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ABSTRACT An important concern that 5G networks face is supporting a wide range of services and use
cases with heterogeneous requirements. Radio access network (RAN) slices, understood as isolated virtual
networks that share a common infrastructure, are a possible answer to this very demanding scenario and
enable virtual operators to provide differentiated services over independent logical entities. This article
addresses the feasibility of forming 5G slices, answering the question of whether the available capacity
(resources) is sufficient to satisfy slice requirements. As spectral efficiency is one of the key metrics in 5G
networks, we introduce the minislot-based slicing allocation (MISA) model, a novel 5G slice resource
allocation approach that combines the utilization of both complete slots (or physical resource blocks)
and mini-slots with the adequate physical layer design and service requirement constraints. We advocate
for a probabilistic characterization that allows to estimate feasibility and characterize the behavior of
the constraints, while an exhaustive search is very computationally demanding and the methods to check
feasibility provide no information on the constraints. In such a characterization, the concept of phase
transition allows for the identification of a clear frontier between the feasible and infeasible regions. Our
method relies on an adaptation of the Wang-Landau algorithm to determine the existence of, at least, one
solution to the problem. The conducted simulations show a significant improvement in spectral efficiency
and feasibility of the MISA approach compared to the slot-based formulation, the identification of the phase
transition, and valuable results to characterize the satisfiability of the constraints.

INDEX TERMS 5G slice, resource allocation, feasibility, phase transition, Wang-Landau algorithm.

I. INTRODUCTION
In 5G networks, mobile operators face a challenging
environment with the appearance of three new usage sce-
narios [1]. While enhanced Mobile Broadband (eMBB) ser-
vices will provide very-high data-rate communications, some
applications such as e-health or vehicular communications
will demand Ultra Reliable Low Latency Communications
(URLLC), which require very high reliability, very high secu-
rity requirements, or both. In addition, a large number of
objects (vehicles, appliances and many others) will be able to
collect and transmit low-rate data through Massive Machine
Type Communications (mMTC).

The associate editor coordinating the review of this manuscript and
approving it for publication was Jinhwan Koh.

Mobile virtual network operators (MVO) or tenants are
envisioned to provide these new services and will require new
economically viable business models, as they find the cost
of deploying 5G-compliant networks prohibitive. With the
advent of 5Gmulti-tenant systems, MVOs can guarantee suf-
ficient communication resources for 5G services at affordable
cost. In the multi-tenant paradigm, the fundamental concept
is the network slice, defined as a ‘‘virtual network that is
implemented on top of a physical network in a way that
creates the illusion to the slice tenant of operating its own
dedicated physical network.’’ Reference [2] In other words,
the resources corresponding to a common physical network
are grouped and managed to form multiple logical, isolated
networks that can be independently operated by different
tenants [3], [4], so transforming the physical network into a
set of heterogeneous virtual networks.
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In forming slices, the infrastructure provider (InP) parti-
tions the network such that each MVO’s slice consists of
a set of resources (e.g., spectrum, physical resource blocks,
computation nodes) to meet theMVO’s service requirements,
so conferring a high level of flexibility upon 5G networks
to deal with a large number of heterogeneous services and
requirements [5]. However, slice resource allocationmay lead
to infeasible mathematical problems, causing opportunity
costs for the MVOs and misuse of time and resources when
they fail to form the slices. To avoid this undesirable situation,
we propose a probabilistic characterization of feasibility that
is particularly relevant to InPs andMVOs so that they can esti-
mate the value of resources in advance and adjust payments
and prices accordingly, as an alternative to dynamic pricing
mechanisms [6].

On the other hand, 5G networks must provide high spec-
tral efficiency [7]. To address efficiency, we propose the
minislot-based slicing allocation (MISA) model to assign
resources (physical resource blocks, PRBs) to eMBB and
URLLC slices. The model combines physical (PHY) layer
design with the use of minislots [8] and is formulated as
an allocation problem where the constraints implement the
system demands. The formulation includes service guarantee
of bit error rate and data rate, and multiple-input multiple-
output (MIMO) transmission, among other PHY layer char-
acteristics. The resulting allocation problem (MISA-P) is
a 0-1 nonlinear polynomial one where both the objective
function and some constraints are polynomial,1 which might
be discussed in the context of linearization [9] or quadrati-
zation [10], [11]. However, there is no need to solve such
a problem, as feasibility has all to do with the constraints,
regardless of the objective function. Moreover, our study also
contemplates characterizing the behavior of the unsatisfied
constraints of MISA-P and the effect it may have on InPs and
MVOs, and no optimization method would be able to perform
such joint characterization. Hence, a resolution method to
solve MISA-P is out of the scope of this work.

In this paper, we propose a sampling-based approach to
estimate the feasibility of MISA-P and provide information
about the unsatisfied constraints so that the results can be
used by MVOs to make adjustments in case of infeasibility.
In particular, we adapt the Wang-Landau algorithm, which
has been broadly employed in Statistical Physics [12] and for
constrained optimization problems [13]. In this way, we can
predict the feasibility of the problem and the behavior of
the constraints with negligible error, as our results show,
see VI-C.

Regarding feasibility, the allocation of resources for net-
work slices may exhibit a phase transition. A phase transi-
tion refers to an abrupt change in feasibility corresponding
to a small change in one of the parameters, with a fron-
tier delimiting the feasible and infeasible regions [14], [15].
The appearance of phase transitions has implications for effi-
cient resource allocation as the search for optimal solutions

1We refer here to polynomials as terms of the form 5kxk = x1 x2 . . . xK

becomes easier (respectively, harder) with sharp (respec-
tively, smooth) phase transitions. Moreover, learning phase
transitions in advance offers MVOs the possibility of ratio-
nalizing their resources, as a small number of additional
resources may signify a much higher income for those points
close to the frontier where a small change may revert a
feasible problem to infeasible or vice versa.

