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Abstract

The design and optimization of protective equipment and devices such as exoskeletons and prosthetics have the potential
to be enhanced by the ability of accurately measure the positions of the bones during movement. Existing technologies
allow a quite precise measurement of motion — mainly by using coordinate video-cameras and skin-mounted markers
— but fail in directly measuring the bone position. Alternative approaches, as fluoroscopy, are too invasive and not
usable during extended lapses of time, either for cost or radiation exposure. An approach to solve the problem is to
combine the skin-glued markers with ultrasound technology in order to obtain the bone position by measuring at the
same time the marker coordinates in 3D space and the depth of the echo from the bone. Given the complex structure
of the bones and the tissues, the echoes from the ultrasound transducer show a quite complex structure as well. To
reach a good accuracy in determining the depth of the bones, it is of paramount importance the ability to measure the
time-of-flight (TOF) of the pulse with a high level of confidence. In this paper, the performance of several methods for
determining the TOF of the ultrasound pulse has been evaluated when they are applied to the problem of measuring
the bone depth. Experiments have been made using both simple setups used for calibration purposes and in real human
tissues to test the performance of the algorithms. The results show that the method used to process the data to evaluate
the time-of-flight of the echo signal can significantly affect the value of the depth measurement, especially in the cases
when the verticality of the sensor with respect to the surface causing the main echo cannot be guaranteed. Finally, after
testing several methods and processing algorithms for both accuracy and repeatability, the proposed cumulative kurtosis
algorithm was found to be the most appropriate in the case of measuring bone depths in-vivo with ultrasound sensors
at frequencies around 5 MHz.

Keywords: ultrasound, time of flight, biomedical transducers, ultrasonic transducers, localization

1. Introduction

Accurate measurement of the dynamics of the mus-
culoskeletal system is limited by the problem of measur-
ing the position of the bones during dynamic and weight-
bearing activities. Existing methods to measure motion
in these conditions include optically-tracked markers [1]
and worn goniometric devices [2]. Both methods measure
basically the skin position, and although sometimes it is
possible to use them to mark patches of skin with very su-
perficial bones, they are not generally able to give the nec-
essary bone position accuracy [3]. For example, it would be
very useful to be able to measure real-time position of the
pelvis bones of subjects forced to stay in wheelchairs, in
order to optimize the stance to avoid or minimize injuries;
or, it could be devised an actuator able to automatically
manage the tightness of a knee bracket responding to the
bones movements in real-time. In those cases, the mea-
surement of the position of markers on the skin can have
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relatively limited relationship with the underneath bone
position.

One of the possible approaches to a wearable, non-in-
vasive bone depth measurement is using ultrasound (US)
sensors in a similar way as they are used to detect failures
in pipes and mechanical structures [4]. To perform the
measurement, an US sensor is rigidly associated to each
one of the infrared markers used by the 3D tracking sys-
tem, and a set of such compound sensors will be positioned
around the limb for estimating the position of the bone,
see Figure 1.

Notice how, due to the movement of the muscle and
fat tissue around the target bone, the angular orientation
of the US sensor will be difficult to predict and estimate.
The measurement strategy will be oriented to measure the
smallest distance between the skin surface (where the US
sensor is attached with an adhesive or an external restraint
system) and the bone underneath.

The big difference in the acoustic impedance between
soft tissues and bone tissues in human bodies will give a
very strong echo to incident acoustic waves, smaller only
than the echoes generated by a tissue/air interface, where
the acoustic impedance difference is even higher. For ex-
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Figure 1: Triangulating a bone position by three coupled optical
(IR) and ultrasound (US) sensors.
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Figure 2: An example of echo from a bone measured in a human
subject; the sensor was on the skin of the external part of the thigh.
The ultrasonic pulse at 10 µs is the emitter pulse, and the pulse
between 66 and 68 µs is the echo from the femur.

ample, at a frequency of 1 MHz, the acoustic impedance
of bones is around 7.8 × 106 Rayls, while the different soft
tissues (fat, blood, muscle) range from 1.35 to 1.75 MRayls
[5]— so the echoes from the bone/soft tissue are bond to
be quite stronger than the echoes caused by different tis-
sues interfaces. The only difficult echoes could come by
extremely porous cancellous bones [6], where the reflected
pulses would be much weaker, but this case is not common
in practical applications, so it does not seriously reduce the
effectiveness of the method.

