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Abstract With more efficient structures, last trends in aero-
nautics have witnessed an increased flexibility of wings,
calling for adequate design and optimization approaches. To
correctlymodel the coupled physics, aerostructural optimiza-
tion has progressively become more important, being nowa-
days performed also considering higher-fidelity discipline
methods, i.e., CFD for aerodynamics and FEM for struc-
tures. In this work a model for high-fidelity gradient-based
aerostructural optimization of wings, assisted by algorith-
mic differentiation and including aerodynamic and structural
nonlinearities, is presented. First, the model is illustrated: a
key feature lies in its enhanced modularity. Each discipline
solver, employing algorithmic differentiation for the evalua-
tion of adjoint-based sensitivities, is interfaced at high-level
by means of a wrapper to both solve the aerostructural pri-
mal problem and evaluate discrete-consistent gradients of
the coupled problem. Second, to demonstrate the feasibil-
ity of the method, a framework is ad-hoc set up, within the
open-source SU2 multiphysics suite, with the inclusion of a
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geometrically nonlinear beam FE and an interface module
to deal with non-matching 3D surfaces. Finally, the frame-
work is applied to perform aerostructural optimization of
aeroelastic test cases based on the ONERA M6 and NASA
CRM wings. Single-point optimizations, employing Euler
or RANS flow models, are carried out to find wing optimal
outer mold line in terms of aerodynamic efficiency. Results
remark the importance of taking into account the aerostruc-
tural coupling when performing wing shape optimization.
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1 Introduction

Multi-Disciplinary Optimization (MDO) applied to aero-
structural wing design problems has been attracting the in-
terest of both research and industry for the last fifty years and
is still today a widely researched topic. Typically, when refer-
ring to aerostructural optimization, a system is considered,
governed by two state (or discipline) systems of equations:
one relative to steady aerodynamics and the other to solid
mechanics. Commonly, Design Variables (DVs) consist in
aerodynamic shape and/or structural parameters (e.g., thick-
ness of the skin), while constraints consider the integrity of
the structure and/or the trim of the aircraft (mainly in terms
of lift to be generated). Very often, constraints and objec-
tive functions regard aircraft performances, such as, range
or fuel burn, which in turn, depend on aircraft weight and
aerodynamic efficiency.

A critical aspect is the coupling between the physics of
the two considered disciplines: for a given flight condition,
the deflected shape of the wing is tightly coupled with the
generated aerodynamic forces in a two-way relation. Current
trends to design more efficient and lighter structures end up
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having more flexible wings, showing significant deflections
while in operation. This, in terms of modeling, exacerbates
both the need to include such aeroelastic tight coupling and
to employ nonlinear and higher-fidelity solvers.

One of the pioneers of aerostructural optimization was
Haftka25 who proposed amethod for the optimization of flex-
iblewings subjected to stress, strain and drag constraints. The
adopted discipline tools reflected the computational avail-
ability of the time, and consisted in a Lifting Line Method
(LLM) for aerodynamics and aFinite ElementMethod (FEM)
for the structure. A penaltymethod formulation converted the
constrained problem into an unconstrained one.

The work of Grossman et al.24 applied an integrated air-
craft design analysis and optimization on a sailplane, explor-
ing two optimization strategies: a sequential one, in which
each field was optimized independently, and an integrated
one. The integrated approach demonstrated to be superior,
capitalizing on the interaction between disciplines and find-
ing better results with respect to sub-optimal ones given by
the sequential optimization. This trend has been recently con-
firmed by Martins et al.43 using higher-fidelity approaches.

In the last twenty years, researchers have started to em-
ploy higher-fidelity tools to perform aerostructural optimiza-
tion. This increased level of fidelity came with several conse-
quences, being the first one an increased computational de-
mand. Furthermore, when simulating transonic flows, given
the high sensitivity with respect to small geometric fea-
tures,57 a large number of DVs is needed to fully exploit
the potentials of the optimization process. For such reasons,
gradient-based optimization55 is preferred, as it generally
converges faster to a minimum, and comes with a reduced
computational cost if adjoint-technique is used for sensitiv-
ity evaluation; however, chance of hitting a local minimum
exists due to the possible non-convexity of the problem.41

One of the pioneering works in this direction is the one
of Maute et al.,45 featuring a gradient-based optimization
framework with a three-field approach (structures, aerody-
namics, mesh) to model the nonlinear coupled problem. A
staggered (also known as partitioned or segregated) proce-
dure was set up to solve the coupled fields; aerodynamics
was modeled with CFD-Euler, structure with a linear FE
model and fluid mesh deformation with a spring-analogy
method. For the evaluation of sensitivities a direct approach
was chosen, in which partial derivatives where analytically
calculated and a staggered scheme was used to solve the
system of equations. Direct approach is, anyway, only con-
venient when then number of design variables is small. The
authors stated that three-field formulations are on average
25% slower than two-field ones (i.e., strategies that bypass
fluid mesh deformation problem) but allow for a more robust
handling of large structural displacements.

