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The confinement properties of the diffusive running sandpile are characterized by tracking the motion
of a population of marked grains of sand. It is found that, as the relative strength of the avalanching
and diffusive transport channels is varied, a point is reached at which the particle global confinement
time and the probability density functions of the jump-sizes and waiting-times of the tracked grains
experience a sudden change, thus revealing a dynamical transition, consistently with previous studies
[D. E. Newman et al., Phys. Rev. Lett. 88, 204304 (2002)]. Across the transition, the sandpile
moves from a regime characterized by self-similarity and memory, where avalanches of all possible
sizes dominate transport across the system, to another regime where transport is taken over by
near system-size, quasi-periodic avalanches. Best values for the fractional transport exponents that
quantify the effective transport across the sandpile prior to the transition are also obtained.

I. INTRODUCTION

Many studies have relied on the concept of self-
organized criticality! (SOC) as a possible explanation of
the overall dynamics of a wide variety of physical and
biological systems®®. All of them justify this hypothe-
sis by the presence of many of the basic ingredients for
SOC dynamics. Namely, an open driven system with a
local instability threshold that generates local transport
when overcome, and a large disparity between the tem-
poral scales associated to the drive and the instability
relaxation. It is not difficult to find systems that fit into
this type of description, at least in an approximate man-
ner. The transport processes in them, often dominated
by avalanching processes, is intrinsically bursty and of
a non-diffusive nature. At steady state conditions, SOC
systems exhibit properties such as spatial self-similarity,
temporal persistence (memory effects) and long-term cor-
relations, that are typical from critical points. However,
these properties appear here without any need for fine-
tuning, in contrast to equilibrium critical points. That is
why the dynamics are known as self-organized criticality.

The running sandpile automaton!'®!! embodies many

of the features that one often associates with SOC. It ap-
peared simultaneously with the proposal of self-organized
criticality, providing a simple paradigm to illustrate SOC
dynamics. Many versions of the sandpile have appeared
over the years, each tailored to specific applications. Of
particular interest to us is the so-called diffusive run-
ning sandpile'? that was first formulated in the con-
text of magnetically confined fusion plasmas with the
purpose of understanding the dynamics of radial trans-
port in situations where near-marginal turbulence coex-
isted with other types of (diffusive) transport in tokamak
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plasmas'®. The transport characteristics of the diffusive
sandpile have been characterized in a number of ways
over the years'¥ 6. Tts most remarkable features are
that: 1) SOC features are maintained for finite, albeit
small, strengths of the diffusive channel relative to the
avalanche channel and 2) that, at larger values of their
relative strength, a sudden transition takes place in which
transport is no longer dominated by SOC-like avalanches,
but by near-system wide global discharge events. It has
also been shown that is possible to characterise this dy-
namical transition across many sandpile runs in terms of
a single parameter that essentially measures the average
roughness of the sandpile profile allowed by the transport

taking place in the system'.

In this paper we further inquire into the nature of
transport in the diffusive running sandpile cellular au-
tomaton by following and analyzing the motion of a se-
lected group of marked (or tracer) particles. Their tra-
jectories are used to calculate the average particle con-
finement time as well as their jump-size and waiting-time
probability density functions (pdfs). It will be shown that
the dynamics that are known to dominate both prior and
after the transition can be well captured and uniquely
quantified by these diagnostics. Furthermore, we will
also use the tracer information to construct a suitable
effective transport model based on fractional transport
equations'” for both dynamical regimes, and to estimate
the optimal values of the transport exponents that define
this model.

The paper is thus organized as follows. First, the dif-
fusive sandpile is reviewed in Sec. II . Then, in Sec. III,
the rules that govern the motion of the marked parti-
cles are presented and discussed. These rules are rather
subtle since there is a certain freedom to specify them
since the diffusive sandpile dynamics do not distinguish
between individual grains. Next, the main results of the
paper regarding tracked particle motion will be discussed
in Secs. IV and V and an effective model for transport



is built for the diffusive sandpile. The model equation
contains both fractional derivatives in space and time,
and the corresponding fractional exponents are quanti-
fied numerically. Finally, some conclusions will be drawn
in Sec. VI.

