
This is a postprint version of the following published document:

Quevedo-Teruel, O., Valerio, G., Sipus, Z., & Rajo-
Iglesias, E. (2020). Periodic Structures With Higher 
Symmetries: Their Applications in Electromagnetic 
Devices. In IEEE Microwave Magazine, 21(11), 36–49 

DOI: 10.1109/mmm.2020.3014987

 ©2020 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

https://doi.org/10.1109/mmm.2020.3014987


IEEE MICROWAVE MAGAZINE, VOL. XX, NO. X, MONTH 2019 1

Higher symmetries for electromagnetic devices
O. Quevedo-Teruel, Senior Member, IEEE, G. Valerio, Senior Member, IEEE, Z. Sipus, Senior Member, IEEE,

and E. Rajo-Iglesias, Senior Member, IEEE,

H IGHER SYMMETRIES have frequently amazed human beings because of the illusions and incredible landscapes that

they can produce. For example, we can think in the unearthly pictures of the Dutch graphic artist Maurits Cornelis

Escher. He made use of glide symmetry to produce unbelievable transitions and transformations of objects and beings inspired

in glide reflections, as illustrated in Fig. 1 (a). However, the history of higher symmetries started much earlier in time. M. C.

Escher got part of his inspiration in the Moorish tessellations in the Alhambra of Granada, Spain, as the ones illustrated in

Fig. 1 (b). Higher symmetries cannot only be employed to create artistic creations, but also to enhance the performance of

electromagnetic devices. Here, we will explain the importance of the recently discovered electromagnetic properties of higher

symmetries, as well as their implications and opportunities for microwave and antenna engineers.

I. HIGHER SYMMETRIES IN THE ELECTROMAGNETIC HISTORY: BACK TO THE 60S

When narrowing our scope to Physics, higher symmetries were very popular in the 60s. For example, George L. Trigg

wrote in 1965 that "in the last few months, scarcely an issue of Physical Review Letters has failed to contain at least one

paper on the topic" [1], demonstrating the volume of studies in this topic. If we are more specific, and we focus our attention

to electromagnetic engineering, the first studies on higher symmetries arrived in the middle of the 60s [2], [3], and they

were popular for one decade, until the middle of the 70s [4], [5]. However, in the 70s, the electromagnetic engineering

community was not ready to further develop scientific studies on higher symmetries and to understand their full potential.

First of all, computers were very basic and there was no commercial software that could be used to simulate these complex

structures. Second, the understanding of periodic structures achieved its maturity in the 2000s with the arrival of the concept

of metamaterials. Finally, at the end of the 70s and beginning of the 80s, the electromagnetic engineers focused their attention

in making wireless systems affordable for everybody, so printed and planar technology was the selected solution for low-cost

communications at low frequencies.

It was in the second decade of the 21st century, when powerful computers became easily accessible, commercial software

of simulation is commonly available, and periodic structures are broadly understood thanks to the studies on metamaterials,

when the opportunity for higher symmetries has arrived. This opportunity came when the industry demanded electromagnetic

systems operating at higher frequencies. At these frequency ranges, there is a need for low-loss structures that can only be

achieved with fully-metallic devices and integrated systems such antennas and circuits.

In this situation, antennas based on leaky waves and lenses are gaining adepts for communications designs in the new bands

of 5G and satellite communications [6]. Although the design of these antennas is more complicated than arrays, they present a

This work has been partly funded by the Spanish Government through project TEC2016-79700-C2-2-R and by the French governement under the ANR
grant HOLeYMETA ANR JCJC 2016 ANR-16-CE24-0030.

O. Quevedo-Teruel is with the Division of Electromagnetic Engineering at KTH Royal Institute of Technology, Stockholm, Sweden (e-mail: oscarqt@kth.se).
G. Valerio is with UR2, Laboratoire d’Électronique and Électromagnétisme, Sorbonne Université, F-75005 Paris, France (e-mail: guido.valerio@sorbonne-

universite.fr).
Z. Sipus is with the Faculty of Electrical Engineering and Computing, University of Zagreb, HR-10000 Zagreb, Croatia (e-mail: zvonimir.sipus@fer.hr).
E. Rajo-Iglesias is with the Department of Signal Theory and Communications, Carlos III University of Madrid, Spain (e-mail: eva@tsc.u3m.es).
Manuscript received February 6, 2022; revised Month XX, 2019.



IEEE MICROWAVE MAGAZINE, VOL. XX, NO. X, MONTH 2019 2

Fig. 1. Glide symmetries in art: a) Explanation of glide reflection at the museum of M. C. Escher in The Hague, The Netherlands. b) Moorish tessellations
in the Alhambra of Granada, Spain. c) Compositions made of translations and glide reflection.

more simple feeding network. On the other hand, filters were traditionally designed as an independent unit that was connected

to the rest of the system. Due to the insertion losses, and the losses in the interconnections, for high-frequency designs, they

must be integrated together with other components. Finally, due to the large losses, future components, such as filters, must

be reduced in length. Therefore, design techniques which are not based on isolated elements, but in coupled elements, are

required to reduce the overall losses.