In summary, the contribution of this work is twofold.
On one hand, we propose a samplingmethod for systemswith
constraints that probabilistically characterize both feasibility
and the satisfiability of the constraints. Second, we propose a
new spectral-efficient approach to allocate PRBs for 5G slices
to which the sampling method is applied.

The paper is organized as follows. Section II presents the
related work and contributions. Section III introduces the
systemmodel and details slice specifications, the definition of
the resources and the physical layer configuration. Section IV
presents the formulation of the slice resource allocation.
In Section V, we discuss the suitability of the sampling based
approach. Section VI describes the adaptation of the Wang-
Landau algorithm and its implementation. Section VII shows
the simulation results the complexity analysis. Section VIII
summarizes our conclusions.

II. RELATED WORK AND CONTRIBUTIONS–NEW
The interest in the study of 5G slicing has gathered
momentum because of its prominent role to enable net-
work sharing among InP and tenants [16]. In particular,
the problem of how to efficiently allocate the available radio
resources to slices has attracted significant attention and
can be studied at different layer levels, as pointed out by
Sallent et al. [17], [18] and in [19]. Strictly speaking, network
slicing implies grouping network resources into different
sets or slices with the objective of determining the number
of resources that the slices require to meet service specifi-
cations, with allocated resources ranging from bandwidth to
computing and storage [20]–[28] Nevertheless, a more global
approach considers also the allocation of resources to users,
i.e., the resources allocated to each slice are internally man-
aged by its owner and assigned to final users. This allocation
is known as intra-slice allocation, while the previous alloca-
tion of resources to slices is denoted as inter-slice allocation.

A. RADIO RESOURCE SLICING
Since slicing and network virtualization have been inves-
tigated, there has existed a generalized concern on how
to share the available spectrum to form slices. The work
of [29] performs channel allocation to maximize the sum-
rate based on intra- and inter-slice priorities, while in [30],
the authors adopt a market equilibrium perspective to virtu-
alize the spectrum of a single BS. For a multiple cell setting,
Parsaeefard et al. propose the joint user-BS association and
user-channel allocation and incorporate power control to
reduce inter-cell interference [31], where the non-convex
mixed integer problem that guarantees the slice data rate
is solved via a combination of complementary geometric
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programming and successive convex approximation. Other
works contemplate cloud radio access network (C-RAN)
scenarios [32], [33], sharing both licensed and unlicensed
spectrum [34], or the coexistence of machine-type and classic
cellular communications [35], [36]. To reflect an even more
competitive market, the existence of multiple InPs is mod-
elled in [37] to maximize the net revenue and in [38], where
the BSs form coalitions to achieve a stable topology. Learning
methods based on deep learning and reinforcement learning
are designed for the periodic traffic prediction and spectrum
allocation of the long-scale allocation and for the short-scale
scheduling in [39], in the context of a two-time-scale slice
dimensioning framework.

Besides spectrum slicing, other approaches appeared in
the literature share the physical infrastructure. In [40], [41],
a two-level hierarchical auction allocates the excess resources
(subchannels, antennas and power) to tenants and users
according to their bids. In [42], the authors study the parti-
tion of the antenna array of massive MIMO C-RAN radio
remote heads (RRH), comprising also the association of users
with baseband units (BBU). The RF infrastructure is sliced
in [43], in which each MVO manages a set of RF chains
through the different BSs. The work of [44] proposes a
virtualization model based on allocating fractions of spec-
trum, caching storage and computing capacity to MVOs from
multiple InPs.

However, the adoption of OFDM as the signal format
for 5G has boosted the study of RAN slicing based on
the allocation of PRBs (or RB), as defined in the OFDM
frequency-time grid (see Fig.1). While a few studies differ-
entiate intra- and iter-slice allocation [45], [46], the common
approach for PRB-based slicing is the individual allocation
of PRBs to users that belong to a slice/tenant/SP/MVO so
as to simultaneously perform both allocations [47]–[53]. The
model of [47] is based on service level agreements (SLA)
and includes the allocation of power per PRB. A two-step
approach is developed to solve the slicing problem in a
tractable manner, allocating first PRBs to users under even
power distribution over the PRBs and calculating the opti-
mal power distribution for the resulting PRB allocation.
The authors of [48] combine user scheduling, subcarrier
power allocation, RB allocation, and non-orthogonal multiple
access (NOMA) to maximize user’s rate, while the stochastic
framework proposed in [49] aims at minimizing the net-
work power consumption with slice delay constraints. For a
C-RAN in which the tenants have different priorities [50],
the authors propose to resolve the association of users with
RRHs and the allocation of processing capacity of BBUs,
combined with the allocation of power to PRBs. Also for
C-RAN, the scheme of [51] allocates PRBs to users at each
time slot according to a bidding algorithm to minimize the
usage of PRBs in the long term, subject to the constraints
of capacity-critical and delay-critical slices. An interesting
approach is presented in [52] to avoid the underutilization
of resources due to strict isolation among slices, allowing
that different tenants share the same PRB with a maximum

intra-slice interference, with power allocation to control inter-
ference. For IoT communications, the work of [53] presents
a nature-inspired resource allocation scheme that takes into
account social characteristics.

Our paper intends to contribute with a new systemmodel to
perform intra- and inter-slice allocation of PRBs while gath-
ering the constraints of URLLC and eMBB users.We observe
that, though Quality of Service (QoS) requirements are in the
essence of slicing, the design of transmission schemes or allo-
cation algorithms to accommodate both eMBB and URLLC
users is still little investigated. The works in [49], [51] adopt
a stochastic approach to meet the QoS constraints in the
long term and [54] propose an admission control perspective
for the uplink. The work of [55] presents an optimization
framework to associate eMBB and URLLC users with fog
RAN (F-RAN) RRHs and to allocate subchannels to users
to minimize the average delay of the URLLC users while
guaranteeing a minimum data rate for the eMBB users, while
[56], [57] introduce different service-oriented autonomous
allocation algorithms based on deep reinforcement learn-
ing. However, none of these works formulates the allocation
of different types of resources to users of different slices,
i.e., mini-slots to URLLC users and PRBs to eMBB users,
which leads to a significant improvement of the spectral
efficiency.