1I. THE DIFFUSIVE SANDPILE MODEL

The diffusive sandpile!? is an extension of the standard
one-dimensional running sandpile that contains an ad-
ditional diffusive transport channel whose intensity can
be tuned relative to the avalanche-like one. The sand-
pile domain consists of L cells or sites, numbered from
z=1tox =1L (ie, x =1,2,...,L —1,L are the al-
lowed values). A variable h(x) is assigned to each ra-
dial location z, that represents the height of sand at
that site. The temporal evolution of the sandpile is per-
formed by randomly adding, at each iteration, a grain
of sand to every cell with probability Py. The critical
character of the sandpile dynamics is introduced by a
critical slope value, —Z., Z. > 0. Whenever the lo-
cal slope, Z(x) = h(z+ 1) — h(z), exceeds this thresh-
old, Ny grains of sand are moved from the unstable cell
to the next one. All sandpile cells are checked for insta-
bility once per iteration.

Diffusive transport is introduced by adding a local
net diffusive flux, T'y, that is given at each cell by
Ty(z)=—-Do|Z(x—1)— Z(x)] = F;(a:) —TI', (x). Here,
Dy is the diffusion coefficient. The net flux at cell
x is thus simply the difference of the amount of sand
reaching the cell diffusively from the previous cell at
z—1, T (x) = —DoZ(z — 1), and the amount of sand
leaving that cell diffusively to the next cell at = + 1,
I'y(x) = —DoZ(x). This rule is just a discretized
version of the classical diffusive term Dod?h/dx? (i.e.
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FIG. 1: Diagram explaining the one-dimensional diffusive
sandpile automaton rules. Unlike the classical (non-diffusive)
sandpile, a diffusive flux is incorporated to each cell now (see
in the text for more details).

h(z) = h(x) + Do [M(x + 1) — 2h(z) + h(z — 1)]).

Finally, the sandpile has a closed boundary at =z = 1
(no particles enter that cell from the left), and an open
boundary condition at @ = L (particles reaching that cell
are removed). The condition Ny > PyL—DyZ, has to be
fulfilled in order to avoid the sandpile become overdriven.
Here, Z, = Z. — Ny /2 is the average value'® of the slope
at the bottom edge cell, x = L.

Under a steady external drive (throughout this paper,
Py € [107%* —1073] has been used), the diffusive sandpile
eventually reaches a steady state in which the incoming
sand will balance (on average) the edge outflux. The
diffusive sandpile domain will be split into two regions
connected at the intermediate cell 2y = Do(Z. — N¢)/Fp.
In the region to the left of x; the slope is well below —Z..
Therefore, transport will be entirely carried out through
the diffusive channel. In the region to the right of xy,
transport will be driven by both diffusive and avalanche
channels. The value of x; is estimated by locating the
outermost position at which the integrated source (Pyx;)
can still be entirely removed by diffusion while keeping
the gradient below the minimum value accessed during
avalanche activity in the SOC steady state (i.e., Z(x;:) <
Z. — Ny). The analytical values provided for both Z,
and x; agree well with those obtained from simulations.

III. ADVANCING TRACERS IN THE
DIFFUSIVE SANDPILE

In this work all marked sand grains will be advanced
together with the rest of the sand in the sandpile, but
they are treated differently in the sense that each tracer
is transparent, not being taken into account when a cell is
checked for instability or when updating the local sand-
pile height.

Since the diffusive sandpile dynamics are formulated
in such a way that individual grains are not evolved sep-
arately, the trajectory of a single tracer particle can in
principle be defined in various ways (that depend on the
kind of underlying dynamics we are interested in), with
the only restriction of them being compatible with the
sandpile governing rules. Here, we have examined one
approach that assumes that only those particles that are
within the active surface strip of depth Ny at each cell
(see dark grey regions in Fig. 2(b)) can move to the next
cell as a result of an avalanche or diffusion. That is, if an
avalanche happens and Ny grains must be moved to the
next cell, they will necessarily be the ones closer to the
surface of the cell. This situation is closer to what takes
place in a real sandpile, where only the grains closer to
the surface are transported down the slope, whilst those
which are more deeply buried stay at rest for very long
times. However, it is interesting to note that other set of
rules might be more appropriate for other systems. One
could, for instance, assume that any tracked particle at
a particular cell (see dark grey regions in Fig. 2(a)) can
move to the next cell as a result of an avalanche or of
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(a) TypeAtracers (b) Type B tracers

FIG. 2: Sketch showing the active tracer regions of the two
formulations discussed in text. In (a), particles can be any-
where in the cell. In (b), particles are confined in the top
Ny positions in the cell. The dark grey regions represent the
possible locations of tracked particles for both cases.

diffusive transport, independently of its relative depth
within that cell. That is, if an avalanche happens and
Ny grains must be moved to the next cell, the grains
that are moved will be chosen from within those inside
the cell with equal probability. We will not examine this
case in this paper, though.