II. DEFINITION OF HIGHER SYMMETRIES

A periodic unit cell possesses higher symmetries when it is invariant after a translation and a second geometrical variation.

For example, a glide-symmetric unit cell is invariant after a translation and a mirroring [5]. A twist-symmetric unit cell is

invariant after a translation a rotation or angular movement [7].

A. Glide symmetries

In Fig. 1 (c), we represent the creation of a periodic structure trough a glide-reflection. A unit cell, represented in blue, is

filled with with a triangle and a rectangle. One could repeat this unit cell with a simple translation, but also, create a reflected

unit cell that is alternated together with the translation.

When speaking about glide symmetries, we can identify one-dimensional and two-dimensional configurations. In Fig. 2 (a,b),

we represent two examples of one-dimensional glide-symmetric structures: corrugations [8], [9], [10] and transversal slots [11],

[12]. These two structures have glide symmetry with respect to the x direction, however their mirroring planes are different.

In the corrugations, this plane is horizontal, but in the slots, it is vertical. In these cases, the glide operation is x→ x+ p=2,

and either z → −z in the corrugations, or y → −y in the slot, with p as periodicity in both cases.

A new particular case of glide symmetry was recently reported as polar glide symmetry [7], [13]. It refers to the case in

which the mirroring plane is not defined with Cartesian coordinates, but with polar ones. Therefore, the mirroring plane is

orthogonal to a vector in � direction [13], [14].
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Fig. 2. Electromagnetic configurations of higher symmetries: a) Glide-symmetric corrugations. b) Slot with glide-symmetric transversal loads. c) Two
dimensional glide-symmetric holey structure. d) Twist-symmetric holey configuration.

Two dimensional glide-symmetric structures were first studied in [15], and they require the translation in two orthogonal

directions that are opposite to the vector of the mirroring plane. For example, a common glide operation can be (x; y) →

(x+ px=2; y+ py=2) and z → −z [16], [17], with p as periodicity. One example of two-dimensional glide symmetry is shown

in Fig. 2 (c) for conical holes in a metallic parallel plate.

B. Twist symmetries

Twist-symmetric structures are those invariant under a translation in one direction. For example, in Fig. 2 (d) a holey metallic

wire oriented in z direction is illustrated. This direction is the propagation direction. The wire has holes that rotate through z

direction. A periodic structure possess a m-fold twist symmetry, m being an integer, if it is invariant under a p=m translation

along and 2�=m rotation around the twist direction, where p is the periodicity of the structure [13]. The particular case shown

in Fig. 2 (d) is 3-fold. We must note that helices are a particular case of twist symmetry with m = ∞. These helices were

studied in terms of dispersion properties in the 50s [18]. Therefore, twist symmetry is also known as helical symmetry or

screw symmetry [5].

III. SUB-PERIODICITIES IN HIGHER SYMMETRIES

Introducing higher symmetries in periodic structures may drastically change the dispersion properties of those structures,

i.e. how pass-bands and stop-bands are distributed in the frequency domain. The basic property of higher-symmetric periodic

structures is the possibility to close selected band-gaps. This was already discussed by Hessel et al. [5] in the early 70s, with

reference to 1-D structures. Specifically, the presence of a glide symmetry with period p closes the first stop-band at the edge

of a Brillouin zone (� = �=p, � being the phase constant of a Bloch mode), and a m-fold twist symmetry closes the first

m− 1 stop-bands, alternatively at � = �=p and � = 0. The same spectral properties have been more recently observed in 2-D

structures.

For example, in a glide-symmetric structure, the absence of a stop-band at � = �=p can be simply explained if the effect of

the periodic scatterers on the two sides of the glide plane is the same. This means that these scatterers can be moved on the

same side of the plane, thus transforming the glide structure into an equivalent purely periodic structure with a halved spatial
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Fig. 3. a) Structure with glide-symmetric corrugations along one direction. b) Associated non-glide-symmetric structure with corrugations along one direction.
(c) Brillouin diagram of glide and non-glide structures with h = 1 mm, w = 0.5 mm, p = 3 mm and t = 0.25 mm. d) Brillouin diagram of glide and
non-glide structures with h = 1 mm, w = 0.5 mm, p = 1.5 mm and t = 0.75 mm.

period p=2. One example of one-dimensional glide structure and its associated non-glide are depicted in Figs. 3 (a) and (b).

The Brillouin diagram of this new non-glide periodic structure presents a first stop-band edge at � = �=(p=2) = 2�=p, which

is equivalent to the � = 0 point in the diagram of the glide structure. In other words, the glide structure is equivalent to a

structure with a shorter period, so that its first stop band is found at a higher frequencies.

However, the equivalence between scatterers on the two sides of the glide plane is not necessarily verified in all glide

structures. In order to explain this phenomenon, let us decompose the Bloch mode supported by the glide structure into the

modes of the uniform background structure. These modes are coupled together by the periodic scatterers. In the glide structure

of Fig. 3 (a) these scatterers are placed alternatively on the two sides of the glide plane, while in the periodic structure of

Figs. 3 (b) they are all on the same side.

