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Abstract

In this paper the axial vibrational behaviour of nanorods with an attached

point-mass is studied, using the modified strain energy theory. The natural

frequencies of the nanorod with the concentrated mass are obtained for dif-

ferent boundary conditions. The effects of the concentrated mass intensity,

mass location, as well as the value of scale parameters have been analysed.

For the case of small intensity of the concentrated mass, the natural frequen-

cies of the nanorod can be estimated using a first order perturbative solution.

These approximate results are compared with those corresponding to the ex-

act solution. For this case, from the properties of the eigenvalue perturbative

theory, the identification of single point mass in uniform nanorods (mass in-

tensity and position) is addressed. The results obtained encourage the use

of axial vibrations of nanorods as a very precise sensing technique.
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problems.

1. Introduction

Nowadays, the scientific community interest is attracted by the use of

nanostructures (carbon nanotubes, CNTs, graphene sheets, GSs, and nanowires)

as nano-sensors. The reason is connected with the promising features regard-

ing a wide range of applications such as gas detection, early disease detection,

gene mutation detection, DNA sequencing. In this respect, several reviews

have been recently published showing the different capabilities of the nanos-

tructures [1, 2, 3]. According to Khanna [4], nano-sensors can be classified

into six groups: mechanical, electrical, optical, magnetic, chemical, and ther-

mal.

In this research we are interested in mechanical nanoresonator sensors

and, in particular, in vibration based-methods as identification techniques.

The sensing principle for this class of nanoresonators is based on the mea-

surement of the variations of the resonant frequencies caused by (unknown)

additional masses located on the initial system. The conventional detection

principle assumes that the mass perturbation, caused by attachments of for-

eign atoms or molecules, chemical/molecular adsorption, the presence of virus

particles or protein-protein and protein-DNA interactions, can be described

as Dirac-delta point masses, having unknown intensities and locations, su-

perimposed to the given mass density of the nanoresonator. We refer to [1]

and [5] for more sophisticated mechanical models in which a simultaneous

perturbation of the stiffness properties coupled with the mass increase is also
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considered in the analysis. Our main goals in the present research are: (i)

to derive a continuum mechanical model able to describe the axial vibration

of a nanoresonator with a single additional point mass, and (ii) to develop a

method for the identification of the point mass from minimal eigenfrequency

data. In particular, we shall consider the inverse problem in which the added

mass is small with respect to the total mass of the nanosensor.

It is well known that the size effects are significant regarding the mechan-

ical behavior of the nanostructures which composes the nanoresonators. The

large computational effort required for the Molecular Dynamics techniques

(MD), see, among others, [6, 7, 8, 9], encourages the exploration of other

possibilities, such as generalized continuum mechanics approaches given that

classical continuum mechanics cannot predict the size effect, due to its scale-

free character.

Among the generalized continuum theories, we cite here three main groups:

Cosserat micropolar elasticity [10], the strain gradient elasticity of Mindlin

[11, 12], and the nonlocal continuum mechanics initiated by Eringen and

coworkers [13, 14], and formulated originally in integral form.

From the early integral nonlocal theory, Eringen [15] introduced a differ-

ential constitutive theory showing that, for a specific class of kernel functions,

the non-local integral constitutive equation can be transformed into a differ-

ential form, much easier to manage than the integral model. From the pioneer

work of Peddieson et al. [16], this differential version of the Eringen nonlocal

model has been widely used to address the mechanical behaviour (static and

dynamic) of nano-structures. The list of papers related with these applica-
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tions is extremely long to be reported here. The interested reader can read

the very recent review by Rafii-Tabar et al. [17].

Several authors used the Eringen elasticity theory to asses the vibra-

tional behaviour of beams and rods with attached masses. Thus, Elthaer et

al. [18], Murmu et al. [19], and Li et al. [20] applied this theory to ob-

tained the shift of the natural frequency of bending vibrations of nanobeams

carrying attached mass. Moreover, Murmu et al. [19] and Li et al. [20]

provided identification formulas from the approximated expressions of the

frequency shift. However, the cases studied in the above papers are rather

specific and correspond to a nano-cantilever with a mass attached at the tip

or a distributed mass through a certain length from the tip [19], while three

configurations, corresponding to a cantilever beam with a mass attached at

the tip, simply supported, and bi-clamped beams with the mass attached at

the mid-section, are analysed in [20].

Regarding the use of the Eringen elasticity theory applied to CNTs with a

single attached mass vibrating in axial direction, it is worth to note the work

by Aydogdu and Filiz [21] who analyzed the frequencies of axially vibrating

CNTs (clamped-clamped and clamped-free) with a single attached mass

located at different positions.

Li et al. [22] studied the natural frequencies of an axially vibrating

nanorod with an elastically restrained end by a nanospring (depending of

the stiffness of the nanospring this end could be considered clamped or free),

and with an attached mass at the other end considered free. In this analysis,

the Love hypotheses are considered (i.e. the inertial effects of radial motion
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have been taken into account).

Nevertheless, several authors have pointed out some inconsistencies aris-

ing from the Eringen differential model when it is applied to the static be-

havior of bars in tension [23], static bending behaviour of a Euler-Bernoulli

beams [16, 24, 25, 26, 27] or flexural vibrations of a cantilever beam [28].

Recently, Fernández–Sáez et al. [29] and Romano et al. [30] give some

new insights on the origin of these inconsistencies. Therefore, a more suit-

able approach to describe the mechanical behaviour of the nanostructures is

needed.

The modified strain gradient elasticity theory was proposed by Lam et

al. [31] based on previous developments by Mindlin [12] and Fleck and

Hutchinson [32]. This approach needs new additional equilibrium equations

to govern the behavior of higher-order stresses, and contain only three non-

classical constants for isotropic linear elastic materials. Some papers can

be cited to illustrate (the list is not exhaustive) the use of this theory to

model the mechanical behaviour of 1D simple nanostructures (beams and

rods). Thus, using this approach the static and dynamic bending behavior

of Euler-Bernoulli beams [33] and Timoshenko beams has been studied [34].

Akgoz and Civalek [35, 36] obtained analytical solutions for the buckling

problem of axially loaded nano-sized beams. The free torsional vibrations of

microbars have been analyzed in [37, 38]. Akgoz and Civalek also studied

the longitudinal vibrations of homogeneous [39] and nonhomogeneous (func-

tionally graded material) [40] microbars using the simple rod theory, while

Guven [41] analyzed the propagation of longitudinal stress waves based on

5

Pepe
Resaltado

Pepe
Resaltado

Pepe
Resaltado

Pepe
Resaltado



Love-Bishop hypothesis, i.e. considering the lateral deformation and the

shear strain effects.

To our knowledge, there is no theoretical investigation on the axial vibra-

tions of nanorods with attached concentrated mass when the modified strain

gradient elasticity theory of Lam et al. [31] is used as constitutive model.

This analysis is relevant regarding the nanosensor applications of this kind

of structures.

Regarding the experimental determination of frequencies in axially vi-

brating nanorods, some papers can be found in the literature (see for in-

stance, [42, 43, 44]). However, to the authors knowledge, no experimental

works dealing with axially vibrating nanorods with attached masses have

been published.

In this paper we analyze the axial vibrational behavior of a nanorod

carrying a concentrated mass through its span and subjected to different

boundary conditions. The mechanical behavior of the nanorod is modelled

using the modified strain gradient theory proposed by Lam et al. [31]. The

effects of the mass intensity, location as well as the value of scale parameter

have been analyzed. For the case of small intensity of the concentrated

mass, a first order perturbative technique is used to estimate the natural

frequencies of the nanorod. The approximate results are compared with

those corresponding to the exact solution. Basing on the explicit expression

of the first-order eigenfrequency change induced by the point mass, we are

able to formulate and solve the inverse problem consisting in the identification

of the location and intensity of the point mass in a uniform nanorod from
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minimal eigenfrequency data. In particular, for nanorods under a specified

set of end conditions, the method gives closed-form expressions of both the

location and the intensity of the point mass in terms of a suitable pair of

eigenfrequencies of the nanorod.

The paper is organized as follows. The mechanical model of the nanorod

under longitudinal free vibration with and without point mass is briefly re-

called in Section 2. Section 3 is devoted to the illustration of the perturbation

effects of the small added mass on the eigenvalues of the nanorod. The in-

verse problem of identifying the position and the intensity of the small point

mass from eigenfrequency shifts is addressed in Section 4. Applications and

results of numerical simulations, both of the direct and the inverse eigenvalue

problem, are reported and commented in Section 5.

2. The mechanical model

2.1. Brief resume of the modified strain gradient theory

The modified strain gradient theory was presented by Lam et al. [31], who

considered the following expression for the strain energy W corresponding to

a linear elastic isotropic material occupying a volume V

W =

∫
V

(
σijεij + piγi + τ

(1)
ijkη

(1)
ijk +ms

ijχ
s
ij

)
dv, (1)

where the notational convention that repeated indices are implicitly summed

from 1 to 3 has been adopted hereinafter. Classical and higher order stress
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measures σij, pi, τ
(1)
ijk , m

s
ij are defined as [31]

σij =

(
K − 2G

3

)
δijεmm + 2Gεij, (2)

pi = 2Gl20γi, (3)

τ
(1)
ijk = 2Gl21η

(1)
ijk, (4)

ms
ij = 2Gl22χ

s
ij, (5)

where the strain tensor εij, the dilatational gradient vector γi, the deviatoric

stretch gradient tensor η
(1)
ijk and the symmetric rotation gradient tensor χs

ij

are given by

εik =
1

2
(ui,j + uj,i) , (6)

γi = εmm,i, (7)

η
(1)
ijk =

1

3
(εjk,i + εki,j + εij,k)−

− 1

15
[δij (εmm,k + 2εmk,m) + δjk (εmm,i + 2εmi,m) + δki (εmm,j + 2εmj,m)] ,

(8)

χs
ij =

1

2
(θi,j + θj,i) . (9)

Here, ui is the ith cartesian component of the displacement vector, i = 1, 2, 3,

and θi is the rotation vector expressed as

θi =
1

2
eijkuk,j. (10)

δij is the Kronecker delta, and eijk is the permutation symbol.

Bulk modulus K = E/(3(1 − 2ν)), K > 0, and shear modulus G =

E/(2(1+ ν)), G > 0, are defined in the classical way in terms of the Young’s
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modulus E, E > 0, and Poisson ratio ν, ν > 0. To complete the model, three

additional materials constants, l0 > 0, l1 > 0, l2 > 0, which account for scale

effects are needed.

2.2. Modified strain gradient model for the axial vibrations of a uniform

nanorod

Let us specialize the general modified strain gradient theory to the free

longitudinal undamped vibrations of a slender straight uniform nanorod of

length L, vibrating along its longitudinal axis x. Assuming the hypothesis

of the simple theory of thin bars (i.e., rigid translation of the cross section

along the x direction), the equation governing the axial displacement U(x, t)

of the nanorod reads as, see [39] for details,

aU ′′(x, t)− bU IV (x, t) = ρÜ(x, t), (11)

where U ′(x, t) and U̇(x, t) indicate the first partial derivative of the function

U with respect to x and t, respectively, x ∈ (0, L) and t > 0.