Trajectories for Tracked Particles

We proceed next to define exactly how tracers will be
advanced in this work. Each of the marked grains will be
labeled using the superindex m, and will be positioned
at some initial time, ¢7*, at an arbitrary cell, z§*, chosen
randomly from within a small subset of prescribed cells
close to the top of the pile. Within that cell, their depth,
as measured from the top, will be set to di* = ulNy, where
u is a random number uniformly distributed in [0, 1]. As
the sandpile evolves, the position, ™, and depth, d™
of each marked grain of sand will change once the drive
has been completed and stability for each cell checked.
The position of each marked grain at the k-th iteration
is again updated in two steps. Secondly, and just after
the computation of the diffusive term, its action on the
tracers is considered. The specific rules that govern this
process are thus as follows:

I) Avalanche transport channel'®!9:

(1) If the current cell is stable (Z > —Z.) and no
grains of sand have been added during the driv-
ing phase, the tracer remains at the same cell,
x™(k) = z™(k —1),
and its depth remains unchanged,

d™(k) =d™m(k —1).

(2) If the current cell is stable but one grain of sand
has been dropped on it in the driving phase, the
tracer remains in the same cell,
and its depth is increased by one,
dm(k)=d™(k—-1)+ 1.

(3) If the current cell is stable, but the previous
one is unstable and moves Ny grains over the
current cell, the tracer remains in the same cell,
™ (k) =x™(k —1),
and its depth is increased by Ny,
d™(k) =d™(k—1)+ Ny.

(4) If the current cell is stable, the previous one
is unstable and, in the driving phase, one grain
has fallen on the current cell, the tracer remains
in the same cell,
™ (k) =x™(k —1),
and its depth is increased by Ny + 1,
d™(k)=d™(k—1)+ Ny +1.

(5) If the current cell is unstable (then Ny grains
are moved to the following cell) and no grains
have been dropped in the driving phase, then,

i. if the depth of the tracer is less or equal
than N¢, d™(k—1) < Ny, the tracer moves
to the following cell,
a™(k) =a™(k—1)+1,
and its depth is initialized with a random
value uniformly distributed in [0, N¢],
dm(k) = uNf.

ii. if the depth of the tracer is greater than Ny,
d™(k —1) > Ny, the tracer remains in the
same cell,
™ (k) = 2™k — 1),
and its depth is decreased by Ny,

d"(k) =d™(k—1) — Ny.
(6) If the current cell is unstable (then Ny grains
are moved to the following cell) and one grain
has been dropped in the driving phase, then,

i. if the depth of the tracer is less or equal
than Ny —1, d™(k—1) < Ny —1, the tracer
moves to the following cell,
a™(k)=am(k—-1)+1,
and its depth is initialized with a random
value uniformly distributed in [0, Ny¢],
d"(k) = ulNy.

ii. if the depth of the tracer is greater than
Ny —1, d™(k —1) > Ny — 1, the tracer
remains in the same cell,
x™(k) =a™m(k —1),
and its depth is decreased by Ny — 1,
d™(k)=d™(k—1)— (N;—1).

II) Diffusive transport channel:

(1) If the net diffusive flux in the current cell
is negative and larger than the tracer depth,



Dod?h/dx? < —d™(k — 1) < 0, then the tracer
moves to the following cell,
x™(k) =ax™(k—1)+1,
and its depth is initialized with a ran-
dom value uniformly distributed in the range
[0, —Dod?*h/dx?],
d™(k) = —uDod?*h/dz?.

(2) In any other case the tracer remains in the same
cell,
™ (k) = a™(k — 1),
and its depth is updated just by adding the cor-
responding amount of diffusive flux (which can

be a positive or negative amount),
d™(k) = d™(k — 1) + Dod?*h/dz>.

That is, only those tracers that are at a depth smaller
than Ny from the surface will be moved to the next cell
by a passing avalanche. The depth of the tracer at its new
location will be randomly chosen in the interval between
zero and Ny. The same idea is implemented in the case
of the diffusive contribution, but with the relevant depth
being now —Dgd?h/dz?.

