogate
of the Lagrangian velocity.

Eq. 7 contains several famous stochastic models. For
instance, the usual Langevin equation is recovered when-
ever α = 2 and H = 1/2. If α = 2, but H varies in the
range (0, 1], it reduces to the prescription of the famous
fractal Brownian motion (fBm). In this case, the propa-
gator is still Gaussian but with a standard deviation that
grows in time like25:

σfBm =
(Dt)H

(2H)1/2Γ
(
H + 1

2

) . (8)

Therefore, the fBm propagator scales diffusively only if
H = 1/2. Otherwise, transport is termed either subdif-
fusive (H < 0.5) or superdiffusive (H > 0.5). One can
study the properties of the Lagrangian velocity of fBm
by taking the (proper) derivative of Eq. 7 for α = 2. It
turns out that26, although the variance of the Lagrangian
velocity (that sets vc) is well defined, one can no longer
define a finite τc, since memory is maintained along the
Lagrangian trajectory for infinite times if H 6= 1/2. As a
result, the long-term, long-distance limit of transport is
no longer given by classical diffusion.
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In the case α 6= 2, the propagator takes the form of a
symmetric Lévy law27:

P fLm(x, t|x0) = t−HLα,σfLm

(
x− x0

tH

)
(9)

with its scale factor σfLm defined as27:

σfLm = σξα

[
(αH)1/αΓ

(
H + 1− 1

α

)]−1

, (10)

being σξα the scale factor of the noise Lévy distribution.
This type of motion is known as fractional Levy motion
(fLm)28. All moments of the fLm propagator of order α
or larger are f however infinite due to the fact that Lévy
distributions asymptotically scale as Lα(x) ∝ |x|−(1+α)

for large values of |x|29. However, moments of order p <
α are still finite, and scale as 〈(x− x0)p〉 ∝ tpH . By
adopting the same fBm conventions, the scaling H = 1/2
is still referred to as a diffusive scaling. Consequently,
subdiffusion is also used to describe the fLm transport
dynamics for H < 0.5, superdiffusion, for H > 0.5. In
the case of fLm, a finite vc can no longer be defined for the
Lagrangian velocity, since their statistics follow a Lévy
law with the same tail-index α as the driving noise. In
addition, memory is maintained, as in fBm, for infinitely
long times along the Lagrangian trajectory for all values
of H except for H = 1/α.

It is now easy to develop a method to characterize the
nature of transport via tracers. One simply needs to
determine the exponents α and H that characterize the
statistics and the correlation of the component of interest
of the tracer Lagrangian velocities, averaged over many
tracers20. α can be estimated from the tail-index of their
statistical distribution. To estimate H, we will use a sim-
ple variation of the popular rescaled-range (R/S) method,
introduced by Hurst in the 50s to quantify memory in
Guassian-distributed time series30. Assuming a time se-
ries Vk, k = 1, 2, · · ·N , Hurst’s prescription required the
computation of the rescaled range:

[R/S](τ) :=

max
1≤k≤τ

W (k, τ)− min
1≤k≤τ

W (k, τ)√
〈V 2〉τ − 〈V 〉

2
τ

, (11)

with

W (k, τ) :=
k∑
i=1

Vi − k 〈V 〉τ . (12)

Here, 〈·〉τ represents the temporal average up to time
τ . When the signal resembles fBm, then [R/S] ∼ τH ,
with H being the Hurst exponent. The prescription must
however be slightly modified20 to deal with fLm, due to
the divergent nature of its variance. In those cases, the
denominator of the rescaled-range is replaced by the 1/s-
th power of a moment of order s > 0, with s < α.

Therefore, in the next section we will investigate the
influence of the degree of quasisymmetry on turbulent
transport by estimating the value of α and H averaged

over tracer trajectories obtained TRACER using the GK
turbulent data provided by GENE at several reference
surfaces with varying values of the quasisymmetry ratio.
Then, we will monitor whether α < 2 and H 6= 1/2 to
help us track any fundamental change in dynamics that
pushes transport away from the standard framework of
classical diffusion.