Even though the echoes are strong, the fact that there
are multiple reflections involved, and lateral conduction in
the bones [7], the received signal is not so sharp, and the
detection of the significant point for the echo onset is not
trivial; in Figure 2, the raw data from the echo of a human
femur is shown. The effect of multipath reflections is min-
imized in the picking of the onset of the echo determining
which is the first front wave arriving to the sensor. This is
best done with methods based on the energy of the signal

as shown in Section 3. The reflected waves from the pe-
riosteal surface of the bone are indeed very complex due
to the non-planar and rough structure of the surface itself
[8]; a detailed study of such reflections is needed when the
objective is to image the bone geometry [9] and/or detect-
ing additional information as density or elasticity [10]. In
our application, we are interested in determining the depth
(minimum path) of the bone surface, with independence of
the angle of incidence of the probe — which indeed shows
a quite broad angle of emission which, in turn, simplifies
the problem of the analysis of the echo.

Most studies involving ultrasound techniques are de-
voted to the measurement of the propagation of sound
through bone. Mass and architecture of bones can be de-
termined by the velocity or speed of sound and the atten-
uation of the ultrasound wave in frequency or broadband
ultrasound attenuation (BUA) [11], [12]. The measure-
ment of time-of-flight is almost restricted to the axial and
circumferential propagation of the waves in bones to de-
termine their geometry, elasticity and mineralization, [13].
The calculation of the TOF is done through simple tech-
niques such as the time between the pulse and echo peaks
or between the pulse and the first inflection point of the
first echo without paying much attention to the signal to
noise ratio. This paper proposes the use of different al-
gorithms already tested in other fields such as geology,
[14, 15, 16], or engineering to face the problems found
in noisy environments and with multi-propagation paths,
[17, 18, 19].

2. Instrumentation and measurements

In choosing the ultrasound signal frequency, a com-
promise must be done between the availability and price
of the transceiver (which are cheaper and easier to find
for low frequencies), and the resolution that the resulting
wavelength in the soft tissue will enable. Working in the
2–10 MHz range, with a wavelength in soft tissues of about
0.75–0.15 mm, has been chosen as a good compromise.

The selected transducer is an Olympus V609-RB ultra-
sound bidirectional device, which costs around 300 USD;
its nominal operating frequency (5 MHz) is well into the
selected range. In the experiments, it was driven with
an Olympus manually controlled ultrasonic pulser-receiver
(5072PR) and the ultrasonic signal was visualized and
recorded using a Tektronix TDS 5104 Digital Storage Os-
cilloscope (DSO). The DSO was set with a resolution of
8 ns and a time span of 100 µs. Figure 3 depicts the struc-
ture of the measurement setup.

3. Time-of-flight algorithms

This section explains the fundamental principles and
groundwork of the algorithms working on examples of mea-
surements taken in a human thigh. The signals have an
initial pulse generated by the excitation that is used to
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Figure 3: Setup of the measurement system shown when taking the
measurement of bone depth of a femur bone in a human thigh.

calculate the starting time with every algorithm. This
pulse provokes some immediate reflections on the inter-
faces between the surface sensor and the epidermis tissue
and between the different layers of the epidermis and der-
mis tissues, see left pulse in Figure 2. To reject these
reflections, the trigger of the oscilloscope is set to 10 µs
so the excitation pulse starts at this time and extinguishes
before 16 µs; from here on, the algorithm searches for the
onset of the echo in the bone. Alternatively, the selected
signal has a small echo before the actual one due to inho-
mogeneous sections of the muscle and fat tissues close to
the bone. This example with the perturbation has been
chosen to test the performance of the algorithms and show
that they may be deceived resulting in early pickings of the
onset of the pulse.