IV. CHARACTERIZATION OF TRACER
TRANSPORT IN THE DIFFUSIVE SANDPILE

In this section, we analyze the main properties of tracer
transport in the diffusive sandpile. To better understand
the analysis it is worth reminding here that the sandpile is
naturally split into an “interesting” part where avalanche
and diffusive transport coexist, that comprises all cells
for x > z;, and a “boring” part that includes all cells
x < x; where only the diffusive channel is active. Here,
xy = Do(Z. — Ny)/ Py, as we mentioned previously.

A. Global confinement time

From the global point of view, the confinement time
of the sand in the sandpile is defined in Eq. (1a) as the
ratio of the total mass or amount of sand confined in the
sandpile in a steady state, M = fOL h(z)dz, to the total
external power, S = PyL. Therefore, once the analytical
profiles in steady state and sources are known, the global
confinement time can be easily obtained.

M fOL h(z)dx
S  PL

7_globanl —

(1a)

The global confinement time is a function of the pa-
rameters that define the sandpile: L,Z., N¢, Py and
Dy. The analytical stationary profiles have been found
elsewhere!®16 both for the case when z; < L,

P()SCZ Z2D0
h(z) = — Z L — =2 1<x< L, (2
(Jf) 2DO + a 2P0 ) _$_$t< ) ( a‘)

hz)=2Z,(L—x), xy <ax <L, (2b)
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FIG. 3: Tracer confinement times as a function of Dq for
different sandpile lengths. Full lines and filled circles show
the analytic values and the numerical estimations for 78'°P8!,
The parameters used for all sandpile simulations are: Z. = 26,
Ny =12 and Py = 1075,

and also when z; > L,

B

h(z) = ~3D,

(m2—L2), 1<z <L (3)

Using Eq.(1a), the corresponding global confinement
times are,

global __ ZaL D(%ZS

_ _ < 4

I oP, 6R3L’ 1= (42)
Tglobal _ L2 > L (4b)
1T - 3D07 t — .

The resulting formulas agree very well with the numerical
estimations obtained directly with the diffusive sandpile
(see Fig. 3).

B. Tracer particle confinement time

From the particle point of view, however, the confine-
ment time is defined by Eq. (5a) as the average time
needed by the tracer to traverse the sandpile (7%,), that
is also called its transit time.

Ttraccr — <Ttr> . (53)

However, the fact that the width of the active strip is
always Ny at any cell, as mentioned previously, forces us
to initialize tracers at various cells in order to have mean-
ingful statistics. As a result, the distance each tracer
needs to travel to traverse the sandpile might be quite
different. We have attempted to make later comparisons
among different initializations more meaningful by intro-
ducing a normalized tracer confinement time:

7—_t1’acer — L-1 tracer (6)
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FIG. 4: (Color online) Normalized tracer confinement times
as a function of Dy for different sandpile lengths and initial-
izations: red (L = 10000), green (L = 3000), blue (L = 1000)
and cyan (L = 300). Hollow symbols stand for initializations
of the type I, whilst filled symbols stand for initializations of
the type II (see in the text). The parameters in common for
all simulations were: Z. = 200, Ny = 30 and P = 1074,

where L is the number of cells of the sandpile and (z¢)
is the average initial position. Since tracer initializa-
tions are made randomly with an uniformly distribu-
tion in the range [zT", z2X] it follows that (v¢) =
(xanin +xglax) /2

Fig. 4 shows the normalized confinement times ob-
tained from many simulations as a function of the diffu-
sivity parameter, Dy. Two different types of initialization
have been performed in these simulations. Type I initial-
izations are characterized for having (xo) = L/20, while
type IT have (zo) = L/2. In other words, for type I, parti-
cles are initialized within the upper 10% of the cells, and
for type II, particles are initialized within the full range
of the sandpile, [1, L]. The normalized confinement time
obtained in each case (represented, respectively, by open
and closed circles in Fig. 4) is similar, but not identical.

The first thing to note in Fig. 4 is that, for diffusivities
Dy < 107% the confinement time is roughly independent
of the diffusivity, but scales with the sandpile size. In
particular, it can be seen that 781" ~ L%4 in this region
which is consistent with the expected value for the non-
diffusive sandpile'®, that has been previously found to
follow the scaling law 751 ~ 0.34L%4N ¢/Po. Transport
in this regime exhibits all the classical SOC characteris-
tics: avalanches, self-similarity, memory, and so on, that
seem completely unaffected by the presence of finite dif-
fusion.