On one hand, if in both structures the scatterers are weakly interacting among each other, only one dominant mode is relevant

in the coupling between adjacent scatterers. This happens if each scatterer mainly excites only one dominant background mode,

or if all the background modes excited by one scatterer are strongly attenuated when they reach the adjacent ones. In this

case, the mutual position of two adjacent scatterers does not impact the coupling, which is the same whether both scatterers

lie on the same side of the glide plane or on opposite sides of it. The glide structure is then reducible to the non-glide periodic

structure with halved spatial period [19]. An example of reducible glide structure can be seen in Fig. 3 (c), where the glide

line and the non-glide line have the same dispersion diagram, if their phase constants are normalized with respect to the same

distance p (the period of the glide line). On the other hand, if at least in one of the two structures of Figs. 3 (a) and (b) the

scatterers are strongly interacting among them, several background modes will be relevant for their coupling [20]. These modes
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will have in general different parity with respect to the glide plane; the odd and the even modes will experience a different

scattering according to the position of the scatterer with respect to the glide plane. This richer modal coupling in strongly

coupled structures makes the glide-symmetric one irreducible to the non-glide periodic one with reduced spatial period [19].

An example of irreducible glide structure can be seen in Fig. 3 (d), where the glide line and the non-glide line have different

dispersion diagrams. The same phenomena can be found in twisted structures, where the scatterers lie along a spiral, rather

than on different sides of a plane [21]. This will be explained in detail in Section VIII.

IV. CIRCUIT MODELS TO ANALYZE GLIDE-SYMMETRIC STRUCTURES

Due to the recent interest in higher-symmetric structures, simplified models for the simple design of these structures are not

yet available. The need for specific models of higher symmetric structures is due to the difficult application of many full-wave

numerical methods to this class of structures. Interesting dispersive behaviors, such as wideband response and strong band-gap

rejection, require extreme values of geometrical parameters (e.g., very close glide surfaces in order to enhance their mutual

interaction). In these cases, numerical methods encounter difficulties: for example, thin gaps between surfaces require a very

dense localized meshing in finite-element and finite-difference methods, or cause slow convergence in Green’s functions in the

method of moments. Furthermore, the study of finite structures made by a non-uniform array of thousands of sub-wavelength

cells is a multiscale problem whose solution requires ad-hoc computation techniques.

A. Circuit models

In this framework, the availability of equivalent circuits for the unit cells of higher-symmetric structures of interest would

considerably simplify their preliminary design. Based on the previous analysis, if a higher-symmetric structure is reducible to

a non higher-symmetric periodic structure, a mono-modal equivalent circuit is sufficiently accurate to calculate its dispersion

behavior. Furthermore, the model can be performed only on a sub-unit cell, and the non higher-symmetric structure can be

analyzed instead of the higher-symmetric structure. This was done in [9], where a one-dimensional glide-symmetric corrugated

structure was analyzed by means of an equivalent circuit derived by the T-junction discontinuity [22]. Results of this equivalent

circuit are extremely accurate for all range of parameters used in the current applications. More recently, a circuit model

analysis was proposed to model glide-symmetric loaded microstrip lines [23]. This model accurately explains the coupling

effects between unit cells, and the different interaction between conventional and glide-symmetric unit cells.

B. Multi-mode analysis

When irreducible structures are of interest, a multi-modal equivalent circuit can always be used in order to correctly model

the interactions among the different scatterers [19], [21]. In a one-dimensional higher-symmetric line, the unit cell can then

be modeled as a 2N -port network, where N is the number of background modes retained on each Floquet boundary of the

cell in order to accurately compute the interactions between scatterers. This network can be characterized by means of its

transmission matrix T , whose eigenvalues are related to the wavenumbers of the Bloch modes supported by the structure. If

only two modes are relevant, we get:



IEEE MICROWAVE MAGAZINE,VOL.XX,NO.X, MONTH2019 6

T·












V(1)

V(2)

I(1)

I(2)












=ejkxp












V(1)

V(2)

I(1)

I(2)












(1)

whereV(1)andI(1)arethevoltageandcurrentsassociatedtothefirstmodeononeFloquetboundaryofthecell,V(2)andI(2)

arethevoltageandcurrentsassociatedtothesecondmodeonthesameFloquetboundary,andkx isthe(possiblycomplex)

unknownBlochwavenumber.Itsrealpart,β,isthephaseconstantoftheBlochmodeanditsimaginarypart,αifpresent,is

itsattenuationconstant.