IV. SIMULATION RESULTS

Nonlinear simulations of ITG turbulence have been
carried out with GENE/GIST for eight different ra-
dial locations within the QPS equilibrium examined (see
Fig. 2). The range of quasi-symmetry values explored in
this way extends from 0.65, close to the edge, to 0.88 close
to the magnetic axis (see Table. I). Hundreds of tracer
particles have then been advanced by the TRACER code,
over the saturated phase of the turbulence, using the
electrostatic potential provided by GENE/GIST. The
amount of time that orbits are advanced correspond to
several hundreds of Lagrangian decorrelation times, since
it is the long-term transport that we are interested in.

A. Radial transport

The first result worth mentioning in regards to radial
transport is that, consistently with previous nonlinear
simulations realized for other type of quasi-symmetries
(i.e., quasi-helical11 and quasi-axisymmetric12 ), the ef-
fective heat conductivity, computed as the average:

χi,eff =

〈
−qir
dTi/dr

〉
volume

, (13)

(being qi the ion heat flux), becomes smaller as the val-
ues of the quasi-symmetry ratio σqp grow (see Fig. 4).
The reduction is positively correlated with the capability
of self-generated, radially sheared flows to act on turbu-
lence. We have chosen to characterize this correlation in
terms of the figure-of-merit,

ω :=

〈∣∣∣∣ ddx
(
vE×B −

vE×B · ∇x)∇x
gxx

)∣∣∣∣〉
volume

(14)

that roughly estimates the radial variation of the
This reduction is clearly correlated with the expected

increase in the , that we have chosen to characterize in
terms of the figure-of-merit ∂x(vy/

√
g), that roughly esti-

mates the radial derivative of the local (mostly poloidal)
angular velocity.

In order to tell whether the change in transport dy-
namics if more profound than a mere reduction of the
effective conductivity, we have also estimated the values
of the two transport exponents α and H that characterize
the propagator associated to radial motion of the tracer
particles. As described in Sec. III, the estimation is done
by comparing the numericall obtained tracer propagators
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with those of fLm. The method is illustrated, for one of
the tracer seedings realized in the nonlinear simulation
centered at s0 = 0.27, in Fig. 6. The values obtained
from the analysis of all radial locations, after averaging
over multiple seeding cycles, have been collected in Ta-
ble I. The resulting value of the exponent β = αH,
defined in Eq. ??, is also included.

Clearly, the value of the Hurst exponents obtained lie
below 0.5 in all simulations, which means that radial
transport of tracers is not diffusive (with a lower dif-
fusivity), but subdiffusive. Furthermore, the value of H
consistently decreases as the value of the quasi-symmetry
ratio increases. Thus, transport becomes more strongly
subdiffusive as we approach the center of the configura-
tion, and becomes less so as we move towards the edge.
It is also apparent that there is no location in the chosen
quasi-poloidal configuration where the quasi-symmetry
ratio becomes sufficiently low so that transport behaves
diffusively. This means that the relevant poloidal viscos-
ity nevers becomes so large as to prevent the development
of a meaningful zonal flow.

Secondly, we also observe that the radial propagator
exhibits a fat power-law tail in all locations. That is,
G(x, t|x0) ∼ |x − x0|−(1+α), with α ∼ 0.75 close to the
center, where the quasi-symmetry ratio is larger, σqp ∼
0.88. The value of α then increases consistently, reaching
its maximum, α ∼ 1.95 at the outermost position, that
also has the lower quasi-symmetry ratio, σqp ∼ 0.65.

Finally, we find that the value of the exponent β =
αH, that quantifies the degree of non-Markovianity of the

FIG. 4. Sheared flow strength, as measured by the figure-

of-merit

〈∣∣∣∣ ddx
(
vθ√
g

)∣∣∣∣〉, as function of the degree of quasi-

symmetry QS. Jorge: In this same figure, in the op-
posite axis, we should include the values of the ef-
fective ion conductivity χ as a function of the quasi-
symmtery ratio.

