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Three-dimensional effects on the aerodynamic performance of

flapping wings in tandem configuration

G. Arranz, O. Flores, M. Garćıa-Villalba

Abstract

Direct numerical simulations have been performed to analyse how three-dimensional effects
influence the performance of wings in tandem configuration undergoing a two-dimensional optimal
kinematics. This optimal motion is a combination of heaving and pitching of the airfoils in a
uniform free-stream at a Reynolds number Re = 1000 and Strouhal number Stc = 0.7. Wings of
two different aspect ratios,A = 2 and 4, undergoing the 2D motion have been considered. It has
been found that the interactions between the vortical structures of the fore- and the hind-wings
are qualitatively similar to the two-dimensional case for both A. However, the ratio between
the mean thrust of the hind-wing and the fore-wing decreases from 80% in 2D to 70% in 3D,
implying that the 3D effects are detrimental for the vortical interactions between the wings in
terms of thrust production. Nonetheless, the propulsive efficiency remains constant both in 2D
and 3D, for both A. A more realistic flapping motion has also been analysed and compared to
the heaving motion. It has been found that the aerodynamic forces decrease when the wings are
in flapping motion. This detrimental behaviour has been linked to a sub-optimal motion of the
inboard region of the wings. This sub-optimal region of the wings entails a decrease of the mean
thrust and of the propulsive efficiency compared to the heaving case, which are more pronounced
for the A = 4 wings.

1 Introduction

In contrast to birds, bats and most insects, dragonflies have two pairs of wings which can be controlled
independently [1, 2]. By modifying the kinematics and the phase relationship between the fore and
hind pair of wings, dragonflies are capable of performing rapid manoeuvres, accelerate, or cruising
efficiently [3, 4]. This versatility, and the recent interest in the development of micro air vehicles
(MAVs), have fostered the scientific community to understand which are the mechanisms that govern
the flight of these insects. Thanks to this interest, it has been discovered, and now it is widely
accepted, that one of the most important mechanisms dragonflies take advantage of is the wake
interaction between their wings [5, 6, 7].

In hovering flight, the wake interaction between the fore- and the hind-wing has a negative effect in
terms of lift generation. This was shown by Maybury and Lehmann [8]. They conducted experiments
on two robotic flapping wings vertically stacked, showing that the total vertical force obtained was
reduced due to the interaction between the wings, regardless of the phase shift of the wings. Likewise,
Wang and Sun [9] performed numerical simulations of two wings in tandem configuration with a
motion close to the actual motion of dragonfly’s wings. By modifying the phase shift between the
wings, they showed that the vertical force developed by each wing is always lower than the force
developed by the same wing when isolated. Similar results were obtained by Rival et. al [10] for
two-dimensional pitching and heaving plates. Nonetheless, they found that for an optimal phase
shift, similar values of mean lift than the foils when isolated were achieved, but with more constant
force production over the cycle. Likewise, Wang and Russel [5] performed numerical simulations
of the two-dimensional wings’ motion of a dragonfly, revealing that counter-stroking of the wings
minimizes the aerodynamic power. Later, Usherwood and Lehmann [7] found that adequate wing
phasing during hovering can lead to a power reduction up to 22% compared with a single pair of
wings.

Contrary to hovering, airfoil tandem configurations in forward flight can outperform isolated airfoils
in terms of aerodynamic force production or propulsive efficiency. By modifying only the phase lag
between two airfoils in tandem under a simplified pitching/heaving motion, Broering and Lian [11]
were able to obtain higher lift or propulsive efficiency compared to a single airfoil. Likewise, Boschistch
et al. [12] performed a parametric study of the phase lag and spacing between two pure pitching foils.
They observed a banded pattern of the thrust and propulsive efficiency in the phase-spacing diagram,
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revealing a linear dependency between both parameters. This dependency was later observed for
combined pitching/heaving foils [13, 14], and it was also mentioned by Maybury and Lehmann [8]
for 3D wings in hovering configuration. Kamisava and Isogai [15] performed numerical simulations
to find the flapping kinematics of two pairs of flapping tandem wings of minimum required power
for forward flight. They found that, for the range of velocities studied, the required power was lower
than the maximum available power. More recently, Nagai et al. [16] studied the effect of phasing
of tandem flapping wings in forward flight. Their results suggest that actual dragonfly might not
select the phase differences in term of aerodynamic efficiency but also in terms of other factors such
as longitudinal manoeuvrability or flight stability.

Other studies have focused on finding optimal tandem kinematics in two dimensions [17, 18, 19].
However, there are fewer studies addressing the aerodynamic performance of optimal kinematics in
3D wings, specially in terms of comparison with their corresponding 2D configurations. There are
only a few works that compare 2D and 3D configurations with the same kinematics, which are briefly
reviewed next.

Zheng et al. [20] analysed the forewing-hindwing interaction of finite aspect ratio wings in heaving
and pitching motion. Their results revealed discrepancies with past 2D studies undergoing similar
kinematics, which might be attributed to 3D effects. However, flow visualization was limited by phase-
locked 2D measurements at a single spanwise location, leaving as an open question if three dimensional
effects significantly affect the forewing-hindwing interaction. Kurt and Moored [21] experimentally
analysed the effect of the wing tip vortices of two tandem wings of A = 2 in pure pitching motion
on the propulsive efficiency and thrust. To do so, they measured the forces on the wings for a range
of different phasing and spacing, and repeated the experiments placing a splitter plate and a surface
plate at the wing tips to minimize 3D effects. Their results show many broad similarities between
both configurations; however, they found that, for the 3D configuration, increasing the spacing while
keeping the phase lag constant, always results in a decrease of the propulsive efficiency due to the
breakdown of the vortices. On the contrary, when 3D effects were minimized, optimal configurations
were found for larger spacing between the wings. A comparison between two tandem airfoils in
heaving and pitching motion and two wings of A = 2 under the same kinematics and spacing was
performed by Broering and Lian [11] by means of numerical simulations. They compared the 2D and
3D simulations for 3 different phases. Generally, three dimensional effects led to a force reduction;
nonetheless, collective propulsive efficiencies for the three-dimensional cases were very similar or even
slightly higher than their two-dimensional counterparts. Overall, these works show a discrepancy
on the extent of the influence that the 3D effects have on the aerodynamic performance of a two-
dimensional (2D) configuration.