Thisdescriptionintermsoftransmissionmatrixcanalsoleadtoanalternativeapproachtoperformadispersionequation,

bymeansofthemulti-modaltransmissionmatrixofasub-cell.Inthiscase,weneedtotakeintoaccountthataftertranslating

onesub-cell,eachbackgroundmodecomposingtheBlochmodeisnotequivalenttoaphaseshift(asatranslationofonecell

is).Inordertogetaphaseshift,weneedtoperformalsoareflection[19]orrotation[21],accordingtotheglideortwisted

natureofthestructure. Wecancompensateeachbackgroundmodeforthisgeometricaloperationbymultiplyingeachmode

byafactordependingonthemodeparity.Inthecaseofaglideline,ifthefirstmodein(1)isevenwithrespecttotheglide

planeandthesecondmodeisodd,weget:
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wherethetransmission matrixT1/2 isnowreferredonlytoonehalfoftheunitcell(thusrequiringafastercomputation).

Eq.(2)confirmsalsothatthepresenceofonlyonemode(orthepresenceofmodeswiththesameparity)inboth(1)and(2)

makesthestructureequivalenttoanon-glideperiodicline,havingasaunitcellthesub-celloftheglideline.Alltheseresults

canbeeasilygeneralizedtotwo-dimensionalglidestructures[19],wherebackground modescanbedefinedoneachofthe

fourFloquetboundariesoftheunitcell.

V. MODE-MATCHINGTOANALYZEGLIDE-SYMMETRICSTRUCTURES

Anappropriatewayofanalyzingguidingelectromagneticstructureshavinghighersymmetriesistoapplythemodematching

analysisapproach. Modematchingisbasedonrepresentingtheelectricandmagneticfieldsineachsectionofthestructureasa

sumofsuitablemodeswithunknowncomplexamplitudes.Inotherwords,itusesthepre-knowledgeabouttheelectromagnetic

fieldconfigurationandsymmetrypropertiestoreducethenumberofunknowns. Withthistechnique,itpossibletodescribe

preciselytheelectromagneticfieldsinthestructureandtogiveaphysicalinsightaboutthepropertiesofhighersymmetries.
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A.Fully-metallicglide-symmetricstructures

Asanexample,letusconsideraparallel-platewaveguide(PPW)withglide-symmetricholeywalls(Figs.2.aand2.c).The

electromagneticfieldsinthePPWregion(paralleltothewalls)canbeexpressedasaseriesofFloquetharmonicsbyvirtue

ofperiodicity:

EGapt = 1
d2 p,qe

j(kx,px+ky,qy)̃eGapt,pq(z)

HGapt = 1
d2 p,qe

j(kx,px+ky,qy)̃hGapt,pq(z)
(3)

withkx,p=kx,0+2πp/dandky,q=ky,0+2πq/dbyassumingarectangularlatticewithperioddinbothxandydirections.

TheamplitudeofeachFloquetharmonicofthetransverseelectricfieldcanbewrittenas

ẽGapt,pq(z)=





Axpq

Aypq




sin(kz,pqz)+





Bxpq

Bypq




cos(kz,pqz)

h̃Gapt,pq(z)=





Dxpq

Dypq




sin(kz,pqz)+





Fxpq

Fypq




cos(kz,pqz)

(4)

wherekz,pq=(k
2
0−k

2
x,p−k

2
y,q)

1/2istheverticalwavenumberofthe(p,q)thharmonic.Thiselectromagneticdistribution

ismatchedtothezerotangentialE-fieldatthemetallicpartsofthePPWwallsandtothetangentialelectromagneticfield

distributioninthelateralwaveguides

EWGt (z=g
2) = mrmCmΦm(x,y)

HWGt (z=g
2) = mr

+
mYmCm[̂z×Φm(x,y)]

(5)

whereCm istheunknowncoefficientofthem
thmodeandΦm andYm arethecorrespondingcrosssectionmodalfunction

andthewaveadmittance.IntheformulationboththeE-andH-fieldcomponentsshouldbematchedatthelateralwaveguide

openingsbywhichitispossibletodeterminetheunknowncoefficients.Oneshouldnotethattheselectedwaveguidemodes

areorthogonalinPPWandlateralwaveguidesections,buttheyarenotmutuallyorthogonal.Therefore,thebi-Galerkinmethod

isapplied(i.e.waveguidemodesofthePPWandofthelateralwaveguidesareusedtotesttheE-andH-fieldequations),and

themode-matchingmatrixisdenselyfilled.

ThegeneralizedBlochtheorem[5],[16],[17],[24]statesthatthefieldrepeatsitself(apartfromanexponentialfactor)after

atranslationofhalfaperiodandamirroringoperation:

E(x,y,−z)=±ej(kx,0
d
2+ky,0

d
2)E x−

d

2
,y−

d

2
,z (6)

ThefollowingtranslationpropertyoftheFouriertransformationwillgivethephysicalinsightoftheglidesymmetry

1

d2
Φm x−

d

2
,y−

d

2
ej(kx,0

d
2+ky,0

d
2)ej(kx,px+ky,qy)dxdy=Φ̃m(kx,p,ky,q)(−1)

p(−1)q (7)

