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Research on wave propagation along coronal loops

was restricted to theoretical approaches for many

years, as they were not observed in existing solar data.

With the arrival of the new generation solar missions,

some of these oscillations could be observed and

their characteristics investigated. Propagating waves

have been revealed mainly during solar flares so

they have been related to plasma evolution inside

the loop. Loop waves have been attributed to the

MHD evolution of a perturbed magnetic tube. Plasma

sloshing has been proposed as a new physical process

able to trigger oscillations in coronal loops. In this

scenario, the oscillation would be produced by the

propagation of a pressure wave caused by a brief,

intense energy release at the beginning of the flaring

event. Distinguishing between both processes is not

easy and the analysis of many events is needed. Nor

revealing oscillatory patterns in flare light curves is

easy because the oscillation is rapidly attenuated.

The use of wavelets is adequate to reveal oscillatory

patterns that are localised in time. This work shows

some important aspects of the wavelet analysis of

stellar flares light curves.

1. Introduction

In the decade of 1980s, solar physicists focussed their

attention on a phenomenon causing wave propagation

on the solar surface. This phenomenon is currently

known as Solar Seismology and comprises propagation

of waves in both, photosphere and corona. In the

latter, waves propagate along magnetic tubes, the so-

called coronal loops and their study provides a way to

determine physical parameters of the plasma inside the

loop.
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by/4.0/, which permits unrestricted use, provided the original author and
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Coronal seismology is indeed a powerful tool to investigate basic properties of the solar

corona as it provides unique information on coronal physical conditions [1]. From the Magneto-

Hydrodynamics (MHD) approach, a coronal loop that is perturbed from its equilibrium state

can oscillate in a number of modes (see [2] for a formal treatment of equations). These modes

are divided into two categories: trapped modes, which are modes not transmitted outside the

tube, and leaky modes, when part of their energy is released into the surrounding medium. The

latter experiences damping by radiating waves [3]. The former does not display such acoustic

damping [4]. The most common leaky modes studied in literature are sausage and kink modes

[5]. Kink modes do not produce changes in the plasma emission measure and so, they do not

cause variations in the emitted flux. They are associated to transversal vibrations of the loop

to the perpendicular plane containing the loop footprints [6]. Sausage modes are fundamental

axisymmetric modes likely produced by internal excitation. According to [7], energy is released

instantaneously inside the loop causing an increase in the temperature of the plasma. As a result,

plasma kinetic pressure increases, expanding the loop and causing a pulsation when it returns to

equilibrium. This pulsation is transmitted onto the energetic electrons, which move downwards

along the loop. When those electrons reach the loop footprints, they cause modulated X-ray

emission from chromospheric plasma. This explanation is not completely satisfactory because

a continuous input of high energy electrons is needed and this is not expected in single loop

flaring events. An alternative interpretation is provided by [8]. An increase in the magnetic

pressure in the loop alters the pressure equilibrium, modifies its volume and, consequently, the

emission measure of the plasma. If the magnetic flux is conserved and the plasma is considered

optically thin, the increment in volume is proportional to the decrement in brightness. When

the loop returns to equilibrium, it pulses and an oscillatory pattern is observed. Both scenarios

predict amplitudes in flux of less than 10% for a typical flaring loop, with temperatures of up

to 50 MK, densities ∼ 1010 cm2 and magnetic fields of a few hundred Gauss. [9] proposes a

different physical process to trigger oscillations inside a coronal loop. Through Hydrodynamic

(HD) simulations, the author shows that brief and intense heat pulses are able to develop large

amplitude (20% in density) oscillations in flaring loops. The only restriction for the oscillation

to occur is that the duration of the heat pulse is shorter than the sound crossing time of the

flaring loop. In such scenario, the plasma does not have time to reach pressure equilibrium during

heating and traveling pressure fronts develop. The pressure front is reflected at the loop footprint

and then, it travels backwards until it reaches the other footprint, where it is again reflected. Due

to damping by energy looses, only a few oscillations are observed.

Distinguishing between the different proposed scenarios is required to better understand the

physical process triggering oscillations during flares. Oscillatory phenomena have been observed

in solar flaring loops at different wavelengths [10–13]. By analogy with the Sun, oscillatory

patterns observed during stellar flares are interpreted as the natural MHD evolution of plasma

inside the flaring loop [8,14–20]. Attempts in understanding the physical process triggering such

oscillations reveal a variety of likely phenomena, from slow magneto acoustic waves [17,21–24]

to fast sausage or kink modes [6,11,25–27] or more exotic processes [28]. More observations are

needed to unveil the actual mechanism triggering oscillations in those stars.

