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Second-Order Nédélec Curl-Conforming Prismatic
Element for Computational Electromagnetics

Adrian Amor-Martin, Member, IEEE, Luis Emilio Garcia-Castillo, Member, IEEE, and Daniel
Garcia-Doñoro, Member, IEEE,

Abstract—A systematic approach to obtain mixed order curl-
conforming basis functions for a triangular prism is presented;
focus is made on the second-order case. Space of functions for
the prism is given. Basis functions are obtained as dual basis
with respect to properly discretized Nédélec degrees of freedom
functionals acting on elements of the space. Thus, the linear
independence of the basis functions is assured while the belonging
of the basis to the a-priori given space of functions is guaranteed.
Different strategies for the finite element assembly of the basis are
discussed. Numerical results showing the verification procedure
of the correctness of the implemented basis functions are given.
Numerical results about sensibility with respect to quality of
the elements of the mesh of the condition number of the basis
obtained are also shown. Comparison with other representative
sets of basis functions for prisms are included.

Index Terms—Curl-conforming element, finite element calcu-
lations, Nédélec elements, triangular prismatic element.

I. INTRODUCTION

Curl-conforming finite elements have been object of inten-
sive research in the electromagnetic community during the
nineties and early ’00s providing stable discretization schemes
for the electromagnetic field within the context of full wave
vector formulations in electromagnetics. Two main types of
curl-conforming elements may be distinguished depending on
whether they are complete up to some order (in the polynomial
sense) or not. The latter elements are called mixed order
elements as they provide a mixed order approximation of the
field while the approximation of the curl remains complete
of one order less (as in their complete order counterpart) [1].
A detailed review of the literature in this subject up to 1997
may be found in [2]. It is worth noting later contributions:
[3], [4], [5], [6], [7]. An intense research activity has been
also carried out in the mathematical community identifying
and solving a number of issues related with the application of
finite elements to the full set of Maxwell Equations [8], being
worth noting the sufficient condition for stability given by the
commutativity of the de-Rham diagram [9].
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The research group to which the authors belong has de-
veloped its own family of higher order curl-conforming sim-
plices of mixed order, [10], [11]. Specifically, curl-conforming
tetrahedral elements are included in an in-house electromag-
netic simulator named HOFEM (Higher Order Finite Element
Method), [12]. HOFEM has demonstrated to be a reliable tool
in the daily basis design tasks carried out by the antenna
and microwave circuit researchers in the group. However,
while tetrahedral shapes are very versatile for discretiza-
tion of complex geometrical domains, mesh generation with
tetrahedral elements can be very expensive computationally
speaking, or simply not appropiate or efficient for a significant
number of structures. That is the case of planar structures such
as integrated circuits package designs, or planar microwave
circuits and antennas, in which a volumetric mesh in terms
of triangular prisms can be easily generated by extrusion
of a two dimensional mesh based on triangles. Waveguide
sections are also good candidates to be tessellated by extrusion
with triangular prisms. The use of planar layers as coats to
conformal surfaces may also be easily meshed with prisms;
in this case the prisms are distorted (not parallel edges in the
direction of “extrusion”).

Despite its “apparent” simplicity, the number of implemen-
tations of curl-conforming triangular prisms appeared in the
literature is considerably less than their tetrahedral counter-
parts. Geometrically speaking the triangular prism element
is obtained by extrusion and hence, its basis function space
naturally inherits a tensor product structure of the correspond-
ing space of the two dimensional simplex (triangle) and the
one dimensional space (segment). Mixed order property and
stability conditions sum up to define the finite element space
for the reference prism as it is explained later. In other words,
given a function space for the triangular finite element, the
space of basis functions for the reference prism is uniquely,
and easily, defined. It is worth noting that, in contrast, basis
functions for the triangular prism can not be directly defined
in the general case as some sort of tensor product of the basis
functions of the triangle and the nodal basis for the segment
(even assuming appropriate constraints regarding polynomial
orders of approximation in certain directions are satisfied for
stability purposes).

Pioneering basis functions were given in [?], [13], [14]. Ba-
sis functions proposed in [15] may be considered an example
of what was just mentioned above (functions given there fail
to provide tangential continuity in the general case). A number
of approaches to directly obtain higher order curl-conforming
basis for the prisms, without a priori definition of the space,
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have been proposed after then. Graglia et al., [16], propose
functions for the prisms based on its popular well-known
approach for simplices and hexahedra in affine coordinates
of [17] overcoming the limitations of functions shown in
[15]. Functions given in [18], [19] are obtained following the
same methodology that in [20] for tetrahedral elements, which
basically consists of imposing a number of constraints to a
general expression for the basis functions in affine coordinates.
The constraints are based on assumed properties of the space
(e.g., the so called inclusion condition). There are as well
constraints “inspired” by the definition of degrees of freedom
of [1], [21]; however, no explicit expressions of the space or
the use of degrees of freedom definitions are made in the
obtainment of the basis functions. A different approach is the
one followed in [22], [23] for the prism which is an extension
of the one presented in [24]–[26] for triangle and tetrahedrons.
The goal of this approach is to get orthogonal basis functions
for time domain finite element formulations. Orthogonality
is achieved by explicit orthogonalization formula and it is
also based on numerical orthogonality in terms of a particular
quadrature formula. However, it is not clear for the authors
of the present paper what space of functions is being approx-
imated; e.g., the dimension count of the space spanned by
these basis functions does not agree with mixed or polynomial
complete order prisms. It is worth noting that the tensor
product structure of the prisms makes easy to build spectral
versions of the prism in the extrusion direction. An example
is the prism presented in [27]. In addition to the above
references to curl-conforming basis functions for the prism
of interpolatory type, it is worth mentioning hierarchical
basis for the prism as those of [?] which constitute the
hierarchical version of those presented in [16]. Also, the
family of higher order elements of variable order proposed
in [28] contains prisms. Recently, [?] proposed a complete
family that also includes prisms.

In contrast, the systematic approach followed here to obtain
mixed order curl-conforming basis functions for the prism is
based on the a priori definition on a reference element of
the space of basis functions and the obtainment of the basis
functions as the dual basis with respect to a set of unisolvent
degrees of freedom acting on the defined space, i.e., Ciarlet
classic definition of finite element [29]. Basis functions in the
real element are obtained by using the inverse of the jacobian
matrix which assures curl-conformity and supports prismatic
elements with curved boundaries through the concept of
isoparametric element [30]. The above mentioned approach
has demonstrated to be sound mathematically speaking and
to provide stable and well conditioned basis for higher order
simplices, [10], [11], [31].