Inotherwords,dependingontheindexoftheFloquetmode,wehaveevenoroddsymmetryacrossthez=0plane;the
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presenceofglidesymmetrycausesthattheoddandevensymmetriesare mixedinsidethePPWresultinginextraordinary

propertiesoftheguidingstructure.Thiscanbeillustratedifweassumethatthefielddistributioninthelateralwaveguides

isdescribedwithonlyonewaveguide mode.Inthatcase,thelinearsystem(whosedeterminantrepresentsthecharacteristic

equationofthemodetravellingalongtheglidesymmetricperiodicstructure)isreducedtoasingleequation

p+q
even

Φ̃(kx,p,ky,q)̃Φ(−kx,p,−ky,q)
k2

0−k2
y,q

kz,pq
cot(

kz,pqg

2
)

−
p+q
odd

Φ̃(kx,p,ky,q)̃Φ(−kx,p,−ky,q)
k2

0−k2
y,q

kz,pq
tan(

kz,pqg

2
)+jd2r+

r
kWG

z,01=0 (8)

ThepresenceoftheglidesymmetrycausesthatforevenFloquet modeindices(i.e.forp+qevennumber)theE-fieldin

theparallel-plateregionisdescribedwithcos(kz,pqz)terms(i.e.withtermshavingevensymmetryacrossthez=0 plane),

whileforoddFloquetmodeindices,theE-fieldisdescribedwithsin(kz,pqz)terms,i.e.withtermshavingoddsymmetry,see

eq.(4).

Itisinterestingtocomparethischaracteristicequationwiththeonegivenforanopenholeysurface[25].Inthecaseof

opensurfacethereisno mixingofoddandeven modes,sincethereisnosecondholeysurfaceformingthePPW,i.e.only

theoutgoingwavesarepresent,sousuallyitisenoughtoconsideronlyonePPWmode.Thesituationisdifferentwhenatop

groundplaneapproachestothestructure[26],[27]orthestructurepossessesglidesymmetry[16],[17],[24].

B. Dielectricglide-symmetricstructures

Tillnow,mostoftherealizedprototypespossessinghighersymmetryweremadefrommetal.However,inmanyapplications

andspeciallywhengoinghigherinfrequencytowardsoptics,dielectricsarethepreferredbuildingmaterial.Althoughatthe

firstglancetherearealotofsimilaritiesbetweentheanalysisofmetallicanddielectricglide-symmetricstructures,themain

differencecomesfromthefactthatinthedielectriccasepartofthepropagatingwave(andthuspartoftheelectromagnetic

power)travelsoutsidethedielectricwaveguide.Thewavepropagatinginthecorrugatedregioncanbe modeledasawave

propagatingalongaperiodicarrayofdielectricslabs[28],andithastobematchedatbothinterfaceswiththemodespresentin

PPWandinfree-space,respectively[29].Forpropagationconstantssmallerthantheoneoffree-space,afastwaveisexcited

whichleadstoleakageofelectromagneticenergy,i.e.theconsideredstructureactuallyrepresentsaleaky-waveantenna.

VI. GLIDE-SYMMETRYTOCREATESTOP-BANDSANDEBGS(ELECTROMAGNETICBANDGAPS)

Someoftherecentlyproposedstructureswithhighersymmetries,andspecificallythosewithglidesymmetry,havebeen

studiedfortheirabilitytoproducestop-bandsorband-gaps.Periodicstructureshavebeenoftenusedonantennadesignsto

eliminatesurfacewavessuchastheSievenpipermushrooms[30].Theseperiodicstructuresareused,forexample,toreduce

themutualcouplingbetweenantennas[31]ortoproducefilters[32].

Ontheotherhand,anewtechnologyknownasgapwaveguidewasrecentlyproposedforhighfrequencymicrowavecircuits

andantennas[33],[34].Thistechnologyrequiresstop-bandsforparallelplatemodesinsteadofsurfacewaves,i.e.theperiodic

structureisembeddedinaparallel-platestructure. Oneofthe mostpopulartypesofgap waveguidesisthegroovegap
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waveguide technology [35]. This technology is equivalent to a conventional rectangular waveguide in which the solid lateral

walls are replaced by an EBG structure. By using this EBG structure, the manufacturing of the waveguide is made in two

pieces that are assembling together afterwards by simply screwing. Electrical contact between the two pieces is not strictly

required.

A. Analysis of two-dimensional holey glide-symmetric EBGs

One possible solution to create stop-bands between parallel plates is to use periodic holes, as proposed in [36]. However,

the stop-band in all directions (i.e. EBG) created by holey structures is typically narrow, as illustrated in Fig. 4 (a). Even after

a thorough optimization of the constituent parameters of the holes, the stop-band is far from the one produced with pin-type

structures [37].

In [38], it was demonstrated that holey structures with glide symmetry have a larger EBG bandwidth than conventional

periodic holey structures. Indeed, the replacement of the top metal lid for a periodic structure made of holes, as shown in Fig.

4 (a), modifies all the modes propagating in the structure and creates a huge stop-band in between the second and third mode

that can be used, for example, for gap waveguide technology [39], [40], [41], [42].

Fig. 4. (a) Comparison of the dispersion diagram for holey structures with and without glide symmetry. (b) Photo of a manufactured groove gap waveguide
using a glide-symmetric holes [39] and a glide-symmetric flange [43].