An abrupt change in scaling is however observed at
around Dy ~ 1076, for the parameters used. The con-
finement time is suddenly reduced and becomes now com-
pletely independent of both diffusivity and system size.
Such a dynamical transition of the diffusive sandpile has

been known for quite some time'*, and seems to be con-
trolled by the parameter k = DONJ% /Py, a combination
of the drive, diffusion and overturning size. The physical
meaning of xk has been related to the average roughness
of the sandpile profile, that can be quantified in terms of
the variance of the height profile?®. In our simulations,
the change in behaviour takes place at k. ~ 22—24, being
completely consistent with the critical value (k. = 23) re-
ported in previous studies'*16. Tt is also worth mention-
ing that the transition takes place even when the fraction
of transport diffusively driven out of the sandpile, DyZ,,
is still much lower than the integrated source, PyL.

Transport becomes markedly different above the tran-
sition (i.e., for Dy > D' := D(k.) = HCP()/NJ%), being
dominated by large quasi-periodic events that have an
extent that covers almost completely the “interesting”
part of the sandpile. That is, the region z > x;. The fre-
quency of these large events, F,, can be estimated from
balancing the integrated source, PyL, and the flux leav-
ing the last cell'S:

PoL = DyZ, +2(L — ;) N¢ P,. (7)

The first and second terms in the r.h.s. of Eq. (7) rep-
resent the contributions of the two transport channels:
the diffusive one and the one related to the large, quasi-
periodic events. Inserting the analytical expressions for
Zg and x;, it is found that:

_ P (1-(Do/PyL)(Zc. — Ny/2)
"= 2Nf< T~ (Do/BoL)(Ze — ) ) ®)

that matches very well with the frequency observed in
the simulations. In fact, it should be noted that, for
Z. > Ny, P, = Py/2Ny, which becomes indepen-
dent of the diffusivity Dy. The average confinement
time in this regime seems to be well approximated by
FRicr  1/2P, ~ Ny /Py, a simple reflection of the time
that tracers will leave the sandpile after a time equal to
the lapse from the moment they are added to the sandpile
and the next quasi-periodic event.

It is also observed in Fig. 4 that the confinement
time starts to increase at the end of the quasi-periodic
avalanche region (region IT), before decreasing again. The
values of Dy at which both the first increase and late de-
crease take place both increase with the system size. The
explanation for this behaviour is simple. It has to do with
the scaling of the transition point, z; = Do(Z. —Ny)/ P,
whose value increases with diffusivity. Since we are al-
ways initializing the tracers at the same locations, inde-
pendently of Dy, it happens that, for sufficiently large
Dy, a large number of tracers initially fall within the
“boring” interior regions, where only the diffusive chan-
nel is active. As a result, it takes longer of these particles
to reach the “interesting” region that is dominated by the
quasi-periodic events. The longer, the larger the sandpile
is. Since the confinement time is the sum of the time
needed by the tracer to transverse the “boring” or diffu-

sive region, 75"°" plus the time needed to traverse the
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interesting” region, 7 = Ny /Py, the average time

needed to exit the sandpile via quasi-periodic events be-
comes:

—tracer

N
7 — ?;racer + f_tracer — 7—_(3racer + f_ (9)

qp PO

The last scaling region seen in Fig. 4 (region III) cor-
responds to the fully diffusive region. That is, when Dy
is sufficiently large so that x; > L. Clearly, the value of
the diffusivity needed scales linearly with L since it must
satisfy:

DIII Py L
L~ (Z.—N;)— D= _~0% 10
P ( 7) O =N, (10)

For Dy > D!, transport is completely diffusive. In this
region, the confinement time scales: 1) linearly with L,

and 2) as D, 2/3 which is different from the expected
Dy! for pure diffusive processes. The reason stems from
the treatment of tracer particles we chose: only parti-
cles located in the active region of each sandpile’s cell
are affected by transport mechanisms such as avalanches
and/or diffusion, whilst the rest of “regular” particles re-
main at rest (the pure diffusive scaling would have been
recovered if tracked particles were chosen from within
the full cell population in the way previously discussed).
The discontinuity observed at the beginning of this re-
gion comes from the “sudden” disappearance of the “in-
teresting” region, that results in the N¢/Py term being
dropped from 7%2<* in Eq. (9).