Specifically, such an approach has a number of advantages.
Firstly, the space of functions, which determines stability and
convergence properties of the finite element method, is known.
In several cases, properties of the space spanned by the basis
functions are not clear, e.g., if it satisfies the so called inclusion
condition for the gradients or not. Another example is the
existence of Nédélec type spaces [32] with similar but not
identical properties to the original Nédélec space; e.g., the
basis functions or third order described in [3] belong to one

of these Nédélec type spaces probably not deliberately. In
the case of the prism, the space is easily defined using the
tensor product, the curl-conforming space of the triangle and
the nodal one-dimensional space of the segment.

Secondly, the a priori definition of a set of functionals
acting on the space (degrees of freedom) makes operations as
projection of a given function on the set of finite element basis
functions (useful for Dirichlet boundary conditions, explicit
forcing of continuity conditions when hybridizing with other
codes, and so on) much easier. Unisolvency of the degrees
of freedom must be proved; however, proof of unisolvency of
Nédélec degrees of freedom was already given in [21].

To the authors’ best knowledge, this is the first time the dual
basis with respect to a concrete implementation of Nédélec’s
degrees of freedom are obtained for the prism and verified.
It is worth noting that although the basis functions of
this paper are classified as interpolatory in contraposition
to the group of hierarchical basis, they are not interpo-
latory strictly speaking. That is, basis functions are not
designed to be non zero at one point and zero at all
the others as it will be in Section II. It is also worth
noting that Nédélec definition of degrees of freedom of the
prism, as it happens with other types of elements, is purely
mathematical and not directly implementable. In this paper,
a systematic methodology to “discretize” Nédélec degrees of
freedom for the prism and to obtain a concrete set of basis
functions is described. Methodologies for the assembly of the
finite element prisms are also discussed. Approximability and
convergence properties of the obtained prism finite element
are verified in the context of the HOFEM simulator mentioned
above. Specifically in this paper, the goal are the second-order
basis functions as second order is the default polynomial order
used by HOFEM.

The rest of the paper is organized as follows: in the
Section II the element developed is presented and explained,
with the definition of the basis function space, degrees of
freedom and assembly; in the Section III some numerical
results obtained are described and, finally, in the Section IV
final conclusions of the communication are explained.

II. THE TRIANGULAR PRISMATIC ELEMENT

Following Ciarlet classic definition of finite element [29],
the prism is defined by a geometrical domain, a space of
functions and a set of degrees of freedom. The domain is a
prism with a triangular base (see Figure 2). The basis functions
space and the functionals acting as degrees of freedom are
defined next.

A. Basis function space

The basis function space for the mixed-order reference
prism of order k is constructed by taking tensor products
of mixed-order space for the reference triangle Rk(T ) with
the space of one-dimensional polynomials on the reference
segment Pk(I):

Pprism
k = (Rk(T )⊗ Pk(I))× (Pk(T )⊗ Pk−1(I)) (1)
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R2(T ) =

{
α1 + α2ξ + α3η + γ1η

2 − γ2ξη
β1 + β2ξ + β3η − γ1ξη + γ2ξ

2

}
(2)

Pprism
2 ≡ Ni(i = 1, ..., 36) =



a
(i)
1 + a

(i)
2 ξ + a

(i)
3 η + a

(i)
4 ζ + a

(i)
5 ξζ + a

(i)
6 ηζ + a

(i)
7 ζ2 + a

(i)
8 ξζ2 + ...

...+ a
(i)
9 ηζ2 + C(i)η2 +D(i)ξη + E(i)η2ζ + F (i)ξηζ +G(i)η2ζ2 +H(i)ξηζ2

b
(i)
1 + b

(i)
2 ξ + b

(i)
3 η + b

(i)
4 ζ + b

(i)
5 ξζ + b

(i)
6 ηζ + b

(i)
7 ζ2 + b

(i)
8 ξζ2 + ...

...+ b
(i)
9 ηζ2 − C(i)ξη −D(i)ξ2 − E(i)ξηζ − F (i)ξ2ζ −G(i)ξηζ2 −H(i)ξ2ζ2

c
(i)
1 + c

(i)
2 ξ + c

(i)
3 η + c

(i)
4 ξ2 + c

(i)
5 η2 + c

(i)
6 ξη + c

(i)
7 ζ + c

(i)
8 ξζ + ...

...+ c
(i)
9 ηζ + c

(i)
10 ξ

2ζ + c
(i)
11 η

2ζ + c
(i)
12 ξηζ


(3)

where mixed-order curl conformity and satisfaction of commu-
tativity of de-Rham diagram [9] are achieved by the properties
of space Rk(T ) itself and by the use of one order less (k−1)
in the third dimensional direction of the prism. Pk(T ) stands
for the space of two-dimensional polynomials on the reference
triangle. Note that boldface type fonts are used to denote vector
magnitudes. In this paper, mixed-order space for the triangle
Rk(T ) is precisely the Nédélec space [1] for the 2D simplex.

Text has been omitted here, including equation (2) and
(3) of the original submitted version. Table I of the original
version is also omitted.

The dimension of the polynomial spaces involved in the
prism space definition of (1) are 9, 36 and 90 for the first,
second and third order cases, respectively. In the following
the focus will be set on the second-order functions. Explicit
expressions of elements of space R2(T ) are given in (2) (see
[10], [2]). Thus, the corresponding space Pprism

2 for the prism
may be given as in (3).

It is worth to note that the basis function space for the prism
(3) is not isotropic. If we interchange, for instance, ξ and ζ
coordinates the resulting space does not have an equivalent
expression to (3) in contrast to tetrahedral Nédélec space in
which we can interchange any three of the coordinates. This
fact will have to be taken into account when interpreting some
of the numerical results shown later.

Elements of the spaces are determined by coefficients a1,
a2, C, and so on, of (3). Specifically, the basis functions Ni

of the corresponding space are obtained as dual basis with
respect to a set of gi(u) functionals (degrees of freedom in
FEM terminology). That is, for the second order case, Ni, i =
1 . . . 36 should satisfy the following 36 equalities compactly
expressed as:

gi(Nj) = δij , i, j = 1 . . . 36 (4)

where δij refers to Kronecker delta.
Functionals degrees of freedom gi are defined in the fol-

lowing.

B. Degrees of freedom

The definition of the types of functionals which are used
as the gi(u) degrees of freedom of the second order prismatic
element is as follows [21, Definition 8], where u stands for
elements of Pprism

2 (in practice, the electromagnetic field). The

spacial locations to which associate these degrees of freedom
in the reference prism are shown in the Figure 2.

1) Degrees of freedom associated to edges, defined as:

g(u) =

∫
e

(u · τ̂ )q dl, ∀q ∈ P1(e) (5)

where e stands for edge, τ̂ is the unit vector tangent to
the considered edge, and P1(e) is the space of scalar
first order polynomials in the corresponding edge local
coordinate.

2) Degrees of freedom associated to triangular faces, defined
as:

g(u) =

∫
ft

(u× n̂) · q ds,∀q ∈ P0(ft) (6)

where ft stands for triangular face, n̂ is the outward unit
normal vector to the considered face, and P0(ft) is the
space of two component vector zero order polynomials in
the corresponding two local coordinates of the triangular
face.