A complete parametric study of the glide-symmetric holey structures in terms of stop-band properties was carried out in

[37]. The results on this study can be summarized as follows. First of all, the period of the structure plays a key role in

glide-symmetric holey structures since it determines the frequency range of operation. This implies that this periodic structure

is electrically larger than those made of pins. Secondly, the ratio between the periodicity and the hole radius defines the

bandwidth of the stop-band. There is an optimal ratio, approximately 0.25, that maximizes the bandwidth of the stop-band.

Another relevant conclusion is the fact that the depth of the holes is affecting the behaviour of the structure up to a given

height. This has interesting consequences for the manufacturing of the structure, since the depth of the holes does not need

to be precisely controlled. In other words, after a given height, the bottom of the hole minimally affects the performance of

the EBG. This property can be understood with the mode matching analysis presented in the previous section. Since only
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evanescent modes penetrate into the hole, these modes are vanished after a given depth, making this structure practically

insensitive to the flatness and height of the hole.

Finally, similarly to other periodic structures such as pin-type, when the gap size is decreased, the stop-band increases,

mainly due to the reduction in the cut-off frequency of the first mode.

B. Holey glide-symmetric structures for gap waveguide Technology

One popular application of EBGs is in a parallel plate scenario for its potential use in gap waveguide technology. A number

of periodic structures, typically pin-type, corrugations and mushroom-type, have been proposed for gap waveguide technology

[44]. This type of waveguide can be also implemented with glide-symmetric holes acting as an EBG [39]. The two main

advantages of this implementation are the simplified manufacturing and robustness. The presence of the glide-symmetric holey

structure stops the leakage produced by the irregularities on the two surfaces, which are not perfectly attached in practice.

With this approach, as is illustrated in the photo of Fig. 4 (b), it is possible to design waveguide components. For example,

phase shifters were presented in [40] and [42]. Another example of a component made with this version of the technology is

a TE10 to TE20 mode converter, which was used in [45] to produce a transversally compact slot array. Glide symmetry has

been also proposed to produce highly-efficient millimetre-wave arrays [46].

Finally, a recent work [41] explored the possibilities of breaking the symmetry of the holes to add filtering capabilities to

gap waveguide technology. Recent implementations of glide symmetry make also use of multi-layer structures to reduce the

manufacturing cost at high frequency [47].

C. Glide symmetry for flanges

Another interest use of glide symmetry as an EBG was proposed in [43]. In this case, holey glide-symmetric holes were

introduced in a waveguide flange to avoid the leakage between connections. This technique can be used to produce fast

measurements at very high frequencies since no physical contact between flanges is required. This idea was previously proposed

with pins instead of holes in [48]. Here again, the solution with holes is remarkably more robust and simple to manufacture

than pin-type. The concept was experimentally validated in the U-band in [43]. The designed flanges in this work are illustrated

in the photo of Fig. 4 (b).

D. Controllable stop-bands on planar technology

Although glide symmetry became popular for its immediate application to gap waveguide technology, its opportunities are

beyond this specific technology. For example, glide symmetry has been applied to multi-layer dielectric planar technology to

reduce the operation frequency of conventional stop-gaps [49].

Glide symmetry has also been applied to transmission lines. For example, it was proposed in CPW (Co-Planar Waveguide)

to independently control the stop-bands of even and odd modes [12]. Similarly, glide symmetry was employed in planar bifilar

technology to control the stop-bands generated by creating or breaking this symmetry [50].

In [23], it was demonstrated that using glide-symmetric mushrooms, the bandwidth of a stop-band in microstrip technology

can be increased without adding any extra cost of manufacturing. Finally, in [51], elliptical holes between two dielectric layers
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were proposed to produce stop-bands by breaking the glide symmetry. In this work, it was demonstrated that the width of

these stop-bands and their attenuation depends on the level of symmetry that is broken.

VII. GLIDE SYMMETRIES TO REDUCE THE DISPERSION

Another important feature of higher symmetries, and in particular of glide symmetry, is that they may be used to reduce

the dispersion of the first propagating mode in a periodic structure. This phenomenology has been used to create broadband

lenses and low-dispersive transmission lines that find application for leaky-wave antennas.

A. One-dimensional glide-symmetric structures

The first studies on the dispersion of glide-symmetric structures were done in one-dimensional periodic structures [5]. When

the coupling between sub-unit cells is strong, the dispersion of the modes propagating in the new periodic structure is reduced.

More recently, these results were corroborated for thin metallic corrugations [8], planar bifilar lines [50] and slotted lines [11],

[12]. One example of slotted lines is represented in Fig. 2 (b). In all these studies, and for all these different technologies, when

glide symmetry was applied, the first and second modes were connected, removing the first stop-band [9]. The elimination

of the first stop band inherently reduces the dispersion of the first mode is reduced, which means that the the bandwidth is

increased. This feature can be used to control the radiation of leaky-wave antennas [52], [12], [53].