3.1. Cross correlation
The classical method to calculate the time delay be-

tween two signals, s1 and s2, is based on the application
of cross correlation techniques and finding the shift of the
maximum of R12(n) defined as:

R12(n) =
N/2−1∑

m=−N/2

s1(m+ n)s2(m) (1)

where N is the total number of samples.
This method has been extensively applied in many

fields with good results, [20, 21, 22, 23]. However, the
reflections due to multipath propagation and interferences
due to reflections on concave surfaces can yield larger peaks
than the direct front wave in ultrasonic signals. This
means that the maximum of the correlation function would
choose these peaks and would give a delayed picking of the
signal. Using the preprocessing techniques presented in
the generalized correlation method [24], such as the Roth
processor, the smoothed coherence transform (SCOT) and
the phase transform (PHAT) would not help in obtaining
good results since they are aimed at reducing the effect of
white noise.

Figure 4 shows where the cross correlation algorithm
would detect the onset of the echo of a signal taken on a
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Figure 4: Detail of the onset determined by the cross correlation
algorithm to determine the time-of-flight. The black plot corresponds
to the echo and the grey plot to the cross correlation.

human thigh. In this case, s1 is the pulse emitted by the
US sensor and s2 is the received echo. The output of the
cross correlation gives directly the time delay between s1
and s2. Then, as s1 starts at 10 µs, R12 has been manually
shifted 10 µs to plot the cross correlation (grey line) and
the echo (black line) in the same figure.

3.2. Maximum peak
In this algorithm, the time-of-flight is measured from

the peak of the excitation pulse to the peak of the reflected
wave so the results would be very similar to those given by
the correlation methods. This is the most straightforward
method and relies in the fact that a fast rising pulse cre-
ates an echo with a peak in the front wave. As with the
correlation, this is true under ideal conditions in which
multipath echoes are strongly damped, the media is ho-
mogeneous and the surface where the echo is reflected is
normal to the incident wave. Under these circumstances
the results would be repeatable and precise, in the sense
that their standard deviation will be small, but not neces-
sarily accurate, or close to the correct solution. The accu-
racy will depend on the rise time of the front wave of the
echo and, consequently, on its attenuation, and change of
slope, through the length of the media. Any deviation from
these conditions would induce systematic and random er-
rors to the measurements jeopardizing the robustness of
this method. Figure 5 shows an example of the time-of-
flight calculation in a measurement taken on human thigh.

3.3. Minimum energy
The calculation of the cumulative energy, shown in

Equation (2), is a well-known technique to detect sharp
changes in the signal, [15]. Ec(n) is the cumulative en-
ergy up to sample n, and s is the signal. The algorithm
starts with a certain and constant positive slope due to the
accumulation of the energy of noise. This slope changes
abruptly when the energy of the first impulse of the echo
is added to the accumulation. The key is to find where
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Figure 5: Detail of the time of occurrence of the maximum peak to
determine the time-of-flight in a signal taken on a human thigh. The
vertical line represents the onset of the signal using the maximum
peak algorithm.

exactly starts that change of slope because small pertur-
bations before the onset of the signal can deceive the al-
gorithm.