3) Degrees of freedom associated to quadrilateral faces,
defined as:

g(u) =

∫
fq

(n̂× u) · q ds

∀q = (q1, q2); q1 ∈ Q0,1; q2 ∈ Q1,0 (7)

where n̂ is again the outward unit normal vector to the
considered quadrilateral face fq . Space Ql,m is the space
of scalar vector polynomials in the corresponding local
variables (x1, x2) of the quadrilateral face such as the
maximum degree is l in x1 and m in x2. Note that
typically (but not necessarily), either x1 or x2, is chosen
as the extrusion direction of the prism. Note again that
the approximation is of one order less in the direction of
the component considered.

4) Degrees of freedom associated to the volume, defined as

g(u) =

∫
v

u · q dV,∀q ∈ P0(ft) (8)

where vector polynomial q are, as in the case of degrees
of freedom associated to triangular faces, two component
vector polynomials in the corresponding two “horizontal”
local coordinates. Thus, the same notation as in triangular
face degrees of freedom is used for space of q polyno-
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mials here.
It is worth noting that, in addition to volume degrees of
freedom as those of (8), another type of volume degree
of freedom appears for prism of order three and above.

Each one of the degrees of freedom defined above is
associated to a basis function (see (4)). Thus, basis functions
are naturally associated to edges, faces and volume of the
prism. The definition of the degrees of freedom associated
to finite element boundaries (edges and faces) only involves
tangential components. Thus, it eases to get tangential con-
tinuity (continuity in the curl sense) between finite elements
since only basis functions associated to a given part of the
prism boundary will give non-null trace (in the tangential
sense) on that considered part of the boundary. For the same
reason, basis functions associated to the prism volume are not
involved in the finite element assembly as they provide null
trace on the prism boundary. Note that degrees of freedom
corresponding to edges are defined as in Nédélec tetrahedra
and hexahedra and that degrees of freedom associated to
triangular and quadrilateral faces are defined in the same way
as in Nédélec tetrahedra and hexahedra faces, respectively.
That makes possible the support of meshes containing
tetrahedra and hexahedra.

C. Discretization of degrees of freedom

The definition of degrees of freedom as above can be used to
prove unisolvency; i.e., to ensure that basis functions obtained
from (4) are linearly independent. However, they can not be
implemented in order to obtain specific basis functions to be
used in a finite element code. For that purpose, the degrees
of freedom must be somehow “discretized”. The discretization
is performed by means of the choice of a basis for each one
of the polynomial spaces appearing in the definition of the
degrees of freedom. Thus, definition of degrees of freedom
is made in terms of momentums (of different order) over the
adequate components of the vector unknown u.

1) Edges: Let us consider the degrees of freedom asso-
ciated to edges first. A basis for P1(e), i.e., the space of
first order scalar polynomials with the local edge coordinate
as variable has to be chosen. As an example, consider the
edge going from vertex #1 to vertex #2 of reference element
shown in Figure 2. For that edge, local coordinate is ξ. Thus, a
possible basis for P1(e) might be q1 = 1, q2 = ξ. However, as
the goal is to obtain interpolatory basis functions, it is better
to use an interpolatory basis for P1(e). The advantages of
choosing interpolatory basis for q are a better conditioning of
the resulting basis (based on the experience of the authors with
tetrahedra elements) and an easier implementation of the finite
element assembly. The latter is due to the natural association
of degrees of freedom (equivalently basis functions) to nodes
placed in certain points/parts of the edge (or prism in general).
Thus, information about connectivity of the finite element
shape functions of the mesh can be gathered with conventional
FEM mesh software (maybe with some minor tweaking) in
terms of nodes. Specifically, Lagrange polynomials are chosen
in this paper and hence, q1 = 1 − ξ, q2 = ξ. Thus, the first
degree of freedom of the considered edge should be associated

to vertex #1 and the second one to vertex #2. They are the
degrees of freedom 1 and 2 in Figure 2. Actually, the degrees
of freedom associated to edges are not drawn at the edge
vertices but close to them on the edge. Finally, note that
with other edges the local coordinate/parametrization would
be different; e.g., for the edge going from vertex #2 to vertex
#3 local coordinate e is equal to (1 − ξ + η)/2 leading to
q1 = 1− e = ξ, q2 = e = η since 1− ξ = η over the edge.

2) Triangular faces: Analogously, a basis for the vector q
has to be chosen for face and volume degrees of freedom.
Discretization of degrees of freedom associated to the the two
triangular faces of the prism (6) involves space P0(ft), i.e.,
space of constant vectors on the plane ξ, η. Thus, we simply
have to choose two directions on the plane ξ, η; denoted by
unit vectors α̂ and β̂. A possible choice is α̂ = ξ̂, β̂ =
η̂ which corresponds to degrees of freedom 19, 20 of lower
triangular face of the prism and degrees of freedom 21, 22 of
upper triangular face (see Figure 2). Note that two orthogonal
directions have been chosen, which is relevant as it will be
explained in Section II-E.

3) Quadrilateral faces: Discretization of degrees of free-
dom associated to the two quadrilateral faces of the prism
(7) also involves the choice of two directions on the plane
corresponding to the quadrilateral face, e.g., the plane ξ−ζ for
face of vertices #1-#2-#5-#4. Let us denote them by their unit
vectors α̂ and β̂. Let us consider we choose α̂ = ξ̂ and β̂ = ζ̂
on the mentioned face. The choice of scalar polynomials q is
different to the case of the triangular faces because q is no
longer a constant and specially because the “one order less”
property have to be satisfied by q, i.e., q ∈ Q0,1 × Q1,0.
Thus, a reasonable choice for a basis of q space might be
q1 = (1 − ζ)ξ̂, q2 = ζξ̂, q3 = (1 − ξ)ζ̂, q4 = ξζ̂ in
this example (see association of degrees of freedom 23–26
to different zones and directions of the face in Figure 2 with
q1, q2, q3 and q4 as degrees 23, 24, 25 and 26, respectively).

4) Interior: The space of q for degrees of freedom asso-
ciated to volume (8) is P0(ft), i.e., the same than the one of
triangular faces. Thus, the choice for q may be made as in
the degrees of freedom associated to the triangular face. See
degrees of freedom 35, 36 in Figure 2.

D. Dual basis

It is worth noting that the same methodology above de-
scribed for discretization of Nédélec degrees of freedom of
second order can be applied for higher orders (e.g., see [11]
for third-order tetrahedron).