Although the majority of the examples of glide symmetry make use of two layers to implement glide symmetry, a new type

of flat glide symmetry was proposed in [51]. In this work, elliptical holes were introduced between two dielectric layers. These

holes modify the propagation characteristics of the parallel plate modes inside each layer, and glide symmetry can be used to

reduce their dispersion.

B. Two-dimensional glide-symmetric structures

Similarly to one-dimensional periodic structures, two-dimensional glide-symmetric structures are less dispersive than the

conventional one. In [15], it has been demonstrated that fully-metallic glide-symmetric structures reduce the dispersion of

the first propagating modes in PPW. Additionally, the first mode is able to produce higher refractive indexes and it is more

isotropic. This technique was employed to produce a broadband Luneburg lens in [54] with holey structures in Ka-band. A

photo of this lens is plotted in Fig. 5 (a), and its radiation patterns at 28 GHz in Fig. 5 (b).

Although the first implementations of two-dimensional glide-symmetric structures were based on holey structures, similar

properties were also found for glide-symmetric pins [55], [56], [57]. Both, pins and holes, can be implemented to produce

anisotropic responses. For example, rectangular holes were studied in [16], and elliptical holes in [24]. In both cases, anisotropy

was achieved without affecting the broadband response of the unit cells. These anisotropic unit cells can be used to compress

the size of lenses with transformation optics [58], which is in asset in practical applications [6].

Another example of two-dimensional glide symmetry can be found in [59]. In this work, the authors demonstrated that

nearby layers of patches that possess glide symmetry are able to produce high equivalent refractive indexes. Similarly to this

work, glide symmetry demonstrated to be a good candidate to produce dense materials which can be used for lens antennas

[60], [61].
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Fig.5. Glide-symmetricLuneburglens[54]:a)Photoofaglide-symmetricLuneburglens.b)RadiationPatternat28GHz.

Otherrecentimplementationsoftwo-dimensionalglide-symmetricstructuresinclude multi-layerglide-symmetric metasur-

faces[62],[63],dielectriclensesasin[64],reconfigurableplanarlensesintheopticalregime[65]andbroadbandslowacoustic

waves[66].

VIII. TWIST-SYMMETRICSTRUCTURES

AsexplainedinSectionII-B,twistsymmetryisalsoahighersymmetry.Similartoglidesymmetries,twist-symmetric

structureshavepropagationpropertieswhichdifferfromcommonperiodicstructures[67].Theycanbealsodescribedwith

analogousmodelstoglidesymmetry.In[5],itwasdemonstratedthatanm-foldtwistlineleadstothesuppressionofthefirst

m−1stop-bandsinitsBrillouindiagram.Asinglide-symmmetricstructures,thiseffectcanbeusedtoreducethefrequency

dispersion.

FollowingthegeneralizedFloquettheorem,m-foldtwist-symmetricstructurescanbecharacterizedbyasub-unitcellof

lengthp/m.Therefore,theycanbeanalyzedwithequivalent-circuitmodelsasinIV-A[14]andwithamulti-modalapproach

similartotheonedescribedinSectionIV-B[21].Thelattermethodrequirestodescribeasub-unitcellasa2N-portnetwork,

whereN isthenumberofbackground modesretainedateachFloquetboundary,anddefineasub-celltransmission matrix

T1/m asin(2).Inglidestructureswedefinedasetofevenandodd modeswithrespecttotheglideplane,andthisparity

wasresponsibletothesignoftherelevantvoltageandcurrentintheright-handsideof(2).Intwiststructures,themodescan

beclassedaccordingtotheirazimuthalvariationonthecircularcrosssectionofthewaveguide(cos(nϕ)andsin(nϕ),fora

nthazimuthalorder.Themodesarethenrotatedanangleπ/mbymeansofarotationmatrixeverytranslationofp/m.The

eigenvalueproblemin(1)canbeformulatedas[21]:




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where the Q matrix rotates the background mode at the sub-unit cell ports:

Q =
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(10)

where we assume that the nth mode is of nth azimuthal order. Here again, the presence of higher-order modes leads to a

different dispersive behavior with respect to a line without a twist operation where the Q matrix would not appear in (9).

A. Symmetries in circular-section coaxial cables

Twist symmetry can be used in coaxial lines to increase their density over a large bandwidth of operation [7], [13]. Two

examples of fully-metallic pin-loaded coaxial cables are illustrated in [7] (see also Fig. 6). These loads are used to increase

the density of the line. Alternatively, the density can be modified with holes tailored in the inner or outer conductor [13]. If

these obstacles are rotated around the axis of periodicity, the structure possesses twist symmetry. Twist symmetry reduces the

dispersion of the propagating modes in these loaded lines [7], [14], [13].

Fig. 6. a) A coaxial cable loaded with a periodic array of pin compared with 1-, 2-, 3-, and 4-fold twist symmetric configurations. b) Dispersion diagrams
of the different coaxial cables as in [67].