According to [39], the coefficient a, a > 0, plays the role of the ax-

ial stiffness of the nanorod, and it can be conventionally expressed as a =

EA. Here, A is a geometrical parameter, which, in analogy with classical

large-scale rods, can be made coincident with the cross-sectional area of the

nanorod. The coefficient ρ > 0 is the constant mass per unit length. The

coefficient b takes the expression

b = GA

(
2l20 +

4

5
l21

)
. (12)
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Using the classical separation of variables method, the axial displacement

U(x, t) can be expressed as

U(x, t) = u(x)eiωt, (13)

where u = u(x) is the amplitude of the normal mode (eigenfunction) associ-

ated to the natural (radian) frequency ω. Substituting Eq.(13) into Eq.(11),

the following ordinary differential equation is obtained

buIV − au′′ = λρu, x ∈ (0, L), (14)

λ = ω2 being the eigenvalue. We shall be concerned with the following sets

of classical (left) and non-classical (right) boundary conditions.

Clamped-Clamped (C-C)

u(0) = 0, u′′(0) = 0, (15)

u(L) = 0, u′′(L) = 0; (16)

Clamped-Free (C-F)

u(0) = 0, u′′(0) = 0, (17)

u′(L) = 0, u′′′(L) = 0; (18)

Free-Free (F-F)

u′(0) = 0, u′′′(0) = 0, (19)

u′(L) = 0, u′′′(L) = 0. (20)
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The non-classical end conditions selected above are only one of the possible

sets of non-classical boundary conditions that may be assigned at the ends of

a nanorod. Our choice is motivated by the fact that these boundary operators

ensure the self-adjointness of the eigenvalue problem and, then, the reality

of the eigenvalues. To show this, let D =
(
b d4

dx4 − a d2

dx2

)
be the nanorod

operator in (14) and let us denote by B a boundary operator either of the type

(C − C), (CF ) or (FF ), e.g., in case (C − C), Bu = 0 means u(0) = u′′(0) =

0 = u(L) = u′′(L). A direct calculation shows that
∫ L

0
(Du)v =

∫ L

0
u(Dv)

for every u, v ∈ C4(0, L) for which Bu = Bv = 0, that is the pair {D,B} is

self-adjoint.

The following properties of the eigenvalue problem (14), coupled with one

of the boundary conditions (15)–(16), (17)–(18), (19)–(20) can be deduced

from the general theory:

i) there exists an infinite sequence of real non-negative eigenvalues {λn}∞n=1,

with limn→∞ λn = ∞, all of which are simple.

ii) The family of the eigenfunctions {un(x)}∞n=1 is an orthogonal basis of

the space of the admissible deformations of the nanorod.

iii) The nth eigenvalue of the nanorod differential equation (14), coupled

with one set of boundary conditions of the type (C−C), (C−F ) or (F −F ),

is greater than the nth eigenvalue of the corresponding classical rod. The

inequality is always strict, with the exception of the first (vanishing) eigen-

value of the case (F −F ). This property was already noticed in the literature

(see, for example, Figure 5 and Figure 6 in [39]), and it is a consequence of

the extremum properties of the eigenvalues [45]. The property follows by

11



noticing that an admissible deformation of the nanorod is also an admissible

deformation of the classical rod, and that the strain energy density of the

nanorod is bigger than the strain energy density of the classical rod, see the

variational characterization of the eigenvalues given in (35)–(37) below.

Moreover, a direct inspection of the eigenvalue problem shows that if v is

an eigenfunction of the classical rod (satisfying the differential equation (14)

with b = 0 and one set of classical boundary conditions of the type (C −C),

(C − F ) or (F − F )), then v is also an eigenfunction of the nanorod under

the same set of (classical and non-classical) end conditions; and vice versa.

The above general properties can be easily confirmed by the direct de-

termination of the following closed form expressions of the eigenpairs of (14)

coupled with one of the three boundary conditions (C−C), (C−F ), (F−F ).

Clamped-Clamped (C-C)

uC−C
n (x) =

√
2

ρL
sin
(nπx

L

)
, (21)

λC−C
n =

(nπ
L

)2 [1
ρ

(
a+ b

(nπ
L

)2)]
, n ≥ 1; (22)

Clamped-Free (C-F)

uC−F
n (x) =

√
2

ρL
sin

(
(2n− 1) πx

2L

)
, (23)

λC−F
n =

(
(2n− 1) π

2L

)2
[
1

ρ

(
a+ b

(
(2n− 1) π

2L

)2
)]

, n ≥ 1; (24)
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Free-Free (F-F)

uF−F
n (x) =

√
2

ρL
cos
(nπx

L

)
, (25)

λF−F
n =

(nπ
L

)2 [1
ρ

(
a+ b

(nπ
L

)2)]
, n ≥ 0. (26)

According to Eqs. (11) and (12), l2 does not play any role in the equation

governing the axial displacement. Thus, the only material constants account-

ing for length scale effects are l0 and l1, which are grouped in the parameter

b. From the Eqs. (22), (24) and (26) it can be easily shown that increasing

values of l0 or l1 leads to higher values of the natural frequencies.

2.3. Free axial vibrations of a uniform nanorod carrying a point mass

Basing on the conventional detection principle (see the Introduction), we

assume that a point mass M is added at the cross-section of the nanorod

of abscissa s, s ∈ (0, L), see Fig. 1. The differential operator governing the

eigenvalue problem for the nanorod with a point mass is

bũIV − aũ′′ = λ̃ρũ, x ∈ (0, s) ∪ (s, L), (27)

where, in addition to one of the end conditions (15)–(16), (17)–(18), (19)–

(20), we have also to consider the jump conditions at x = s

[[ũ(s)]] = 0,

[[ũ′(s)]] = 0,

[[ũ′′(s)]] = 0,

[[(aũ′ − bũ′′′) (s)]] = −λ̃Mũ(s),

(28)

(29)

(30)

(31)
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where [[φ(s)]] = (φ(s+)− φ(s−)) denotes the jump of the function φ at x = s.

The unperturbed nanorod clearly corresponds to M → 0+.

To solve the eigenvalue problem for the nanorod with a point mass we

need to find a nontrivial ũ ∈ C4 ((0, s) ∪ (s, L))∩C1((0, L)) and λ̃ ∈ R+ such

that (27)–(31) are satisfied, under a given set of end conditions.

In the sequel, we shall need the weak formulation of the eigenvalue prob-

lem. LetHm (a, b), with−∞ < a < b < +∞, be the real-valued Hilbert space

of the Lebesgue measurable functions f : (a, b) → R such that
∫ b

a

(
f 2 +

∑m
i=1

(
dif
dxi

)2)
<

+∞, where dif
dxi is the ith weak derivative of f . For the sake of simplicity, we

shall consider the specific case of boundary conditions (C − C). The other

cases (C − F ) and (F − F ) can be managed similarly.

Let us multiply (27) by φ ∈ H2 ((0, s) ∪ (s, L)) satisfying [[φ(s)]] =

[[φ′(s)]] = 0 and end conditions φ(0) = 0 = φ(1). Integrating by parts

twice, we have

bũ′′′φ
∣∣∣s−0 + bũ′′′φ

∣∣L
s+ − bũ′′φ′

∣∣∣s−0 − bũ′′φ′ ∣∣L
s+ − aũ′φ

∣∣∣s−0 − aũ′φ
∣∣L
s+ +

+

∫ L

0

(bũ′′φ′′ + aũ′φ′) = λ̃

∫ L

0

ρũφ
(32)

Using the jump and end conditions on ũ at x = s and x = 0, L, respectively,

and by the definition of φ, we get the weak formulation of (27)–(31) under

(C − C) boundary conditions: to find ũ ∈ H\ (0) and λ̃ ∈ R such that∫ L

0

(bũ′′φ′′ + aũ′φ′) = λ̃

(
Mũ(s)φ(s) +

∫ L

0

ρũφ

)
, for every φ ∈ H,

(33)
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where

H =
{
f : (0, L) → R

∣∣f ∈ H2 ((0, s) ∪ (s, L)) , f (0) = 0 = f (L) , [[f(s)]] = [[f ′(s)]] = 0
}
.

(34)

The Rayleigh’s quotient R [·] associated to the weak formulation (33)–(34) is

R : H \ {0} → R+, R [φ] =

∫ L

0
b (φ′′)2 + a (φ′)2

Mφ2(s) +
∫ L

0
ρφ2

(35)

and the nth eigenpair (λ̃n, ũn(x)) is such that

λ̃n = min
φ∈Vn\{0}

R [φ] = R [ũn] , n ≥ 1, (36)

where

Vn =

{
f ∈ H

∣∣∣∣Mf(s)ũi(s) +

∫ L

0

ρfũidx = 0, i = 1, ..., n− 1

}
. (37)

It can be shown that properties i) and ii) mentioned above for the unper-

turbed nanorod apply also to the eigenvalue problem for the nanorod carrying

a point mass. However, closed-form solutions for the eigenpairs are generally

not available, even for the constant coefficient case.

3. Eigenvalue shifts induced by a small point mass: a perturbative

approach

In this section we shall assume that the point mass M is small with

respect to the total mass of the nanorod, i.e.,

M ≪ ρL. (38)

15



Under this assumption, we shall investigate on the effects of the added mass

on the eigenvalues of the nanorod. Again, to simplify the presentation, at-

tention is focused on (C −C) end conditions. From the variational theory of

eigenvalues recalled in (35)–(37), it easily follows that no natural frequency

can be increased due to the addition of the point mass M , i.e.,

λ̃n ≤ λn, for every n ≥ 1. (39)

However, in order to study the inverse problem of identifying the point mass

by natural frequency data, we need quantitative information on the effects

of the added mass. A first result is contained in the next statement.

Proposition 3.1. Let (λ̃, ũ) be an eigenpair of (33)–(34). Then, for a given

position s ∈ (0, L) of the point mass, λ̃ = λ̃(M) is a C1-function in (0,∞)

and we have

∂λ̃

∂M
= −λ̃

ũ2(s)

Mũ2(s) +
∫ L

0
ρũ2

(40)

Proof. We apply to the weak formulation (33) the forward-difference operator

δhf(x;M) =
f(x;M + h)− f(x;M)

h
, h > 0, M ∈ (0,∞). (41)

We have∫ L

0

(b(δhũ
′′)φ′′ + a (δhũ

′)φ′) = δhλ̃

(
Mũ(s)φ(s) +

∫ L

0

ρũφ

)
+

λ̃

[
ũ(s)φ(s) +M (δhũ(s))φ(s) +

∫ L

0

ρ (δhũ)φ

]
,

(42)

for every C2-piecewise function φ in [0, L], with φ(0) = 0 = φ(L).
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Let us take φ = ũ and let us note that δhũ is a suitable test function for

the weak formulation of the problem. Then∫ L

0

(b (δhũ
′′) ũ′′ + a (δhũ

′) ũ′) = δhλ̃

(
Mũ2(s) +

∫ L

0

ρũ2

)
+

λ̃ũ2(s) + λ̃

[
M (δhũ(s)) ũ(s) +

∫ L

0

ρ (δhũ) ũ

]
(43)

The left hand side of (43) simplifies with the last square bracket on the right

end side. Then, taking the limit as h → 0+, we obtain

∂λ̃

∂M
(M+) = −λ̃

ũ2(s)

Mũ2(s) +
∫ L

0
ρũ2

. (44)

By repeating the above analysis with the backward-difference operator δ−h(·),

the left derivative of the eigenvalue λ̃ = λ̃(M) turns out to be equal to the

right derivative. Then, the function λ̃ = λ̃(M) is continuously differentiable

and (40) is proved.