As it was already mentioned, once the degrees of freedom
have been discretized, i.e., basis for spaces of scalars q and
vector q polynomials involved have been selected, the basis
functions are obtained as dual basis with respect to discretized
degrees of freedom functionals. That means each one of the 36
basis functions Ni is obtained by imposing the corresponding
36 relations given by (4). Thus, each Ni is naturally associated
to a degree of freedom gi. In practice, forcing (4) implies
solving a matrix system of equations of dimension 36 with 36
right-hand sides in which the unknowns are the coefficients
a1, a2, C. . . of (3). Thus, a(1)

1 , a(1)
2 , C(1) . . . would be obtained
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TABLE I: Choice of scalars q and vectors q used in the
obtention of coefficients of Table II for each degree of freedom
(DOF). Scalar q is used for DOF from 1 to 18, and a vectorial
q is taken for DOF from 19 to 36.

DOF q or q DOF q

1, 7 1− ξ 24 ζ · ξ̂
2, 8 ξ 25 (1− ξ) · ζ̂
3, 9 ξ 26 ξ · ζ̂
4, 10 η 27 (1− ζ) · (−ξ̂ + η̂)/

√
2

5, 11 η 28 ζ · (−ξ̂ + η̂)/
√

2

6, 12 1− η 29 ξ · ζ̂
13, 15, 17 1− ζ 30 η · ζ̂
14, 16, 18 ζ 31 (1− ζ) · η̂
19, 21, 35 ξ̂ 32 ζ · η̂
20, 22, 36 η̂ 33 η · ζ̂

23 (1− ζ) · ξ̂ 34 (1− η) · ζ̂

for the first basis function N1. Analogously, N2, N3, and so
on. Pseudocode of the procedure to get the coefficients
is shown in Figure 1. Specifically, considering basis for
q, q shown in Table I, coefficients given in Table II are
obtained. Thus, it is clear basis functions so obtained are
not interpolatory strictly speaking. Actually, there are no
interpolatory points involved in the definition of either
the basis or the degrees of freedom. The interpolatory
character and the association of basis functions to certain
regions of the edges, faces and interior is indirect through
the interpolatory character of the polynomials used as
basis for the polynomial spaces involved in the definition of
the functional degrees of freedom as weighted momentums.

The procedure just described to obtain the basis functions
can be applied to any prism. However, there is a number
of advantages in the use of the concept of reference finite
element. Thus, basis functions are obtained in the reference
element (shown in Figure 2) and transformed into the real
element (actual element of the mesh) by using the following
transformation:

u = [J]−1ur (9)

where [J] stands for the Jacobian matrix of the geometric
transformation, ur denotes a vector in the reference element
and u the mapped vector in the real element.

Note that (9) transforms vectors as the gradients being the
appropriate transformation for curl-conforming elements. It
is important to know how (9) affects to vector magnitudes
involved in the definition of degrees of freedom since it is
relevant for the assembly procedure. This question is addressed
next in Section II-E.

E. Assembly

As it has been shown in the previous section, each degree
of freedom, and hence its corresponding basis function may
be associated to an entity (edge, face, or volume) of the prism.
Within its entity a degree of freedom is associated to a “zone”
(where the associated node is placed) of that edge, face and

Require: ge(edge number,u, q) ← evaluation of (5)
Require: gft(face,u,q) ← evaluation of (6)
Require: gfq (face,u,q) ← evaluation of (7)
Require: gv(u,q) ← evaluation of (8)

Input: qe . Scalar polynomials defined on segment (edge)
Input: q . Vector polynomials defined on plane (face)
Output: coef. Coefficient matrix that defines basis functions

1: procedure NI COEF(q,q,coef)
Vector monomials ui associated to coefficients coef
coef(:,i) =[a1, . . . , a9, b1, . . . , b9, C, . . . ,H, c1, . . . , c12]

2: u1 = (1, 0, 0) . Vector monomial associated to a1
...

3: u10 = (0, 1, 0) . Vector monomial associated to b1
...

4: u19 = (η2,−ξη, 0) . Vector monomial linked to C
...

5: u36 = (0, 0, ξηζ) . Vector monomial linked to c12

Definition of degrees of freedom functionals
6: g1(u) ← ge(1,u, q1) . First dof of first edge
7: g2(u) ← ge(1,u, q2) . Second dof of first edge

...
8: g18(u) ← ge(9,u, q18) . Second dof of ninth edge
9: g19(u) ← gft(bottom face,u,q19) . First dof of

bottom triangular face
...

10: g22(u) ← gft(upper face,u,q22) . Second dof of
upper triangular face

11: g23(u) ← gfq (face ξ − ζ,u,q23) . First dof of face
ξ − ζ (vertices #1-#2-#5-#4)

...

12: g35(u) ← gv(u,q35) . First dof of volume
13: g36(u) ← gv(u,q36) . Second dof of volume

14: Coefficients coef obtained by the imposition of (4):
A× coef = b

15: A(i, j)← gi(uj) . Filling of matrix A
16: b← I36 . RHS is identity matrix
17: coef← solve(A,b)
18: end procedure

Fig. 1: Pseudocode to obtain the values of the coefficients of
expression (3) that define the basis functions. Coefficients
are stored in matrix variable coef. Each column of matrix
coef stores the coefficients of one basis function in the
following order: a1, . . . , a9, b1, . . . , b9, C, . . . ,H, c1, . . . , c12.
The value of scalar qi, i = 1, . . . , 18 and qj , j = 19, . . . , 36
are shown in Table I.
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TABLE II: Coefficients of expression (3) corresponding to basis functions in the reference element and choices of scalars q
and vectors q shown in Table I.

a1 a2 a3 a4 a5 a6 a7 a8 a9 b1 b2 b3 b4 b5 b6 b7 b8 b9

4 −6 −12 −16 24 48 12 −18 −36 0 6 0 0 −24 0 0 18 0
−2 6 2 8 −24 −8 −6 18 6 0 −4 0 0 16 0 0 −12 0
0 0 2 0 0 −8 0 0 6 0 −4 0 0 16 0 0 −12 0
0 0 4 0 0 −16 0 0 12 0 −2 0 0 8 0 0 −6 0
0 0 4 0 0 −16 0 0 12 2 −2 −6 −8 8 24 6 −6 −18
0 0 −6 0 0 24 0 0 −18 −4 12 6 16 −48 −24 −12 36 18
0 0 0 −8 12 24 12 −18 −36 0 0 0 0 −12 0 0 18 0
0 0 0 4 −12 −4 −6 18 6 0 0 0 0 8 0 0 −12 0
0 0 0 0 0 −4 0 0 6 0 0 0 0 8 0 0 −12 0
0 0 0 0 0 −8 0 0 12 0 0 0 0 4 0 0 −6 0
0 0 0 0 0 −8 0 0 12 0 0 0 −4 4 12 6 −6 −18
0 0 0 0 0 12 0 0 −18 0 0 0 8 −24 −12 −12 36 18
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −16 0 0 64 0 0 −48 0 8 0 0 −32 0 0 24 0
0 0 −8 0 0 32 0 0 −24 0 16 0 0 −64 0 0 48 0
0 0 0 0 0 −32 0 0 48 0 0 0 0 16 0 0 −24 0
0 0 0 0 0 −16 0 0 24 0 0 0 0 32 0 0 −48 0
0 0 0 −24 36 72 24 −36 −72 0 0 0 0 −36 0 0 36 0
0 0 0 12 −36 −12 −12 36 12 0 0 0 0 24 0 0 −24 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −12 0 0 12 0 0 0 0 24 0 0 −24 0
0 0 0 0 0 −24 0 0 24 0 0 0 0 12 0 0 −12 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −24 0 0 24 0 0 0 −12 12 36 12 −12 −36
0 0 0 0 0 36 0 0 −36 0 0 0 24 −72 −36 −24 72 36
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −96 0 0 96 0 0 0 0 48 0 0 −48 0
0 0 0 0 0 −48 0 0 48 0 0 0 0 96 0 0 −96 0