Moreover, it should be noted that previous comparisons between 2D and 3D configurations, [11, 21],
consider the motion of the finite wings to be two-dimensional (i.e., heaving). However, actual motion
of dragonfly’s wings is a flapping motion in which each section of the wing has a different velocity.
Practically no studies are found in the literature which compare flapping kinematics with a 2D motion.
Sun and Lan [22] performed a numerical simulation of a pair of dragonfly tandem undergoing a realistic
hovering motion, and compared the obtained aerodynamic forces with those of a 2D computation
based on similar wing kinematics; They observed that, for the particular configuration, 3D fore-hind
wing interaction is weaker than 2D interaction in terms of force generation. Nonetheless, we have
not found in the literature other studies which assessed the effect of implementing a 2D optimal
kinematics in a 3D configuration with flapping motion. Therefore, the objective of the present study
is to analyse how three dimensional effects influence the aerodynamic forces and flow structures of
tandem wings with a flapping motion. To that end, we perform direct numerical simulations (DNS)
of tandem wings in flapping motion, tandem wings in heaving motion and tandem airfoils (2D) in
heaving motion. Moreover, in this study we analyse the effect of the A by considering wings of
AR = 2 and 4, extending the results from [11, 20, 21] which only considered a single A.

The structure of the paper is as follows: the description of the problem and computational set-up
is provided in section 2; the discussion of the results from the simulations is given in section 3; and
section 4 gathers the main conclusions extracted from this study.
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2 Methodology

2.1 Problem description

Two equal, finite wings in an in-line tandem arrangement and immersed in a uniform and constant
free-stream of magnitude U , are considered. Both wings move with a kinematics based on the optimal,
two-dimensional configuration of Ortega-Casanova & Fernández-Feria [18]. The motion corresponds
to a combination of heaving and pitching about the mid chord. The pitching angle, θ, and heaving
amplitude, h, are described by the sinusoidal functions:

hi(t) = h0 cos (2πft+ ϕh,i), (1)

θi(t) = θ0 cos (2πft+ ϕθ,i), (2)

where the subscript i indicates the wing (i = 1 fore-wing, i = 2 hind-wing) as shown in Figure 1.
In eqs. (1) and (2), h0 is the maximum heaving amplitude, θ0 is the pitching amplitude, f is the
frequency, ϕh,i is the heaving phase shift and ϕθ,i is the pitching phase shift. The frequency and
heaving amplitude are fixed by the non-dimensional numbers, Stc = fc/U and Sta = h0f/U . All the
parameters that define the motion are gathered in Table 1. Note that, according to the values of ϕh,i
and ϕθ,i in Table 1, pitching is advanced 3π/4 with respect to heaving for both foils. Consequently,
the motion of both foils is identical with a phase shift equal to π. Moreover, since the pitch angle
averaged over a cycle is zero, the motion is symmetric with respect to the horizontal plane.

θ1

h1

θ2

h2

U

S

x

z

Figure 1. Sketch of the 2D-kinematics with the def-
inition of θi and hi. The inertial reference frame is
also depicted for reference.

i ϕh,i ϕθ,i θ0 Stc Sta

1 0 3π/4
25◦ 0.7 0.17

2 π −π/4

Table 1. Kinematic parameters of the two-
dimensional configuration.

The airfoil sections correspond to a flat plate with chord, c. The distance between the trailing edge
of the fore-wing and the leading edge of the hind-wing when they lay onto a horizontal plane is
S/c = 0.5 (see Figure 1). The Reynolds number based on the chord and the free-stream velocity is
Re = Uc/ν = 1000 for all the cases.

For the three-dimensional simulations, wings of rectangular planform with span, b, and the same
cross-section as the 2D airfoils are considered. We study two aspect ratios, A = b/c = 2 and 4, and
two kind of motions: heaving and flapping (i.e., rotation about an axis parallel to the free-stream
velocity). Kinematics of the finite span wings in the heaving case is straightforward: all chordwise
sections of the wings move according to eqs. (1) and (2), exactly as in the 2D case. On the contrary,
in flapping motion, only one chordwise section has the same vertical amplitude, h0, as in the 2D case.
We denote this section as the characteristic section, and set it to be at 0.65b from the inboard wing
tip. Moreover, the axis of rotation for the flapping motion is located at a fixed distance to the inboard
wing tip, set to ∆ξ = c for all flapping cases. For clarity, Figures 2a and 2b show a sketch of the wings
in flapping motion, the position of the characteristic section, and the position an orientation of the
flapping axis. The figures also include the wing-fixed reference frames, Σi. For the i-wing, the origin
of Σi is located at the mid-chord of the inboard wing tip, the ξi-axis is oriented along the spanwise
direction and coincides with the pitching axis, the ηi-axis is perpendicular to the wing surface, and
τi-axis correspond to the chordwise direction.