The case of the metallic pins is discussed in [7], where the effective density of the medium is shown to be dependent

on the order of the twist symmetry. Holes drilled in the inner conductor of the coaxial cable also lead to the same effect, as

demonstrated experimentally in [13]. In [13], to increase the effect of the holes in the line, they were chosen to have an opening

of � radians. Additionally, by increasing the density of holes per unit length, the density of the line increases. The density
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can be further increased by the use of twist symmetry. In [14], �-radian rings were added to the outer conductor in a twist

configuration, and an extension of the non-dispersive range of frequency is clearly observed when the twist order increases.

As in glide structures, the physical parameters of the scatterers along the line can be easily changed, thus obtaining a

graded-index line [13], where different frequencies can be rejected at different positions of the transmission line.

In circular coaxial cables, another kind of symmetry can be introduced in analogy with the glide operator: the polar glide

symmetry. This symmetry is created by translating half a period the obstacle in one conductor and mirroring into the other

conductor [7], [13], [14]. This operation is not rigorously a glide symmetry, and then does not close the first stop-band at the

edge of the Brillouin zone. However, a fine tuning of the structure can lead in waveguide with circular cross section to similar

effects as the glide symmetry in Cartesian coordinates. Polar glide �-radian rings were employed in [13] to prove this effect.

In [14], a polar glide was implemented with �-radian rings, which are equivalent to a stepped discontinuity in the conductor

radius. In its polar glide configuration, this stepped discontinuity alternates between the inner and the outer conductor radii.

This geometry can be described with an accurate circuit model made of the cascade of coaxial cables with different cross

sections and the coupling between elements.

Another original way to combine twist and glide symmetries was proposed in [68], where an helicoidal radiating line (i.e., an

helix antenna) is perturbed with periodic corrugations. A sequence of periodic corrugations naturally defines a twist symmetry

due to the helicoidal shape of the line. Furthermore, a glide-symmetric sequence of corrugations can also be combined with

the twist symmetry of the line. As a result, several geometric parameters can be used to tune the propagation features along the

line with a broadband response. In turn, in [68], it was proved that an helix antenna can be miniaturized without deteriorating

its performance.

B. Twist-symmetric waveguides and metasurfaces

Twist symmetries can also be implemented in circular waveguides, as shown in [69] (see Fig. 7). In this work, a waveguide

was periodically loaded with metallic-sheets with perforated holes of circular shape that are not centered in the waveguide

cross-section. These obstacles block the usual TE propagation and let only TM modes propagate in the waveguide. Furthermore,

if these circular holes are rotated in a twist symmetric feature, the stop-bands between the first n modes are suppressed. Acting

on geometrical parameters, a broader band of propagation is available as the period decreases, thus leading to a miniaturization

of the line. Finally, if the holes have an elliptical shape, their twist-symmetric rotation opens a pass-band (Fig. 7(a)), while

different kinds of rotations of the same obstacles keep the structure in stop-band (Fig. 7(b)).

Other applications of twist symmetry can be encountered in metasurface design. For example, in [70], a multilayered

configuration of metasurfaces based on split-ring resonators was proposed. The layered structure is locally twist-symmetric

with respect to the stratification direction (Fig. 8). The electric density seen by a plane wave traveling across the metasurfaces

is shown to depend on the twist order. This leads to the design of a flat lens illuminated by a spherical wave, providing different

phase delays at each incidence point. These delays were designed to obtain a plane wave emerging from the lens. The design

maintained the orientation of the split rings on the first and the last metasurfaces, so that no depolarization is encountered.
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Fig. 7. a) Circular waveguide with twist-symmetric irises as in [69]. b) Non-twist-symmetric circular waveguide whose irises are not rotated according to the
twist-operator definition.

However, a different configuration can be easily designed in order to obtain a given polarization conversion [71], [72], [73],

[74].

Fig. 8. a) Twist unit cells achieving different electrical density according to the twist order, with respect to a wave impinging along the direction of stratification.
b) Lens focusing a spherical wave into a plane wave on both principal planes, realized with the unit cells in (a). Figure from [70].

IX. CONCLUSION

In this paper, we have described the latest discoveries on higher symmetries and their opportunities for designing electro-

magnetic devices. There are two known types of spatial higher symmetries: glide and twist. Glide symmetry has been the most

broadly studied, since it can be implemented in planar structures, which are easy to manufacture.

For example, glide symmetry has been proposed to reduce the dispersion properties of the first propagating mode in parallel

plate configurations. This opened possibilities to increase the bandwidth of metasurface lens antennas and leaky-wave antennas.

Additionally, glide symmetry was reported to increase the bandwidth of operation of conventional EBGs. This opened

opportunities, for example, for cost-effective and robust gap waveguide technology.

Glide symmetry has been also proposed to produce tunable stop-bands and to increase the bandwidth of filters. Finally, in

more recent works, glide symmetry was found suitable for dielectric configurations and optical applications.

On the other hand, twist symmetries have been less studied than glide symmetries due to the complexity of their practical

implementation. Similarly to glide symmetries, they have been proposed to reduce the dispersion of propagating modes, and

to control stop-bands in transmission lines, waveguides and flat metasurfaces.
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