C D E F G H c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

8 8 −32 −32 24 24 0 0 0 0 0 0 0 0 0 0 0 0
0 −8 0 32 0 −24 0 0 0 0 0 0 0 0 0 0 0 0
0 −8 0 32 0 −24 0 0 0 0 0 0 0 0 0 0 0 0
−8 0 32 0 −24 0 0 0 0 0 0 0 0 0 0 0 0 0
−8 0 32 0 −24 0 0 0 0 0 0 0 0 0 0 0 0 0
8 8 −32 −32 24 24 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −16 −16 24 24 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16 0 −24 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16 0 −24 0 0 0 0 0 0 0 0 0 0 0 0
0 0 16 0 −24 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 16 0 −24 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −16 −16 24 24 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 −16 −16 12 12 24 −6 24 24 −18 −18 −36
0 0 0 0 0 0 −2 8 8 −6 −6 −12 6 −24 −24 18 18 36
0 0 0 0 0 0 0 −8 0 12 0 0 0 12 0 −18 0 0
0 0 0 0 0 0 0 4 0 −6 0 0 0 −12 0 18 0 0
0 0 0 0 0 0 0 0 −8 0 12 0 0 0 12 0 −18 0
0 0 0 0 0 0 0 0 4 0 −6 0 0 0 −12 0 18 0
16 8 −64 −32 48 24 0 0 0 0 0 0 0 0 0 0 0 0
8 16 −32 −64 24 48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 32 16 −48 −24 0 0 0 0 0 0 0 0 0 0 0 0
0 0 16 32 −24 −48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −48 −48 48 48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 48 0 −48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 24 0 −24 0 −24 0 −36 0 36 0 36
0 0 0 0 0 0 0 −12 0 12 0 12 0 36 0 −36 0 −36
0 0 0 48 0 −48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 48 0 −48 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 12
√
2 0 0 0 0 0 −36/

√
2

0 0 0 0 0 0 0 0 0 0 0 −12/
√
2 0 0 0 0 0 36/

√
2

0 0 48 0 −48 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −48 −48 48 48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −24 0 24 24 0 0 36 0 −36 −36
0 0 0 0 0 0 0 0 12 0 −12 −12 0 0 −36 0 36 36
0 0 96 48 −96 −48 0 0 0 0 0 0 0 0 0 0 0 0
0 0 48 96 −48 −96 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 2: Numeration of degrees of freedom in the reference
prism of second order in which the length of the edges
corresponding to the axes is 1.

volume. Furthermore, a degree of freedom also has a vector
“direction” as it is illustrated in Figure 2 using arrows.

The procedure of assembly of two finite element matrices
is based on making equal the values of the pairs of degrees
of freedom of the two elements of the mesh that “coincide”
when they are put together as it can be seen in Figure 3. In
the Figure 3a it can be seen that the equalities in the face
g

(1)
23 = g

(2)
24 , g(1)

24 = g
(2)
23 , g(1)

25 = −g(2)
25 and g(1)

26 = −g(2)
26 have

to be defined. A similar criteria must be followed with the
degrees of freedom associated to the edges. These differences
in the senses can be symply managed through the definition
of a global sign function similarly to the one defined in
[10] for the tetrahedra (see also [2]) that multiplies unit
vectors τ̂ and n̂.

Text has been omitted here. Text omitted included the
lengthy explanation of the issue of the different local signs
of the unit vectors τ̂ and n̂. Emphasis on the case of vectors
q polynomial has been kept.

The case of vectors q is more involved. Let us choose
some arbitrary q in the reference element obtaining the basis
functions on the reference element and then transformed
trough (9) for two different neighbor elements of the mesh. In
that case, the traces (in the tangential sense) of basis functions
of one element and its neighbor on a shared face of the mesh
will not be equal. In other words, (curl) conformity of the finite
element approximation will be lost. Two strategies to deal with
this issue are proposed (and implemented in HOFEM code).

1) Assembly vq: One strategy, which will denote as vq,
is to choose unique sets of q on each face of the mesh and
transform them to the reference element using (9) for each
one of the two finite elements of the elements sharing that
face. Vector q transformed to the reference element will be
denoted by qr. In general, different qr will be obtained for
one element and its neighbor. Thus, coefficients (as those of

Table II) for the basis functions need to be recalculated for
each element. Note however that the choice of q on one face
of the element only affects to the coefficients associated to
the basis functions of the face. In the code, this strategy is
parallelly implemented by a finite element initialization routine
that loops over elements of the mesh and calculates coefficients
of basis functions for each element. Thus, curl-conformity is
preserved while arbitrary directions for pairs of q on each
(triangular or quadrilateral) face can be chosen. Specifically,
orthogonal directions for q (denoted as α̂ and β̂ previously
in Section II-B) may be chosen with a very positive impact in
the conditioning of the resulting finite element matrices. See
some numerical results in Section III.

2) Assembly vc: Another strategy, which will denote as vc,
is to choose pairs of q on each face of the mesh in such a
way that each q is parallel (directions α̂ and β̂) to the edges
of the face. It can be demonstrated that with such a choice
of q vectors, transformation (9) yields to qr with identical
components parallel to the edges of the face, i.e., same edge
trace on both neighbor elements sharing a common face of
the mesh. In other words, pairs of qr in the reference element
can be chosen so the coefficients are obtained once in the
reference element (e.g., those on Table I), being valid for
all elements of the mesh. This strategy is implemented by a
simple finite element initialization routine that is executed only
once. Actually, this initialization routine computes a super-set
of basis functions coefficients corresponding to the different
pairs of directions that can be chosen on a face in the general
case: e.g. directions parallel to edges 1-2, edges 2-3 or edges
3-1 for the triangular face, and parallel to edges 1-2, edges 2-
3, edges 3-4, or edges 4-1 for the quadrilateral face. Later, the
routine that performs the numerical integration of the entries
of the finite element matrices selects a pair of edge directions
for each face of the mesh based on some global criterion
(typically, to select α̂ and β̂ the closest to the orthogonal case
as possible). Thus, curl-conformity is preserved without the
need of computing different coefficients for different elements
of the mesh. On the other hand, the behavior of strategy vc
in terms of condition number with severe elongated elements
is not as good as with strategy vq described previously as it
will be explained in Section III. This is because the directions
α̂ and β̂ may be far from orthogonal as they have to be
necessarily chosen parallel to the edges of the face.