As shown in Figure 2b, the flapping motion of the wings depends on the vertical amplitude of the
characteristic section, h0, the distance of this section to the inboard wing tip, ξC , and the root offset,
∆ξ. Hence, the flapping angle (see Figure 2a) is:

φi(t) = φ0 cos (2πft+ ϕh,i), (3)

where φ0 = sin−1 (h0/(∆ξ + ξC)) is the flapping amplitude. For the aspect ratios considered here,
φ0 ≈ 6.1◦ and 3.9◦ for A = 2 and 4, respectively. On the other hand, the pitching axis coincides
with the longitudinal symmetry axis of the wing, as shown in Figure 2a. Finally, it should be pointed
out that the wing reference frames defined in Figure 2a are also used when the wings are in heaving
motion to ease the comparison between the cases.
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Figure 2. (a) Sketch of the flapping motion. The sections whose heaving amplitude is h0 are highlighted
in purple. The inertial reference frame Σ ≡ (x, y, z) and the body reference frames Σi ≡ (τi, ξi, ηi) are also
shown. (b) Front view of a single wing with the definition of ∆ξ and ξC . (c) Illustration of the chordwise
sections where the sectional forces are computed for A = 4 and (d) A = 2.

In the subsequent sections, the aerodynamic forces at certain chordwise sections are analysed. These
sections are sketched in Figures 2c and 2d: section m corresponds to the wing section at the midspan;
sections I and O are located at 0.5c from the inboard and outboard wing tips, respectively (note that,
in the heaving case, the forces at both sections will be the same owing to symmetry); and section C
corresponds to the characteristic section defined above.

2.2 Computational set-up

Direct numerical simulations (DNS) are performed with the in-house code TUCAN, which solves
the Navier-Stokes equations of the incompressible flow. TUCAN uses second-order finite differences
for the spatial discretization in a staggered grid and a 3-stage, low-storage Runge-Kutta scheme for
time integration. The time step is always selected so that the Courant–Friedrichs–Lewy number is
smaller than 0.2. The presence of the bodies is modelled by means of the immersed boundary method
proposed by Uhlmann [23]. The present algorithm has been successfully used for the simulation of
aerodynamic flows, both in two- [24, 25] and three-dimensions [26, 27, 28, 29, 30].

The computational domain is a rectangular prism, displayed in Figure 3. The wings are centered in a
refined region (3.5c×Lyr ×Lzr in Figure 3) with a uniform grid spacing in all directions, ∆r = c/96.
Outside this region, a constant stretching of 1% is applied to the grid in all directions. The dimensions
of the refined region depend on the A and on the motion of the wings. For the heaving motion,
Lyr/c = 1 +A and Lzr/c = 1. For the flapping motion, Lyr/c = 1 +A and Lzr/c = 1.6 and 2, for
A = 2 and 4, respectively. Finally, Lyi = 3c in the heaving case and Lyi = 0.5c in the flapping cases.
Thus, in flapping motion the plane Y = 0 contains the flapping axis. As a result, the 3D simulations
consists of around 2 × 108 grid points, depending on the particular case. The computational domain
for the 2D simulation corresponds to a Y = const. plane of the 3D computational domain with a
uniform grid spacing ∆r = c/96, leading to a grid with 9 × 105 points.

In terms of boundary conditions, a uniform free-stream velocity, U , is imposed at the inflow plane
(X = 0). A convective boundary condition is imposed at the outflow plane (X = 14c). Free-slip
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Figure 3. Sketch of the 3D computational domain. Solid lines delimit the uniform grid and the stretched
grid. Only one of each five grid lines is represented.

(a) (b)

Figure 4. Temporal evolution of the (a) horizontal and (b) vertical force coefficients of the hind airfoil.
( ) ∆r = c/48; ( ) ∆r = c/96; and ( ) ∆r = c/192.

boundary conditions are imposed at the lateral boundaries.

TUCAN uses and immersed boundary method, which requires the specification of a Lagrangian mesh
for the wings. Since the wings are flat plates, two flat surfaces are employed to discretize each wing. A
uniform grid is used in each surface, with a grid spacing ∆r = c/96 in both spanwinse and chordwise
directions. The two surfaces discretizing each wing are separated a distance ∆r, leading to a thickness
e/c ≈ 0.01.

The grid resolution reported in the previous paragraphs was selected after performing a grid sensitivity
study for the 2D configuration, for ∆r = c/48, ∆r = c/96 and ∆r = c/192. Figure 4 displays the
temporal evolution of the aerodynamic force coefficients for the hind airfoil, which are more affected
by the vortical interactions. Although not shown here, similar results are obtained for the fore airfoil.
It can be appreciated that the temporal history of the forces with ∆r = c/96 is very similar to that
of ∆r = c/192, while with ∆r = c/48 the peaks in the forces are clearly different. Moreover, the
differences in the propulsive efficiency computed for ∆r = c/96 and c/192 are about 3%. Therefore,
as a compromise between accuracy and computational cost, all simulations are performed with a grid
spacing of ∆r = c/96 in the refined region.

The simulations are started in a grid with a lower resolution (∆r = c/56 in the refined region) during
the first 3 cycles, then the flow field is interpolated on the finer grid and the simulation is restarted
and run until convergence is achieved. This entails about 3 − 4 additional cycles. For the present
cases, convergence means that periodic flow conditions are obtained for all cases, with the same period
of oscillation of the forcing motion. Consequently, the aerodynamic forces and the flow in the region
of interest are periodic, and the discussion of the results is based on the last computed cycle without
any loss of generality.
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2.3 Definition of aerodynamic coefficients

The aerodynamic force coefficients are defined as

Ck,i =
2Fi · ek
ρU2bc

, (4)

where Fi is the total aerodynamic force on the i-wing, ek is the unitary vector parallel to the k-axis
and ρ is the fluid density. On the other hand, we also analyse sectional forces at a given spanwise
position. To that end, we define the sectional force coefficients as

ck,i(ξ) =
2f i(ξ) · ek
ρU2c

, (5)

where f i(ξ) is the sectional force at the spanwise position ξ of the i-wing. Note that eq. (5) also
corresponds to the aerodynamic force coefficient for the 2D case.