To mitigate this drawback, a line with negative slope is
added to this energy so the point in which the signal starts
turns to be the minimum of the function in Equation (3):

Ec(n) =
n∑

m=1
s2(m) (2)

Eneg(n) = Ec(n) − a · nEN

N
=

n∑
m=1

(
s2(m) − a · nEN

N

)
(3)

where EN is the total energy of the signal, N is the to-
tal number of samples and a is a constant that pulls the
absolute minimum further down in case there are several
minima close to the correct one. Figure 6 shows the time
of the echo in the two experiments considering the param-
eter a = 1. This plot shows a small pulse before the actual
echo resulting in an early picking of the signal so the pa-
rameter a should be increased to pull the slope to more
negative values and giving more weight to minima closer
to the actual onset of the echo. This small pulse is present
in some of the signals taken on a human thigh (Section
4.3) and is due to inhomogeneous sections of the muscle,
fat tissues close to the bone and depends on the angle of
incidence.

3.4. Akaike information criterion (AIC)
This method has been extensively used in the local-

ization of earthquakes by detecting the arrival of the P-
wave in seismic signals, [14], ultrasound detection, [15],
and electrical engineering, [17, 18]. It considers that both
the portion of the signal corresponding to noise and the
segment with seismic signal, or in this case, the echo, are
autoregressive (AR) processes. In general, noise can be
represented with a low order AR process whereas the echo
will need a noticeable larger number of coefficients to have
an accurate model. The AIC determines the best order
to fit AR processes, hence, analyzing the evolution of the
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Figure 6: Detail of the time of occurrence of the minimum energy in
the same signal as before. The vertical line represents the erroneous
onset of the signal using the minimum energy algorithm. The cumu-
lative energy in Equation (3) is also plotted to show its evolution.

number of coefficients would give the exact time when the
onset of the echo occurs. Another possibility, avoiding the
calculation of the AR order, is the direct application of the
AIC to two segments of the ultrasonic signal, from sample
1 to n and from n+ 1 to N , [18]. The AIC is defined as,

AIC(n) = n·ln[σ2(1, n)]+(N−n−1)·ln[σ2(n+1, N)] (4)

where

σ2(1, n) = 1
n

n∑
m=1

[s(m) − s̄(1, n)]2 (5)

and

σ2(n+1, N) = 1
N − n− 1

N∑
m=n+1

[s(m)− s̄(n+1, N)]2 (6)

are the variances of the samples in the segments and s̄(·)
is the mean value of the signal in the considered interval.

Figure 7 shows the performance of the Akaike infor-
mation criterion for the same signal. This method finds
the onset of the echo as a global minimum of Equation (4)
so the analyzed window should encompass closely the on-
set of the signal, otherwise, the global minimum would be
very likely far from the correct solution. Again, the plot in
Figure 7 shows that this method would give early pickings
in signals with noticeable perturbations before the onset
of the pulse.

3.5. Minimum time series cumulative kurtosis
This method is a modification of the picking algorithm

presented in [16] in which the estimated cumulative kurto-
sis is analyzed in a sliding time window. Considering that
the pre-triggered signal is a stationary process, the mean
and variance are time invariant and higher-order statistics
would be constant. Any new value belonging to a non-
Gaussian distribution such as the inception of the pulse
signal would induce an increment in the kurtosis, Equa-
tion (7). When more samples of the pulse arrive to the
detector, the 4th-moment increases as these new values
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Figure 7: Time of occurrence using the AIC algorithm represented
with a vertical line. Again, in this example, the algorithm detects a
false echo close to the actual one.

Table 1: Statistical parameters for two 1000-samples set containing
noise and the onset of the echo.

Mean (mV) Std. dev. (mV) Kurtosis
Noise 4 14.6 2.78
Onset 4.3 23.6 64.03

are placed at the tails of the Gaussian distribution previ-
ously defined by the noise.

k(n) =

1
n

n∑
m=1

[s(m) − s̄]4(
1
n

n∑
m=1

[s(m) − s̄]2
)2 (7)