Finally, it is worth noting to emphasize that q are, in general,
polynomials. That is, vectors q are determined not only by
its directions but also by their scalar polynomials q. For the
particular case of second order prism which is the one under
study here vectors q are constant for degrees of freedom on the
triangular faces and the assembly has to take care of choosing
the right direction (α̂ or β̂) when processing each neighbor
element sharing that face. In the case of the quadrilateral faces,
not only directions (α̂ or β̂) have to match between elements
but also the scalar polynomial q associated. As an example,
in Figure 3a the degree of freedom associated to q

(1)
24 has to

match to q
(2)
23 instead of q

(2)
24 although they have the same

direction. This is implemented in HOFEM code via a local
parametrization of arbitrary directions.
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Fig. 3: Two cases of assembly between two prisms: (a) when
a quadrilateral face is shared, and (b) when a triangular face
is shared. The circumferences show the vertices numeration,
while the superscript (i) present in the degrees of freedom
stands for the number of the element.

III. NUMERICAL RESULTS

Several numerical results follow, where the main goal is
the verification of the correctness of the basis functions
implemented. Results about conditioning of the basis are
also presented in comparison with other representative sets
of basis functions appeared in the literature.

The verification is performed by using the Method of
Manufactured Solutions (MMS) [?], [33], [34]. This method
consists of “manufacturing” an exact solution to some partial
differential equation by solving the problem backwards. If an
equation of the type Du = f —where D is the differential
operator, u is the solution and f is the source term— has to
be solved, u is manufactured and then the equation is applied
to find f .

In our case, the second order prismatic finite element
presented here has been implemented in our own finite element
code HOFEM [12], [35] which originally works with tetrahe-
dral elements. HOFEM makes use of a double curl vector wave
equation in terms of either the electric field or the magnetic

TABLE III: Formulation magnitudes and parameters. In the
general case, εr and µr are represented in HOFEM by matrices
but for simplicity they are denoted here as scalar magnitudes.

V fr gr h ΓD ΓN

Form. E E µr εr η ΓPEC ΓPMC

Form. H H εr µr
1
η ΓPMC ΓPEC

field (see correspondences in Table III),

∇× 1

fr
∇×V − k2

0grV = O (10)

where O stands for term associated to the interior sources of
the domain (electric and magnetic currents).

Boundary conditions considered are the following:

n̂×V = 0, at ΓD (11)

n̂× 1

fr
∇×V = 0, at ΓN (12)

n̂×
(

1

fr
∇×V

)
+ γn̂× n̂×V = Ψ, at ΓC (13)

where Ψ represents the excitation from the exterior of the
domain (either waveports or exterior boundary for open region
problems). Symbol γ denotes the appropriate propagation
constant.

The variational formulation associated is obtained by mul-
tiplying (10) with a test function F :

Find V ∈W such that

c1(F,V)− k2
o c2(F,V) + γ c3(F,V) = l(F), ∀F ∈W

(14)
where bilinear forms c1(F,V), c2(F,V) and c3(F,V) are
given by:

c1(F,V) =

∫
Ω

(∇× F) · ( 1

fr
∇×V) dΩ

c2(F,V) =

∫
Ω

F · grV dΩ

c3(F,V) =

∫
ΓC

(n̂× F) · (n̂×V) dΓC

(15)

and linear form l(F) by

l(F) =

∫
Ω

(F ·O) dΩ (16)

where

W := {A ∈ H(curl,Ω), n̂×A = 0 on ΓD} (17)

and Ω is the problem domain.

Thus, MMS is used in our case by choosing a given vector
function V (denoted as VMMS) and computing O in (10) and
Ψ in (13). These computed functions O and Ψ are introduced
as data to the FEM code (through variational formulation (15)).
The numerical approximated solution given by FEM code is
obtained (denoted by VFEM). The energy error between VMMS
and VFEM is computed, namely error in the field itself and its
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TABLE IV: Relative errors for different mesh sizes of a cube
using a polynomial as manufactured solution.

Elements Unknowns ξREL (∇× ξ)REL

128 2232 1.872E-13 1.017E-14
260 4330 2.918E-13 1.204E-14

2080 31820 1.053E-12 2.338E-14

curl separately:

ς =
‖c2
(
(VFEM −VMMS) , (VFEM −VMMS)

∗) ‖2
‖c2 (VMMS,V∗

MMS) ‖2
(18)

ςcurl =
‖c1
(
(VFEM −VMMS) , (VFEM −VMMS)

∗) ‖2
‖c1 (VMMS,V∗

MMS) ‖2
(19)

In the following, results corresponding to the application of
MMS on a cube shaped domain are shown. Different finite
element meshes have been used in the experiment. Several
types of manufactured solutions have also been used in the
analysis. Polynomial manufactured solutions belonging to the
vector space of second order basis functions described in (3)
were tried first. Results corresponding to manufactured solu-
tion VMMS = (xyz2,−xz2, xyz), are shown here. Analogous
results are obtained with other elements of space given in (3)
and thus, they are omitted. It is important to note that the error
expected in these cases is numerically zero, i.e. close to the
machine precision. Results of the relative error of the field,
and its curl, with different meshes are shown in Table IV. It
is observed that errors are close to machine precision (double
precision is used in the code). As expected, a slight increment
in the error is detected with finer mesh discretizations due
to the accumulation of numerical noise with the number of
floating point operations. It may visually observed in the
Figure 5 that the numerical error is homogeneously distributed
and there are not hot spots, or isolated points with error orders
of magnitude greater.

A convergence analysis has been performed by using MMS
with a complex exponential function as manufactured solution;
namely

VMMS = Vpole
−jk0(k̂p·r) (20)

where Vpol is the polarization vector, k̂p, the unit propagation
vector and r the position vector.