FIG. 5. Jorge, it would be better to show here a com-
parison of propagators and tracer densities from the
fitting code for three different times, illustrating the
idea α. Then, we can show the variance as a function
of time for that case, illustrating the subdiffusive H.

transport dynamics, remains significantlly smaller than 1
everywhere. The lowest value, β ∼ 0.24, happens close to
the center, where the value of the quasi-symmetry ratio
is larger, and then steadily increases towards one as we
approach the edge.

B. Transport along y (i.e., almost poloidal)

We have also estimated the transport exponents that
characterize the propagator associated to the tracer mo-
tion along the y direction. That is, the direction that is
perpendicular both to the magnetic field line and the ra-
dial direction, and that approaches the poloidal direction
as q � 1. We have collected in Table II the exponents
resulting from the comparison of the numerical propaga-

s0 σqp

〈∣∣∣∣ ddx
(
vθ√
g

)∣∣∣∣〉 H α β

0.17 0.88 2.54 0.33 0.74 0.24
0.22 0.85 2.05 0.35 1.02 0.36
0.27 0.83 1.75 0.40 1.30 0.52
0.32 0.80 1.45 0.43 1.34 0.57
0.37 0.78 1.27 0.44 1.56 0.68
0.49 0.73 1.04 0.44 1.60 0.70
0.63 0.68 0.87 0.44 1.82 0.82
0.72 0.65 0.94 0.45 1.94 0.87

TABLE I. Transport exponents characterizing the radial
propagators for the tracer motion along the x (i.e., radial)
direction obtained from the eight GENE nonlinear runs car-
ried out, as explained in text.
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tors against those of fLm discussed in Sec. III.

In this case, the trend obtained for the Hurst expo-
nent is completely opposite to what we found for the
radial motion. Indeed, the transport of tracers along y
is clearly superdiffusive for all locations, with values of
H > 0.5 everywhere. Note, however, that these trans-
port does not correspond to mere free-streaming along
y, that would require H = 1. We find that the value of
H steadily decreases as we move outwards into regions
where the value of the quasi-symmetry ratio decreases.
For instance, H ∼ 0.9 at the innermost location, where
σqp = 0.844, and H ∼ 0.60 for σqp = 0.65, very close to
the edge.

Secondly, all the poloidal propagators examined do ex-
hibit fat tails with α < 2. Similarly to what we found
along the radial direction, the fattest tails are also found
here at the locations with larger values of the quasi-
symmetry ratio. Thus, α ∼ 0.8 for σqp = 0.844, with
the value of α consistently increasing towards the Gaus-
sian one (α = 2) as one moves outwards and the quasi-
symmtery ratio decreases.

Finally, we proceed to discuss the values obtained for
the exponent β = αH. In contrast to the radial case,
we find now that β ∼ 1 is obtained almost everywhere,
except perhaps at the inner locations with the highest
quasi-symmetry ratio values. This is an interesting ob-
servation, that suggest that non-local, and not so much
non-Markovian effects, could be more important in set-
ting the nature of the tracer motion along y.

V. DISCUSSION

The results described in the previous section suggest
that, although a reduced effective conductivity does in-
deed follow from an increase in the degree of quasi-
poloidal symmetry, this observation is far from providing
a complete picture of what is going on. Clearly, the na-
ture of radial transport becomes more subdiffusive as the
degree of quasi-symmetry increases and, simultaneously,
poloidal transport becomes more superdiffusive. The fact
that these trends also seem correlated with an increase

s0 σqp

〈∣∣∣∣ ddx
(
vθ√
g

)∣∣∣∣〉 H α β

0.17 0.88 2.54 0.84 0.83 0.70
0.22 0.85 2.05 1 0.81 0.96 0.78
0.27 0.83 1.75 0.79 1.17 0.92
0.32 0.80 1.45 0.76 1.22 0.93
0.37 0.78 1.27 0.69 1.26 0.87
0.49 0.73 1.04 0.66 1.43 0.94
0.63 0.68 0.87 0.59 1.80 1.06
0.72 0.65 0.94 0.60 1.77 1.06

TABLE II. Transport exponents obtained for the motion of
tracers along y (almost poloidal) direction. Errors are ob-
tained by averaging over seedings, as explained in text.