C. Probability distribution function of jump-sizes

In order to estimate the probability density function
of the sizes of the jumps carried out by the tracer parti-
cles, we have considered that a jump starts whenever the
tracer changes its position after having been at rest in
the preceding iteration. The jump ends when the tracer
remains at rest after having been moving in the previous
iterations. That is, after the avalanche that carries it has
passed. The size of the jump is given by the total number
of cells traversed during the avalanche. Fig. 5 shows the
jump-size pdfs obtained for simulations with low values
of Dy (region I in Fig. 4) and type I initializations (i.e.,
in the first 10% of the sandpile cells). These results are
in complete agreement with those obtained for the classi-
cal running sandpile (Dy = 0), that are characterized by
self-similar, critical dynamics?® (since the tail of the pdfs
decay with exponents p(s) ~ s~ 0+ with 0 < o < 1),
that are only limited by the maximum jump size imposed
by the finite extension of the sandpile.

Beyond the transition (i.e., for D§l < Dy < D{), the
transport dynamics becomes dominated by near system-
size, quasi-periodic avalanches involving large amounts
of sand that are carried out of the sandpile. Fig. 6(a)
shows the pdfs of the jump-sizes obtained for the tracked
particles in simulations with values of D within region I1
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FIG. 5: (Color online) Pdfs for the jump-sizes of the tracked
particles as they move across a diffusive sandpile. All values
shown for Dy are within region I in Fig. 4. Other parameters
used are: L = 10000, Z. = 200, N; = 30 and P, = 107%.
Power-law fits over the range of interest are also included.

of Fig. 4. Here, parameters are such that z; ranges from
19 to 7140, covering in a homogeneous way the different
possibilities for the value of the transition point. For trac-
ers initialized within the “interesting” region, the shape
of the pdf is essentially exponential up to jump-sizes of
the order of L — z§'®*. Then, the pdf becomes flattish
(see Fig. 6(b)), ending with a peak at jump size L — xy
(see Fig. 7), and vanishing for larger values. Clearly, all
previous traces of self-similarity are now gone.

The explanation for this shape is relatively simple.
First, one needs to remember that for cells x < z; the
dynamics is diffusive, whilst for > x; the dynamics are
governed by large periodic events that empty the active
layer in the interval [z, L]. Any tracer particle initially
located at xy > z; will execute a single jump of length
L—x as it is carried out of the system by a quasi-periodic
event. As a result, the distribution of jump sizes will be
flat between L — z§*®* and L — x; (i.e., the minimum
and maximum allowable values for any jump starting at
any g > x;). The peak at jump-size L — z; is due to
the tracer particles that have been initialized instead at
xg < x¢. These particles must first travel diffusively to
x¢, and then execute a single jump of size L — x; when
they are eventually transported out of the system by a
quasi-periodic event. Clearly, jumps larger than L — z
are not seen, since quasi-periodic events evacuate the ac-
tive region too fast for them to become possible. Finally,
the exponential distribution observed for jump-sizes up
to L — z'®* correspond to the smaller-size avalanches
that take place in between periodic events. Their expo-
nential distribution of sizes implies that these avalanches
are triggered randomly, a consequence of the continu-
ous smoothing of the profiles carried out by diffusion in
between quasi-periodic events, as has been pointed out
elsewhere!'?.
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FIG. 6: (Color online) {a) Pdfs for the jump-sizes of the
tracked particles as they move across a diffusive sandpile. The
dashed region in {a) has been enlarged in (b) to better appre-
ciate the domains 2, 3 and 4 discussed in the text. All values
shown for [y are within region IT in Fig. 4. The rest of the
parameters used are the same as in Fig. 5.
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FIG. 7: Position of the last peak in the jump-size pdf (see
Fig. 6(b)) as a function of the diffusivity [3;. The dashed
line shows the location of L @, as computed using x: =
DD{-ze N.f}f'rFD

The exponential behaviour of the jump-size pdfs for
sizos below L — ™ is well modelled by exponential
functions of the type P(Ax) = Aexp(—Ax/r.). Here,
T, gives a characteristic scale length for the avalanches
that are triggered in between quasi-periodic events. Fig.
8 shows that this length follows an scaling of the type
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FIG. 8: Characteristic scale length of the tracer jump-size
pdfs for sizes less than L zp - as a function of the diffusivity
parameter [.

ze ~ Dy'. Finally, for Dy > DI, both avalanches and
quasi-periodic relaxations disappear completely (indeed,
since 73 > L!) and transport of tracers is purely diffusive
across the whole sandpile.