B. FEASIBILITY OF RAN SLICING
In wireless networks in general, and for network slicing in
particular, there are a number of random exogenous factors
from the environment such as the number of users, rate
demand, number of available channels, or signal-to-noise
ratio, that complicate the task of determining feasibility in
resource allocation problems. Note that the feasibility issue
would be present (and not addressed) in most of the above
mentioned works, as they solve constrained optimization
problems where the uncertainty of the channel gain or the
insufficient number of resources may render the problem
infeasible.

Feasibility can be studied to provide evidence on the prob-
ability of solving the problem ex ante. For the 5G slicing con-
text, this is somehow considered only by [58]–[61]. In [58],
the authors establish the existence of a resource feasibility
space as a previous condition to perform inter-slice allocation
by means of a genetic algorithm. However, the determination
of such a set is unspecified. In [59], two algorithms for slice
admission that rely on space states given by the admisibility
region are proposed. This region defines the number of elastic
and inelastic users for which the slice is admitted according
to several parameters such as traffic elasticity and price of the
resources. The feasibility of the contracts between a MVO
and InPs is analyzed in [60] with a single MVO that dom-
inates the allocation, so defining a monopoly market, where
the network is virtualized by associating users with the BSs of
the different InPs. Our work is in some way aligned with the
anticipatory resource scheduling proposed in [61], though the
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model is different as they consider continuous time-sharing
slicing.

In this regard, our contribution is a systematic study of
feasibility of the slicing allocation problem according to
the proposed MISA model. At first glance, our work is
related to the K -SAT problem, in which there are M binary
variables and each constraint is a polynomial of the form
x1x2 · · · xK , K ≤ M [62]. However, being the case that our
constraints include also non-polynomial terms, the applica-
tion of K -SAT-based methods is not possible. Other papers
search for feasibility in the context of specific integer and
mixed-integer problems, see for instance [63]–[65], but none
of these two approaches provides a characterization of the
constraints themselves. On the contrary, our probabilistic
approach based on sampling methods provides both feasi-
bility and constraints behavior. In particular, we adapt the
Wang-Landau (WL) algorithm [12], an importance sampling
method that compared with Monte Carlo methods makes it
possible to detect rare events. The phase transition of the
problem, which identifies the feasibility region, is obtained
via the adapted WL algorithm.

The analysis of feasibility is based on random instances of
the problem to include meaningful features of the commu-
nication environment, namely user position, signal-to-noise
ratio, number of users per slice, and user’s required data-rate.

TABLE 1. List of notations.

III. SYSTEM MODEL
This section presents the service types addressed in this work
and the PHY layer model that underlies the allocation prob-
lem formulated in Section IV. The notation used throughout
this paper is shown in Table 1.

A. DESCRIPTION OF SERVICE TYPES
In 5G, three generic types of services will be supported [1],
namely enhancedMobile Broadband (eMBB), Ultra-Reliable
and Low-Latency Communications (URLLC) for critical
data, and massive Machine-Type Communications (mMTC).
While eMBB services will support connections with very
high data rates for applications such as multimedia content
delivery, some critical applications such as e-health or vehic-
ular communications will demand URLLC, implying very
high reliability and/or very high security requirements. It is
also expected that a large number of objects (smart grid
meters, sensors, appliances and many others) will integrate
communication capabilities to collect and exchange data
making use of the Internet of Things (IoT) with mMTC.

It is evident that the three generic services aim at sig-
nificantly differentiated scenarios and performance metrics,
which translates into very different requirements. The goal of
eMBB services is to maximize the data rate with moderate
reliability, with connections that may be active for long peri-
ods of time. In the case of URLLC, there are strict require-
ments formetrics such as throughput, latency and availability,
for a limited number of users that request connectivity with
very diverse patterns. Finally, mMTC services are charac-
terized by a massive number of intermittently connected
devices typically transmitting low-rate, non-delay sensitive
data.

This work discusses the case of eMBB and URLLC slices,
not considering mMTC slices. There exists a consensus on
reserving a low, fixed number of channels for the mMTC
slice that theMTC devices share using a random access proto-
col [54]. As PRBs are allocated here on an orthogonal basis,
there is no impact in the allocation of PRBs to eMBB and
URLLC slices once the mMTC channels have been chosen.

FIGURE 1. OFDM frequency-time grid.

B. NR FRAME STRUCTURE AND NUMEROLOGY
The radio resources in 5G NR are available in an OFDM-like
manner (see Fig.1), where a frequency-time resource grid rep-
resents the system bandwidth (vertical axis) and the OFDM
symbols (horizontal axis). Each radio resource corresponds
to one sub-carrier of bandwidth 1f and one time-slot of
Nsymbol OFDM symbols. Additionally, slots can be divided
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FIGURE 2. Minislot- and slot-based frames (Nsymbol = 14).

into L mini-slots to accommodate traffic for URLLC services
and facilitate very low latency and minimize interference to
other RF bands [66]. Note that, to the best of our knowl-
edge, previous works have considered the allocation of full
PRBs to URLLC transmissions (e.g., [67]), leading to a loss
of bandwidth efficiency, as the numerical results show in
Section VII. Fig.2 illustrates the difference between the two
frame structures for 1f = 15kHz.

TABLE 2. 5G NR numerology.

5G NR supports scalable numerology to address different
requirements in terms of spectrum, bandwidth, deployment
and services [68]. The choice of the numerology parameter
µ implies a subcarrier space given by 1f = 1f0 · 2µ, being
1f0 = 15 kHz (see Table 2), and a time-slot interval given
by Tslot =

T0
2µ , where T0 = 1 ms is the time-slot interval

corresponding to µ = 0. The number of OFDM symbols per
time-slot is always 14, irrespective of the value of µ. The
minimum resource allocation unit is however the physical
resource block (PRB), which consists of 12 sub-carriers and
one slot. Depending on µ, the bandwidth of one PRB ranges
then from 180 kHz (µ = 0) to 5.76 MHz (µ = 5).