Figure 8 is a clear example on what happens with the
estimation of the kurtosis. The histogram represent the
number of samples that fall in certain amplitudes from a
total of 1000 samples. The bars in black correspond to the
distribution of a portion of the total signal where there
is only noise (selection “noise”) in Figure 9. The bars in
light grey conform the distribution of a part of the sig-
nal that selects the onset of the echo (selection “noise and
echo onset”), Figure 9. The amplitudes of some points in
this sub-signal are ten times larger than the amplitude of
noise so the tails of the distribution in the histogram are
extended changing its shape and hence the kurtosis. Table
1 shows the mean, standard deviation and kurtosis of the
two 1000-samples sets. Both cases have almost the same
mean value, while the standard deviation and the kurto-
sis are larger in the case of the echo, as expected. The
kurtosis for the noise is close to 3 so the shape of that
distribution is very close to Gaussian, while in the case
of the onset of the echo the kurtosis value is much larger,
64.03. Notice that the change in the kurtosis is more dra-
matic than the change in the standard deviation. As the
energy of the signal is related to the standard deviation,
it can be inferred that monitoring the changes in the kur-
tosis would be more effective in finding the TOF than any
energy-based method.

Several samples of the non-Gaussian signal are needed
for the cumulative kurtosis to reach the maximum and af-
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Figure 8: Histogram of two sets of 1000 samples from one of the
measurements taken on a human thigh. The bars in black are noise
data while the bars in light grey correspond to noise and the onset
of the echo signal. The vertical axis has been modified to show low
numbers of occurrences.
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Figure 9: Plot of an echo where 1000 samples of noise and 1000
samples up to the onset of the echo are highlighted to show the
performance of the kurtosis algorithm.
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Figure 10: Time of occurrence using the Kurtosis algorithm repre-
sented with a vertical line.
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Figure 11: Onset times for all algorithms summarized in the same
figure. AIC and minimum energy algorithms, on the one hand, and
peak and cross correlation, on the other hand, give the same time
whereas the kurtosis gives the most accurate onset of the pulse.

ter that it decreases again to around 3 when the impulsive
signal disappears, Figure 10. Notice that the maximum
kurtosis does not coincide with the signal onset but at the
point in time when the cumulative kurtosis starts to soar.

The picking can be determined by setting a thresh-
old to the kurtosis or by calculating its maximum deriva-
tive. Unfortunately, the threshold would systematically
give late pickings and the maximum derivative can be so
noisy that, in most cases, would yield unreliable results.
The approach followed in this paper is the same as the
shown in Equation (3) which is to add a negative slope
line to highlight the bend of the function as a local mini-
mum. Equation (7) is, thus, modified to

k(n) =

1
n

n∑
m=1

[s(m) − s̄]4(
1
n

n∑
m=1

[s(m) − s̄]2
)2 − n

K

nK
(8)

where, in this case, K is the maximum cumulative kurtosis
and nK is the sample where that maximum occurs. This
modification gives a plot that decreases with a constant
slope when the original signal is noise reaching a minimum
in the onset of the pulse, from this instant the values of
k(n) in Equation (8) increase until the pulse finishes.

Finally, Figure 10 also shows that the cumulative time-

series kurtosis is insensible to the small perturbation that
appears before the actual echo, contrary to what happened
with the minimum energy and AIC algorithms.

3.6. Summary
Figure 11 summarizes all the results for the studied

case. Notice that the signal has a noticeable oscillation
slightly before the onset of the main echo that is deceiving
the AIC and minimum energy algorithms. The maximum
and cross correlation, as pointed out before, give system-
atic late pickings so the best option would be the algo-
rithm based on the cumulative kurtosis. This result has to
be supported by more signals and different configurations
which is done in the next section.

4. Results

The test benchmark consisted on measurements con-
ducted in different media, boundary conditions and posi-
tions of the ultrasonic sensors which defined six test envi-
ronments.