Wavelet analysis has proven to be suitable to detect oscillations in light curves from solar flares

[29]. These oscillations suffer for damping and frequency modulation as the plasma temperature

decreases and they are localised in time. Classical Fourier transforms cannot deal effectively with

non-stationary signals. Short-time Fourier transforms are a modification of the latter, where a

mask function (or window) is applied to the signal. The object of this masking is to restrict the

analysis of the signal to particular time periods. Thus, the short-time Fourier transform can be

used to determine frequencies and/or phases of oscillatory phenomena in local segments of the

signal. The disadvantage of the short-time Fourier transform is that it has a fixed resolution for all

frequencies. Wide time-windows result in high frequency resolution, as for a classical Fourier

transform, while narrow time-windows provide high temporal resolution but low frequency
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resolution. If the signal contains both, low and high frequency oscillatory patterns, the short-

time Fourier transform must be applied more than once using different windows to reveal each

frequency component. Wavelet transforms are introduced to solve this issue. They show high

temporal resolution at high frequencies and low temporal resolution at low frequencies. The

combined resolution of both is then limited. The wavelet (mother wavelet or mother function)

is a time-limited function, contrarily to the sinusoids used in Fourier analysis. A commonly used

mother function is the Morlet wavelet. A brief description of this wavelet and its usefulness in

detecting non-stationary oscillatory patterns is given in Section 2.

2. Brief description of the Morlet wavelet and its transform

(a) The Morlet wavelet

The Morlet wavelet is a kind of Gabor wavelet, this is, a plane wave localised by a Gaussian

window. The expression for the 1-D Gabor wavelet is [30]

ΨG(t) = e−jk0(t−t0)e−(t−t0)
2a2

(2.1)

where k0 modulates the frequency and a controls the exponential decay. The 1-D Gabor

wavelet does not have orthonormal basis. Its inverse transform cannot be easily reconstructed

by a linear superposition. [31] modified the Gabor wavelet to make it satisfy the admissibility

condition. This admissibility condition ensures that the inverse transform and Parseval’s formula

are applicable. The result is the so-called Morlet wavelet [32],

ΨM (t) = cσπ
− 1

4 e−
t
2

2

(

ejσt − e−
σ
2

2

)

cσ =

(

1 + e−σ2

− 2e−
3σ2

4

)

(2.2)

whose Fourier transform is

Ψ̂M (ω) = cσπ
− 1

4
√
2π

(

e−
(σ−ω)2

2 − e−
σ
2

2 e−
ω
2

2

)

(2.3)

Here, σ is the central frequency of the wavelet. If σ≥ 6, the second term inside the brackets

in ΨM (t) (Equation 2.2) is negligible and also the exponentials in cσ . Then, the Morlet wavelet is

simplified to

ΨM (t) = π− 1
4 e−

t
2

2 ejσt (2.4)

with Fourier transform,

Ψ̂M (ω) = π− 1
4
√
2πe−

w
2

2 e−
(σ−ω)2

2 (2.5)

This is the usual definition of the Morlet wavelet in the literature [33].

(b) The wavelet transform

The wavelet transform of a continuous-time signal x(t) is determined by
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WM (ω) =
1√
a

∫+∞

−∞

Ψ∗
M

(

t− b

a

)

x(t)dt (2.6)

where Ψ∗
M is the complex conjugate of the wavelet and a and b are the scaling and the shifting

factor, respectively. For the Morlet wavelet,

WM (ω) =
1√
a

∫+∞

−∞

π− 1
4 e−

1
2 (

t−b

a
)
2

e−jσ( t−b

a
)x(t) dt (2.7)

The wavelet transform can be understood as a convolution of the signal with the mother

wavelet. A family of transforms is obtained by varying the scaling a and shifting b. For low

values of a, the wavelet is well localised in frequency, but poorly localised in time. For high

values of a, the wavelet is poorly localised in frequency. In other words, the wavelet transform

has information in both time and frequency, similarly to a short-time Fourier transform but with

variable resolution in both time and frequency domains.