By adapting the arguments in [46], we can prove the following useful

result.

Theorem 3.2. There exists M̂, M̂ > 0, such that the eigenvalues λ̃n =

λ̃n(M) of (33)–(34) are holomorphic functions of M , for 0 < M < M̂ .

By Proposition 3.1 and Theorem 3.2, and assuming the mass-normalization

condition
∫ L

0
ρu2

n = 1, the Taylor series expansion truncated to the first order

term in the smallness parameter M for the nth eigenvalue is given by

λ̃n(M) = λn − λnu
2
n(s)M. (45)
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Relation (45) shows that the change in an eigenvalue can be written as

the product of the eigenvalue itself, the square of the corresponding (mass-

normalized) eigenfunction of the unperturbed nanorod evaluated at the mass

position, and the mass variation. Equation (45) plays an important role in

our inverse problem, since it shows that the ratios of the relative changes in

two different eigenvalues depend only on the location of the point mass, not

on its magnitude, namely (if δλk < 0)

δλn

λn

δλk

λk

=
u2
n(s)

u2
k(s)

≡ f(s), (46)

where δλn ≡ λ̃n − λn and s ∈ (0, L). Note that if δλk = 0, then the

possible point mass location coincides with one of the node points of the kth

vibrating mode uk of the unperturbed nanorod. Therefore, the problem of

localizing the point mass is reduced to the determination of the solutions

of (46) for fixed/measured value of the ratio δλn

λn
/ δλk

λk
. Let us observe that,

once the unperturbed configuration is known, the function f = f(s) can be

determined numerically or analytically. This idea was first explored in [47]

for the identification of a point mass in a full-scale longitudinally vibrating

rod under free-free end conditions, see also [48]. It should be noticed that

the analysis developed in [47] and [48] deals with the identification of a point

mass, described as a Dirac’s delta, in a classical second-order Sturm-Liouville

operator, whereas, as it was shown in Section 2, the longitudinal vibration

of a nanorod involves a fourth-order differential operator.

In the next section we shall show that there are certain situations in

which a suitable choice of the frequency input data allows obtaining closed

18



form solutions of the linearized inverse problem.

4. Identification of a small point mass in uniform nanorods

We first consider the identification of the small point massM in a nanorod

under clamped-clamped end conditions (C − C). Recalling the expressions

of the eigenpairs (25)–(26), by (45) we have

CC−C
n = M sin2

(nπs
L

)
, (47)

where

CC−C
n = −

(
λ̃C−C
n − λC−C

n

)
λC−C
n

ρL

2
, n ≥ 1. (48)

A direct calculation shows that

M
(
4CC−C

n − CC−C
2n

)
= 4

(
CC−C

n

)2
, n ≥ 1. (49)

In order to identify the point mass, let us distinguish two cases.

First case. Let us assume CC−C
n > 0 (note that CC−C

1 is always strictly

positive). By equation (49) we have

M =
CC−C

n

1− CC−C
2n

4CC−C
n

, (50)

which gives a closed-form expression for the mass intensity M in terms of the

(nth, 2nth) eigenfrequency changes. It is worth noticing that, by (49), M in

(50) takes positive values. The position of the point mass can be determined

by inserting the expression (50) into (47), namely

S = cos

(
2nπs

L

)
=

CC−C
2n

2CC−C
n

− 1, (51)
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where S ∈ [−1, 1]. By taking n = 1 in (51), the ratio of the first frequency

changes is sufficient for the localization of the point mass, up to a symmetrical

position with respect to the mid-point of the nanorod.

Second case. If CC−C
n = 0 for certain n ≥ 2, then from (47) we have S = 1,

that is the point mass is located in one of the points of zero-sensitivity of the

nth vibration mode.

The above analysis shows that the pair of natural frequencies nth and

2nth plays a special role in the linearized inverse problem. In fact, if the nth

frequency is sensitive to the point mass, that is CC−C
n > 0 or equivalently

u2
n(s) > 0, then the pair

{
CC−C

n , CC−C
2n

}
determines uniquely the mass in-

tensity M . It is worth noticing that the expression for M is the same for

all the pairs of values
{
CC−C

n , CC−C
2n

}
. Concerning the possible point mass

locations, equation (51) shows that their number generally increases as the

order n of the frequencies involved increases, which accounts for the recourse

to ”low” frequencies for solving the localization problem.

Summing up, we have shown that the measurement of the first two natural

frequencies in a clamped-clamped nanorod allows for the unique identifica-

tion of the point mass (except for symmetrical positions). This conclusion

must be modified for nanorods under different boundary conditions. As an

example, let us consider the identification of the point mass in a clamped

free nanorod from the first and second eigenfrequency changes. By inserting

the expressions (23)–(24) into (45) we have

CC−F
1 = M sin2

(πs
2L

)
, CC−F

2 = M sin2

(
3πs

2L

)
. (52)
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Let z = cos
(
πs
L

)
, with z ∈ (−1, 1). Then, recalling the identity cos(3α) =

(4 cos3 α−3 cosα), we obtain the following non-linear system in terms of the

two unknowns z and M
CC−F

1 = M
2
(1− z),

CC−F
2 = M

2
(1− 4z3 + 3z).

(53)

(54)

A direct calculation shows that

(9CC−F
1 − CC−F

2 ) = 2M(z − 1)2(z + 2) > 0 (55)

and the damage localization problem (46) for n = 2 and k = 1 is reduced to

solving the polynomial equation

(1 + 2z)2 = χ, z ∈ (−1, 1), (56)

where, by (55),

χ =
CC−F

2

CC−F
1

∈ [0, 9). (57)

The existence and the number of solutions of (56) depend on the values of

the parameter χ. If χ ∈ [1, 9), then there exists a unique solution z1 ∈ (0, 1),

which corresponds to s1 ∈
(
0, L

2

)
. If χ ∈ (0, 1), then there are two distinct

solutions of (56), say z1 ∈
(
−1,−1

2

)
and z2 ∈

(
−1

2
, 0
)
, which correspond to

s1 ∈
(
2L
3
, L
)
and s2 ∈

(
L
2
, 2L

3

)
, respectively. Finally, for χ = 0 equation (56)

has a double zero at z = −1
2
, corresponding to s = 2L

3
. In conclusion, should

the point mass be located within the left half of the rod adjacent to the

clamped end, the measurement of the first and second natural frequencies

determines uniquely the location of the point mass. Conversely, should the
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mass be located in the right half of the rod, there are two different locations

corresponding to the same value χ, apart when χ = 0, which corresponds to

the mass position at s = 2
3
L.

We conclude this section with the analysis of natural frequency data com-

ing from two sets of different end conditions. It turns out that the measure-

ment of the nth resonant frequency under boundary conditions (C −C) and

the nth natural frequency under boundary conditions (F −F ), n ≥ 1, deter-

mines uniquely the point mass and the location variable S = cos
(
2mπs
L

)
. In

particular, by adopting the above procedure, we have

M = CF−F
n + CC−C

n (58)

and

if CF−F
n > 0, then S = −1 +

2

1 + CC−C
n

CF−F
n

; (59)

if CF−F
n = 0, then S = −1. (60)

Here, CF−F
n = −(λ̃F−F

n −λF−F
n )

λF−F
n

2
ρL

, n ≥ 1. It follows that the point mass is

uniquely determined (except for symmetrical positions) by
{
CC−C

1 , CF−F
1

}
.

5. Applications

5.1. Exact versus perturbative solution

This section is devoted to the evaluation of the accuracy of the perturba-

tion approach outlined in Section 3 in estimating the eigenvalues of the prob-

lem (27)–(31) with boundary conditions given either by (15)–(16) (C − C)

or by (17)–(18) (C −F ). From the practical point of view, the free-free case
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(F − F ) does not seem to be very suitable for nanosensors applications, and

will not considered in the sequel.

Following [39], we considered a nanorod with circular cross-section with

diameter D and length L = 20D. Moreover, the two scale parameters l0

and l1 have been assumed to be equal, e.g., l0 = l1 = l, and the selected

Poisson’s ratio was ν = 0.38. The variation of the first three eigenvalues,

λ̃1, λ̃2, λ̃3 (normalized to the corresponding eigenvalues λ0n of the ”classical”

local rod, that is the rod with b = 0, without any attached mass) with

respect to the intensity M of the point mass (normalized to the total mass

of the nanorod ρL) has been calculated for various positions s and for D/l =

{2.0, 1.0, 0.5, 0.4}.

Eigenfrequency changes have been obtained using both exact and per-

turbative solutions. The exact solution is calculated from the corresponding

frequency equation in terms of nondimensional eigenvalue Λ = ρL2

EA
λ̃, and

nondimensional attached mass M̄ = M
ρL
.

For the case of a clamped-clamped nanorod the frequency equations reads

as

fC−C(Λ) = −β sinh(β)
(
αh2

(
α2 + β2

)
sin(α)− ΛM̄ sin(αs) sin(α(1− s))

)
−

−αΛM̄ sin(α) sinh(sβ) sinh(β(1− s)) = 0,

(61)
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where the parameters α and β are given by

α =

√√
4h2Λ + 1− 1

2h2
, (62)

β =

√√
4h2Λ + 1 + 1

2h2
, (63)

and h is the dimensionless parameter related to the length scale l by the

following expression:

h =

√
7

5 (1 + ν)

l

20D
. (64)

The frequency equation for the clamped-free nanorod is

fC−F (Λ) = β cosh(β)
(
αh2

(
α2 + β2

)
cos(α)− ΛM̄ sin(αs) cos(α (1− s)

)
+

+αΛM̄ cos(α) sinh(sβ) cosh (β (1− sβ)) = 0.

(65)

The first order change in eigenvalues is determined from (45), where un and

λn are given by (21)–(22) and (23)–(24) for (C − C) and (C − F ) end con-

ditions, respectively.

Figs. 2 to 4 show, for the (C−C) boundary conditions, the variation of the

first three eigenvalues with the attached mass located at different positions

and for the selected values of D/l. For moderate values of the attached

mass, i.e. M/ρL ∈ [0, 0.2], there is a good agreement between exact and

first-order solution. For the fundamental mode, for example, the accuracy

generally decreases as the mass location moves toward the mid-point of the

nanorod. In fact, the maximum difference is encountered at s = L
2
, and it

24



oscillates between 15 and 22 percent. As it was observed above, in absence

of the attached mass, eigenfrequency values of the strain gradient nanorod

are higher than those of the classical rod model, and they increase when the

scale parameter l increases (D/l decreases), meaning that the generalized

constitutive model used leads to a stiffening of the structure.