The algorithms were applied to sets of ten signals ob-
tained in gel pads and a human thigh. The first two exper-
iments are aimed at the evaluation of the algorithms in a
controlled environment in which we have a homogeneous
media of a known thickness. The experiment in human
flesh represents a more realistic case in which different tis-
sues can be found before reaching the bone and the thick-
ness in unknown. Then, the first experiments help in the
calibration of the method while the other experiment tests
the algorithms with real measurements. In each configura-
tion, the sensor is placed on the samples either vertically
aligned, to have a direct reflection of the echo, or slanted,
so the path of the echo is slightly different, see Figure 13.
The purpose is to test the behavior of the measuring sys-
tem and the algorithms in those cases where the sensor
has drifted from its original position due to the movement
of the subject. Ten consecutive measurements are taken
in both positions and in all samples. Then, the average
time-of-flight is calculated and compared with the actual
one in the case of the gel pads. This average would give
a measurement of the accuracy of the results, whereas the
standard deviation of the times-of-flight would represent
the repeatability of the algorithm.

4.1. Two gel pads with air interphase
Two pads 3 cm thick are placed one on the top of the

other without any film gel in between, so that a thin air in-
terphase will form and a reflection wave will be generated
at the boundary between them. The pads are manufac-
tured with a gel that has a transmission speed for ultra-
sonic waves in this frequency range of about 1500 m/s.
This means that the echo reaches the interphase in 20 µs
and the reflected pulse hits the sensor in 40 µs, see Fig-
ure 13 case a. An example of an echo with the sensor
slanted is shown in Figure 12.
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Figure 12: Echo in the air interphase when the sensor is slanted.
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Figure 13: Experiment for the first set of data. The TOA mea-
surement has been computed using several methods in the case of a
couple of stacked gel pads (case a) with acoustic impedance similar
to human soft tissues, and with a single gel pad positioned over a
open metallic structure (b). In both cases the measurement were per-
formed with the sensor vertically aligned and with the sensor slightly
slanted.

Table 2 shows the results given by the algorithms for
ten consecutive measurements in both positions: horizon-
tal (or vertically aligned) and slanted. The most accurate
algorithm would be the one with the closest average value
to the actual thickness of the gel, 40 µs or 3 cm, and the
best method, in terms of repeatability of the results, would
be the one with the lowest standard deviation. With the
sensor vertically aligned, the most accurate methods are:
the proposed in this paper based on the cumulative kurto-
sis and the AIC with the same difference from the correct
time, 40.02 µs and 39.98 µs, respectively. On the contrary,
the best repeatability is given by the method based on the
minimum cumulative energy followed by the cumulative
kurtosis. When the sensor is slanted, the most accurate is
again the kurtosis, with 40.14 µs, while the lowest standard
deviation corresponds to the maximum peak followed by
the kurtosis. The last column is the difference between the
average in both positions. Ideally, this difference would be
naught because the method should be as immune to the
movement of the sensor as possible. The closest averages
are achieved by the cumulative kurtosis so overall, in this
experiment, this method would be best option.

4.2. One gel pad with metallic interphase
This experiment uses only one gel pad with an alu-

minium plate at its base to simulate a different interphase
where the echo is reflected, see Figure 13 case b. The

Table 2: Time of arrival measurements of the echo for the two gel
pads configuration.

Horizontal Slanted
Avg. Std. Avg. Std. Diff. Avg.

Xcorr. 40.15 0.210 40.40 0.443 −0.255
Max. 40.21 0.195 40.39 0.225 0.1728

Energy 40.04 0.138 39.55 0.349 −0.4808
AIC 39.98 0.168 39.32 0.274 −0.6616

Kurtosis 40.02 0.161 40.14 0.260 0.1184
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Figure 14: Echo in the gel-metal interphase when the sensor is
slanted.

signals are quite different from the first case due to the
multipath echoes that originates with the multiple inter-
faces (where the shear waves in the metal propagate a lot
faster than in the pad), see Figure 14.

The results of the algorithms are given in Table 3 where
the most accurate is the minimum cumulative energy (39.98 µs)
followed by the kurtosis (39.95 µs) when the sensor is ver-
tically aligned and the kurtosis (39.77 µs) when the sensor
is slanted. In all cases, the kurtosis has the lowest stan-
dard deviation which also gives the most similar averages
in both positions (0.1796 µs) and, again, turns to be the
best option.