3. Synthetic flare light curves

This work is focussed on the analysis of light curves from solar and stellar flares using wavelet

transforms. The Morlet wavelet is used because it has been proven to be able to unveil oscillatory

patterns in noisy coronal flare light curves (see Section 1). Such oscillations are difficult to unveil

in the time domain but they give invaluable information on the physical properties of the hot

plasma confined in coronal loops. To show the powerfulness of the wavelet transform analysis,

artificial data are generated in this section. In particular, synthetic light curves with different

photon statistics and flare amplitudes are generated. Oscillation patterns with distinct amplitudes

are added as a last step. Amplitude damping is reproduced by applying an exponential decay

with time:

A∝Aoe
−t/τo (3.1)

being Ao the initial amplitude of the oscillation and τo the decay time. The oscillation is assumed

to be a sinusoidal function

A∝Aoe
−t/τo sinωt (3.2)

with ω= 2πν and ν the oscillation frequency (ν =1/T ; T is the oscillation period). To create the

flare geometry, rapid exponential rise of the stellar flux is assumed at the first stage of the flare:

f = f0(1 +Afe
t/τr ) (3.3)

where f0 is the quiescent flux (the flux before the flaring event), Af is the flare amplitude and τr
is the rise time. Then it follows a slow decay with τd

f = f0(1 + Afe
−t/τd) (3.4)

For the purpose of comparing synthetic results with those of actual stellar light curves, the flare

length, rise and decay times are chosen to match those observed in some young stars [8,34,35]:

τr = 5 ks and τd = 50 ks for a total flare duration of 130 ks. An example of a synthetic flare light

curve is shown in Fig. 1, left panel. For the oscillation, three different frequencies are analysed.

Similarly, three values of τo are simulated: 2.5, 5 and 10 ks, corresponding to 0.5, 1 and 2 times the

period of the simulated oscillations. This combination of values produces quality parameters for

the oscillation Q∼ 6− 25, typically observed in solar and stellar flares [8]. Figure 1 (right panel)

shows an example of a simulated oscillation with a small amplitude. A summary of the the set of

parameters used for the simulations is given in Table 1.
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Figure 1. Left: example of a simulated flare light curve with quiescent count-rate 0.1 s−1 and flare amplitude 6. Decay

time is 50 ks and rise time is 5 ks. Right: oscillation with amplitude 50% of the quiescent count-rate assumed in the left

panel. Oscillation frequency is 5 ks and damping time is 10 ks. Time binning is 100 s.

Table 1. Grid of parameters used for creating synthetic flare light curves

Parameter Name Simulated values Units

Quiescent rate cr 0.01/0.1/1.0 s−1

Flare amplitude Af 5/10/100 s−1

Oscillation starting time from flare maximum to -5/+5 ks

Oscillation frequency Po 2.5/5.0/10.0 ks

Oscillation amplitude (%) Ao/Af 0.15/0.3/0.5 ...

Damping time τo 2.5/5.0/10.0 ks

I include noise in the analysis to understand its role in the wavelet power spectrum. The

procedure by [36] is followed to generate random Poissonian deviations for each point of the

curve. Let N =N0e
−λt be a photon counting process (Poisson distributed) with a relaxation rate

λ. Its power spectrum is then a Lorentzian function

S(ω) =
N2

0n

λ2 + ω2 (3.5)

where n is the average pulse rate and ω =2πν, being ν = 1/t the sampled frequency. When

λ<< ν, S(ν)∝ 1/ν2 (i.e. red noise). Contrarily, S(ν) =N0n when the relaxation time λ>> ν

(constant power spectrum ore white noise).

4. Wavelet power spectrum of ideal light curves (noise-free)

The power spectrum of the wavelet transform is defined as |WM (ω)|2. Like the wavelet transform,

the wavelet power spectrum is a 2D function, being time and frequency the two independent

variables. Features in the temporal sequence (jumps, discontinuities, periodicity, ...) are revealed

in |WM (ω)|2 as significant peaks. In particular, sinusoid-type signals are shown in the power

spectrum as strips localised in frequency and expanding in time for the duration of the oscillation.