Martins et al.42 proposed a framework for the calcula-
tion of coupled aerostructural sensitivities for cases in which

aeroelastic interactions were significant. The method em-
ployed high-fidelity models for both aerodynamics (CFD-
Euler) and structure (linear FEM). This work is considered,
to the best of the authors’ knowledge, one of the first efforts
to employ, in aerostrucutral optimization, an adjoint method,
which makes the time for calculating sensitivities almost
independent of the number of DVs.44 The proposed sensi-
tivity evaluation framework was a lagged-coupled adjoint, in
which the single discipline adjoint equations were lagged in
a similar fashion to the primal solver solution strategy, and
partial derivatives were evaluated analytically or by finite
differences (FD).

In a following effort43 a similar frameworkwas applied to
the design of a supersonic business jet; the selected objective
function was a weighted sum of structural weight and drag
coefficient evaluated for a design lift coefficient; Gradient
evaluation time was observed to be almost independent of
the number of DVs.

Following their previous effort,45Maute et al.46 proposed
a different method for aeroelastic optimization. For the same
aerostructural problem, gradient calculation was achieved
by analytically deriving the adjoint sensitivity equations: a
staggered solution algorithm was implemented, where par-
tial derivatives could be calculated analytically or by auto-
matic differentiation. The paper highlighted the computa-
tional problems relative to the storage of Jacobians matrices
of large-scale problems for adjoint-based sensitivity calcula-
tions.

The work of Barcelos et al.3 presented an optimization
methodology for fluid-structure interaction (FSI) problems in
which aerodynamics took into account turbulence by means
of RANS with Spalart-Allmaras (SA) turbulence model.65
The formulation was based on the three-field strategy used
in Maute et al.,45,46 whereas the structure was modeled with
geometrically nonlinear FEM. This counts, to the best of the
authors’ knowledge, as the highest level of fidelity adopted
so far for aerostructural optimization of wings. Calculation
of sensitivities followed the direct approach, using parallel
matrix-free iterative solvers; all partial derivative contribu-
tions were evaluated analytically or via FD. With the direct
approach, evaluation of total derivatives of the state variables
for the coupled aerostructural problem needs to be repeated
for each design variable.

Other literature works presented gradient-based aero-
structural optimizations using adjoint methods. Brezillion
et al.8 proposed an articulated high-fidelity optimization
framework wrapping DLR’s TAU code for CFD (RANS-
SA)which includes a discrete-adjoint model with non-frozen
turbulence and ANSYS for linear structural FEM.

A similar approach was pursued by Ghazlane et al.22 In
the presented aerostructural framework, aerodynamics (Eu-
ler flow model) was simulated by ONERA’s elsA code,10
which used an iterative fixed-point scheme for the solution
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of the aerodynamic adjoint; for the structure, a linear struc-
tural FEM module was analytically differentiated.

In effort33Kenway et al. introduced a high-fidelity frame-
work that could perform aerostructural optimization with re-
spect to thousands of multidisciplinary DVs, thanks to an
improved parallel scalability of the method; a fully-coupled
Newton-Krylov approach was employed for the solution of
the aerostructural and the relative adjoint systems. The aero-
structural solver was based, for the aerodynamic part, on
SUmb70 code, featuring automatic differentiation (ADjoint),
and, for the structural part, on TACS,30 also able to evalu-
ate adjoint-based sensitivities. In the cited effort, Euler flow
model was used together with a linear detailed FEM model
of the structure. To solve the aerostructural adjoint equations
a combination of analytic, forward, and reverse AD methods
was adopted. The method was demonstrated on an aerostruc-
tural CRM test case.67

Similarly, in another study35 Kenway et al. presented
a multipoint high-fidelity aerostructural optimization of a
CRM aeroelastic model employing a linear structural model
andEuler-based aerodynamics, augmentedwith a low-fidelity
viscous drag estimate.

Works of Kennedy et al.31,34 focused on the aerostruc-
tural optimization of theCRM introducing compositemateri-
als. A linear structural model (TACS) was used together with
low-fidelity aerodynamics (panel method) and Euler/RANS
flow models.

Kenway et al.32 and Brooks et al.9 performed a similar
RANS-based aerostructural optimization on variations of the
NASA CRM (undeflected and higher aspect ratio versions)
using a similar computational infrastructure as the one men-
tioned above.

The study of Hoogervorst et al.28 proposed an MDO ar-
chitecture based on an Individual Discipline Feasible (IDF)
approach:14,16 the disciplines of the aerostructural problem
were decoupled and convergence was ensured imposing ad-
ditional equality constraints on the interdisciplinary state
variables, which became additional surrogate design vari-
ables. This allowed to lower the computational cost of the
problem, especially in cases of strong nonlinearities, but only
when the number of DVs was kept small. In the study, flow
was modeled with the Euler equation using the open-source
code SU220 while the structural solver FEMWET was used
to solve the linear structural equations. A combination of
continuous adjoint approach and FD was used for gradient
evaluation.