C. PHYSICAL LAYER PARAMETERS
Let us consider a single cell system with an eNodeB (eNB)
in the center of the cell and K users randomly deployed. Let
us define γk,j as the signal-to-noise ratio (SNR) between the
eNB and k over PRB j.

To guarantee quality of service, we fix a target bit error
rate BER0 for users. An adaptive modulation scheme is
used to meet BER0: for a given SNR γ , we adaptively
select a modulation level among the available QPSK/16/64/
256-QAM that satisfies γ ≥ γM , being γM the SNR threshold

corresponding to BER0 and modulation of levelM , where the
BER can be calculated as [69]

BER =
2
√
M − 3

√
M log2

√
M

efrc

(√
3 log2M
2(M − 1)

γ

)
. (1)

Although theoretically each PRB can be configured with a
different modulation level, this would imply the design of
transport channels in higher layers with the capacity of com-
bining different modulation and coding schemes, which is not
contemplated in 5G NR [70]. We therefore assume that, for
a user k experiencing γk,j on PRB j, all PRBs implement the
same modulation level Mk , which corresponds to the lowest
SNR over all PRBs, and the selected level is

Mk = argminM {γk,j ≥ γM ,M = 4, 16, 64, 256}. (2)

We assume the use of 4 × 4 MIMO communications,
m = log2 M bits per baseband symbol, and let η denote the
transmission efficiency of the OFDM symbol. Given these
parameters, the transmission rate associated with one PRB is
calculated as:

RPRB =
Nsub · Nsymb · m · η · NMIMO

Tslot
, (3)

where Nsub = 12 is the number of subcarriers per PRB,
NMIMO = 4 is the number of antennas for MIMO commu-
nications, and Tslot is the time-slot period. Then, the received
data rate of user k on PRB j for the modulation scheme
selected can be calculated as

rk,j = Rk,j(1− BER0), (4)

with Rk,j given by (3). Note that such a characterization of the
bit rate implicitly guarantees a quality of service in terms of
BER, as all PRBs will be able to deliver the m bits with the
target BER0.

IV. THE RESOURCE ALLOCATION PROBLEM FOR
EMBB AND URLLC SLICES
A. SLICE DESCRIPTION
In our model, two slices provide eMBB and URLLC services
with total slice rates ReMBB and RURLLC respectively and
allocate PRBs to users to satisfy their rate requirements r̂k ,
where k ∈ K = {1, . . . ,K } is the user index, j ∈ {1, . . . ,N }
is the PRB index, K1 denotes the set of eMBB users, and K2
the set of URLLC users, with K = K1 ∪K2.
As the traffic patterns of both types of users are differ-

ent [54], eMBB and URLLC users are allocated as many
PRBs and mini-slots, respectively, as necessary to meet r̂k for
all users. In this way, the achieved data rate of eMBB users is
given by

rk∈K1 =

N∑
j=1

xk,jrk,j, (5)

where xk,j = 1 denotes allocation of PRB j to user k ∈ K1 and
xk,j = 0 otherwise, with a total slice rate ReMBB =

∑
k∈K1

rk .
For the URLLC slice, we must take into consideration the
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use of mini-slots. Without loss of generality, we set two mini-
slots per PRB and the achieved data rate of URLLC users is
given by

rk∈K2 =

N∑
j=1

yj(z1k,j + z
2
k,j)

rk,j
2
, (6)

where yj = 1 denotes the use of PRB j for URLLC users and
yj = 0 otherwise, and ztk,j represents the allocation of mini-
slot t = {1, 2} of PRB j to user k ∈ K2.

B. PROBLEM FORMULATION
Let denote by X the K × N eMBB allocation matrix whose
elements are xk,j, denote by y the URLLC allocation vector
whose elements are yj, and denote byZ theURLLC allocation
array whose elements are ztj,k , with � representing the tuple
{X, y,Z}. The optimization problem to allocate PRBs to
slices for any generic objective function fo(�) can therefore
be formulated as the minislot-based slicing allocation prob-
lem MISA-P:

opt� fo(�) (MISA-P)

s.t. rk ≥ r̂k , ∀k ∈ K (7a)

yj +
∑
k∈K1

xk,j ≤ 1, ∀j (7b)

∑
k∈K2

(z1k,j + z
2
k,j) ≤ 2yj, ∀j (7c)

yj ∈ {0, 1}, xj,k ∈ {0, 1}, ztj,k ∈ {0, 1}, (7d)

where the token opt� identifies the maximization max or
minimization min framework over�. In this setting, the rates
r̂k demanded by users are assured by (7a), the orthogonal
allocation of PRBs of (7b) guarantees isolation between the
two slices, and the orthogonal allocation of mini-slots is
guaranteed by (7c), allowing the assignment of both mini-
slots to the same user.

The MISA-P formulation opens new possibilities with the
use of mini-slots in 5G and its advantages will be shown in
VII-B via exhaustive search with respect to the benchmark
approach of IV-C. We want to emphasize that our interest
lies in feasibility rather than proposing a method to solve
any particular form of MISA-P with a specific objective
function. The use of a generic opt� fo(�) obeys to the fact
that feasibility has all to do with satisfying the constraints
and nothing with the objective function. Therefore, solving
the problem would be computationally inefficient as we want
to check feasibility and characterize the satisfiability of the
constraints. Moreover, for each opt� fo(�), a different opti-
mization method should be proposed in case one decides to
solve the problem.