As the complex exponential function does not belong to the
space of basis functions, the error expected is not numerically
zero, but it should converge to zero when the number of prisms
of the mesh is increased. Specifically, for smooth functions
(as it is the case of the exponential function) the behavior
of the error in the asymptotic regime predicted by the theory
(see e.g., [2], [36]) is error = C hp, where h denotes the
diameter of the element. Thus, a plot of the error with 1/h
in logarithmic scale should look like a straight line with a
negative slope equal to 2 (p = 2 in our case). Numerical
results of the convergence study are shown in Figure 4.
Two polarizations, Vpol = θ̂ and Vpol = φ̂, and different
angles of incidence, have been considered. In all cases, it is
observed that the obtained error follows almost perfect straight
lines. Different error levels are obtained depending on the

Fig. 4: Convergence rate of the error over a cube using a
complex exponential as manufactured solution with differ-
ent incidence angles, different polarizations and different
elements with a frequency of 100 MHz.

angle of incidence with respect to the prisms and on the
polarization. Furthermore, in some specific cases the slope is
even greater (in absolute value) than 2. Specifically, a sort of
superconvergence behaviour (slope equal to 3) is observed for
angle of incidence θ = 0◦ independently of the polarization.
The same behaviour is obtained for θ = 90◦ only with θ-
polarization. By departing a few degrees from those specific
angles the superconvergence behavior is lost and the slope is
reverted to 2. For comparison purposes the convergence of the
error with second order tetrahedra of the same family [2], [31]
is also shown in the figure. Note that the error observed using
tetrahedra is the same independently of the angle of incidence
and polarization. Text has been omitted here. Text omitted
included comments about the lack of symmetric/isotropiy
of the prism in contrast with the tetrahedron.

Results above are enough to verify the correctness of
the basis functions and its implementation as manufac-
tured solutions belonging the space of polynomials Pprism

2

are reproduced with (numerically) zero error. Also, the
excellent agreement of the obtained rates of convergence of
the error with those predicted by FEM theory for regular
solutions is also a proof of verification of the variational
formulation, mesh generation, and so on. Nevertheless,
the analysis of a number of cavity problems were also
perfomed for further validation purposes. Variational for-
mulation described by expressions (14)–(17) was converted
into a generalized eigenvalue problem setup with k2

o as
eigenvalue by simply removing bilinear form c3(F,V) and
linear form l(F). Results of one homogenous cavity and
one inhomogenous cavity used before in the literature



10

(a) Error between analytic and code
solution, ς

(b) Code solution

Fig. 5: Illustration of MMS verification. On (a) it is shown
the error ς corresponding to a polynomial manufactured
solution VMMS = (xyz2,−xz2, xyz), while on (b) it is
shown |Re(VFEM)| corresponding to an exponential man-
ufactured solution (expression 20).

Fig. 6: Convergence rate of the average error of the first
eigenvalues of metallic cavities. The triangular prism cavity
has an equilateral triangular base and the height of the
cavity is equal to the length of the triangular side (see
[16]). The half filled cavity has been widely used in the
literature (e.g., [37]). This cavity is of rectangular shape
and dimensions (1, 0.1, 1) being half filled with dielectric
of εr = 2 in the upper half part of the third dimension.

as benchmark structures have been selected. Figure 6
shows the convergence rate of the average error in the
computation of the first eigenvalues of a metallic prism
empty cavity and a non-homogeneous cavity; specifically
of a metallic cavity half-filled with dielectric. In both cases,
obtained rate of convergence is very close to the expected
theoretical rate of h2p, [2], i.e., h4 in our case.

As conclusion from above, it can be stated the correctness of
the basis functions and their implementation has been verified.

In the following, results showing the robustness of the
prism, in the sense of the condition number of the FEM
matrices, with respect to distortions in its shape are explained.
Comparison with the basis functions provided in [16] and a
version inspired in [27] are included. Second order version
of the basis functions of [16] were implemented in code and
checked to span exactly the same space than the ones of
this paper, i.e., precisely Nédélec mixed order space for the
prism [21] described in expression (3). Basis functions of a
second mixed-order prism inspired in the spectral element
proposed in [27] have also been coded and checked that
they span the same space of functions that the other two.
Lagrange interpolatory polynomials were used instead of
polynomials based on Gauss-Legendre-Lobatto integration
points as shown in [27]. Specifically, the basis coded are
the following:

LmL
2
lWij ; i, j = 1, 2, 3; j > i;m = i, j; l = 4, 5

L2
iLl∇Ll; i = 1, 2, 3; l = 4, 5

LkL
2
lWij ; i, j, k = 1, 2, 3; j > i; k 6= i, j; l = 4, 5

LmLlLl+1Wij ; i, j = 1, 2, 3; j > i;m = i, j; l = 4

LiLjLl∇Ll; i, j = 1, 2, 3; j > i; l = 4, 5

LkLlLl+1Wij ; i, j, k = 1, 2, 3; j > i; k 6= i, j; l = 4
(21)

where set (L1, L2, L3) corresponds to the affine coordinates
for the triangle and (L4, L5) are the affine coordinates for
the segment (connecting triangular faces). Symbol Wij

stands for the Whitney function Li∇Lj−Lj∇Li. The third
subset of basis are face functions associated to the upper
and bottom triangular faces. For each face, only two of
the three possible basis must be selected. The sixth subset
of basis are interior functions and, analogously, only two
basis functions must be chosen.

Thus, three representative different sets of basis func-
tions for the prism are considered in the comparison. Sec-
ond order basis functions of [16] (denoted there as p = 1)
and those of (21) are based on a explicit construction using
Whitney functions multiplied by appropriate polynomials.
In the case of [16] polynomials are constructed based on
fully interpolatory properties on a number of points on the
whole prism in general. On the other hand, basis functions
proposed in this paper are not interpolatory in the above
sense as it was mentioned in Section II-D. The case of
functions described in (21) is somehow intermediate. Basis
functions are naturally associated to edges, faces and
interior, and interpolatory polynomials used on the explicit
construction of the basis are defined in terms of points but
only on the corresponding entity (edges, faces, or interior)
but not over the whole prism.

The condition number is defined as the ratio of the maxi-
mum and minimum eigenvalue of the matrices corresponding
to the inner products of the vector basis functions in a finite
element and of their curls, i.e., element mass matrix [M ] and
stiffness matrix [K], as they are typically known among FEM
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practitioners:

Mij = c2 (N i,N j) (22)
Kij = c1 (N i,N j) (23)

It has to be noted that numerically null eigenvalues of the
stiffness matrix have been discarded.

In the author’s experience a straight comparison be-
tween sets of basis functions in terms of the condition
number of FEM matrices can be misleading if normaliza-
tion is not taken into account. Then, the condition number
actually computed corresponds to the preconditioned matrices
[Mp] and [Kp]

[Mp] = [D]−1[M ][D]−1 (24)

[Kp] = [D]−1[K][D]−1 (25)

where [D] is a diagonal matrix with Dii =
√
Mii, i.e., by

normalizing the basis functions.
In the case of functions of [16], the specific normalization

factors proposed by their authors are used prior to the pre-
scaling using [D]. It is important to note that in all cases,
the condition number of the preconditioned matrices [Mp]
and [Kp] is always better than the original ones for the
three sets of basis functions compared.