In the field of rotorcraft analysis and optimization, the
work of Mishra et al.47,48 presented a sensitivity analysis
of fully-coupled time-dependent aeroelastic problems. Both
forward and adjoint sensitivity formulations were derived,
levering on the same iterative solution strategy used for the
primal problem. NSU3D software and a nonlinear in-house
beam were used to solve the RANS flow-model and the

structure. Both solvers featured a discrete adjoint method
for sensitivities evaluation. Wang et al.69 used a sensitivity
analysis procedure based on a discretely consistent adjoint-
based method in the fluid-dynamic solver (FUN3D) and a
complex variable finite difference approach for structural
sensitivities with respect to aerodynamic loads, by means of
the nonlinear multibody structural solver DYMORE.

Kiviaho et al.36 focused on the modularity of the frame-
work for the steady aeroelastic optimization of wings. A non-
linear block Gauss-Seidel procedure was used to solve the
primal and the discrete adjoint problems. A Python-based
framework interfaced FUN3D (Euler/RANS flowmodel and
mesh deformation), FUNtoFEM(intefacemodule) andTACS
(linear FEM). With the reformulation of the Lagrangian,
high sparsity of the systemmatrix was guaranteed for the ad-
joint problem, allowing for a staggered solution procedure,
without passing copies of transposed discipline Jacobians
between the several modules.

He et al.27 presented an open-source, object-oriented
MDO frameworkwhich provides a high-level interface to im-
plement discrete adjoint method for existing or new steady-
state primal solvers of OpenFOAM26 with minimum impact
on the source code. To do so, partial derivatives were calcu-
lated by finite differences accelerated by an advanced graph
coloring algorithm.

1.1 Contributions of the present study

In this work, a modular strategy for gradient-based, high-
fidelity aerostructural optimization, assisted by algorithmic
differentiation is presented. The formulation is based on the
work of Sanchez et al.63 in which an integrated AD-based
method, levering on a fixed-point iteration procedure, for
the calculation of coupled aerostructural sensitivities was
presented and implemented within the environment of the
SU2 multiphysic suite.2,23, 49, 54, 56, 73 In this paper, the ad-
joint problem is reformulated and extended in order to de-
couple the discipline solvers, which now only communicate
by means of an external Python wrapper for the solution of
both the primal and the relative adjoint problems. Such an
approach provides increased flexibility: different solvers, ad-
hoc tailored on the physics to bemodeled, can be interfaced to
perform aerostructural analysis and/or optimization. More-
over, the use of AD within the entire sensitivities evaluation
workflow, delivers discrete-consistent sensitivities, if proper
convergence of the primal and dual problems is achieved.

Exploitation of the herein proposed formulation allowed,
with respect to the work of Sanchez et al.,63 the introduction
of a spline module, the interface of a geometrically nonlinear
beam-based structural solver, and their integration into the
sensitivities evaluation workflow. Such generalized layout
is thought for aeronautical applications, typically featuring
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slender structures and non-matching 3D structural/fluid in-
terfaces.

The framework implementing the proposed formulation
has been released as open-source within the SU2 suite. SU2
dedicated solvers are used for CFD and fluid mesh defor-
mation, while structure is handled by the beam FE solver
pyBeam (ad-hoc rearranged in fixed-point form to exploit
AD for sensitivities evaluation). PyBeam has been adapted
as a model code to show how simple the integration of the
chosenAD library (CoDiPack60) would be on existing codes.
This can avoidmanual implementations of adjoint algorithms
which are usually complex and time-consuming to perform,
despite recent progresses in this direction.27 Being open-
source, this framework provides an easy access to an aero-
structural optimization tool, tailored for aircraft applications
to a potentially large user audience.

Application of the method is carried out on aeroelas-
tic test cases of potential industrial interest, based on the
ONERA M6 and NASA CRM wings and featuring relevant
structural deflection. Several levels of fidelity are employed
in the analyses: together with the geometrically nonlinear
structural model, both Euler and RANS-SA flow models are
used for aerodynamics. For RANS-SA based applications,
particular attention has been payed to solve the fluid primal
and relative adjoint problems following the full-turbulence
(or non-frozen-turbulence3,41) approach. Relevance of the
aerostructural coupling on the optimization results is high-
lighted, showing how neglecting it can lead to a less perform-
ing design with respect to the initial nonoptimized configura-
tion. Moreover, an alternative strategy is proposed, in which
aerostructural coupling is considered only in the primal prob-
lem, and a comparison with the fully-coupled approach is
provided.

Basic benchmarks of the implementation, in terms of
speed, scalability and memory usage are also shown.