The results corresponding to clamped-free boundary conditions are shown

in Figs. 5 to 7, and considerations analogous to the clamped-clamped case

can be made. In the case of the fundamental mode, the maximum difference

between exact and perturbative results occurs for mass location s = 0.9, and

its value is about 16 percent.

5.2. Solution of the inverse problem

In this section some results on the capability of the method proposed

in Section 4 to identify the value of the attached mass and its position are

presented. For the clamped-clamped nanorod, among several simulations, the

cases with mass intensity M/(ρL) ∈ {0.001, 0.025, 0.050, 0.100, 0.200} and

position s/L ∈ {0.1, 0.25, 0.40, 0.50} shall be considered in detail. It should

be noticed that positions s/L > 1/2 are not considered given the symmetry

of the problem. The attached mass is identified using equations (48) and

(50), while the position is obtained from equation (51). Table 1 collects the

results when the first two natural frequencies are used in the identification

process, i.e., for n = 1. It can be seen that, for small masses, the error in

the identification of position and mass intensity remains at relatively small

values. The case s/L = 0.50 deserves special attention, since the position
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is exactly identified. Larger errors are observed when the mass intensity

increases.

Similar information is given in Table 2, in which the second and fourth

frequencies are used (i.e., n = 2). Besides the fact that two possible solutions

for the mass position can exist, the comparison of the values with those given

in Table 1 shows that the precision in the identification of position and mass

decreases, even for the identified location closest to the right one (except

when s = 0.25, for which the method gives the exact solution). Specifically,

for s = 0.5 the identification method leads to imaginary values since this

position coincides with a node of both the second and fourth shape modes,

thus both the second and the fourth frequencies are insensitive to the presence

of the point mass.

In the case of the clamped-free rod, as explained in the second part of Sec-

tion 4, a different scenario is found. The method was tested for the same point

mass intensities considered in the previous case, and the positions investi-

gated covered the whole span of the rod, namely s = {0.10, 0.35, 0.50, 0.65, 0.90},

since the symmetry conditions do not hold for the clamped-free case. The

mass location has been determined by solving (56). In agreement with the

theory (e.g., case in which s ∈
(
0, L

2

)
), for s = 0.10 and s = 0.35 only one

solution is encountered in the identification process (see Table 3). The errors

are moderate and increase with the attached mass intensity. For the other

positions considered in simulations, two possible solutions are obtained, Sln.1

and Sln.2 (see Table 4), which correspond to s1 ∈
(
2L
3
, L
)
, and s2 ∈

(
L
2
, 2L

3

)
,

respectively. In every case, as expected from the theory developed in the sec-
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ond part of Section 4, one of these two solutions is close to the true solution,

the other is spurious and follows from the non-uniqueness of the mathemati-

cal inverse problem. In all the cases, the mass intensity M was estimated by

solving (55). It should be noticed that, for the sake of brevity, all the results

quoted correspond to D/l = 0.4, the higher value of the scale parameter l

considered in this study.

In order to evaluate the effect of errors on the data measurements, the

1st and 2nd eigenfrequencies were perturbed for a clamped-clamped nanorod

(C − C) with point mass intensity M/ρL = 0.025 at s = 0.4L, according to

the expressions√
λ̃pert
1 =

√
λ̃1 (1 + τ1) ;

√
λ̃pert
2 =

√
λ̃2 (1 + τ2) , (66)

where τ1 and τ2 are real random Gaussian variables with zero mean and

standard deviations σ1 and σ2, respectively. The maximum measurement

error has been taken to be approximately equal to a given percentage Π,

Π = 5, 10, 15, 20% of the frequency shift δλn, for n = 1, 2. Then, the standard

deviations are defined as 3σn = δλnΠ/100, for n = 1, 2. A MonteCarlo

simulation on a population of 10000 samples was performed, leading to the

results presented in Table 5, where the mean and standard deviations for the

identification errors corresponding to mass intensity and position are shown

for different values of the measurement error Π. As it can be seen, the mean

errors keep (approximately) constant with Π, and equal to the corresponding

identification errors shown in Table 1. Regarding the standard deviation, it

increases with the measurement error, but keeps at a rather low value up to
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Π = 0.20. All this confirms the robustness of the proposed method.

6. Concluding remarks

In this paper we obtained the natural frequencies of the axial vibrations of

a nanorod carrying a concentrated mass through its span for both clamped-

clamped and clamped-free end conditions. The modified strain gradient the-

ory proposed in [31] has been used to take into account the size effects present

in this kind of structures. The influence of the mass intensity, mass location,

as well as the value of scale parameter have been analysed. For the case of

small intensity of the concentrated mass, a first order perturbative technique

is used to compute the natural frequencies of the nanorod. To our knowl-

edge, this problem, which is relevant regarding application of nanostructures

as sensors, is addressed for the first time. In fact, from the properties of the

eigenvalue perturbative theory, the identification of a single point mass in a

uniform nanorod (mass intensity and position) by minimal frequency data

has been considered. We have shown that the point mass can be uniquely

identified (up to a symmetrical position) by the knowledge of the first two

natural frequencies of the nanorod under clamped-clamped end conditions.

Moreover, the effect of the frequency measurement errors on the estimated

variables (mass intensity and location) has been illustrated with a statistical

analysis, showing the robustness of the identification method. The results

obtained herein encourage the use of axial vibrations of nanorods as a very

precise sensing technique.

As a final remark, we point out that a problem worth of investigation that
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emerges from the present analysis stands on the possibility of identifying a

point mass of finite - not necessarily small - magnitude. It is likely that the

results and methods presented in [49, 50] may be useful for this purpose.
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Table Captions

Table 1. Identification of the mass intensity M and position s in a

clamped-clamped nanorod (C − C) from the first and second natural fre-

quencies. D/l = 0.4. Percentage errors: es = 100 × (sest − s)/s, eM =

100× (Mest −M)/M .

Table 2. Identification of the mass intensity M and position s in a

clamped-clamped nanorod (C − C) from the second and fourth natural fre-

quencies. D/l = 0.4. Existence of two solutions for the mass position (es1 and

es2). Percentage errors: es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

∗: no results.

Table 3. Identification of the mass intensity M and position s in a

clamped-free nanorod (C − C) from the first and second natural frequen-

cies. D/l = 0.4. s ∈
(
0, L

2

)
: existence of unique solution. Percentage errors:

es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

Table 4. Identification of the mass intensity M and position s in a

clamped-free nanorod (C − F ) from the first and second natural frequen-

cies. D/l = 0.4. s ∈
[
L
2
, L
]
: existence of two solutions (Sln.1 and Sln.2).

Percentage errors: es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

Table 5. Mean and standard deviation for the errors corresponding to the

identification of mass intensity and position from the first and second natural

frequencies, as a function of the frequency measurement error. Clamped-

clamped nanorod (C − C) with M/ρL = 0.025 and s = 0.4L.
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Figure Captions

Figure 1. Nanorod with a point mass M located at abscissa s under

different boundary conditions. (a) Clamped-clamped; (b) clamped-free.

Figure 2. Clamped-clamped nanorod. Normalized first eigenvalue versus

dimensionless point-mass, for different mass positions, and different values

of the length scale parameter.

Figure 3. Clamped-clamped nanorod. Normalized second eigenvalue ver-

sus dimensionless point-mass, for different mass positions, and different val-

ues of the length scale parameter.

Figure 4. Clamped-clamped nanorod. Normalized third eigenvalue versus

dimensionless point-mass, for different mass positions, and different values

of the length scale parameter.

Figure 5. Clamped-free nanorod. Normalized first eigenvalue versus di-

mensionless point-mass, for different mass positions, and different values of

the length scale parameter.

Figure 6. Clamped-free nanorod. Normalized second eigenvalue dimen-

sionless point-mass, for different mass positions, and different values of the

length scale parameter.

Figure 7. Clamped-free nanorod. Normalized third eigenvalue dimen-

sionless point-mass, for different mass positions, and different values of the

length scale parameter.
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Table 1: Identification of the mass intensity M and position s in a clamped-clamped

nanorod (C − C) from the first and second natural frequencies. D/l = 0.4. Percentage

errors: es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

s = 0.10L s = 0.25L s = 0.40L s = 0.50L

M
ρL

es eM es eM es eM es eM

0.010 0.18 -0.24 1.34 -2.54 0.09 -1.62 0 -1.83

0.025 0.61 -0.91 3.26 -6.04 0.22 -3.97 0 -4.46

0.050 1.72 -2.76 6.21 -11.16 0.42 -7.68 0 -8.56

0.100 5.37 -8.70 11.29 -19.37 0.77 -14.39 0 -15.85

0.200 17.06 -24.74 18.95 -30.85 1.34 -25.49 0 -27.54
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Table 3: Identification of the mass intensity M and position s in a clamped-free nanorod

(C −F ) from the first and second natural frequencies. D/l = 0.4. s ∈
(
0, L

2

)
: existence of

unique solution. Percentage errors: es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

s = 0.10L s = 0.35L

M
ρL

es eM es eM

0.010 -0.68 1.42 0.94 -2.00

0.025 -1.88 3.94 2.29 -4.79

0.050 -3.59 7.72 4.40 -8.97

0.100 -6.18 13.87 8.12 -15.91

0.200 -7.83 18.34 14.05 -26.05
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Table 5: Mean and standard deviation for the errors corresponding to the identification of

mass intensity and position from the first and second natural frequencies, as a function of

the frequency measurement error. Clamped-clamped nanorod (C−C) with M/ρL = 0.025

and s = 0.4L.

Measurement Mass Mass Position Position
Error,Π (%) mean error (%) standard dev. mean error (%) standard dev.

5 -3.970 1.05 · 10−4 0.217 2.71 · 10−4

10 -3.962 2.09 · 10−4 0.217 5.39 · 10−4

15 -3.957 3.11 · 10−4 0.217 8.10 · 10−4

20 -3.983 4.20 · 10−4 0.211 10.84 · 10−4
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(a)

(b)

Figure 1: Nanorod with a point mass M located at abscissa s under different boundary

conditions. (a) Clamped-clamped; (b) clamped-free.
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Figure 2: Clamped-clamped nanorod. Normalized first eigenvalue versus dimensionless

point-mass, for different mass positions, and different values of the length scale parameter.
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Figure 3: Clamped-clamped nanorod. Normalized second eigenvalue versus dimensionless

point-mass, for different mass positions, and different values of the length scale parameter.
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Figure 4: Clamped-clamped nanorod. Normalized third eigenvalue versus dimensionless

point-mass, for different mass positions, and different values of the length scale parameter.
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Figure 5: Clamped-free nanorod. Normalized first eigenvalue versus dimensionless point-

mass, for different mass positions, and different values of the length scale parameter.
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Figure 6: Clamped-free nanorod. Normalized second eigenvalue versus dimensionless

point-mass, for different mass positions, and different values of the length scale parameter.
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Figure 7: Clamped-free nanorod. Normalized third eigenvalue versus dimensionless point-

mass, for different mass positions, and different values of the length scale parameter.
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Highlights 

 The vibrations of nanoresonators with a single point mass have been 
addressed 

 The modified strain gradient theory has been used to account for size 
effects 

 Exact and perturbative solutions for the natural frequencies have been 
obtained 

 The point mass identification from minimal frequency data has been 
considered 

*Highlights (for review)
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problems.