C. BENCHMARK PROBLEM
To illustrate the spectral efficiency gain and the increase
of feasibility of using mini-slots, we introduce the slot-
based allocation problem (SOSO-P) that reflects the approach
of previous works (see for instance [67]) and allocates

full slots (PRBs) to users irrespective of the user is either
eMBB or URLLC:

optX̃ fo(X̃) (SOSO-P)

s.t. rk ≥ r̂k , ∀k (8a)∑
k∈K

x̃k,j ≤ 1, ∀j (8b)

x̃k,j ∈ {0, 1}. (8c)

In this formulation, x̃k,j are the elements of X̃ denoting the
allocation of PRB j to user k , fo(X̃) represents a generic opti-
mization function, the tokenoptX̃ identifies themaximization
max or minimization min framework over X̃, and the user and
slice rates are now

R̃s =
∑
k∈Ks

r̃k (9)

r̃k =
N∑
j

x̃k,jrk,j, k ∈ Ks (10)

s = {1, 2}. (11)

V. FEASIBILITY OF MISA-P
As we mention in the introduction, we turn to the concept
of phase transition for the characterization of the feasibility
of MISA-P. This concept applies to a geometrical element
(plane, curve, line) that allows us to experimentally differ-
entiate the feasible and infeasible regions.

MISA-P is a 0-1 nonlinear, polynomial problem as the
constraints (7a) are polynomial due to the terms yj(z1k,j+z

2
k,j).

Furthermore, for a wide range of usual network prob-
lems such as the maximization of the sum-rate where
opt� fo(�) = max

∑K
k=1 rk , the polynomial terms are also in

the objective function, rendering the problem more difficult
to solve (see [71], p.611). The resolution of MISA-P may
be discussed in the context of linearization [9] or quadratiza-
tion [10], [11]. However, as we mention in IV-B, proposing a
method to solve MISA-P is out of our scope, being the ulti-
mate objectives i) to show that there exists a phase transition
that can be exploited by the MVOs to, for example, adjust the
requirements to turn the resource allocation into feasible; and
ii) to characterize the satisfiability of the constraints.

Among the approaches that can be used to check feasi-
bility, the bisection method [72] may be adapted for pure
0-1 problems, but is does not provide any information about
constraint satisfiability and the density of states (the number
of solutions that do not satisfy a given number of constraints).
The exact characterization of the phase transition forMISA-P
comprises both feasibility and constraints and would imply
an exhaustive search over all the possible solutions ω ∈ � to
determine which ω meet the constraints (7a)–(7c). Unfortu-
nately, this strategy is computationally intractable in practice.
Let us take for instance the case of K1 = 2 eMBB users,
K2 = 3 URLLC users and N = 10, implying that the
number of variables is V = N (K1 + 2K2 + 1) = 90 and
being therefore the number of possible solutions to be tested
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290 ≈ 1.24 × 1027. In our experiments, the computational
time to check each potential solution is 0.5 ms on a PC,
what leads to a total time of 7.164 × 1018 days. Moreover,
the characterization must also account for the random nature
of i) the users’ position, which implies a random modulation
scheme selection via SNR; ii) type and number of users; and
iii) demanded data rate. This implies that a sufficient num-
ber of random realizations of the same instance {K1,K2,N }
of the problem must be evaluated to achieve credible
results.

It is then clear that a method which does not require
exhaustive search is imperative. Alternatively, the phase tran-
sition and constraints satisfiability can be characterized in
a probabilistic fashion via a sampling method such as the
Wang-Landau algorithm. In the next section, we describe this
algorithm and the modifications required for our problem.

VI. THE DENSITY OF STATES FOR SLICES ALGORITHM
In this section, we develop the density of states for slices
(DESS) algorithm, which is based on the Wang-Landau
algorithm, to characterize the feasibility of (MISA-P). The
Wang-Landau (WL)method is a non-MarkovianMonte Carlo
approach [12] to estimate the density of states of Physics
systems. Compared with Metropolis-based methods [73],
the WL algorithm allows to sample the search space in less
time while preserving accuracy and efficiency and has been
employed for many other applications, from the folding of
proteins [74] to the estimation of interference in wireless
networks [75]. As a specific jargon is used in the related
literature, we provide the following definitions:
• State: represents a level of energy.
• Configuration, σ : each element of the solution space of
the problem. In our case, it refers to any possible value
of X, y and Z.

• Energy of a configuration, E : it represents how good
the configuration is as a solution to the problem. In this
paper, the energy of a configuration E(σ ) is the number
of constraints of MISA-P not satisfied by σ .

• Density of states, g(E): estimate of the number of con-
figurations with a given energy E . In this paper, it corre-
sponds to the number of solutions (configurations) that
do not satisfy a certain number of constraints of the
problem.

Therefore, a configuration with zero energy E(σ ) = 0 satis-
fies all the constraints, and g(0) is the number of solutions
to the problem. As an example, for a 2-state system with
possible energy levels E = {0, 1}, g(1) = 10 means that
there are 10 configurations from the solution space that do not
satisfy one of the constraints, while g(0) = 2 means that there
exist 2 configurations that satisfy all the constraints, implying
that there are two solutions to the problem.
Remark: According to the above definitions, we declare a

given realization of our problem as feasible if g(0) > 0, and
infeasible otherwise. This is the criteria that will be used to
establish the phase transition, as it means that there exists,
at least, one solution to the problem.

A. BASICS OF THE WANG-LANDAU ALGORITHM
For the sake of completeness, this subsection summarizes the
principal steps of the WL algorithm [12].

The WL algorithm works performing a number of random
walks in our configuration space {0, 1}V . When a new config-
uration σ with energyEi is proposed, the new state is accepted
with a probability proportional to the reciprocal of the density
of Ei. During the random walk, the histogram H (E) keeps
the number of visits at each energy level Ei and H (Ei) is
incremented by 1 each time Ei is visited. For each random
walk, the estimate of the density of states is modified by a
factor f , and the updated density of states is used to perform
a new random walk. With this setting, each random walk
generates a flat histogram for the energy distribution based on
the observation that, if the configurations σ are sampled with
probability proportional to 1/g(E), the resulting histogram
is flat.