Figure 2 shows a synthetic light curve of a typical flare with a sinusoidal pattern added after

the maximum rate, and its wavelet power spectrum. The period of the sinusoid is 5000 s and

the starting time is 25000 s. The sinusoid is localised in frequency, at P = 5000 ± 1000 s (ω=

1.25± 0.25 × 10−3 rad s−1). Contrarily, the global shape of the light curve caused by the rapid

increase and gradual exponential decrease emission during the flaring event extends in frequency

below ω = 2π/104 rad s−1 (P > 10000 s).

The typical scenario observed in solar and stellar flares is, instead, an oscillation with varying

amplitude with time due to the lost of energy. Figure 3, shows a set of models of a flare light curve

with different oscillation patterns together with their wavelet power spectrum. For the purpose

of visually comparing the effect of increasing the amplitude of the oscillation without changing
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Figure 2. Simulation of a flare like curve with a low amplitude oscillation (Ao/Af = 10%) with period Po = 5 ks and no

damping. Parameters of the flare light curve are as in Figs. 1. Time binning is 100 s. Dotted line is for confidence level

66%, dashed line is for 95% confidence level and continuous line is for 99% confidence level.

the frequency, I plot two pairs of rows: the first and second rows correspond to sets of simulations

assuming amplitudes of 15% and 30%, respectively, and an oscillation period of 2.5 ks. The third

and fourth rows are like the first and second rows, respectively, but for an oscillation period

of 5 ks. From left to right, each row shows simulations with increasing oscillation decay time

(damping; 2.5, 5 and 10 ks, respectively; see top label in each panel of the figure). Cross-hatched

regions in the wavelet power spectrum indicate the cone of influence, where edge effects become

important. I plot contours for 67, 95 and 99% confidence levels (dotted, dashed and continuous

lines, respectively). The confidence levels are determined following Section 4.c, Eq. 18 of [33],

assuming a constant background spectrum in the wavelet, i.e. Pk = 1 in their equation. This chose

is justified because no noise is added to the time series at this stage.

As expected, the amplitude of the oscillation is an important factor for detecting it at a high

confidence level. Simulations with oscillation amplitude Ao/Af = 0.3 (30% of the count-rate just

before the oscillation) are detected at a confidence level > 95%, independently of the frequency

of the oscillation and the damping time, while oscillations with amplitude Ao/Af = 0.15 (15%

of the flux before the oscillation) are not detected at such confidence level. The effect of the

damping on the detection of the oscillation is to reduce the time period of high significance in the

wavelet power spectrum. This behaviour is evident in, e.g. the simulations shown in the second

row of Fig. 3, where the oscillation amplitude and frequency are fixed while the damping time

varies from 2.5 to 10 ks (from left to right). This result is related to the number of oscillation

periods/peaks observed well above the unperturbed flare light curve. If the oscillation is not

damped, the peak in the wavelet extends over the entire duration of the observation (see Fig. 2).

5. Effect of Poisson noise on the wavelet transform

In any physical process of photon emission, Poisson noise is usually dominant when the number

of photons detected is small. In such a case, the occurrence of independent random events is

described by a Poisson distribution. X-ray Astronomy is a clear example, since photon-rates are

low for many sources. Poisson noise is also amplified in photodetectors, which use to have

quantum efficiency below unity. Therefore, understanding the effect of noise in the wavelet

transform is necessary.

Noise is added to the simulations in the previous section by generating random Poissonian

deviations following the procedure by [36]. The resultant light curve is analysed using the wavelet
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Figure 3. Set of simulations without noise. Each row shows simulations of an oscillation with the same frequency

but different damping-decay time (from left to right, τo = 2.5, 5, 10 ks). First and second rows show simulations with

oscillation frequency 2.5 ks but different amplitude (15% and 30%, respectively). Third and fourth rows are as first and

second row, respectively, but with an oscillation frequency of 5 ks. Time binning is 100 s in every case. The contours are

66%, 95% and 99% confidence level for dotted, dashed and continuous line, respectively

transform, as in Section 4. An example of the resultant wavelet power spectra is shown in Fig. 4.

The effect of noise is to change the global spectrum, i.e. to enhance the background spectrum.

As a result, the significance of peaks in the wavelet spectrum is modified. In addition, other

spurious peaks close to that of the actual oscillation may appear in the power spectrum. The set of
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Figure 4. Set of simulations including noise. Light curve aspect and oscillation patterns are as in the second row of Fig. 3.

Time binning is 100 s.

simulations shown in Fig. 4 is similar to the second row of Fig. 3, i.e. flare with amplitude Af =5

and different oscillation patterns, but including also Poison noise. The peaks are still present.