1. Introduction

Nowadays, the scientific community interest is attracted by the use of

nanostructures (carbon nanotubes, CNTs, graphene sheets, GSs, and nanowires)

as nano-sensors. The reason is connected with the promising features regard-

ing a wide range of applications such as gas detection, early disease detection,

gene mutation detection, DNA sequencing. In this respect, several reviews

have been recently published showing the different capabilities of the nanos-

tructures [1, 2, 3]. According to Khanna [4], nano-sensors can be classified

into six groups: mechanical, electrical, optical, magnetic, chemical, and ther-

mal.

In this research we are interested in mechanical nanoresonator sensors

and, in particular, in vibration based-methods as identification techniques.

The sensing principle for this class of nanoresonators is based on the mea-

surement of the variations of the resonant frequencies caused by (unknown)

additional masses located on the initial system. The conventional detection

principle assumes that the mass perturbation, caused by attachments of for-

eign atoms or molecules, chemical/molecular adsorption, the presence of virus

particles or protein-protein and protein-DNA interactions, can be described

as Dirac-delta point masses, having unknown intensities and locations, su-

perimposed to the given mass density of the nanoresonator. We refer to [1]

and [5] for more sophisticated mechanical models in which a simultaneous

perturbation of the stiffness properties coupled with the mass increase is also

2



considered in the analysis. Our main goals in the present research are: (i)

to derive a continuum mechanical model able to describe the axial vibration

of a nanoresonator with a single additional point mass, and (ii) to develop a

method for the identification of the point mass from minimal eigenfrequency

data. In particular, we shall consider the inverse problem in which the added

mass is small with respect to the total mass of the nanosensor.

It is well known that the size effects are significant regarding the mechan-

ical behavior of the nanostructures which composes the nanoresonators. The

large computational effort required for the Molecular Dynamics techniques

(MD), see, among others, [6, 7, 8, 9], encourages the exploration of other

possibilities, such as generalized continuum mechanics approaches given that

classical continuum mechanics cannot predict the size effect, due to its scale-

free character.

Among the generalized continuum theories, we cite here three main groups:

Cosserat micropolar elasticity [10], the strain gradient elasticity of Mindlin

[11, 12], and the nonlocal continuum mechanics initiated by Eringen and

coworkers [13, 14], and formulated originally in integral form.

From the early integral nonlocal theory, Eringen [15] introduced a differ-

ential constitutive theory showing that, for a specific class of kernel functions,

the non-local integral constitutive equation can be transformed into a differ-

ential form, much easier to manage than the integral model. From the pioneer

work of Peddieson et al. [16], this differential version of the Eringen nonlocal

model has been widely used to address the mechanical behaviour (static and

dynamic) of nano-structures. The list of papers related with these applica-
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tions is extremely long to be reported here. The interested reader can read

the very recent review by Rafii-Tabar et al. [17].

Several authors used the Eringen elasticity theory to asses the vibra-

tional behaviour of beams and rods with attached masses. Thus, Elthaer et

al. [18], Murmu et al. [19], and Li et al. [20] applied this theory to ob-

tained the shift of the natural frequency of bending vibrations of nanobeams

carrying attached mass. Moreover, Murmu et al. [19] and Li et al. [20]

provided identification formulas from the approximated expressions of the

frequency shift. However, the cases studied in the above papers are rather

specific and correspond to a nano-cantilever with a mass attached at the tip

or a distributed mass through a certain length from the tip [19], while three

configurations, corresponding to a cantilever beam with a mass attached at

the tip, simply supported, and bi-clamped beams with the mass attached at

the mid-section, are analysed in [20].

Regarding the use of the Eringen elasticity theory applied to CNTs with a

single attached mass vibrating in axial direction, it is worth to note the work

by Aydogdu and Filiz [21] who analyzed the frequencies of axially vibrating

CNTs (clamped-clamped and clamped-free) with a single attached mass

located at different positions.

Li et al. [22] studied the natural frequencies of an axially vibrating

nanorod with an elastically restrained end by a nanospring (depending of

the stiffness of the nanospring this end could be considered clamped or free),

and with an attached mass at the other end considered free. In this analysis,

the Love hypotheses are considered (i.e. the inertial effects of radial motion
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have been taken into account).

Nevertheless, several authors have pointed out some inconsistencies aris-

ing from the Eringen differential model when it is applied to the static be-

havior of bars in tension [23], static bending behaviour of a Euler-Bernoulli

beams [16, 24, 25, 26, 27] or flexural vibrations of a cantilever beam [28].

Recently, Fernández–Sáez et al. [29] and Romano et al. [30] give some

new insights on the origin of these inconsistencies. Therefore, a more suit-

able approach to describe the mechanical behaviour of the nanostructures is

needed.

The modified strain gradient elasticity theory was proposed by Lam et

al. [31] based on previous developments by Mindlin [12] and Fleck and

Hutchinson [32]. This approach needs new additional equilibrium equations

to govern the behavior of higher-order stresses, and contain only three non-

classical constants for isotropic linear elastic materials. Some papers can

be cited to illustrate (the list is not exhaustive) the use of this theory to

model the mechanical behaviour of 1D simple nanostructures (beams and

rods). Thus, using this approach the static and dynamic bending behavior

of Euler-Bernoulli beams [33] and Timoshenko beams has been studied [34].

Akgoz and Civalek [35, 36] obtained analytical solutions for the buckling

problem of axially loaded nano-sized beams. The free torsional vibrations of

microbars have been analyzed in [37, 38]. Akgoz and Civalek also studied

the longitudinal vibrations of homogeneous [39] and nonhomogeneous (func-

tionally graded material) [40] microbars using the simple rod theory, while

Guven [41] analyzed the propagation of longitudinal stress waves based on
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Love-Bishop hypothesis, i.e. considering the lateral deformation and the

shear strain effects.

To our knowledge, there is no theoretical investigation on the axial vibra-

tions of nanorods with attached concentrated mass when the modified strain

gradient elasticity theory of Lam et al. [31] is used as constitutive model.

This analysis is relevant regarding the nanosensor applications of this kind

of structures.

Regarding the experimental determination of frequencies in axially vi-

brating nanorods, some papers can be found in the literature (see for in-

stance, [42, 43, 44]). However, to the authors knowledge, no experimental

works dealing with axially vibrating nanorods with attached masses have

been published.

In this paper we analyze the axial vibrational behavior of a nanorod

carrying a concentrated mass through its span and subjected to different

boundary conditions. The mechanical behavior of the nanorod is modelled

using the modified strain gradient theory proposed by Lam et al. [31]. The

effects of the mass intensity, location as well as the value of scale parameter

have been analyzed. For the case of small intensity of the concentrated

mass, a first order perturbative technique is used to estimate the natural

frequencies of the nanorod. The approximate results are compared with

those corresponding to the exact solution. Basing on the explicit expression

of the first-order eigenfrequency change induced by the point mass, we are

able to formulate and solve the inverse problem consisting in the identification

of the location and intensity of the point mass in a uniform nanorod from
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minimal eigenfrequency data. In particular, for nanorods under a specified

set of end conditions, the method gives closed-form expressions of both the

location and the intensity of the point mass in terms of a suitable pair of

eigenfrequencies of the nanorod.

The paper is organized as follows. The mechanical model of the nanorod

under longitudinal free vibration with and without point mass is briefly re-

called in Section 2. Section 3 is devoted to the illustration of the perturbation

effects of the small added mass on the eigenvalues of the nanorod. The in-

verse problem of identifying the position and the intensity of the small point

mass from eigenfrequency shifts is addressed in Section 4. Applications and

results of numerical simulations, both of the direct and the inverse eigenvalue

problem, are reported and commented in Section 5.

2. The mechanical model

2.1. Brief resume of the modified strain gradient theory

The modified strain gradient theory was presented by Lam et al. [31], who

considered the following expression for the strain energy W corresponding to

a linear elastic isotropic material occupying a volume V

W =

∫

V

(
σijεij + piγi + τ

(1)
ijkη

(1)
ijk +ms

ijχ
s
ij

)
dv, (1)

where the notational convention that repeated indices are implicitly summed

from 1 to 3 has been adopted hereinafter. Classical and higher order stress
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measures σij , pi, τ
(1)
ijk , m

s
ij are defined as [31]

σij =

(
K − 2G

3

)
δijεmm + 2Gεij, (2)

pi = 2Gl20γi, (3)

τ
(1)
ijk = 2Gl21η

(1)
ijk, (4)

ms
ij = 2Gl22χ

s
ij , (5)

where the strain tensor εij, the dilatational gradient vector γi, the deviatoric

stretch gradient tensor η
(1)
ijk and the symmetric rotation gradient tensor χs

ij

are given by

εik =
1

2
(ui,j + uj,i) , (6)

γi = εmm,i, (7)

η
(1)
ijk =

1

3
(εjk,i + εki,j + εij,k)−

− 1

15
[δij (εmm,k + 2εmk,m) + δjk (εmm,i + 2εmi,m) + δki (εmm,j + 2εmj,m)] ,

(8)

χs
ij =

1

2
(θi,j + θj,i) . (9)

Here, ui is the ith cartesian component of the displacement vector, i = 1, 2, 3,

and θi is the rotation vector expressed as

θi =
1

2
eijkuk,j. (10)

δij is the Kronecker delta, and eijk is the permutation symbol.

Bulk modulus K = E/(3(1 − 2ν)), K > 0, and shear modulus G =

E/(2(1+ ν)), G > 0, are defined in the classical way in terms of the Young’s
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modulus E, E > 0, and Poisson ratio ν, ν > 0. To complete the model, three

additional materials constants, l0 > 0, l1 > 0, l2 > 0, which account for scale

effects are needed.

2.2. Modified strain gradient model for the axial vibrations of a uniform

nanorod

Let us specialize the general modified strain gradient theory to the free

longitudinal undamped vibrations of a slender straight uniform nanorod of

length L, vibrating along its longitudinal axis x. Assuming the hypothesis

of the simple theory of thin bars (i.e., rigid translation of the cross section

along the x direction), the equation governing the axial displacement U(x, t)

of the nanorod reads as, see [39] for details,

aU ′′(x, t)− bU IV (x, t) = ρÜ(x, t), (11)

where U ′(x, t) and U̇(x, t) indicate the first partial derivative of the function

U with respect to x and t, respectively, x ∈ (0, L) and t > 0.