1.2 Organization of the paper

The remainder of this paper is organized as follows: in Sec-
tion 2 the theoretical background for the solution of the aero-
structural problem and for sensitivities evaluation is detailed;
in Section 3 the aeroelastic test cases are introduced (i.e.,
aeroelastic models based on the ONERA M6 wing and on
the CRM) whereas in Section 4 aerostructural sensitivities
verification is presented and results of the optimization are
shown and discussed. Section 5 concludes the paper and
provides recommendations for future works.

2 Theoretical background

Amore in-depth overview of the theoretical background and
the solvers is presented in this section. First, the primal prob-

lem, i.e., the static aeroelastic equilibrium of a flexible wing
subjected to a given flow, is formulated; each of the discipline
solvers is briefly reviewed and their coupling and interfacing
within the framework is discussed. Later on, the same primal
problem is reformulated in the form of fixed-point iterations,
which is the most suitable one for the implementation of
the used AD-based adjoint method. State and design vari-
ables are introduced and the complete set of equations of the
adjoint problem is shown, together with the reverse compu-
tational path followed by the algorithm for the evaluation of
sensitivities. It is relevant to stress out that structural, aero-
dynamic and mesh solvers are implemented in independent
modules, each one featuring its ownAD-based sensitivity ca-
pability. Hence, the approach to be described is suitable for
different combinations of solvers provided with the adequate
primal/adjoint interfaces.

Last topic covered in this section is the aerostructural
wing shape optimization formulation.

2.1 Primal problem

Structural FEM solver The structural in-house solver py-
Beam relies on a 6-dof geometrically nonlinear beam model
following the work of Levy.39 The Euler-Bernoulli beam
kinematic assumption is considered; the formulation follows
an Updated Lagrangian approach with a corotational5 frame
to extract the strains from large displacements. Nonlinear
rigid elements are employed for a correct transfer of displace-
ments and forces between the structural and fluid meshes
(see Section 3). The implementation is based on the penalty
method proposed by Belytschko.5

In its FE discretized form the governing equation is:

S (us) = fs− fint(us)− frig(us) = 0 (1)

where, us, fs, fint and frig are, respectively, the nodal general-
ized displacements (measured from the unloaded initial con-
figuration), external and internal nodal forces vector, and the
contribution of rigid elements to the residual. Equation (1)
is solved iteratively with a Newton-Raphson method:

K ∆us =−S (us) (2)

with the Jacobian K = ∂S (us)
∂us

retaining the nonlinear con-
tributions of both beam and rigid elements. A load-stepping
strategy, i.e., a progressive application of the external loads,
is used in equation (1) to facilitate convergence.

PyBeam is coded in C++ and its top-level functions are
wrapped in Python using SWIG,4 to be accessible by external
solvers. Moreover, like SU2 CFD solver,2 it employs AD by
means of CoDiPack library for sensitivites evaluation.
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CFD solver Focus is on transonic flows around aerodynamic
bodies governed by the compressible Navier-Stokes equa-
tions. For this purpose, the flow solver available in the open-
source multiphysics suite SU2 is chosen. Following the work
of Economon et al.,20 the governing equations formulated in
conservative form including the energy equation can be writ-
ten as:

F (w) =
∂w
∂ t

+∇ ·Fc(w)−∇ ·Fv(w)−Q(w) = 0 (3)

where w = (ρ,ρv,ρE) is the vector of conservative vari-
ables, ρ the flow density, v the flow velocity and E the
total energy per unit mass. Q(w) is a generic source term,
Fc(w) and Fv(w) are, respectively, the convective and vis-
cous fluxes, and can be written as

Fc(w) =

 ρv
ρv⊗v+ pI
ρEv+ pv

 (4)

Fv(w) =

 0
τ

τ ·v+µ∗Cp∇T

 (5)

where Cp is the specific heat at constant pressure and T is
the temperature, calculated using the ideal gas model. The
viscous stress tensor is:

τ = µtot

(
∇v+∇vT − 2

3
I(∇ ·v)

)
(6)

where, based on the Boussinesq hypothesis,72 the total vis-
cosity µtot is modelled as a sum of a laminar component
which satisfies Sutherland’s law71 (µlam) and a turbulent
component (µturb) which is obtained from the solution of a
turbulence model. Finally,

µ
∗ =

µlam

Prl
+

µturb

Prt
(7)

where Prl and Prt are the laminar and turbulent Prandtl
numbers, respectively. In this investigation, when viscous
flows are considered, µturb is calculated by means of the
one-equation Spalart-Allmaras turbulence model.65

SU2 core is written in C++ and top-level functions are
wrapped in Python using SWIG. Both continuous and dis-
crete adjoint capabilities are provided; in particular, discrete
adjoint implementation features CoDiPack for AD-based
sensitivities evaluation.

Fluidmesh deformation solver For problems involvingmov-
ing boundaries it is important to account for the modification
of the fluid domain. Among the several strategies proposed
in the literature,18 it has been decided to rely on a linear elas-
tic volume deformation method, which performs well in case
of large deformations. Such strategy is implemented in the

SU2 dedicated mesh deformation solver; it supports AD for
gradient evaluation and its top level functions are wrapped
in Python using SWIG.