As reported by Lee et al. [31], immersed boundary methods generate low amplitude, high frequency
spurious oscillations on the forces when the bodies are moving. These oscillations do not affect
the statistics of the forces during a cycle, and, since they do not represent a physical phenomenon,
are removed in the present analysis using a sharp cut-off low-pass filter. The cutoff frequency is
fc = (84∆t)−1 = 50f , ensuring that only the spurious oscillations are supressed.

Finally, the performance of the wings is assessed by means of the individual propulsive efficiency and
the global propulsive efficiency, computed as:

ηp,i =
CT,i

P i
, ηp =

∑
i=1,2 CT,i∑
i=1,2 P i

,

respectively, where CT,i is the average thrust coefficient (computed as the average of −Cx,i over
a cycle), and P i is the averaged non-dimensional input power of the i wing over a cycle. The
instantaneous power is computed as:

Pi(t) = Cz,i
ḣi(t)

U
+

2Mi ·$(t)

ρU3bc2
, (6)

where $(t) = φ̇(t)ex + θ̇(t)eξ is the angular frequency. In heaving, Mi is the aerodynamic moment

computed at any point along the ξi axis and φ̇ = 0. In flapping, Mi is computed at the intersection
of the ξi axis with the flapping axis, where ḣ = 0, so that the first term of eq. (6) is dropped.

3 Results

3.1 2D simulation: reference case

As a reference case we have selected a flow configuration with optimal kinematics as reported in pre-
vious works [18]. The temporal evolution of the force coefficients of the 2D reference case is displayed
in Figure 5. These results are discussed below together with the results of the 3D simulations. Note
that, the force coefficients obtained in the present simulations are in good agreement with the force
reported in [18] (not shown). Table 2 gathers the thrust and propulsive efficiencies of each airfoil
averaged over a cycle. The motion of the airfoils results in a net production of thrust, with an overall
propulsive efficiency slightly larger than the corresponding efficiency of an isolated airfoil oscillating
as the fore-airfoil. The average thrust of the hind-wing (cT,2) is reduced compared to the average
thrust of the fore-wing (cT,1) by approximately 20%. Despite this thrust reduction, the propulsive
efficiency of the hind-foil (ηp,2) is very similar to the propulsive efficiency of the fore-wing (ηp,1), as
shown in Table 2. Hence, the thrust reduction is accompanied by a reduction of the required power,
leading to a relatively constant propulsive efficiency for both airfoils.

Although the motion of the airfoils is symmetric with respect to the horizontal plane, a net lift
(cz = 0.51) is obtained in the tandem configuration as a result of wake deflection (see Fig. 6a below).
This phenomenon does not occur for the isolated airfoil with the present kinematics [18], although it
has been observed on isolated airfoils with different motions [32].
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cT,1 cT,2 ηp,1 ηp,2 ηp

1.02 0.81 0.24 0.23 0.23

Table 2. Averaged results of the 2D simulations. Mean thrust (cT,i), individual propulsive efficiencies (ηp,i)
and global propulsive efficiency (ηp).

(a) (b)

(c) (d)

Figure 5. Temporal evolution of the force coefficients. (a-b) Fore-wing, (c-d) hind-wing. (a) and (c)
horizontal force coefficient; (b) and (d) vertical force coefficient. ( ) 2D reference case; ( ) A = 2;
( ) A = 4. In all plots, the shaded region corresponds to the downstroke of each wing.

3.2 3D simulations: Aspect ratio effects

In order to assess the three dimensional effects due to the finite aspect ratio of the wings, the 2D and
the 3D heaving cases are compared first.

Figure 5 depicts the aerodynamic force coefficients (Cx,i and Cz,i) in heaving motion for both A,
together with the forces of the 2D reference case. Qualitatively, the aerodynamic forces of the finite
wings are similar to those of the 2D case. Both the fore and the hind-wing produce thrust (i.e.,
negative horizontal force) during most of the cycle. Figure 5a shows two thrust peaks for the fore-
wing at mid-downstroke and mid-upstroke; these peaks are also present for the hind-wing (Figure 5c)
but less intense, due to flow interaction, as it will be discussed below. On the other hand, the vertical
force for both airfoils is mostly positive during the downstroke and negative during the upstroke
(Figures 5b and 5d). These forces yield a zero mean lift, contrary to the non-zero mean lift observed
in the 2D case. This difference on the mean lift is clearly observable in the structure of the far wake
of these cases. To illustrate this, Figure 6 shows the vertical velocity component time-averaged over
a cycle. In the 2D case, Figure 6a, the deflection of the wake with respect to the horizontal plane
is clearly visible. In the 3D heaving case with A=4, no significant deviation from anti-symmetry is
observed in the wake, Figure 6b. A similar observation was reported by Dong et al. [33] on single
plunging foils and wings at similar reduced frequencies.

Regarding the effect of the aspect ratio on the forces, Figures 5a and 5b show that, on the fore-wing,
larger A leads to higher forces during the mid-upstroke and mid-downstroke. On the hind-wing
(Figures 5c and 5d), the temporal evolution of the force coefficients presents more oscillations due
to the interaction with the wake of the fore-wing, like in the 2D configuration [18]. Despite this, a
qualitatively similar increase in the peak forces of the hind-wing withA is also observed. In fact, the
average forces over half cycle of each wing decrease roughly 10% from A = 4 to 2. This is reported
in Table 3 that gathers the thrust and lift coefficients averaged over half a cycle and the propulsive
efficiencies of each wing.

Figure 7 shows visualizations of the three-dimensional simulations for the cases A = 2 and A = 4
at various time instants during the cycle. The vortical structures depicted in the figure correspond
to iso-surfaces of the second invariant of the velocity gradient tensor, Q [34]. The iso-surfaces of
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(a) (b)

Figure 6. Vertical velocity time-averaged over a cycle. (a) 2D reference case, (b) midspan plane of AR = 4
heaving case. Contours are normalized with the freestream velocity, U .