However, the wavelet spectrum is noisier, in general. In some cases, another features with a lower

confidence level appear close to the actual oscillation period. These other features are spurious

and are a product of noise. This result is independent of the starting time of the oscillation.

To analyse whether pure noise in a flare light curve may produce high confidence levels in

the wavelet power spectrum, Montecarlo methods are used to create a thousand simulations

including Poisson noise but without any oscillation pattern. Two scenarios are checked: i) high

count-rate and ii) low count-rate, simulating high and low signal-to-noise ratio observations,

respectively. In both cases, the light curve is simulated using the same parameters than in the

previous section (Fig. 1). For the high count-rate scenario, cr= 0.1 s−1 is used. For the low count-

rate scenario, cr= 0.01 s−1 is used. In the high count-rate scenario, only 1% of the simulations

show a confidence level above 99% in the period range analysed, while 23% of the simulations

show at least one peak with a confidence level ∼ 95%. In the case of low count-rate, the percentage

of simulations showing peaks at the 99% confidence level reaches the 88%, while the 100% of

them show peaks at the 95% confidence level. Thus, for low count-rate (low signal-to-noise), it is

easy to obtain spurious peaks in the wavelet power spectrum at large confidence levels. For light

curves with high count-rates (high signal-to-noise ratio), the probability of detecting spurious

peaks in the wavelet power spectrum is low. Similar results are obtained for simulations of flare

light curves with low amplitude at the flare maximum. For instance, for a count-rate of 0.1 s−1 and

a flare amplitude of 3 (instead of 5) only 4% of the simulations show peaks at the 99% confidence

level.

From the analysis of Sections 4 and 5, it may be concluded that oscillatory patterns with

amplitudes > 10% in flare light curves are clearly detected through a wavelet analysis but

spurious peaks caused by Poisson noise may be misled as oscillation patterns in light curves with

low photon statistics. This result is complementary to that obtained by [37]. There, the authors

demonstrate that a pure random red noise time series may produce peaks in the power spectrum

whose power exceeds the 3σ confidence level. Here, I show that Poisson noise produces this effect

in flare light curves with low photon statistics.

6. Application to AT Mic

The wavelet power spectrum of a flare observed in X-rays in the M dwarf AT Mic was investigated

by [17]. In their work, the authors follow the method described in [33]. From their analysis, [17]

deduce that the flaring loop in AT Mic likely underwent an oscillation with a period of 750 s. The

authors present this result as the first oscillation observed in X-rays in a star different from the

Sun.
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Figure 5. Left: wavelet power spectrum (bottom sub-panel) of the X-ray light curve of AT Mic (top sub-panel). The

temporal binning is 40 s. The two peaks at 95% confidence levels are P = 800 and 2000 s, respectively. Right: de-

trended signal in the time period 15 ks< t < 25 ks (top sub-panel), filtered signal for 600 s <P < 900 s (mid sub-panel)

and filtered signal for 1800 s <P < 2200 s (bottom sub-panel).

Figure 5 shows the wavelet power spectrum of the light curve of AT Mic. The temporal bin is

30 s instead of the 10 s used by [17]. As it is shown in [33], smoothing the wavelet power spectrum

can be used to enhance confidence levels in regions of significant power. With this approach, two

peaks are detected in the wavelet power spectrum (top panel in Fig. 5) with confidence levels

above 99%: the P ≈ 800 s pattern already detected by [17] and a second one at P ≈ 2000 s. This

second pattern corresponds to a global, low-amplitude oscillation that is more evident in the de-

trended light curve. Right panel in Fig. 5 shows the de-trended light curve of AT Mic during

the flaring event. A simple moving average with a width of 1800 s is subtracted to remove the

global flare pattern. The other two panels in that figure are the result of filtering the light-curve

with an ideal band-pass filter centred at P = 750 s and P =2000 s, respectively. The filter has

frequency amplitude ∆ν =0.4 mHz (∆P = 150 s) for the feature at P = 750 s and ∆ν = 0.1 mHz

(∆P = 200 s) for the feature at P = 2000 s.

In Section 4, it was shown that the global shape of the flare light curve is not localised in time

or frequency. In particular, the power spectrum of the rapid increase and later slow exponential

decrease of intensity caused by the flare extends towards low frequency from a given value. In

the flare analysed here, the global baseline is clearly revealed at ω > 2π/3000 rad s−1 (P > 3000 s).