In order to find the new position of the nodes in the fluid
domain, the mesh deformation problem can be treated as a
pseudo-elastic linear problem,19

M (z,uf) = Km · z− f̃(uf) = 0 (8)

where Km is a fictitious stiffness matrix and f̃ are fictitious
forces which ensure the boundary displacements uf.

In problems involving moving mesh boundaries, equa-
tion (3) needs to be rewrittenwith the inclusion of the domain
grid points position z, following the Arbitrary Lagrangian-
Eulerian (ALE) formulation:17,18, 52, 53

F (w,z) =
∂w
∂ t

+∇ ·Fc(w,z)−∇ ·Fv(w,z)−Q(w) = 0 (9)

Interfacingmethod To transfer information between the non-
conformal structural FEM and CFD grids, an in-house Mov-
ing Least Square algorithm is implemented,13 based on Ra-
dial Basis Functions (RBF)59 and ANN library.50 Briefly,
given xs ∈ RNs , the position of the structural nodes and
xf ∈ RN f , the position of the fluid nodes on the moving
boundary, it is possible to build a so-called spline matrix
HMLS = HMLS(xs,xf) ∈ RN f×Ns such that:

uf = HMLS ·us, (10)

fs = HT
MLS · ff (11)

where N f and Ns are, respectively, the dimensions of the
aerodynamic moving surface and structural degrees of free-
dom,while uf, ff ∈RN f and us, fs ∈RNs are, respectively, the
displacements/forces defined on the aerodynamic/structural
mesh. Aerodynamic forces, i.e., ff = ff(w,z), are provided
by the fluid solver for the converged solution of equation (9).
As already stated in the work of Quaranta et al,58 employing
the transpose of the spline matrix in equation (11) ensures
the energy conservation.

The spline tool has been already successfully applied to
a large variety of challenging cases, such as wings with mo-
bile surfaces, free-flying aircraft models12 and other cases in
which interpolation of information between 1D (structural)
and 3D (aerodynamic) topologies had to be performed.6 The
module, coded in C++ into an independent library, has also
been wrapped in Python.

Couplingmethod Apartitioned approach is employed for the
FSI system solution, following a three-field formulation.3,21
This approach, according to Maute et al.,46 is suitable for
problems featuring large structural deformations.

Recalling the three fields under investigation, namely,
structural S , fluid F and mesh M , the whole FSI system
G can be expressed as a function of the state variables us, w
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and z which are, respectively, structural displacements, aero-
dynamic state variables and fluid mesh nodes displacements.
Hence, following Sanchez,62 the primal problem is:

G (us,w,z) =


S (us,w,z) = 0,
F (w,z) = 0,
M (us,z) = 0,

(12)

Due to the non matching structural and fluid interfaces,
the above system is closed by means of interfacing equa-
tions (10,11).

Due to the nonlinear nature of the FSI problem, an iter-
ative approach based on Newton method is sought. At each
iteration, the corresponding linear system is solved using
a Block Gauss-Seidel (BGS) strategy, which suits well the
the selected partitioned approach. The approximated linear
system reads:


∂F
∂w 0 0
0 ∂S

∂us
0

0 ∂M
∂us

∂M
∂z




∆w
∆us
∆z

=−


F (w,z)

S (us,w,z)
M (us,z)

 (13)

in which the upper-right part of the Jacobian has been set to
0.3 It is underlined how, although linear, the mesh deforma-
tion problem of equation (8) has been recast into Newton-
Rapson-like form to fit into the BGS representation shown
above.

In the work of Degroote et al.15 slow convergence or
divergence of the BGS approach in case of strong FSI inter-
actions (e.g., strong geometrical nonlinearities) is observed.
To ensure the stability of the method, a relaxation parameter
α is applied to the boundary displacements:29

uf
∗ = αuf

n +(1−α)uf
n−1. (14)

where n and n−1 are, respectively, the current and previous
BGS subiterations.

Concerning the implementation, a Python orchestrator
links the wrapped libraries and allows the sequential solution
of each disciplinewithin a single FSI iteration. Structural dis-
placements us are accessible from pyBeam module; they are
interpolated into the fluid boundary using equation (10) after
the spline matrix has been assembled by the interface mod-
ule. The fluid boundary displacements are then transferred
to the mesh solver in SU2 via its Application Programming
Interface (API).64 A new value of the aerodynamic forces
on the boundary is obtained after a CFD simulation in SU2
and interpolated back into the structural model using equa-
tion (11). The primal solver layout is shown in Figure 1; its
algorithm is resumed in Algorithm 1.