According to [39], the coefficient a, a > 0, plays the role of the ax-

ial stiffness of the nanorod, and it can be conventionally expressed as a =

EA. Here, A is a geometrical parameter, which, in analogy with classical

large-scale rods, can be made coincident with the cross-sectional area of the

nanorod. The coefficient ρ > 0 is the constant mass per unit length. The

coefficient b takes the expression

b = GA

(
2l20 +

4

5
l21

)
. (12)
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Using the classical separation of variables method, the axial displacement

U(x, t) can be expressed as

U(x, t) = u(x)eiωt, (13)

where u = u(x) is the amplitude of the normal mode (eigenfunction) associ-

ated to the natural (radian) frequency ω. Substituting Eq.(13) into Eq.(11),

the following ordinary differential equation is obtained

buIV − au′′ = λρu, x ∈ (0, L), (14)

λ = ω2 being the eigenvalue. We shall be concerned with the following sets

of classical (left) and non-classical (right) boundary conditions.

Clamped-Clamped (C-C)

u(0) = 0, u′′(0) = 0, (15)

u(L) = 0, u′′(L) = 0; (16)

Clamped-Free (C-F)

u(0) = 0, u′′(0) = 0, (17)

u′(L) = 0, u′′′(L) = 0; (18)

Free-Free (F-F)

u′(0) = 0, u′′′(0) = 0, (19)

u′(L) = 0, u′′′(L) = 0. (20)
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The non-classical end conditions selected above are only one of the possible

sets of non-classical boundary conditions that may be assigned at the ends of

a nanorod. Our choice is motivated by the fact that these boundary operators

ensure the self-adjointness of the eigenvalue problem and, then, the reality

of the eigenvalues. To show this, let D =
(
b d4

dx4 − a d2

dx2

)
be the nanorod

operator in (14) and let us denote by B a boundary operator either of the type

(C − C), (CF ) or (FF ), e.g., in case (C − C), Bu = 0 means u(0) = u′′(0) =

0 = u(L) = u′′(L). A direct calculation shows that
∫ L

0
(Du)v =

∫ L

0
u(Dv)

for every u, v ∈ C4(0, L) for which Bu = Bv = 0, that is the pair {D,B} is

self-adjoint.

The following properties of the eigenvalue problem (14), coupled with one

of the boundary conditions (15)–(16), (17)–(18), (19)–(20) can be deduced

from the general theory:

i) there exists an infinite sequence of real non-negative eigenvalues {λn}∞n=1,

with limn→∞ λn = ∞, all of which are simple.

ii) The family of the eigenfunctions {un(x)}∞n=1 is an orthogonal basis of

the space of the admissible deformations of the nanorod.

iii) The nth eigenvalue of the nanorod differential equation (14), coupled

with one set of boundary conditions of the type (C−C), (C−F ) or (F −F ),

is greater than the nth eigenvalue of the corresponding classical rod. The

inequality is always strict, with the exception of the first (vanishing) eigen-

value of the case (F −F ). This property was already noticed in the literature

(see, for example, Figure 5 and Figure 6 in [39]), and it is a consequence of

the extremum properties of the eigenvalues [45]. The property follows by
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noticing that an admissible deformation of the nanorod is also an admissible

deformation of the classical rod, and that the strain energy density of the

nanorod is bigger than the strain energy density of the classical rod, see the

variational characterization of the eigenvalues given in (35)–(37) below.

Moreover, a direct inspection of the eigenvalue problem shows that if v is

an eigenfunction of the classical rod (satisfying the differential equation (14)

with b = 0 and one set of classical boundary conditions of the type (C −C),

(C − F ) or (F − F )), then v is also an eigenfunction of the nanorod under

the same set of (classical and non-classical) end conditions; and vice versa.

The above general properties can be easily confirmed by the direct de-

termination of the following closed form expressions of the eigenpairs of (14)

coupled with one of the three boundary conditions (C−C), (C−F ), (F−F ).

Clamped-Clamped (C-C)

uC−C
n (x) =

√
2

ρL
sin
(nπx

L

)
, (21)

λC−C
n =

(nπ
L

)2 [1
ρ

(
a+ b

(nπ
L

)2)]
, n ≥ 1; (22)

Clamped-Free (C-F)

uC−F
n (x) =

√
2

ρL
sin

(
(2n− 1)πx

2L

)
, (23)

λC−F
n =

(
(2n− 1)π

2L

)2
[
1

ρ

(
a + b

(
(2n− 1)π

2L

)2
)]

, n ≥ 1; (24)
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Free-Free (F-F)

uF−F
n (x) =

√
2

ρL
cos
(nπx

L

)
, (25)

λF−F
n =

(nπ
L

)2 [1
ρ

(
a+ b

(nπ
L

)2)]
, n ≥ 0. (26)

According to Eqs. (11) and (12), l2 does not play any role in the equation

governing the axial displacement. Thus, the only material constants account-

ing for length scale effects are l0 and l1, which are grouped in the parameter

b. From the Eqs. (22), (24) and (26) it can be easily shown that increasing

values of l0 or l1 leads to higher values of the natural frequencies.

2.3. Free axial vibrations of a uniform nanorod carrying a point mass

Basing on the conventional detection principle (see the Introduction), we

assume that a point mass M is added at the cross-section of the nanorod

of abscissa s, s ∈ (0, L), see Fig. 1. The differential operator governing the

eigenvalue problem for the nanorod with a point mass is

bũIV − aũ′′ = λ̃ρũ, x ∈ (0, s) ∪ (s, L), (27)

where, in addition to one of the end conditions (15)–(16), (17)–(18), (19)–

(20), we have also to consider the jump conditions at x = s





[[ũ(s)]] = 0,

[[ũ′(s)]] = 0,

[[ũ′′(s)]] = 0,

[[(aũ′ − bũ′′′) (s)]] = −λ̃Mũ(s),

(28)

(29)

(30)

(31)
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where [[ϕ(s)]] = (ϕ(s+)− ϕ(s−)) denotes the jump of the function ϕ at x = s.

The unperturbed nanorod clearly corresponds to M → 0+.

To solve the eigenvalue problem for the nanorod with a point mass we

need to find a nontrivial ũ ∈ C4 ((0, s) ∪ (s, L))∩C1((0, L)) and λ̃ ∈ R
+ such

that (27)–(31) are satisfied, under a given set of end conditions.

In the sequel, we shall need the weak formulation of the eigenvalue prob-

lem. LetHm (a, b), with−∞ < a < b < +∞, be the real-valued Hilbert space

of the Lebesgue measurable functions f : (a, b) → R such that
∫ b

a

(
f 2 +

∑m
i=1

(
dif

dxi

)2)
<

+∞, where dif

dxi is the ith weak derivative of f . For the sake of simplicity, we

shall consider the specific case of boundary conditions (C − C). The other

cases (C − F ) and (F − F ) can be managed similarly.

Let us multiply (27) by ϕ ∈ H2 ((0, s) ∪ (s, L)) satisfying [[ϕ(s)]] =

[[ϕ′(s)]] = 0 and end conditions ϕ(0) = 0 = ϕ(1). Integrating by parts

twice, we have

bũ′′′ϕ
∣∣∣s−0 + bũ′′′ϕ

∣∣L
s+ − bũ′′ϕ′

∣∣∣s−0 − bũ′′ϕ′
∣∣L
s+ − aũ′ϕ

∣∣∣s−0 − aũ′ϕ
∣∣L
s+ +

+

∫ L

0

(bũ′′ϕ′′ + aũ′ϕ′) = λ̃

∫ L

0

ρũϕ
(32)

Using the jump and end conditions on ũ at x = s and x = 0, L, respectively,

and by the definition of ϕ, we get the weak formulation of (27)–(31) under

(C − C) boundary conditions: to find ũ ∈ H\ (0) and λ̃ ∈ R such that

∫ L

0

(bũ′′ϕ′′ + aũ′ϕ′) = λ̃

(
Mũ(s)ϕ(s) +

∫ L

0

ρũϕ

)
, for every ϕ ∈ H,

(33)
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where

H =
{
f : (0, L) → R

∣∣f ∈ H2 ((0, s) ∪ (s, L)) , f (0) = 0 = f (L) , [[f(s)]] = [[f ′(s)]] = 0
}
.

(34)

The Rayleigh’s quotient R [·] associated to the weak formulation (33)–(34) is

R : H \ {0} → R
+, R [ϕ] =

∫ L

0
b (ϕ′′)2 + a (ϕ′)2

Mϕ2(s) +
∫ L

0
ρϕ2

(35)

and the nth eigenpair (λ̃n, ũn(x)) is such that

λ̃n = min
ϕ∈Vn\{0}

R [ϕ] = R [ũn] , n ≥ 1, (36)

where

Vn =

{
f ∈ H

∣∣∣∣Mf(s)ũi(s) +

∫ L

0

ρfũidx = 0, i = 1, ..., n− 1

}
. (37)

It can be shown that properties i) and ii) mentioned above for the unper-

turbed nanorod apply also to the eigenvalue problem for the nanorod carrying

a point mass. However, closed-form solutions for the eigenpairs are generally

not available, even for the constant coefficient case.

3. Eigenvalue shifts induced by a small point mass: a perturbative

approach

In this section we shall assume that the point mass M is small with

respect to the total mass of the nanorod, i.e.,

M ≪ ρL. (38)
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Under this assumption, we shall investigate on the effects of the added mass

on the eigenvalues of the nanorod. Again, to simplify the presentation, at-

tention is focused on (C −C) end conditions. From the variational theory of

eigenvalues recalled in (35)–(37), it easily follows that no natural frequency

can be increased due to the addition of the point mass M , i.e.,

λ̃n ≤ λn, for every n ≥ 1. (39)

However, in order to study the inverse problem of identifying the point mass

by natural frequency data, we need quantitative information on the effects

of the added mass. A first result is contained in the next statement.

Proposition 3.1. Let (λ̃, ũ) be an eigenpair of (33)–(34). Then, for a given

position s ∈ (0, L) of the point mass, λ̃ = λ̃(M) is a C1-function in (0,∞)

and we have

∂λ̃

∂M
= −λ̃

ũ2(s)

Mũ2(s) +
∫ L

0
ρũ2

(40)

Proof. We apply to the weak formulation (33) the forward-difference operator

δhf(x;M) =
f(x;M + h)− f(x;M)

h
, h > 0, M ∈ (0,∞). (41)

We have
∫ L

0

(b(δhũ
′′)ϕ′′ + a (δhũ

′)ϕ′) = δhλ̃

(
Mũ(s)ϕ(s) +

∫ L

0

ρũϕ

)
+

λ̃

[
ũ(s)ϕ(s) +M (δhũ(s))ϕ(s) +

∫ L

0

ρ (δhũ)ϕ

]
,

(42)

for every C2-piecewise function ϕ in [0, L], with ϕ(0) = 0 = ϕ(L).
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Let us take ϕ = ũ and let us note that δhũ is a suitable test function for

the weak formulation of the problem. Then

∫ L

0

(b (δhũ
′′) ũ′′ + a (δhũ

′) ũ′) = δhλ̃

(
Mũ2(s) +

∫ L

0

ρũ2

)
+

λ̃ũ2(s) + λ̃

[
M (δhũ(s)) ũ(s) +

∫ L

0

ρ (δhũ) ũ

]

(43)

The left hand side of (43) simplifies with the last square bracket on the right

end side. Then, taking the limit as h → 0+, we obtain

∂λ̃

∂M
(M+) = −λ̃

ũ2(s)

Mũ2(s) +
∫ L

0
ρũ2

. (44)

By repeating the above analysis with the backward-difference operator δ−h(·),

the left derivative of the eigenvalue λ̃ = λ̃(M) turns out to be equal to the

right derivative. Then, the function λ̃ = λ̃(M) is continuously differentiable

and (40) is proved.