A CT,1 CT,2 Cz,1 Cz,2 ηp,1 ηp,2 ηp

Heaving
2 0.81 0.57 3.83 2.05 0.23 0.21 0.23
4 0.91 0.65 4.39 2.24 0.23 0.22 0.23

Flapping
2 0.62 0.45 3.42 1.90 0.22 0.19 0.21
4 0.66 0.49 3.78 2.04 0.21 0.19 0.20

Table 3. Average forces during half-stroke and propulsive efficiencies for the finite span cases.

Q = 6Ω2
0 are coloured with the spanwise vorticity, ωy, where Ω0 = 2πf is the maximum angular

velocity. On the other hand, semi-transparent iso-surfaces correspond to Q = 3Ω2
0 and are associated

to less intense vortical structures. Figure 7a depicts the flow structures at the end of the fore-wing’s
downstroke. For both A one can appreciate the two main vortical structures developed during the
motion, namely: the trailing edge vortex developed by the fore-wing (TV), and a leading edge vortex
on the hind-wing. The latter is denoted as the induced leading edge vortex (iLEV), since it is induced
by the wake shed by the fore-wing. For both A, the TV and the iLEV tilt upwards and break near
the tips of the hind-wing. However, for A = 4, there is a region at the midspan where both vortices
resemble two-dimensional vortices. This breakdown observed near the wing tips progresses towards
mid section, as observed at later time instants in Figures 7b and 7c. The progression of the breakdown
seems to occur at the same velocity for bothA. As a consequence, the dipole in the midspan section
of the A = 2 case breaks down earlier than in the A = 4 case. This breakdown of the vortices at
the midspan is in accordance with observations on pitching tandem wings of A = 2 [21]. Finally, it
is interesting to note that the vortex structures near the tips of both wings are very similar for both
A at all times depicted in Figure 7.

It is interesting to analyse if the differences between the flow structures observed in Figure 7 for
each A have a direct impact on the forces. Hence, we compute the sectional forces at the mid-span
section, ξ = ξm (see Figures 2c and 2d) and at the inboard (or equivalently, outboard) sections,
ξ = ξI (ξO). These sectional force coefficients are shown in Figure 8. The sectional force coefficients
differ at the mid-span (Figure 8a), where Figure 7a shows differences in the vortical structures of
cases A = 2 and 4. In particular, Figure 8a shows that the peak sectional forces of both wing at
midspan decrease with decreasingA. On the other hand, Figure 8b shows that the sectional forces at
spanwise positions which are influenced by the wing-tip vortices are very similar for bothA, provided
that sections at the same distance to the wing tip are considered. Comparison of sectional forces at
different chordwise sections reveals that, for the present case, this similarity is extended up to 0.75c
from the wing tips for both the fore-wing and the hind-wing (not shown).

In order to analyse the origin of the discrepances in the forces at the midspan section, Figures 9
and 10 depict the spanwise vorticity of the 2D case, and of the 3D simulations at ξ = ξm, respectively.
Figure 9 shows a complete cycle of the 2D case. It is interesting to compare the first half (Figures 9a–
9d), which corresponds to the downstroke of the fore-wing, and the second half of the cycle (Figures 9e–
9h). One can appreciate that the dipole that is formed by the TV and the iLEV on the lower surface
of the hind-airfoil during its upstroke (Figures 9a–9c) remains close to the hind-airfoil during its
downstroke (Figures 9d–9f). The same does not happen to the dipole that develops on the upper
surface (Figures 9e and 9f), which detaches from the foil and travels downstream (Figures 9g and 9h).
This difference is clearly appreciated by analysing the position of the vortices in Figures 9a and 9f.
The relative attachment of the dipole during the hind-wing downstroke explains the larger peak forces
near t/T = 0.75 (Figure 9f) compared to those at t/T = 0.25 (Figure 9b), during the upstroke of the

8



TV

iLEV

TV

iLEV

ωyc/U

(a) t/T = 0.5

(b) t/T = 0.75

(c) t/T = 1

Figure 7. Flow visualization of the cases in heaving motion at various time instants: (a) end of the fore-wing
downstroke; (b) fore-wing mid-upstroke; and (c) end of the fore-wing upstroke. (left) A = 2, and (right)
A = 4. Vortices are represented by means of the Q-criterion [34]. Semi-transparent iso-surface correspond
to Q = 3Ω2

0; iso-surface coloured with the spanwise vorticity, ωy, correspond to Q = 6Ω2
0.
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fore-wing hind-wing

(a) section m

fore-wing hind-wing

(b) section I (O)

Figure 8. Temporal evolution of sectional force coefficients at chordwise sections (a) ξ = ξm and (b) ξ = ξI .
( ) A = 2, ( ) A = 4 and ( ) 2D force coefficient. As in Figure 5, the shaded region correspond to
the downstroke of each wing.
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Figure 9. Spanwise vorticity contours of the 2D simulation during a full period. Pictures correspond to
different equidistant time instants. (a-d) from t/T = 0.125 to t/T = 0.5; (e-h): from t/T = 0.625 to t/T = 1.

hind-wing, as shown in Figure 5. Likewise, the development of a leading edge vortex on the suction
surface of the fore-wing at the end of its downstroke (Figure 9d) explains the force reduction during
its upstroke. In particular, this vortex lowers the pressure on the upper surface, leading to an increase
in the force normal to the airfoil whose projection on the x- and z-axes leads to an increase of both
cx (thrust reduction) and cz (negative force reduction), respectively.