D. Probability distribution function of
waiting-times

We proceed now to describe the pdfs that we have
obtained for the waiting-times between successive dis-
placements of the tracers. It will be considered that a
tracer initiates a walting-time when it remains at rest
having been moved (to its current cell) in the preceding
iteration. The waiting-time ends when the tracer moves
again to the next cell. Fig. 9 shows the waiting-time
pdfs obtained for a selection of the simulations done for
Dy < DY (i.e., inside of region I in Fig. 4) and type I
initializations, using the same parameters as in the pre-
vious section. All the pdfs display extended power-laws
with a tail decay roughly given by p(w) ~ w—!-®, which
are very reminiscent of the pdfs that are obtamed for the
classical running sandpile (1.e., with Dy = 0). This be-
haviour is thus indicative of the presence, for D < DY, of
the same kind of self-similar, SOC dynamics that domi-
nates the system in the absence of diffusion. The value of
the exponent is also consistent with critical dynamics®!,
since it is required that p(w) ~ w= 45 with g € (0,1).
It iz worth noting that, in contrast to the jump-size pdfs
(see Fig. 5), where the maxdimum size is limited by the
length of the sandpile L, there is no limitation here for
the waiting-times. That is the reason for not seeing any
exponential cutoffs in waiting-time pdfs.

When the transition to quasi-periodic dynamics takes
place (ie., for DI < Dy < DIM), the waiting-time pdfs
no longer exhibit power-law tails, as can be seen in Fig.
10. Instead, there is a well-defined peak at roughly w, ~
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FIG. 9: (Color online) Pdfs for waiting-times of sand particles
moving across a diffusive sandpile. All values for Dy are in the
range covered by region I in Fig. 4. The rest of the parameters
in common were the same as in Fig. 5. Power-law fits over
the range of interest are also included.
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FIG. 10: (Color online) Waiting-time pdfs of sand particles
moving across a diffusive sandpile. All values for Dy are in
the range covered by region II in Fig. 4. The rest of the
parameters in common were the same as in Fig. 5.

2.9 x 10° that, when fitted to a Gaussian centered at that
value, yields a width of about o ~ 5.7 x 10%. It turns out
that the location of the peak of the waiting-time pdf is
very close to the value P! /2 ~ Ny /Py (equal to 3 x 10°
for the parameters used in the simulations), half of the
inverse frequency of the quasi-periodic relaxations. This
was to be expected since tracers are transported out of
the sandpile whenever one of these events take place, and
since they can be added to the system at any time, the
average time they have to wait for the next relaxation to
take place is half a period.

An interesting new behaviour is observed as Dy ap-

proaches the values that, even if still below D!, cor-

respond to the points in which the confinement time
was seen to ramp up in Fig. 4. It is then observed
(see Fig.10) that their waiting-time pdf becomes broader
and peaks at increasingly (with Dg) later times than
Pq_1 /2. The reason must be sought in the tracer ini-
tialization used that, for all these runs, takes place at
values of zg € [1,z§*] = [1,1000] < =, as discussed
previously (for Dy = 210 x 107° = x; = 3570 and for
Dy = 420 x 107% = z; = 7140). Since the initial lo-
cations of these tracers lie in the “boring” diffusive part
of the sandpile, it takes a significant amount of time for
them to approach (via diffusion) the x > x; region that
is affected by the quasi-periodic events. Their waiting-
times are also more widely distributed (see magenta and
orange curves in Fig. 10), due to the different distance
from z; of each tracer, as well as their varying depth
within their cells.

V. EFFECTIVE TRANSPORT MODELS

In a recent work!'®, we showed that the fractional trans-
port equation given by,

on

ot °
provides a very good effective model for transport across
the active region of the standard (i.e., non-diffusive) run-
ning sandpile in its steady state. Here, ¢ D; is a Rieman-
Liouville fractional derivative'” of order 0 < s < 1 and
start-point at ¢ = 0, whilst %! /9|x|*1 is the fully asym-
metrical, left-sided Riesz-Feller fractional derivative!”-22
of order 0 < a < 1. S(z,t) is an external source of
particles. The two fractional derivatives that appear in
Eq. (11) are integro-differential operators that introduce
the importance of non-locality and past-history that are
characteristic of self-similar dynamics such as SOC into
the transport description.