Algorithm 1: Aerostructural primal solver
Initialize N = 1,(w, z, us, uf, fs, ff) = 0
while N ≤ NFSI do

Run CFD solver: z→ w, ff,CD,CL

while
∥∥∥wk f −wk f +1

∥∥∥≤ ε f do: iterate k f

Transfer loads (Spline): ff→ fs

Run structural FEM solver: fs→ us

while
∥∥usks −usks+1

∥∥≤ εs do: iterate ks

Transfer displacements (Spline): us→ uf

Run mesh deformation solver: uf→ z
end

Spline
Moving Least Square

C++

Python

SWIG

C++

Python

SWIG

CFD - Mesh Deformer
SU2 

C++

Python

SWIG

Structural Solver
pyBeam

Python
Orchestrator

Primal
AD

Fig. 1 Framework layout for Primal and AD modes.

2.2 Coupled aerostructural adjoint method

It has already been mentioned that each of the described
modules features CoDiPack for adjoint AD-based sensitivi-
ties evaluation, being one of the contributions of the present
study to show how different AD-based modules can be in-
terfaced, by means of a high-level Python wrapper, for the
purpose of coupled sensitivities evaluation.

Following the work of Sanchez et al.63 let’s define the
Objective Function (OF) and DVs for the current optimiza-
tion problem. The OF that will be considered in this effort is
the aerodynamic drag coefficient:

J =CD(w,z) (15)

Table 1 summarizes the set of state and design variables.
Notice that the displacement of the wing surface utot is ex-
pressed as the sum of the displacements due to the jig-shape
redesign uFα

and the displacements due to the deflection
(aerostructural coupling). Even though both OF and DVs
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Table 1 Complete set of state and design variables for aerostructural
shape optimization.

State variables

us Structural displacements
w Flow conservative variables
z Volume mesh displacements
ff Fluid loads
fs Structural loads
uf Displacements of wing surface due to deflection
utot Cumulative displacements of wing surface

Design variables

uFα
Variation of the jig-shape

are relative to aerodynamics, the problem is still multidisci-
plinary due to the aerostructural coupling of the governing
equations. The proposed optimization framework is flexible
and general, and allows to freely choose OF, constraints and
DVs for any of the considered disciplines with minor modi-
fications of the source code and of the sensitivity evaluation
workflow.

Let the complete set of equations of the primal problem,
illustrated in section 2.1, be rewritten in the form of fixed-
point iterators:1,2, 37

F(w,z)−w = 0 (16a)

Ff(w,z)− ff = 0 (16b)

M(utot)− z = 0 (16c)

HT
MLS · ff− fs = 0 (16d)

S(us, fs)−us = 0 (16e)

HMLS ·us−uf = 0 (16f)

utot−uf−uFα
= 0 (16g)

In system (16) equation (16a) is the fixed-point version
of equation (9) and, together with fluid loads and objective
function evaluation (equations (16b,15) respectively) repre-
sents the core of the aerodynamic solver. Equation (16c) is
the fixed-point form of mesh deformation problem (equa-
tion (8)), whereas equation (16e) is the fixed-point version
of the structural problem (equation (1)). F, Ff, M and S are
the fixed-point operators of the corresponding residuals of
the primal problem (see system of equations (12)).

Equations (16a-16c,15) are handled by the SU2 suite
while equation (16e) is handled by pyBeam.Cross-dependencies
(displacements us/uf and forces fs/ff) are handled by the or-
chestrator at high-level after the spline matrix has been as-
sembled.

The optimization problem is formulated as:

min
uFα

J(w,z) (17)

subject to: F(w,z)−w = 0

Ff(w,z)− ff = 0

M(utot)− z = 0

HT
MLS · ff− fs = 0

S(us, fs)−us = 0

HMLS ·us−uf = 0

utot−uf−uFα
= 0

Such problem can be reformulated in the equivalent uncon-
strained optimization problem defined with the Lagrangian
L :

L (w, w̄,z, z̄,us, ūs,uf, ūf, fs, f̄s, ff, f̄f,utot, ūtot,uFα
) =

J(w,z)+ w̄T [F(w,z)−w
]
+ z̄T [M(utot)− z

]
+

ūT
tot
[
utot−uf−uFα

]
+ ūT

f [HMLS ·us−uf]+

ūT
s
[
S(us, fs)−us

]
+ f̄T

s

[
HT

MLS · ff− fs

]
+

f̄T
f
[
Ff(w,z)− ff

]
(18)

in which the Lagrangian multipliers w̄, z̄, ūtot, ūf, ūs, f̄s and
f̄f, corresponding to the adjoint of the state variables, are
introduced.