Figure 10 displays only the first half of the cycle for the finite aspect ratio wings, since the flow is
symmetric with respect to the z = 0 plane on the other half of the cycle. The spanwise vorticity
contours at the mid-span show that the iLEV development from the shear layer of the fore-wing,
as well as its first interaction with the TV, are qualitatively similar to the 2D case (Figures 9a–9d)
for both A. The subsequent evolution of the dipole can be observed on the lower surface of the
hind-wing, which corresponds to the vortices shed during the previous cycle. Specifically, the vortical
structures on the lower hind-wing surface would correspond to the iLEV and TV at t = t0 + 0.5T
(being t0 the time specified in Figure 10) with the opposite vorticity. It is observed that, as the
vortices interact and travel downstream, the differences between the cases become more evident.
For A = 4 (Figures 10e–10h), the dipole travels downstream and detaches from the hind-wing, like
during the downstroke of the 2D hind-airfoil (Figures 9e–9h). On the contrary, the vorticity intensity
of the dipole forA = 4 diminishes faster than its 2D counterpart. This effect is due to the spanwise
compression of the wake, also observed for single pitching/heaving wings [33, 35, 36, 37]. On the
other hand, a proper dipole is not formed between the TV and the iLEV over the A = 2 hind-wing
(Figures 10a–10d); instead, vortex breakdown from the tips reach the midspan section before, as
shown in Figure 7b.
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Figure 10. Spanwise vorticity contours at section ξ = ξm during the downstroke of the fore-wing. From
left to right, t/T = 0.125, 0.25, 0.375 and 0.5. The upper row corresponds to A = 2 and the lower row to
A = 4.

Although vortical interaction is clearly different at midspan of the hind-wing for A = 2 and 4, it
does not explain the differences of the sectional forces on the fore-wing (Figure 8a), since no vortices
are found at the midspan of the fore-wing. Hence, the reduction of the sectional forces at ξ = ξm
on the fore-wing with lowerA seems more likely explained by finite-wing effects, namely, downwash
induced velocity as in steady aerodynamics. Moreover, since the difference of the sectional force of
the hind-wing withA is similar to that of the fore-wing, it can be concluded that finite-wing effects
are also the main responsible for force reduction on the hind-wing whenA decreases. Consequently,
vortex breakdown at the midspan has a secondary effect on the forces since it does not occur close
to the wing surface [24].

To summarize, Table 3 gathers, for each wing, the thrust and lift coefficients averaged over half a
cycle, as well as the individual and global propulsive efficiencies. The averaged force coefficients are
found to be smaller forA = 2 compared toA = 4, both for the fore-wing and the hind-wing. If the
mean thrust of each wing is compared to its two-dimensional counterpart (Table 2), a reduction of
approximately 21% and 11% is obtained for the fore-wing ofA = 2 and 4, respectively. Preliminary
simulations of isolated wings (not shown here) have shown that the thrust generated by the fore-wing
is independent of the vortical interaction between the fore- and hind-wings, in agreement with previous
works [8, 16]. This suggests that the aforementioned thrust reduction is mainly due to wing-tip effects,
namely, induced downwash velocity. For the hind-wing, the thrust reduction from 2D to 3D is larger,
from 29% forA = 2 to 20% forA = 4 wings. Consequently, three-dimensional vortical mechanisms
which are not present in the 2D case (i.e., wing-tip vortices and vortex breakdown) influence the
hind-wing’s thrust generation. Indeed, the thrust reduction of the hind-wing with respect to the
fore-wing (1 − CT,2/CT,1) is very similar for both aspect ratios (30% and 28% for A = 2 and 4,
respectively), and higher than for the two-dimensional case, which is close to 20%. This leads to the
conclusion that 3D vortex interaction, for theA considered in this study, has a non-negligible impact
on the aerodynamic forces. Despite the detriment in thrust generation, the propulsive efficiency of
the hind-wing (ηp,2) is very similar to the propulsive efficiency of the fore-wing (ηp,1) and only slightly
lower than the individual propulsive efficiencies of the two-dimensional case. Consequently, the overall
propulsive efficiency, ηp is virtually the same. The low dependency of ηp onA was reported by Dong
et al. [33] for single wings in pitching and heaving motion, and later by Buchholz & Smits [37] for a
low-A pitching wing. In both cases, the Strouhal number was in the same range as the one considered
in the present study.

3.3 3D simulations: Heaving vs. flapping

From a mechanical point of view, heaving is not a realistic motion for either MAVs or flying animals.
Therefore, in the present section we analyse the differences between a pair of tandem finite wings
in heaving (section 3.2) and the same wings performing a flapping motion about a fixed axis, as
described in section 2.

Figure 11 shows the temporal evolution of the aerodynamic force coefficients in the heaving and
flapping configurations, for both A = 2 and 4. In the flapping case, for both the fore- and the
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Figure 11. Temporal evolution of the force coefficients. (a-b) Fore-wing, (c-d) hind-wing. (a) and (c)
horizontal force coefficient; (b) and (d) vertical force coefficient. A = 2: ( ) heaving, ( ) flapping; and
A = 4 ( ) heaving, ( ) flapping.

hind-wing, a decrease of the thrust peaks is observed compared to to the heaving case (Figures 11a
and 11c), while drag peaks (at t/T ≈ 0.35 and 0.85) remain virtually equal. This decrease is more
pronounced for A = 4 than for A = 2. As a consequence, the average thrust of both wings is
reduced in flapping motion when compared to heaving motion (see Table 3). Regarding the effect on
the vertical force, Figures 11b and 11d reveal an amplitude decrease for both wings in the flapping
case. Moreover, from heaving to flapping, there is a shift in the time at which forces are maximum.

Top row of Figure 12 shows the sectional aerodynamic forces at the characteristic section, ξC (viz.,
the section which moves like the 2D-configuration in flapping motion) for bothA and for the heaving
and flapping motion. One can appreciate that, for a given A, the sectional forces at ξC are very
similar both in heaving and flapping. This observation holds for the fore and the hind-wing and
for the horizontal and vertical components of the forces. However, the sectional force coefficients
vary with A. In particular, the peak forces are diminished for the lower aspect ratio. Since the
characteristic section, ξC , changes with A (ξC = 1.3c for A = 2, and ξC = 2.6 for A = 4), the
fact that the sectional forces at ξC vary with A but not with the motion seems to suggest that the
sectional forces do not depend only on the sectional motion but also on the vortical structures.