FIG. 6. Jorge, it would be better to show here a com-
parison of poloidal propagators and tracer densities
from the fitting code for three different times, illus-
trating the idea α. Then, we can show the variance
as a function of time for that case, illustrating the
superdiffusive H.

FIG. 7. Above: Hurst exponent H for motion along the x
(red) and y (green) directions as a function of the flow shear-
ing strength,

〈
∂xvy/

√
g
〉
xyz

. Middle: Tail exponent α for

motion along the x (red) and y (green) directions as a func-
tion of the flow shearing strength. Below: Memory exponent
β for motion along the x (red) and y (green) directions as a
function of the flow shearing strength .

in the shearing capability of the poloidal zonal flow, as
quantified by the figure-of-merit

〈
∂xvy/

√
g
〉
xyz

, suggests

that the action of the sheared flow, that is made eas-
ier by the reduced neoclassical viscosity often associated
to a higher degree of symmetry, lies at the heart of the
explanation for the observed behaviour.

It would appear that the same mechanism that was in-
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voked to explain the subdiffusive radial transport found
in tokamaks13,15 might be responsible for the behavior
found in the quasi-poloidal nonlinear simulations. If that
were indeed the case, it should be expected that a large
positive [negative] value of

〈
∂xvy/

√
g
〉
xyz

would cause

that, in addition to the concomittant streching along y
and the shortening along x of any region of localized
vorticity (along z) driven by the sheared local poloidal
rotation, a reinforcement of those regions with positive
vorticity together with a suppresion of those with oppo-
site sign would follow15. As a result, it should become
more probable that any radial motion would often reverse
direction, thus leading to subdiffusion along x. Simulta-
neously, the same reinforcing process would favour that
poloidal motion will continue along its current direction
with a larger probability. Thus, superdiffusive transport
should follow along y. Fig. 7 shows that this is indeed
what is happening in the quasi-poloidal simulations.

Regarding the non-Gaussian tails found in the radial
propagators, they can also be understood here along the
lines of the same mechanism previously proposed for
tokamaks. That is, to the interaction of the fluctuating
part of the zonal flow with the local fluctuations, whose
dynamics somewhat resemble those of a predator-prey
system15. The same cannot be said, however, about the
power-law tails found in the poloidal propagators, since
the avalanching process is intrinsic to radial propagation.
A different physical process must probably be at work,
that we have not been able to identify yet. One hint to-
wards the nature of this process might be provided by
the fact that β ' 1 for poloidal motion independently
of the shearing strength of the poloidal flow, in contrast
to what is observed for radial motion (see lower frame
of Fig. 7). This suggests that poloidal motion might be
Markovian, in contrast to the radial one, and that all
its non-diffusive features appear through the value of α
alone, what would perhaps be a reflection of a possible
fractal nature of the spatial landscape in which the tracer
particles move. The soundness of this speculation will
certainly be investigated in the future.

VI. CONCLUSIONS

We have shown that quasi-poloidal symmetry may im-
prove the confinement properties of a magnetic configura-
tion in regards to turbulent transport. However, this en-
hancement is caused by a profound change in the nature
of radial transport, that trascends the mere reduction of
transport effective coefficients. Instead, the reduced vis-
cosity associated to the presence of the symmetry allows
the development of poloidal flows with a larger shearing
strength that modify the vorticity landscape in such a
way that subdiffusive transport follows across the direc-
tion prependicular to the flow, whilst superdiffusion dom-
inates transport along the flow. The physical mechanisms
responsible for these behaviours are very similar to what
has been recently observed in tokamaks, at least in the
radial direction. Regarding transport along the poloidal
direction, the responsible mechanism is not clear. This
situation was not studied previously in tokamaks either,
so that it leaves an interesting open problem to address
in the future.
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