4.3. Human thigh
The results obtained in the calibration setups show

that the algorithms are all of them reasonably accurate
and precise in the measurements of the thickness of the
gel pad, being the cumulative kurtosis the method with
the best performance.

In the next experiment the objective was to measure
the depth of the femur bone using a setup similar to the

Table 3: Time of arrival measurements of the echo for one gel pad
with aluminium base configuration.

Horizontal Slanted
Avg. Std. Avg. Std. Diff. Avg.

Xcorr. 40.11 0.283 40.41 0.410 −0.300
Max. 39.75 0.148 40.40 0.360 −0.6540

Energy 39.98 0.103 39.64 0.253 0.3328
AIC 39.92 0.091 39.48 0.254 0.4367

Kurtosis 39.95 0.089 39.77 0.221 0.1796
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one shown in Figure 3. The depth of the bone is, in this
case, unknown, so the important parameter to evaluate is
the deviation of the results. A large set of measurements
was carried out with the sensor in the same position but
with different angles with respect the thigh surface, mea-
surements 1 to 10 in Table 4. Subsequently, all of them
consist of 10 measurements shifting the position and angle
of the sensor. The lowest standard deviations are high-
lighted with boxed values and the worst with bold fonts.
The depth of the bone is determined with the average value
corresponding to the method that gives the most stable
results. Then, when the lowest standard deviation in the
set of measurements number 3 corresponds to the cumu-
lative kurtosis with a value of 0.224, the echo would be at
53.27 µs and the depth of the bone would be 4.00 cm. The
overall results show that the lowest standard deviation is
given by the cumulative kurtosis in six cases out of ten and
the second to lowest in three more cases. The cumulative
energy with negative slope has also good performance in
three out of ten occasions. The algorithms based on the
cross correlation and maximum peak algorithms show the
worst behaviour. Then, considering that the kurtosis also
had an outstanding accuracy in the tests with the gels,
the most reliable measurements of the bone-depth would
be given by this method.

Notice that the deviation of the measurements is al-
ways well below 500 microns giving an idea on the stabil-
ity of the depth value even when the sensor was placed at
different angles.

5. Conclusions

Commonly used 3D trackers offer the possibility of re-
liably record the movements and the positions of the hu-
man body using infrared reflective markers. The collected
data is of great interest in a large number of application
in health — like prosthetics design, gait analysis, reha-
bilitation therapy and so on. Crucially, by design, these
systems are able to track points of the body located on
the skin surface, while in several case the ability to mea-
sure the position of the bones would be of greater interest.
A solution has been proposed that combine the surface
markers with a ultrasound transceiver that can add to the
marker position data the depth of the first bone surface
underneath, enabling (when using a sufficient number of
sensors) to estimate the absolute position of the bone.

In order to achieve a reasonable accuracy, it is quite
important to be able to compute the depth of the main ul-
trasonic echo with the highest possible reliability. In this
paper it is shown that the algorithm used to determine the
time-of-flight of the echo is significant to this purpose; sev-
eral commonly used algorithm — cross correlation, maxi-
mum peak, minimum energy, Akaike information criterion,
and time series cumulative kurtosis — have been compared
in three different experiments, modeling the scenario of a
real-time, in vivo measurement.

The analysis of the resulting data sets points out that
the overall best method is the cumulative kurtosis with
the inclusion of a negative slope proposed in this paper,
showing, on average, better repeatability (in the measure-
ment where the depth of the interface where not known)
and better accuracy (in the experiments where the nomi-
nal depth is known).

Acknowledgements

The authors would like to thanks the Center for Biome-
chanics and Rehabilitation Research, at Colorado School
of Mines (Golden, CO, USA) for lending the sensors used
in this measurement.

6. References
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