Since the amplitude of the aerodynamic forces is lower in flapping motion, there must be wing sections
with lower sectional forces than at ξC . To show this, Figure 12 (bottom row) displays the sectional
forces at ξI and ξO for the flapping motion of the A = 2 and 4 wings. As expected, the amplitude
of the vertical force is decreased at the inboard sections of the wings; the same happens for the peak
thrust. The opposite behaviour is observed at outboard wing section. Moreover, it is interesting
to note that, in addition to a reduction of the peak thrust at inboard sections, there is an increase
of positive horizontal force (drag), at the end of the downstroke. This effect is more pronounced
for the A = 4 wing. Additionally, the peak of the forces shifts forward in time from outboard to
inboard wing sections. This shift is related to the spanwise variation of the effective angle of attack,
αi(ξ), which is the angle between the chordwise direction (τi in Figure 2) and the flow velocity at the
mid-chord of the ξi-section. Particularly,

αi(ξ) = θi − tan−1

(
φ̇i(∆ξ + ξ)

U

)
(7)

where φ̇ is the time derivative of φ. The peak of αi occurs earlier at outboard sections than at inboard
sections of the wing, in accordance to peak of the forces.

The spanwise variation of the forces for both wings can be understood by looking at the spanwise
vorticity (Figure 13). The results correspond to A = 4, since for this case the differences between
the outboard and the inboard sections are more noticeable. Figure 13 depicts, for the inboard (ξI),
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Figure 12. Temporal evolution of the sectional (a) horizontal and (b) vertical force coefficients. For both
figures, top row displays the sectional forces at the characteristic section, ξC = 0.65b: A = 2: ( ) heaving,
( ) flapping; A = 4: ( ) heaving, ( ) flapping. Bottom row displays the sectional forces near the
wing tips during flapping motion: ( ) inboard section, ξI , and ( ) outboard section, ξO. ( ) A = 2 and
( ) A = 4.

midspan (ξm) and outboard (ξO) wing sections, the vorticity normal to the cylindrical surface whose
axis of revolution coincides with the flapping axis and with radii equal to ∆ξ+ξI , ∆ξ+ξm and ∆ξ+ξO,
respectively. These surfaces are also illustrated in Figure 14a. It is noticeable that the vorticity at
the midspan (second row in Figure 13) is very similar to that in heaving motion at the same section,
Figure 10. This is not true for the inboard and outboard wing sections. If we focus on the fore-wing
at ξ = ξI , a vortex is developed on the lower surface of the fore-wing, due to the pitch-up rotation of
the wing, t/T = 0.375. This vortex is labelled 1 in the figure. During the cycle, this vortex travels
downstream until it merges with the shear layer shed at the hind-wing’s trailing edge. The vortex
motion is chronologically indicated by the numbers in Figure 13 (top row). Note that, since only half
a cycle is shown, the vortex flips side from 2 to 3 and from 6 to 7 in the present representation. On
the contrary, if we compare the vorticity contour at the inboard (top row of Figure 13) and outboard
(bottom row) wing sections, it is appreciated that no vortex is shed at ξ = ξO. Instead, the shear
layer on the upper surface detaches at the leading edge (t/T = 0.5).

The spanwise variation of the vorticity can be explained by the spanwise variation of the effective
angle of attack (see eq. (7)). Near the inboard wing tip, the contribution of the vertical velocity to α1

is small, and inboard sections behave like an airfoil in pure pitching. Specifically, the shedding and
travelling of the vortices at the fore-wing leading edge at ξI is similar to that observed in pure pitching
foils for θ0 ≥ 8◦ (and similar Stc and Re) [38]. Outboard fore-wing sections have larger heaving
amplitudes. As a consequence, an LEV starts developing after the mid-downstroke (t/T = 0.375 in
Figure 13) at outboard spanwise locations, in a similar fashion as wings in flapping without pitching
motion [27]. However, pitch-up rotation inhibits its later development and shedding as for flapping
wings without pitching [27] or heaving airfoils [32].

The spanwise variation of the fore-wing wake flow affects the hind-wing. Figure 13 shows that, for a
given time instant, the trailing edge vortex is located further upwards and downstream at outboard
spanwise positions. As a consequence, the shear layer of the TV impinges earlier on the leading edge
at outboard wing sections and the iLEV starts developing earlier at outboard wing sections. This
is illustrated in the last column of Figure 13 (t/T = 0.5), where it is observed that the shear layer
shed during the downstroke of the fore-wing have just impinged on the leading edge of outboard wing
sections (bottom row); meanwhile at the inboard wing sections the shear layer has not yet reached
the leading edge of the hind-wing.

Figure 14 shows that, even with the spanwise variation of TV and iLEV, the overall vortical interac-
tions on the hind-wing for the flapping case are similar to the heaving case. Nonetheless, it is observed
that, as a consequence of the varying intensity of the vortices along the spanwise direction, both the
TV and iLEV are found more downstream and upwards on the outboard regions when compared to
the heaving case. At longer times, there is a vortex breakdown similar to the heaving case (Figure 15).