Imposing the Karush-Kuhn-Tucker (KKT) conditions it
is possible to: retrieve the state equations (16) by differenti-
ation of the Lagrangian with respect to the adjoint variables;
obtain the set of adjoint equations differentiating the La-
grangian with respect to the state variables:

∂L

∂w
=

∂J
∂w

+w̄T

[
∂F
∂w

∣∣∣∣
w∗,z∗
−1

]
+ f̄T

f
∂Ff
∂w

∣∣∣∣
w∗,z∗

= 0 (19a)

∂L

∂z
=

∂J
∂z

+ w̄T ∂F
∂z

∣∣∣∣
w∗,z∗

+ f̄T
f

∂Ff
∂z

∣∣∣∣
w∗,z∗

+ z̄T = 0 (19b)

∂L

∂utot
=

∂J
∂utot

+ z̄T ∂M
∂utot

∣∣∣∣
u∗tot

+ ūT
tot = 0 (19c)

∂L

∂uf
=

∂J
∂uf
− ūT

f − ūT
tot = 0 (19d)

∂L

∂us
=

∂J
∂us

+ ūT
s

[
∂S
∂us

∣∣∣∣
u∗s ,f∗s
−1

]
+ ūf

T HMLS = 0 (19e)

∂L

∂ fs
=

∂J
∂ fs

+ ūT
s

∂S
∂ fs

∣∣∣∣
u∗s ,f∗s
− f̄T

s = 0 (19f)

∂L

∂ ff
=

∂J
∂ ff
− f̄T

f + f̄T
s HT

MLS = 0, (19g)
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and, finally, retrieve the optimality condition, differentiating
the Lagrangianwith respect to theDVs. For a localminimum,
it holds that:

dJ
duFα

=
∂L

∂uFα

=
∂J

∂uFα

− ūT
tot = 0 (20)

The adjoint variables can be computed solving the sys-
tem (19), and are then used for gradient evaluation in equa-
tion (20). The matrix-vector products in the form ȳT ∂A

∂x

∣∣∣
x∗

in equations (19) are evaluated using the AD tool CoDiPack
about the solution of the aerostructural primal problem (i.e.,
at w∗, z∗, utot

∗, uf
∗, us

∗, fs
∗ and f∗f ).

To solve the general problem x̄T = ȳT ∂A
∂x

∣∣∣
x∗
, given the

solution of the primal problem x∗, the primal solver A is
advanced for one iteration which is recorded with CoDi-
Pack. Once the solution is recorded, CoDiPack evaluates x̄
for a given value of ȳ, provided in input by the user. This
strategy allows to iteratively solve in parallel the adjoint sys-
tem of equations (19) and the optimality condition together,
without the need to store and operate directly on large-scale
matrices such as ∂F

∂z and ∂F
∂w . This is one of the main bot-

tlenecks that needs to be addressed, for example by means
of matrix-free approaches,3,36 when implementing discrete
adjoint methods.

The reverse computational path for sensitivities calcula-
tion is summarized in Algorithm 2 and Figure 2. Within the
context of the current modular framework, AD is applied to
every module and cross-term adjoints are propagated back-
ward to each discipline by the top-level orchestrator. The
procedure, repeated till convergence, is conceptually similar
to the BGS staggered solution used in the primal problem
(see Figure 1).

Algorithm 2: Aerostructural adjoint problem
Initialize N = 1,(w̄, z̄, ūtot, ūf, ūs, f̄s, f̄f) = 0
while N ≤ NADJ do

Run fluid adjoint (eq. (19a)): f̄f→ w̄
while

∥∥∥w̄k f − w̄k f +1

∥∥∥≤ ε f do: iterate k f

Evaluate z̄ (eq. (19b)): f̄f, w̄→ z̄
Run mesh adjoint (eq. (19c)): z̄→ ūtot

Evaluate ūf (eq. (19d)): ūtot→ ūf

Run struct. adjoint (eq. (19e)): ūf→ ūs

while
∥∥ūsks − ūsks+1

∥∥≤ εs do: iterate ks

Evaluate f̄s (eq. (19f)): ūs→ f̄s

Evaluate f̄f (eq. (19g)): f̄s→ f̄f
end

Fig. 2 Reverse computational path of the adjoint FSI solver.

2.3 Aerostructural wing shape optimization

To facilitate communication with the FSI orchestrator, the
optimization tool is purely Python-based and wraps the mod-
ules used for OF, constraints, gradients and Jacobian evalua-
tion. The algorithm selected for the gradient-based optimiza-
tion is the Sequential Least Square Quadratic Programming
(SLSQP),38 a gradient based algorithm that uses a Broy-
den Fletcher Goldfarb Shanno (BFGS)-based second order
approximation of the objective function.

With respect to the previous section and for optimization
purposes, the number of DVs is reduced by parametrizing
the wing jig-shape with an FFD technique.61 Aerodynamic
grid surface node positions are linked to the FFD Control
Points (CPs) with a trivariate interpolation based on Bezier’s
basis functions:

xFα
=

l

∑
i=0

m

∑
j=0

n

∑
k=0

Ni(µ) N j(ν) Nk(ξ ) xCP
i jk (21)

In equation (21), xFα
is the coordinate vector of the generic

node of the aerodynamic mesh lying on the wing surface,
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xCP
i jk is the position of the CP identified by indexes i, j,k;

N are Bernstein polynomials and µ , ν , ξ are parametric
coordinates evaluated with a point-inversion procedure.57
New DVs are then the FFD box CPs, and the gradient of
the OF with respect to them is easily evaluated applying the
chain rule:

dJ
duCP

i jk
=

dJ
duFα

duFα

duCP
i jk

(22)

FFDdeformation strategies are largely used in literature,8,34, 35, 43
being independent of the grid topology and easy to use in
automatic processes; they are well suited for cases in which
the topology of the geometry is not expected to change (e.g.,
wings and fuselages).40 Even though CPs do not have any
direct engineering interpretation, strategical use of CP dis-
placements can achieve consistent changes in the wing twist,
chord and span28while ensuring the continuity of the surface.