Let us denote by σ1 and σ2 the current and new configu-
rations, and E1 = E(σ1) and E2 = E(σ2) the corresponding
energies. The transition probability from σ1 to σ2 is

p(σ1→ σ2) = min
(
1,
g(E1)
g(E2)

)
, (12)

which implies that the state with energy E2 is accepted
if g(E1) ≥ g(E2); otherwise, the state with energy E2 is
accepted with probability g(E1)/g(E2). After this, the density
of state of E2 is adjusted by the multiplicative factor f such
that g(E2)→ f × g(E2) and the energy histogram is accord-
ingly updated, i.e. H (E2) → H (E2) + 1 if E2 is accepted
and H (E1)→ H (E1)+ 1 otherwise. In practice, logarithmic
scale is used to compute g(E) since these values may become
extremely large; therefore, each update is implemented as
log (g(E))→ log(f )+ log (g(E2)).
The value of f usually starts at f = e and is updated by

f →
√
f each time we get a flat histogram (i.e., the algorithm

converges for that f ) before generating a new random walk.
Random walks are generated until f = 1 with an error of
10−8, as at this point we would have the true density. With
these values, 27 random walks are generated.

At the end of the simulation, the algorithm provides a
density of states relative to the total number of visited states,
which is much smaller than the total. To extract the correct
density, we need to scale to the total number of states 2V ,
where V represents the number of variables of the problem.

B. THE DESS ALGORITHM
Given that the WL algorithm is designed to evaluate continu-
ous densities of states and our problem is eminently discrete,
some modifications are required to adapt the WL method to
MISA-P. We refer to the adapted algorithm as the modified
WL algorithm for slices (MWLS) and its pseudocode is
given in Algorithm 1, which integrates these modifications
with the basics of VI-A and where �c represents a potential
solution or configuration of MISA-P.

Determining the density of states for very-low energy
regions poses two challenges. The first issue is the huge
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Algorithm 1ModifiedWang-Landau for Slices (MWLS)
Data: initial state E1, flimit , SNR, K1,K2
Result: Density of states g

1 Define energy regions R(m)
2 for each R(m) do
3 while f − 1 > flimit do
4 while hm not flat do
5 new configuration �c = GEN(K ,N );

calculate the energy E2(�c) with (7a)–(7c)
6 calculate probability p from (12)
7 if p = 1 then
8 accept new state E2
9 else
10 E2← E1
11 end
12 update density, histogram and E1:
13 g̃m(E2)+ log f ← g̃m(E2)
14 hm(E2)+ 1← hm(E2)
15 E1← E2
16 check if hm is flat
17 end
18

√
f ← f

19 check f − 1 > flimit
20 end
21 calculate multiplicative factor Gm for R(m)
22 update g̃ until R(m)
23 end
24 construct true estimate g from g̃
25 scale g

discrepancy between the density of the states corresponding
to the energy bound regions (states with E = {Emin,Emax}
and close values) and the density of the central states,
difference that can reach several orders of magnitude. As sug-
gested in [76], we have implemented a per-region calcu-
lation, dividing the whole region E = [Emin,Emax] into
smaller regions R(m) = [Emmin,E

m
max] that partially overlap

and calculating the density of states independently for each
region. The true estimated density is obtained by matching
the overlapping values, what provides a multiplicative factor
that is applied to the subsequent densities of the upper region.
For instance, let be a setting with two adjacent regions R(1) =
[E0, . . . ,E ′], R(2) = [E ′, . . . ,ET ] which overlap in E ′ and
the corresponding densities g̃1, g̃2. Assuming that g̃1(E ′) =
1, g̃2(E ′) = 2, the multiplicative factor is G1 =

g̃1(E ′)
g̃2(E ′)

= 2,
and the true estimated density is

g(E) =

{
G1 × g̃1(E) ∀E ∈ R(1)
g̃2(E) ∀E ∈ R(2), E > E ′.

We then define the multiplicative factor for region R(m) as

Gm =
g̃m−1(E ′)
g̃m(E ′)

, (13)

where the two consecutive regions overlap in E ′. The corre-
sponding update is found in lines 22–23 of Algorithm 1 for
the energy regions loop (lines 2–24).

The second critical issue regarding the low energy regions
is the determination of the energy levels for which no config-
uration exists, as such energy levels would never be visited
and the algorithm would not converge. The self-adapting
energy range from [77] avoids this problem by considering
only certain energy levels to evaluate the flatness of H (E).
However, given that we have previously defined the fixed
energy regions R(m), we propose the GEN algorithm (see
Algorithm 2) to randomly generate a candidate configuration
�c with energyEc forR(m), and�c is accepted if it belongs to
the region, i.e., Ec ∈ R(m). Otherwise, we repeat the random
generation until success or until a sufficient number of trials
is reached.

Algorithm 2 Generation of Valid Configuration (GEN)
Data: Energy region R(m), tmax
Result: Candidate configuration σc

1 while �c /∈ R(m) do
2 Randomly generate new σc
3 t ← t + 1
4 if t = tmax then
5 exit
6 end
7 end

We now face the criteria to evaluate flatness. In their origi-
nal paper [12],Wang and Landau define ‘‘flat histogram’’ as a
histogram H (E) whose values are at least 80% of the average
histogram. However, different authors have discussed other
criteria for ‘‘flatness’’ to better capture the specific conditions
of other models. In particular, some energy values may be
visited very few times, leading to convergence uncertainty to
achieve a flat H . We have implemented the criteria of [76],
where each state is visited a minimum number of times
unless it is declared a state with density 0 by the GEN
algorithm or a maximum number of iterations is reached.
In our case, we determined experimentally that the required
number of visits is 3KN and the maximum number of itera-
tions is KN × 103. Other suitable flatness criterion [77], [78]
were tested, with worse performance in terms of error when
confronted with the exhaustive search results (true density).