Thus, it seems adequate to filter the original dataset using a high-pass filter with this cut frequency

to keep only the oscillatory pattern. The result of applying this filter is shown in Figure 6. The

power of the two peaks are similar, indicating the high significance of the long period oscillation

too. Instead, the power of the (high frequency) noise is low.

The example shown in this section demonstrates that the wavelet analysis is a powerful tool to

reveal oscillations in stellar light curves, particularly after flaring events. A previous treatment of

the signal by, for example, filtering the data using a high-pass filter enhances the significance of

the detected features. It is also shown that the original light curve can be reconstructed from the

power spectrum and, in particular, any oscillation can be identified from the wavelet spectrum

by filtering the frequencies where the oscillation is not revealed.

7. Remarks and conclusions

This work shows the powerfulness of wavelet analysis to reveal non-stationary, oscillatory

patterns in solar and stellar flare light curves. These oscillations develop during the first stages of
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the flaring event and show low amplitudes compared to the global flux enhancement caused by

the flare. They are frequency modulated and last only for a few periods (typically 4 to 5 periods).

Therefore, flare oscillations are localised in time and frequency. Natural and instrumental noise

can mask them in the time domain due to their low amplitude. The Morlet wavelet is particularly

well suited to detect damped sinusoids in the frequency domain.

Simulations used for this work show different scenarios with parameters for the oscillation

comprising a wide range of values. In every simulation, the wavelet power spectrum reveals the

presence of the oscillation. The extension in time of the features revealed in the power spectrum

depends on the number of periods observed. For example, if the amplitude of the oscillation

decreases with time, it will be localised in time in the wavelet power spectrum (see Fig. 3).

Contrarily, if the oscillation is not damped, its power spectrum will look like that shown in Fig. 2.

Simulations also help in understanding the role of noise in the wavelet power spectrum. The

main effect of noise in the wavelet power spectrum is reducing the significance of the detected

features (Section 5). However, the oscillations are still revealed in the frequency domain, at a

lower significance level. Choosing the correct noise model is important to determine robust

confidence levels. Using simple white noise is wrong for most problems. Many natural processes

are controlled by frequency dependent noise (Section 3). This is particularly evident for the

scenario analysed in this work. In Section 5 it is shown that Poison noise can produce significant

peaks in the wavelet power spectrum. Assuming a white noise background spectrum would

detect such peaks as actual patterns in the dataset. Choosing a frequency dependent background

spectrum avoids misleading these peaks as oscillations in the observed light curve.

Data treatment previous to the wavelet analysis may be performed to enhance significant

features in the wavelet power spectrum. Time binning or smoothing is one frequently used [33].

Baseline filtering is commonly applied when a global, low frequency signal is present. Usually,

a simple polynomial fitting is enough to de-trend the signal [8]. A moving average is sometimes

used for this purpose (for a brief summary of baseline filtering techniques, the reader is referred
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to [38]). Nevertheless, the baseline of the original dataset can be also removed using an ideal band-

pass filter in the frequency domain [19]. This approach is applied to a real case in Section 6, as an

example. The wavelet analysis method is applied to an X-ray light curve of the M dwarf AT Mic

in this paper. This solar-like star underwent a large flare during the XMM-Newton observations

in October, 2000. The wavelet power spectrum of the X-ray light curve shows three significant

features. Two of them are localised in time (they extend only for a few kilo-seconds) and in

frequency. The third one is not localised in time and it extends from ω ≈ 2× 10−3 rad s−1 to

lower frequencies. This unlocalised feature is related to the global X-ray variability and can be

filtered using an ideal high-pass filter. After filtering, the significance of the other two features

is enhanced (Fig. 6). These two features likely correspond to the fundamental mode and first

harmonic of an oscillation triggered by the flaring event. The two sinusoids can be reconstructed

using a band-pass filter for each mode and then, by using an inverse wavelet transform (Fig. 5,

right panel).

The results presented in this paper show that a careful wavelet analysis, which may include

previous treatment of the data such as band-pass filtering, is a powerful tool to reveal oscillations

during stellar flares. Their detection and analysis is helping in determining the properties of the

hot plasma inside the coronal magnetic loops.
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