By adapting the arguments in [46], we can prove the following useful

result.

Theorem 3.2. There exists M̂, M̂ > 0, such that the eigenvalues λ̃n =

λ̃n(M) of (33)–(34) are holomorphic functions of M , for 0 < M < M̂ .

By Proposition 3.1 and Theorem 3.2, and assuming the mass-normalization

condition
∫ L

0
ρu2

n = 1, the Taylor series expansion truncated to the first order

term in the smallness parameter M for the nth eigenvalue is given by

λ̃n(M) = λn − λnu
2
n(s)M. (45)
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Relation (45) shows that the change in an eigenvalue can be written as

the product of the eigenvalue itself, the square of the corresponding (mass-

normalized) eigenfunction of the unperturbed nanorod evaluated at the mass

position, and the mass variation. Equation (45) plays an important role in

our inverse problem, since it shows that the ratios of the relative changes in

two different eigenvalues depend only on the location of the point mass, not

on its magnitude, namely (if δλk < 0)

δλn

λn

δλk

λk

=
u2
n(s)

u2
k(s)

≡ f(s), (46)

where δλn ≡ λ̃n − λn and s ∈ (0, L). Note that if δλk = 0, then the

possible point mass location coincides with one of the node points of the kth

vibrating mode uk of the unperturbed nanorod. Therefore, the problem of

localizing the point mass is reduced to the determination of the solutions

of (46) for fixed/measured value of the ratio δλn

λn
/ δλk

λk
. Let us observe that,

once the unperturbed configuration is known, the function f = f(s) can be

determined numerically or analytically. This idea was first explored in [47]

for the identification of a point mass in a full-scale longitudinally vibrating

rod under free-free end conditions, see also [48]. It should be noticed that

the analysis developed in [47] and [48] deals with the identification of a point

mass, described as a Dirac’s delta, in a classical second-order Sturm-Liouville

operator, whereas, as it was shown in Section 2, the longitudinal vibration

of a nanorod involves a fourth-order differential operator.

In the next section we shall show that there are certain situations in

which a suitable choice of the frequency input data allows obtaining closed
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form solutions of the linearized inverse problem.

4. Identification of a small point mass in uniform nanorods

We first consider the identification of the small point massM in a nanorod

under clamped-clamped end conditions (C − C). Recalling the expressions

of the eigenpairs (25)–(26), by (45) we have

CC−C
n = M sin2

(nπs
L

)
, (47)

where

CC−C
n = −

(
λ̃C−C
n − λC−C

n

)

λC−C
n

ρL

2
, n ≥ 1. (48)

A direct calculation shows that

M
(
4CC−C

n − CC−C
2n

)
= 4

(
CC−C

n

)2
, n ≥ 1. (49)

In order to identify the point mass, let us distinguish two cases.

First case. Let us assume CC−C
n > 0 (note that CC−C

1 is always strictly

positive). By equation (49) we have

M =
CC−C

n

1− CC−C
2n

4CC−C
n

, (50)

which gives a closed-form expression for the mass intensity M in terms of the

(nth, 2nth) eigenfrequency changes. It is worth noticing that, by (49), M in

(50) takes positive values. The position of the point mass can be determined

by inserting the expression (50) into (47), namely

S = cos

(
2nπs

L

)
=

CC−C
2n

2CC−C
n

− 1, (51)
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where S ∈ [−1, 1]. By taking n = 1 in (51), the ratio of the first frequency

changes is sufficient for the localization of the point mass, up to a symmetrical

position with respect to the mid-point of the nanorod.

Second case. If CC−C
n = 0 for certain n ≥ 2, then from (47) we have S = 1,

that is the point mass is located in one of the points of zero-sensitivity of the

nth vibration mode.

The above analysis shows that the pair of natural frequencies nth and

2nth plays a special role in the linearized inverse problem. In fact, if the nth

frequency is sensitive to the point mass, that is CC−C
n > 0 or equivalently

u2
n(s) > 0, then the pair

{
CC−C

n , CC−C
2n

}
determines uniquely the mass in-

tensity M . It is worth noticing that the expression for M is the same for

all the pairs of values
{
CC−C

n , CC−C
2n

}
. Concerning the possible point mass

locations, equation (51) shows that their number generally increases as the

order n of the frequencies involved increases, which accounts for the recourse

to ”low” frequencies for solving the localization problem.

Summing up, we have shown that the measurement of the first two natural

frequencies in a clamped-clamped nanorod allows for the unique identifica-

tion of the point mass (except for symmetrical positions). This conclusion

must be modified for nanorods under different boundary conditions. As an

example, let us consider the identification of the point mass in a clamped

free nanorod from the first and second eigenfrequency changes. By inserting

the expressions (23)–(24) into (45) we have

CC−F
1 = M sin2

(πs
2L

)
, CC−F

2 = M sin2

(
3πs

2L

)
. (52)
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Let z = cos
(
πs
L

)
, with z ∈ (−1, 1). Then, recalling the identity cos(3α) =

(4 cos3 α−3 cosα), we obtain the following non-linear system in terms of the

two unknowns z and M




CC−F
1 = M

2
(1− z),

CC−F
2 = M

2
(1− 4z3 + 3z).

(53)

(54)

A direct calculation shows that

(9CC−F
1 − CC−F

2 ) = 2M(z − 1)2(z + 2) > 0 (55)

and the damage localization problem (46) for n = 2 and k = 1 is reduced to

solving the polynomial equation

(1 + 2z)2 = χ, z ∈ (−1, 1), (56)

where, by (55),

χ =
CC−F

2

CC−F
1

∈ [0, 9). (57)

The existence and the number of solutions of (56) depend on the values of

the parameter χ. If χ ∈ [1, 9), then there exists a unique solution z1 ∈ (0, 1),

which corresponds to s1 ∈
(
0, L

2

)
. If χ ∈ (0, 1), then there are two distinct

solutions of (56), say z1 ∈
(
−1,−1

2

)
and z2 ∈

(
−1

2
, 0
)
, which correspond to

s1 ∈
(
2L
3
, L
)
and s2 ∈

(
L
2
, 2L

3

)
, respectively. Finally, for χ = 0 equation (56)

has a double zero at z = −1
2
, corresponding to s = 2L

3
. In conclusion, should

the point mass be located within the left half of the rod adjacent to the

clamped end, the measurement of the first and second natural frequencies

determines uniquely the location of the point mass. Conversely, should the
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mass be located in the right half of the rod, there are two different locations

corresponding to the same value χ, apart when χ = 0, which corresponds to

the mass position at s = 2
3
L.

We conclude this section with the analysis of natural frequency data com-

ing from two sets of different end conditions. It turns out that the measure-

ment of the nth resonant frequency under boundary conditions (C −C) and

the nth natural frequency under boundary conditions (F −F ), n ≥ 1, deter-

mines uniquely the point mass and the location variable S = cos
(
2mπs
L

)
. In

particular, by adopting the above procedure, we have

M = CF−F
n + CC−C

n (58)

and

if CF−F
n > 0, then S = −1 +

2

1 + CC−C
n

CF−F
n

; (59)

if CF−F
n = 0, then S = −1. (60)

Here, CF−F
n = −(λ̃F−F

n −λF−F
n )

λF−F
n

2

ρL

, n ≥ 1. It follows that the point mass is

uniquely determined (except for symmetrical positions) by
{
CC−C

1 , CF−F
1

}
.

5. Applications

5.1. Exact versus perturbative solution

This section is devoted to the evaluation of the accuracy of the perturba-

tion approach outlined in Section 3 in estimating the eigenvalues of the prob-

lem (27)–(31) with boundary conditions given either by (15)–(16) (C − C)

or by (17)–(18) (C −F ). From the practical point of view, the free-free case
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(F −F ) does not seem to be very suitable for nanosensors applications, and

will not considered in the sequel.

Following [39], we considered a nanorod with circular cross-section with

diameter D and length L = 20D. Moreover, the two scale parameters l0

and l1 have been assumed to be equal, e.g., l0 = l1 = l, and the selected

Poisson’s ratio was ν = 0.38. The variation of the first three eigenvalues,

λ̃1, λ̃2, λ̃3 (normalized to the corresponding eigenvalues λ0n of the ”classical”

local rod, that is the rod with b = 0, without any attached mass) with

respect to the intensity M of the point mass (normalized to the total mass

of the nanorod ρL) has been calculated for various positions s and for D/l =

{2.0, 1.0, 0.5, 0.4}.

Eigenfrequency changes have been obtained using both exact and per-

turbative solutions. The exact solution is calculated from the corresponding

frequency equation in terms of nondimensional eigenvalue Λ = ρL2

EA
λ̃, and

nondimensional attached mass M̄ = M
ρL
.

For the case of a clamped-clamped nanorod the frequency equations reads

as

fC−C(Λ) = −β sinh(β)
(
αh2

(
α2 + β2

)
sin(α)− ΛM̄ sin(αs) sin(α(1− s))

)
−

−αΛM̄ sin(α) sinh(sβ) sinh(β(1− s)) = 0,

(61)
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where the parameters α and β are given by

α =

√√
4h2Λ + 1− 1

2h2
, (62)

β =

√√
4h2Λ + 1 + 1

2h2
, (63)

and h is the dimensionless parameter related to the length scale l by the

following expression:

h =

√
7

5 (1 + ν)

l

20D
. (64)

The frequency equation for the clamped-free nanorod is

fC−F (Λ) = β cosh(β)
(
αh2

(
α2 + β2

)
cos(α)− ΛM̄ sin(αs) cos(α (1− s)

)
+

+αΛM̄ cos(α) sinh(sβ) cosh (β (1− sβ)) = 0.

(65)

The first order change in eigenvalues is determined from (45), where un and

λn are given by (21)–(22) and (23)–(24) for (C − C) and (C − F ) end con-

ditions, respectively.

Figs. 2 to 4 show, for the (C−C) boundary conditions, the variation of the

first three eigenvalues with the attached mass located at different positions

and for the selected values of D/l. For moderate values of the attached

mass, i.e. M/ρL ∈ [0, 0.2], there is a good agreement between exact and

first-order solution. For the fundamental mode, for example, the accuracy

generally decreases as the mass location moves toward the mid-point of the

nanorod. In fact, the maximum difference is encountered at s = L
2
, and it
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oscillates between 15 and 22 percent. As it was observed above, in absence

of the attached mass, eigenfrequency values of the strain gradient nanorod

are higher than those of the classical rod model, and they increase when the

scale parameter l increases (D/l decreases), meaning that the generalized

constitutive model used leads to a stiffening of the structure.