The above procedures are integrated in the main algorithm
DESS (seeAlgorithm 3), which is designed to capture the ran-
domness of our problem. Indeed, a single run of the MWLS
algorithmmay not provide accurate results, given the random
nature of the wireless medium, which encompasses pathloss,
user mobility, user’s required rate, and number of users
per service type. To get reliable results, we have established
the converge of the algorithm in the density of states as
follows. Firs, we fix the required user rates and the number of
users per service typeK1 andK2. At each iteration of thewhile
loop (line 1), the users are randomly positioned to obtain
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Algorithm 3 Density of States for Slices (DESS)

Data: demand rates r̂, number of users per service type
K1,K2

Result: Density of states g
1 while ε > ε0 do
2 calculate new SNR values: 0 = {γk,j ∀k, j}
3 calculate new gt = MWLS(0,K1,K2)
4 t ← t + 1
5 evaluate ε
6 end

a new set of SNR values 0 (line 2). A new density of states
gt (E) is calculated until the difference between the average of
the sequence {g1, . . . , gt−1} and the average of the sequence
{g1, . . . , gt } is less than ε, i.e., the algorithm converges.

C. ACCURACY OF THE DESS ALGORITHM
To assess the precision of the DESS algorithm, we have
compared it with the exact solution obtained with exhaustive
search. Fig.3 displays the density of states with both methods,
where we observe that the curves overlap with the exception
of a small discrepancy in the upper bound for the case K = 3,
N = 6. The parameters used here are the same detailed
in Table 3.

FIGURE 3. Wang-Landau versus exhaustive search.

Alternatively to the use of f =
√
f , two strategies represent

the state of the art in the control of accuracy forWang-Landau
algorithms [79], the WL-1/t algorithm and the stochastic
approximationMonte Carlo (SAMC) algorithm. TheWL-1/t
algorithm [80] defines the time when the 1/t regime starts as
the timewhen all energy levels have been visited at least once.
However, some instances of our problem are characterized by
true energy levels that are never visited, making the applica-
tion of this strategy impossible. The SAMC algorithm [81]
specifies that, in practice, the time t0 when the 1/t regime

TABLE 3. Parameter values for simulation.

starts is chosen according to the complexity of the problem,
and the appropriateness of the choice of t0 is determined by
testing the convergence of multiple runs by examining the
variation of the estimated density of states. For our problem,
this approach would mean the design of t0 for each instance
of the random parameters involved (number of eMBB users,
number of URLLC users, signal-to-noise ratio, number of
PRBs), implying the determination of more than 250 values
(50 iterations with at least 5 iterations for the DESS algo-
rithm) of t0 per (K ,N ) pair, which is very impractical and
highly time consuming.

The error corresponding to Fig.3 is calculated as in [80]
for (K ,N ) = (2, 5), (3, 6), (4, 5), with values 1 · 10−2,
4.5 · 10−5, 6 · 10−6, respectively, which are consistent with
the values reported for f =

√
f in other works (see for

instance [80].) These results are a very good compromise
between accuracy and the complexity exhibited by our DSSS
algorithm, which is shown in VII-E to scale with O(V 4.11)
while the 2D Ising model of [82] scales with O(V 4.743).

VII. EXPERIMENTS AND EMPIRICAL RESULTS
A. SIMULATION SETTING
The wireless configuration consists of an eNodeB that covers
a square area of of 2× 2 km2 and users randomly positioned
following a uniform distribution in a free space scenario with
line of sight where the shadowing effect is given by the
random variable σ . The remaining parameters are provided
in Table 3 and in III-B.

The simulations conducted to provide the feasibility results
have been obtained as follows. We have generated 50 inde-
pendent instances for each pair (K ,N ), each instance corre-
sponding to one execution of the DESS algorithm. For each
instance, the parameters are:
• number of users per slice: K1 = K − κ and K2 = κ ,
being κ a uniform integer random variable in [0,K ];

• path loss realizations are randomly generated (see
Table 3) for each instance to obtain different sets of SNR
until convergence of the density distribution in ε;

• user rate demands r̂k [Mbps] are chosen from a uniform
distribution U [15, 30] for eMBB users and uniform dis-
tribution U for URLLC users.
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B. COMPARISON BETWEEN THE MISA-P
AND THE SOSO-P MODELS
This section shows the performance that the two models
exhibit for two meaningful scenarios in which the number of
available PRBs is i) equal to the number of users and ii) less
than the number of users. These results have been obtained
by exhaustive search.

FIGURE 4. Probability of existence of solution.

The fact that two URLLC users can be allocated different
mini-slots implies a significant improvement in feasibility,
as Fig.4 shows for the case of 3 users, of which one demands
eMBB service and two demand URLLC service. If 3 PRBs
are available (Fig.4a), it is clear that there is no guarantee that
the problem is feasible, depending on the SNR of the PRBs
and the rates demanded by the users. Indeed, we see that the
MISA-P model provides a probability of feasibility between
70% and 100%, while the SOSO-P model is infeasible for
many instances with a maximum probability of feasibility
of 60%. If we stress the models further and reduce the number

of PRBs to 2, theMISA-Pmodel is still feasible in some cases
while the SOSO-P model is always infeasible as the number
of users exceeds the number of PRBs (Fig.4b).

Regarding the performance in terms of bandwidth effi-
ciency, we have studied the maximization of the achieved
sum-rate as a meaningful example that contains all the vari-
ables of theMISA approach, i.e. xk,j, yj, and ztk,j, yielding the
two following objective functions:

opt� fo(�)=max
K∑
k=1

rk

= max
K1∑
k=1

N∑
j=1

xk,jrk,j

+

K2∑
k=1

N∑
j=1

yj(z1k,j + z
2
k,j)

rk,j
2

(MISA-P)

optX̃ fo(X̃)=max
K∑
k=1

r̃k=max
K∑
k=1

N∑
j

x̃k,jrk,j (SOSO-P)

The results in Figs.(5a)-(5b), for the same two cases that for
Fig.4, show the bandwidth efficiency for the two models.
Note that there is a remarkable difference between the effi-
ciency provided by MISA-P with respect to SOSO-P, being
at least 2× for K = 3,N = 3 and infinite for K = 3,N = 2,
as SOSO-P is always infeasible in this case.