Regarding averaged forces, Table 3 shows that the mean thrust of each wing decreases in the flapping
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Figure 13. Spanwise vorticity contours during the downstroke (upstroke) of the fore- (hind-)wing at different
chordwise sections ofA = 4 wings in flapping motion. Each column correspond to a given time: from left to
right, t/T = 0.125, 0.25, 0.375 and 0.5. Upper row correspond to the inboard wing tip (ξ = ξI), middle row
correspond to the midspan section (ξ = ξm), and lower row correspond to the outboard wing tip (ξ = ξO).
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Figure 14. Vortical structures on the A = 4 hind-wing at t/T = 0.75 for the (a) flapping and (b) heaving
case. The vortical structures correspond to Q = 6Ω2

0 and are coloured with ωy (legend as in Figure 7).
The planes sketched in (a) and (b) are the ones used to display the vorticity contours in Figures 10 and 13,
respectively (note that in the latter, inboard and outboard planes are equivalent).

14



(a) t/T = 0.75

(b) t/T = 1

Figure 15. Visualization of the cases in flapping motion. (a) t/T = 0.75 and (b) t/T = 1. The closer tips
correspond to the inboard wingtips. Iso-surfaces of the Q-criterion are equal to those on Figure 7.

case compared to the heaving case. The reduction is more pronounced for A = 4 (27% and 26% for
the fore- and hind-wing, respectively) than for A = 2 (23% and 20% for the fore- and hind-wing,
respectively). On the other hand, the thrust reduction of the hind-wing compared to the fore-wing
is 27% for bothA, being very similar to the results observed in heaving. This entails that, as shown
before, the interaction between both wings is rather similar both in heaving and flapping motions.
Finally, a reduction in the propulsive efficiency, ηp, is also observed in the flapping case compared
to the heaving case. Contrary to heaving, ηp slightly decreases with A in the flapping case. This
adverse effect of A can be attributed to the fact that, as A increases, there is a larger region of
the wing which has a suboptimal motion, particularly close to the inboard wing tip, whose sectional
propulsive efficiency is lower. This is true for both the fore- and the hind-wing.

4 Conclusions

The objective of this study was to analyse how three dimensional effects influence the performance
of wings in tandem configuration undergoing a two-dimensional optimal kinematics. To do so, direct
numerical simulations, both in 2D and 3D, have been performed.

First, finite aspect ratio effects have been studied by considering wings of two different aspect ratios,
2 and 4, undergoing a heaving and pitching motion corresponding to the 2D optimal kinematics [18].
The analysis has been based on comparisons of the flow structure and of the aerodynamic forces on
the wings. For both A, the interaction mechanisms between the fore- and the hind-wing vortical
structures are qualitatively similar to the two-dimensional case. Namely, the shear layer shed by the
fore-wing induces a leading edge vortex on the hind-wing surface which interacts with the trailing
vortex of the fore-wing. However, in 3D, there is a breakdown of both vortices starting at the wing
tips of the hind-wing and progressing towards the midspan, leading to somewhat different vortex
organisation surrounding the wings. The mean thrust of the finite wings is lower than in the 2D
case. This reduction is larger with decreasing A. Moreover, it is found that the thrust reduction
is more pronounced on the hind-wing. This entails that 3D vortical mechanisms, not present in 2D,
have a non-negligible impact on the aerodynamic forces of the hind-wing. Nonetheless, the propulsive
efficiency (ηp) remains approximately constant for both A and for the 2D dimensional case. Our
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results are consistent with the observations of Dong et al [33] for single heaving/pitching wings, as
well as those of Broering and Lian [11] for tandem wings at a significantly lower Reynolds number
than the one considered here.

The results of the tandem wings in heaving motion have been compared to those obtained for a
flapping motion. The objective was to analyse the effects of having a more realistic, three-dimensional
motion. The results show that, for a given A, the aerodynamic forces decrease when the wings are
in flapping motion. A comparison of the sectional forces along the span reveals that the forces are
nearly identical for the heaving motion at midspan and for the flapping motion at the characteristic
section (i.e. the section whose motion corresponds to the 2D airfoil motion). On the contrary, the
amplitude of the vertical force decreases at inboard wing sections in flapping motion; likewise, both
the amplitude and the mean value of the thrust force decrease. This detrimental behaviour has been
linked to a sub-optimal motion of the inboard region, which is close to a pure pitching motion of
low efficiency [38]. It should be noted that this behaviour is found both on the fore-wing and on the
hind-wing. This sub-optimal region of the wings entails not only a decrease of the mean thrust, but
also a decrease of the propulsive efficiency compared to the heaving case, which is more noticeable
for A = 4, since the extension of this region is larger in this case.

The present results also suggest that for 3D configurations, a moderate spacing between the wings (i.e,
s . c) is probably desirable to avoid the full breakdown of the TEV before it reaches the hind-wing.
This is not the case for 2D airfoils in tandem configuration, where the vortices shed by the fore-wing
dissipate very slowly, allowing basically the same vortical interactions when the distance between the
airfoils is increased by λ (where λ is the wavelength of wake shed by the fore-wing) [39, 21].

To summarise, it has been found that 2D tandem simulations provide reasonable predictions of the
propulsive efficiency of finite aspect ratio wings, in the range of Reynolds and Strouhal numbers
studied here. On the other hand, mean thrust production of the hind-wing is not properly estimated
in 2D simulations, due to differences between 2D and 3D vortical interactions. Concerning the mean
lift, it has been observed that a non-zero value is obtained in 2D that can be attributed to the well-
known phenomenon of wake deflection. On the contrary, in the 3D simulations the mean lift is zero for
all cases. This is consistent with the observations of Dong et al [33] for single heaving/pitching wings
and hints that, for finite-aspect ratio tandem wings, the practical relevance of the wake deflection
phenomenon might be limited. Finally, it has been found that the aerodynamic performance of the
tandem wings is deteriorated when a realistic, three-dimensional flapping motion is considered.
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the flow around a model winged seed in auto-rotation. Flow Turbul. Combust., 101(2):477–497,
2018.

17



[30] M. Moriche, A. Gonzalo, M., O. Flores, and M. Garćıa-Villalba. Fast transverse maneuvers at
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