Two different types of deformation of the reference ele-
ment have been implemented: “triangle deformation” and
“rectangle deformation”. The triangle deformation case
is made by stretching out the triangular bases of the prisms
(the quadrilateral faces are kept rectangular). In the rectangle
deformation case, the prism is generated by extrusion in an
inclined direction (non orthogonal to triangle base). Thus,
rectangular faces of the reference element are transformed
into parallelograms more and more stretched out. Specifically,
results shown correspond to the coordinates for the prism
vertices included in Table IX.

Condition numbers are shown in Tables V, VI, VII and
VIII. The Tables V and VI show the conditions numbers
for the triangle deformation for the mass and stiffness
matrices, respectively. Three cases of the vc version of the
basis function proposed in this paper (see Section II-E)
are considered depending if the directions α̂ and β̂ of
vectors q are chosen parallel to edges 1-2, 2-3 or 3-1
of the triangle faces (same q are selected on the upper
and bottom triangular faces of the prism). Only one
case of the vq version of the basis function proposed
in this paper is shown. In the vq strategy directions α̂
and β̂ are chosen orthogonal and it is observed that
the condition numbers resulting of different choices of
orthogonal pairs of vectors q provide nearly the same
condition number. It is clearly observed that vq strategy
always returns optimum condition numbers compared
with the vc versions. Note that in the particular case
of the triangle deformation considered here there is one
vc combination that corresponds to orthogonal directions
and, hence, it provides identical condition numbers to
those of the vq strategy. In the case of specially distorted
elements, the difference in conditioning between the best
vc combination and the vq strategy can be considerable.

TABLE V: Condition number of mass matrices for different
cases of prisms (triangle deformation).

Reference Triangle deformation
prism κ = 4 κ = 8 κ = 16

Version [Mp] [Mp] [Mp] [Mp]
vc,(1-2) 81 1587 18826 276385
vc,(2-3) 81 217 738 2827
vc,(3-1) 71 215 737 2825

vq 72 215 737 2826
Graglia,(2-3)+(1-2) 33 173 638 2497
Graglia,(3-1)+(1-2) 37 174 639 2498

Tobon(3-1) 301 1020 3967 15871
Tobon(2-3) 171 1021 3967 15871
Tobon(1-2) 171 842 3468 14046

As illustration consider the condition numbers obtained
for the mass matrix with the vc case labeled as 1-2.

In the case of Tables VII and VIII, and because of the
particular case of rectangle deformation considered here in
which the rectangular faces are parallelograms, only one
vc case is possible. Again, with the vq strategy orthogonal
directions α̂ and β̂ are selected. Similar statements to those
just made about the impact of triangle deformation in the
condition number hold here. However, as it is observed in
the tables, the effect of the orthogonality of the vq vectors
has a lower impact in the case of rectangle deformation, at
least, for the type of deformation considered. [OPCIONAL:
The difference in behavior between triangle and rectangle
deformations is again a consequence of the tensor product
structure of the prism that somehow hybridizes tetrahe-
dron and hexahedron types of behavior.]

When comparing the basis functions proposed in this
paper with the others considered in the comparison the
following observations can be made. Note that different
combinations of basis functions of [16] associated to
triangular faces have been considered. And analogously
happen with those of (21). Basis functions of [16] provide
the best conditioning in all cases. Basis functions proposed
here are competitive with respect to the one of [16] in
terms of condition number. Both sets of basis functions
provide same order of magnitude for the mass and stiffness
matrices. That does not happen with basis functions of (21)
in which the condition number of the mass matrix for both
types of deformation is roughly one order of magnitude
higher than with the other sets of basis functions.

It can be observed the condition number varies with the
aspect ratio of the elements, being larger in the cases in which
the aspect ratio is larger, as expected. Two versions of the
assembly procedure are presented in the tables. In the case
denoted by vc (see Section II-E) directions α̂ and β̂ are chosen
parallel to the edges that define the face in which they are
contained. In the case denoted here by vq, directions α̂ and
β̂ are chosen orthogonal. It is observed that the effect of the
deformation of the prism shape in the condition number is
different when it affects to the triangular base than when it
deforms the rectangular faces. This is again a consequence
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TABLE VI: Condition number of stiffness matrices for differ-
ent cases of prisms (triangle deformation).

Reference Triangle deformation
prism κ = 4 κ = 8 κ = 16

Version [Kp] [Kp] [Kp] [Kp]
vc,(1-2) 37 210 791 3096
vc,(2-3) 37 199 733 2856
vc,(3-1) 38 197 732 2854

vq 37 197 732 2854
Graglia,(2-3)+(1-2) 16 102 394 1555
Graglia,(3-1)+(1-2) 19 104 394 1551

Tobon(3-1) 24 108 417 1659
Tobon(2-3) 20 109 418 1659
Tobon(1-2) 20 101 398 1588

TABLE VII: Condition number of mass matrices for different
cases of prisms (rectangle deformation).

Reference Rectangle deformation
prism ε = 2 ε = 4 ε = 8

Version [Mp] [Mp] [Mp] [Mp]
vc 72 3107 12270 48926
vq 72 2187 8435 33432

Graglia 37 1484 5889 23509
Tobon 301 5967 23559 93928

TABLE VIII: Condition number of stiffness matrices for
different cases of prisms (rectangle deformation).

Reference Rectangle deformation
prism ε = 2 ε = 4 ε = 8

Version [Kp] [Kp] [Kp] [Kp]
vc 37 2566 10205 40765
vq 37 2066 8171 32599

Graglia 19 1067 4279 17131
Tobon 24 1209 4226 16923

TABLE IX: Coordinates of the prisms used in the analysis of
the condition number.

Triangle deformation Rectangle deformation
Vertex Coordinates Vertex Coordinates
r1 (0, 0, 0) r1 (0, 0, 0)
r2 (ε, 0, 0) r2 (1, 0, 0)
r3 (0, 1, 0) r3 (0, 1, 0)
r4 (0, 0, 1) r4 (2, 2, 1/κ)
r5 (ε, 0, 1) r5 (3, 2, 1/κ)
r6 (0, 1, 1) r6 (2, 3, 1/κ)

of the tensor product structure of the prism. It can also be
observed that the condition number is always lower with the vq
strategy. This is specially significative for the mass matrix with
“triangle deformation”. The vq strategy obtains the best results
for both matrices [Mp] and [Kp]; up to an order of magnitude
better in the case of triangle deformation and the mass matrix.
It is concluded that the vq strategy works better with irregular
meshings since the elements are more deformed, while the vc
strategy obtains similar results with regular elements. On the
other hand, vc strategy has advantages as it was explained in
Section II-E.

IV. CONCLUSIONS

Basis functions of the second order Nédélec mixed order
curl-conforming prism have been obtained following a sound
mathematical approach. A systematic method to discretize
Nédélec functionals acting as degrees of freedom has been
shown. Correctness of the so obtained basis functions have
been thoroughly verified. Several strategies of assembly and
its impact in the condition number of the resulting matrices
in distorted meshes have been presented. Comparison with
other representative sets of basis functions for prisms has
been included.
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