There are different ways to determine the values of the
two transport exponents, o and 3 that better capture the
transport dynamics'®2325, Probably, the optimal way is
to estimate them by constructing numerically the propa-
gator of Eq. (11). That is, the probability G(z, t|2’,t’) of
finding a particle at location = at time ¢ if it was previ-
ously at 2’ at time t’. Tracers can be easily used for this
task simply by considering the temporal evolution of an
initially localised population of them. Or the temporal
evolution of the distribution of population of tracers that
may not be initially localized, but to whose position one
subtracts their initial location. Once the propagator is
available, one can estimate the values of the exponent «
from its asymptotic behavior at fixed time,

G(x, te|zo,0) ~ (z — x0)~AFY), (12)
for x — g > D;/gt’f/a, and the exponent $ from its
asymptotic behaviours at fixed position,

- 0%tn
D}P {Da,ﬁm} + S(z, 1), (11)

G(we, tlwo,0) ~ 17, for t < DY/0x2/?,  (13)



and
G(we, tlwo,0) ~t7, for t > DY/ fx/P. (14)

In what follows we will used this technique to estimate
«a and S for the diffusive running sandpile for values
of Dy below the transition, being that the only case in
which a representation such as Eq. (11) makes any sense.
Fig. 11 shows an snapshot (at some fixed time t.) of the
propagators for two different values of Dy < D!, together
with the standard case D = 0.

The snapshots have been displaced vertically on pur-
pose for the sake of clarity. It can be appreciated that
all of them scale as G(z,t|wg,0) ~ (x — z0) 18, yield-
ing a value of a ~ 0.8. The same behaviour is found for
all diffusivities below the transition (i.e., for Dy < D).
Analogously, Fig. 12 shows the asymptotic growth and
later decay of the propagator at a fixed location, z., for
the same cases. As can be appreciated, we find a growth
that scales approximately as t°-° followed by a decay scal-
ing as ~ ¢t %% thus yielding a value of 8 ~ 0.5 for all
diffusivities below the transition value.

It is interesting to note that the values of the frac-
tional exponents provided by the propagator analysis,
a ~ 0.8 and B ~ 0.5 are very close to those that respec-
tively describe the decay of the jump-size and waiting-
time pdfs of the tracers, as we discussed in previous sec-
tions. This is not a mere coincidence, but completely
expected since Eq. (11) can in fact be derived!® as the
asymptotic limit of a fully asymmetric continuous-time
random walk?® defined by a jump-size distribution decay-
ing as p(s) ~ s~ with 0 < a < 1, and waiting-time
distribution p(w) ~ w~+#) | with 0 < 8 < 1.

It is however not possible to build an effective model
such as Eq. (11) for D' < Dy < D{!, though. The rea-
son must be sought in the complete absence of self-similar
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FIG. 11: (Color online) Snapshots of the propagator at some
fixed time for three values of the diffusivity below the transi-
tion value. The rest of the parameters used were the same as
those in the runs shown in Fig. 5.
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FIG. 12: (Color online) Growth and later decay of the propa-
gator at some fixed location for three values of the diffusivity
below the transition value. The rest of the parameters used
were the same as those in the runs shown in Fig. 5.

dynamics, with transport being completely dominated by
quasi-periodic relaxations with a well defined length scale
(roughly, L — x;) and time scale (given by P, '/2). For
Dy > D}_)H, the effective transport model is, naturally,
the usual classical diffusion equation.

VI. CONCLUSIONS

In this work, we have characterized, by means of a sub-
set of marked grains of sand whose individual trajectories
are recorded and analyzed, the three different dynamical
transport regimes that take place in the diffusive sandpile
as the relative intensity of the diffusive transport chan-
nel, with respect to the avalanche-like transport channel,
is increased from zero. If all other parameters that define
the sandpile are kept fixed, the access to each of the three
regimes only depends on the specific value of the diffu-
sivity Do. If Dy < D' ~ k.Po/N} (with k, ~ 22 — 23),
the dynamics are very reminiscent of the SOC dynamics
that govern the sandpile in the absence of diffusion.

In fact, we have shown that an effective transport
model similar to the one recently proposed for the non-
diffusive sandpile is also valid here. For values of the
diffusivity Df < Do < D{ ~ PyL/(Z. — Ny), transport
across the sandpile becomes dominated by quasi-periodic
events, and all trace of self-similarity is lost. This change
of dynamics is perfectly captured by the analysis of the
tracer particle trajectories. As a result, effective trans-
port models in terms of fractional derivatives are no
longer possible, since transport is now endowed with per-
fectly defined temporal and spatial scales. Namely, the
period between events, P~ ! and their extension, roughly
given by the size of the avalanche region, L — z;. Finally,
for Dy > D! the transport dynamics of the sandpile



become diffusive in the traditional sense, being perfectly
described by the usual diffusive equation.
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