The results corresponding to clamped-free boundary conditions are shown

in Figs. 5 to 7, and considerations analogous to the clamped-clamped case

can be made. In the case of the fundamental mode, the maximum difference

between exact and perturbative results occurs for mass location s = 0.9, and

its value is about 16 percent.

5.2. Solution of the inverse problem

In this section some results on the capability of the method proposed

in Section 4 to identify the value of the attached mass and its position are

presented. For the clamped-clamped nanorod, among several simulations, the

cases with mass intensity M/(ρL) ∈ {0.001, 0.025, 0.050, 0.100, 0.200} and

position s/L ∈ {0.1, 0.25, 0.40, 0.50} shall be considered in detail. It should

be noticed that positions s/L > 1/2 are not considered given the symmetry

of the problem. The attached mass is identified using equations (48) and

(50), while the position is obtained from equation (51). Table 1 collects the

results when the first two natural frequencies are used in the identification

process, i.e., for n = 1. It can be seen that, for small masses, the error in

the identification of position and mass intensity remains at relatively small

values. The case s/L = 0.50 deserves special attention, since the position
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is exactly identified. Larger errors are observed when the mass intensity

increases.

Similar information is given in Table 2, in which the second and fourth

frequencies are used (i.e., n = 2). Besides the fact that two possible solutions

for the mass position can exist, the comparison of the values with those given

in Table 1 shows that the precision in the identification of position and mass

decreases, even for the identified location closest to the right one (except

when s = 0.25, for which the method gives the exact solution). Specifically,

for s = 0.5 the identification method leads to imaginary values since this

position coincides with a node of both the second and fourth shape modes,

thus both the second and the fourth frequencies are insensitive to the presence

of the point mass.

In the case of the clamped-free rod, as explained in the second part of Sec-

tion 4, a different scenario is found. The method was tested for the same point

mass intensities considered in the previous case, and the positions investi-

gated covered the whole span of the rod, namely s = {0.10, 0.35, 0.50, 0.65, 0.90},

since the symmetry conditions do not hold for the clamped-free case. The

mass location has been determined by solving (56). In agreement with the

theory (e.g., case in which s ∈
(
0, L

2

)
), for s = 0.10 and s = 0.35 only one

solution is encountered in the identification process (see Table 3). The errors

are moderate and increase with the attached mass intensity. For the other

positions considered in simulations, two possible solutions are obtained, Sln.1

and Sln.2 (see Table 4), which correspond to s1 ∈
(
2L
3
, L
)
, and s2 ∈

(
L
2
, 2L

3

)
,

respectively. In every case, as expected from the theory developed in the sec-
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ond part of Section 4, one of these two solutions is close to the true solution,

the other is spurious and follows from the non-uniqueness of the mathemati-

cal inverse problem. In all the cases, the mass intensity M was estimated by

solving (55). It should be noticed that, for the sake of brevity, all the results

quoted correspond to D/l = 0.4, the higher value of the scale parameter l

considered in this study.

In order to evaluate the effect of errors on the data measurements, the

1st and 2nd eigenfrequencies were perturbed for a clamped-clamped nanorod

(C − C) with point mass intensity M/ρL = 0.025 at s = 0.4L, according to

the expressions

√
λ̃pert
1 =

√
λ̃1 (1 + τ1) ;

√
λ̃pert
2 =

√
λ̃2 (1 + τ2) , (66)

where τ1 and τ2 are real random Gaussian variables with zero mean and

standard deviations σ1 and σ2, respectively. The maximum measurement

error has been taken to be approximately equal to a given percentage Π ,

Π = 5, 10, 15, 20% of the frequency shift δλn, for n = 1, 2. Then, the standard

deviations are defined as 3σn = δλnΠ/100, for n = 1, 2. A MonteCarlo

simulation on a population of 10000 samples was performed, leading to the

results presented in Table 5, where the mean and standard deviations for the

identification errors corresponding to mass intensity and position are shown

for different values of the measurement error Π . As it can be seen, the mean

errors keep (approximately) constant with Π , and equal to the corresponding

identification errors shown in Table 1. Regarding the standard deviation, it

increases with the measurement error, but keeps at a rather low value up to
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Π = 0.20. All this confirms the robustness of the proposed method.

6. Concluding remarks

In this paper we obtained the natural frequencies of the axial vibrations of

a nanorod carrying a concentrated mass through its span for both clamped-

clamped and clamped-free end conditions. The modified strain gradient the-

ory proposed in [31] has been used to take into account the size effects present

in this kind of structures. The influence of the mass intensity, mass location,

as well as the value of scale parameter have been analysed. For the case of

small intensity of the concentrated mass, a first order perturbative technique

is used to compute the natural frequencies of the nanorod. To our knowl-

edge, this problem, which is relevant regarding application of nanostructures

as sensors, is addressed for the first time. In fact, from the properties of the

eigenvalue perturbative theory, the identification of a single point mass in a

uniform nanorod (mass intensity and position) by minimal frequency data

has been considered. We have shown that the point mass can be uniquely

identified (up to a symmetrical position) by the knowledge of the first two

natural frequencies of the nanorod under clamped-clamped end conditions.

Moreover, the effect of the frequency measurement errors on the estimated

variables (mass intensity and location) has been illustrated with a statistical

analysis, showing the robustness of the identification method. The results

obtained herein encourage the use of axial vibrations of nanorods as a very

precise sensing technique.

As a final remark, we point out that a problem worth of investigation that
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emerges from the present analysis stands on the possibility of identifying a

point mass of finite - not necessarily small - magnitude. It is likely that the

results and methods presented in [49, 50] may be useful for this purpose.
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Table Captions

Table 1. Identification of the mass intensity M and position s in a

clamped-clamped nanorod (C − C) from the first and second natural fre-

quencies. D/l = 0.4. Percentage errors: es = 100 × (sest − s)/s, eM =

100× (Mest −M)/M .

Table 2. Identification of the mass intensity M and position s in a

clamped-clamped nanorod (C − C) from the second and fourth natural fre-

quencies. D/l = 0.4. Existence of two solutions for the mass position (es1 and

es2). Percentage errors: es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

∗: no results.

Table 3. Identification of the mass intensity M and position s in a

clamped-free nanorod (C − C) from the first and second natural frequen-

cies. D/l = 0.4. s ∈
(
0, L

2

)
: existence of unique solution. Percentage errors:

es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

Table 4. Identification of the mass intensity M and position s in a

clamped-free nanorod (C − F ) from the first and second natural frequen-

cies. D/l = 0.4. s ∈
[
L
2
, L
]
: existence of two solutions (Sln.1 and Sln.2).

Percentage errors: es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

Table 5. Mean and standard deviation for the errors corresponding to the

identification of mass intensity and position from the first and second natural

frequencies, as a function of the frequency measurement error. Clamped-

clamped nanorod (C − C) with M/ρL = 0.025 and s = 0.4L.
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Figure Captions

Figure 1. Nanorod with a point mass M located at abscissa s under

different boundary conditions. (a) Clamped-clamped; (b) clamped-free.

Figure 2. Clamped-clamped nanorod. Normalized first eigenvalue versus

dimensionless point-mass, for different mass positions, and different values

of the length scale parameter.

Figure 3. Clamped-clamped nanorod. Normalized second eigenvalue ver-

sus dimensionless point-mass, for different mass positions, and different val-

ues of the length scale parameter.

Figure 4. Clamped-clamped nanorod. Normalized third eigenvalue versus

dimensionless point-mass, for different mass positions, and different values

of the length scale parameter.

Figure 5. Clamped-free nanorod. Normalized first eigenvalue versus di-

mensionless point-mass, for different mass positions, and different values of

the length scale parameter.

Figure 6. Clamped-free nanorod. Normalized second eigenvalue dimen-

sionless point-mass, for different mass positions, and different values of the

length scale parameter.

Figure 7. Clamped-free nanorod. Normalized third eigenvalue dimen-

sionless point-mass, for different mass positions, and different values of the

length scale parameter.
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Table 1: Identification of the mass intensity M and position s in a clamped-clamped

nanorod (C − C) from the first and second natural frequencies. D/l = 0.4. Percentage

errors: es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

s = 0.10L s = 0.25L s = 0.40L s = 0.50L

M
ρL

es eM es eM es eM es eM

0.010 0.18 -0.24 1.34 -2.54 0.09 -1.62 0 -1.83

0.025 0.61 -0.91 3.26 -6.04 0.22 -3.97 0 -4.46

0.050 1.72 -2.76 6.21 -11.16 0.42 -7.68 0 -8.56

0.100 5.37 -8.70 11.29 -19.37 0.77 -14.39 0 -15.85

0.200 17.06 -24.74 18.95 -30.85 1.34 -25.49 0 -27.54
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Table 3: Identification of the mass intensity M and position s in a clamped-free nanorod

(C −F ) from the first and second natural frequencies. D/l = 0.4. s ∈
(
0, L

2

)
: existence of

unique solution. Percentage errors: es = 100× (sest − s)/s, eM = 100× (Mest −M)/M .

s = 0.10L s = 0.35L

M
ρL

es eM es eM

0.010 -0.68 1.42 0.94 -2.00

0.025 -1.88 3.94 2.29 -4.79

0.050 -3.59 7.72 4.40 -8.97

0.100 -6.18 13.87 8.12 -15.91

0.200 -7.83 18.34 14.05 -26.05
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Table 5: Mean and standard deviation for the errors corresponding to the identification of

mass intensity and position from the first and second natural frequencies, as a function of

the frequency measurement error. Clamped-clamped nanorod (C−C) with M/ρL = 0.025

and s = 0.4L.

Measurement Mass Mass Position Position
Error,Π (%) mean error (%) standard dev. mean error (%) standard dev.

5 -3.970 1.05 · 10−4 0.217 2.71 · 10−4

10 -3.962 2.09 · 10−4 0.217 5.39 · 10−4

15 -3.957 3.11 · 10−4 0.217 8.10 · 10−4

20 -3.983 4.20 · 10−4 0.211 10.84 · 10−4
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(a)

(b)

Figure 1: Nanorod with a point mass M located at abscissa s under different boundary

conditions. (a) Clamped-clamped; (b) clamped-free.
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Figure 2: Clamped-clamped nanorod. Normalized first eigenvalue versus dimensionless

point-mass, for different mass positions, and different values of the length scale parameter.
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Figure 3: Clamped-clamped nanorod. Normalized second eigenvalue versus dimensionless

point-mass, for different mass positions, and different values of the length scale parameter.
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Figure 4: Clamped-clamped nanorod. Normalized third eigenvalue versus dimensionless

point-mass, for different mass positions, and different values of the length scale parameter.
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Figure 5: Clamped-free nanorod. Normalized first eigenvalue versus dimensionless point-

mass, for different mass positions, and different values of the length scale parameter.
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Figure 6: Clamped-free nanorod. Normalized second eigenvalue versus dimensionless

point-mass, for different mass positions, and different values of the length scale parameter.
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Figure 7: Clamped-free nanorod. Normalized third eigenvalue versus dimensionless point-

mass, for different mass positions, and different values of the length scale parameter.
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