C. CHARACTERIZATION OF FEASIBILITY
The probabilistic characterization of feasibility for the slice
problem is now shown. We recall that feasibility means that
the number of solutions to the problem is larger than 0,
i.e., g(0) > 0. Fig.6 displays the probability that the problem
is feasible as a function of slice rates per available PRB
Rs
N , where each point corresponds to one of the 50 instances
for each (K ,N ) with the DESS algorithm. We observe that
there is a trade-off between ReMBB and RURLLC that delimits
the feasible and infeasible regions, which are defined by the
orange curve. This graphic may then be used to know how
feasible will be the slicing problem in advance. Feasibility
can be characterized in more detail via the cumulative density
function (CDF) of Fig.7, for different number of users. This
figure makes it explicit the effect of an insufficient number of
resources: while for 2 users feasibility is very high, feasibility
for 5 users is much lower, given that the maximum number of
available PRBs is 6.

Fig.8 shows the CDF for the average of satisfied demanded
rate r̂ , for which the probability of feasibility has been taken
into consideration. Note that, for each type of service, the
curves are very close, meaning that, in average, users get
the same rate irrespective of the number of users present in
the system. As similar curves were obtained for all values
of K , we choose to reproduce K = 2 and K = 4 for a better
visualization of the curves.
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FIGURE 5. BW efficiency: Comparison between MISA-P and SOSO-P to
maximize the sum-rate.

TABLE 4. Average number of constraints that are unsatisfied, for N = 4.
The figures correspond to non-scaled values.

D. CONSTRAINTS ANALYSIS
The density of states is also used to evaluate the behaviour of
the constraints, by registering which constraints are unsatis-
fied. Our first observation is that all constraints of the same
type have very similar values for each (K ,N ), as Table 4
shows. Moreover, we see that the constraints regarding the

FIGURE 6. Phase transition as a function of
ReMBB

N and
RURLLC

N .

FIGURE 7. Feasibility (CDF).

FIGURE 8. Average users rate per slice (CDF).

use of mini-slots (7c) are more restrictive than the constraints
on slice isolation (7b), showing that orthogonality between
URLLC users using the same PRB is more stringent that
orthogonality between the eMBB and URLLC slices.
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FIGURE 9. Probability of satisfiability of the constraints, for K = 3. The
curves are limited in the x-axis to the number of constraints 2N + 2.

We can also estimate the probability of satisfiability of
each constraint, where the x-axis represents the constraint
index such that x = 1 stands for constraint#1 and so on,
for the case of N = 3, see Fig.9. Regarding the fulfillment
of slice data rates, constraints 1 and 2 (x = 1 and x = 2)
map the satisfaction of the requirements of the eMBB and
URLLC slices, respectively, once it has been guaranteed that
user requirements (7a) are satisfied. Put differently, x = 1
and x = 2 represents the probabilities P{rk ≥ r̂k , ∀k ∈ K1}

and P{rk ≥ r̂k , ∀k ∈ K2} for all eMBB and URLLC users,
respectively. We observe that the larger the number of PRBs,
the higher the probability for both types of users, achieving
values of around 90% for N = 6. Note that for 2 PRBs,
which is less than the number of users, the probabilities for
x = {1, 2} are respectively {50%, 70%} and therefore not
null, as it would be the case with conventional approaches
such as SISO-P.We also see the evolution of the orthogonality
constraints (7b)–(7c), which correspond to the flat parts of the
curves and labelled for the curve ‘6 PRB’ in the figure, show-
ing that increasing probabilities accompanies the increase in
the number of PRBs.

E. COMPLEXITY ANALYSIS
We now analyze the computational complexity of the MWLS
algorithm. The complexity is estimated taking into account
the obtained simulation times and following recent advances
in the estimation of how the computational time scales
with the number of variables in Wang-Landau algorithms
[79], [82]. In these works, Shchur et al. show that the simula-
tion time scales withV z, beingV the number of total variables
and z a problem-specific parameter which changes depending
on the particular problem. Fig.10 shows, in logarithmic scale,
the simulation timeT versus the number of variablesV . These
data can be approximated by the line log10 T = 4.11 ×
log10(V ) − 2.926, giving a value z = 4.11 that implies
a complexity O(V 4.11). We observe that in [82] values of
z in the range [4, 5.7] are reported for the tunneling time,
which matches our convergence criteria, suggesting that our

FIGURE 10. Complexity of the modified MWLS algorithm: logarithm of the
computational time T as a function of the number of variables
V = N(K1 + 2K2 + 1), K1 is the number of eMBB users, K2 is the number
of URLLC users.

modified Wang-Landau algorithm scales better than the 2D
Ising model with z = 4.743. Note that the total complexity of
the DESS algorithm is simply αO(V 4.11), being α the number
of times that the MWLS is executed (see Table 3,while loop);
in our experiments, α = [5, 10].

VIII. CONCLUSION
This paper proposes the probabilistic characterization of
feasibility of 5G slice resource allocation problems to a pri-
ori discern whether they can be solved or not. In particu-
lar, we present MISA-P, a novel spectral-efficient approach
to the allocation of PRBs for eMBB and URLLC services
based on the utilization of minislots. We have adapted the
Wang-Landau algorithm to our scenario to characterize the
satisfiability of the constraints and to obtain the phase transi-
tion that delimits the feasible and infeasible slice rate regions.
This characterization makes it possible for slice owners to
learn in advance whether the number of resources is adequate
to provide the required data rates and to anticipate actions that
avoid an unsuccessful allocation process. We also show that
our approach significantly improves the spectral efficiency
with respect to a single-slot based model.
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