An important reason to reduce the number of DVs is
due to inherent limitations of the optimization algorithm:
Kraft recommends only moderately large size problems for
SLSQP,38 although, for adjoint-based gradient evaluation
methods, computational time is almost independent of the
number of DVs.

As a reasonable approximation, the interface matrix of
equations (10,11) and the FFD box parametric coordinates
of equation (21) are evaluated for the initial jig-shape config-
uration and held constant throughout the whole optimization
process, instead of being updated for each variation of the
jig-shape.

Constraints So far no mention to the optimization con-
straints has been made, to focus on the aerostructural cou-
pling problem and relative sensitivities. The lift coefficient
CL at which the drag is measured is prescribed and, hence,
held constant throughout the optimization. In the proposed
framework, fixedCL constraint is imposed by gradually chang-
ing the angle of attack during the iterative process.43 With
the above procedure, the constraint is accommodated inter-
nally in the aerostructural solver and is not treated at the
optimization level. This feature was originally present in the
SU2 aerodynamic shape optimization tool,2 and has been
extended to the coupled aerostructural problem.

Geometrical constraints are imposed using SU2 mod-
ule GEO. Providing the topology of the aerodynamic body
and exploiting the FFD box parametrization, SU2_GEO can
evaluate several kinds of constraints (e.g., wing curvature,
volume and dihedral, airfoil chord, thickness, twist and LE
radius) and their gradients with respect to the CP displace-
ments, by means of FDs.

As pointed out by Lyu et al.41 one of the weaknesses of
single-point optimizations, without the use of an appropriate
penalty, is the progressive thinning of wing leading edges.
This can be avoided performing a more costly multi-point

optimization, as sharp leading edges would perform poorly
in off design point. In the proposed framework, instead, such
issue is taken care of by manually setting to zero the OF
sensitivities dJ

duFα

relative to grid points close to sharp edge
regions.

3 Aeroelastic test cases

3.1 Test case based on ONERA M6

The first test case is based on ONERA M6 wing geometry.
A synthetic structure has been assembled based on the work
of Bombardieri et al.,6 in which wing box properties (i.e.
wing box cross section and material Young Modulus) were
selected for the aeroelastic model to exhibit flutter in tran-
sonic regime; in the current effort such properties have been
fine-tuned to obtain sought levels of wingtip deflection in fly-
ing conditions. The wing box, whose elastic axis is located
at 40% of the wing chord, is described by beam elements.
Four rigid elements have been cross placed at several stations
along the wing span to reproduce the position of the leading
edge (LE), trailing edge (TE), upper and lower point posi-
tions of the current wing section (airfoil). This solution has
been found successful for a correct application of the spline
algorithm in order to transfer information between solid and
fluid boundary meshes. The structural model is clamped in
correspondence of the wing root. Although the ONERAM6
is a low aspect ratiowing for a Euler-Bernoulli beammodel to
deliver an accurate physic representation, such a test case has
been selected for sensitivities verification and optimization
trends assessment. Layout of the structural model is shown
in Figure 3.

Concerning the aerodynamic part of the problem, for
this test case, flow has been model with Euler equations. The
CFD mesh6,7 is shown in Figure 3. The volume contains
582,752 tetrahedral elements and wing surface is discretized
with 36,454 triangular elements. The computational domain
is a box shape extending approximately for 13 root chords
downstream, for 12 root chords upstream and for 9 semi-
spans laterally.

Solution of the CFD equation has been performed with a
3 level Multi-Grid scheme together with a 2nd order in space
Jameson-Schmidt-Turkel (JST) scheme for the convective
flux. Main CFD options for this test case are given in Table 2.

For the purpose of sensitivities verification only, a coarser
mesh, depicted in Figure 4, is considered, with 140,244 tetra-
hedral elements in the computational domain and 5,640 trian-
gular elements on the wing surface. For all applications con-
cerning this test case, considered flight condition is a steady
flight at M = 0.8395 and sea level (ρ = 1.2250 kg/m3). For
the splining process, interpolating polynomials of order 2
are selected together with weight Radial Basis Functions of
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Table 2 Numerical options for Euler-based CFD problems.

Parameter Value

Multi-Grid levels nr. 3
Convective flow num. method JST
Pseudo-time num. method Euler implicit
Linear solver FGMRES
Linear solver precond. LU_SGS

degree of smoothness 1. The number of nearest structural
neighbour points is 100.

3.2 Test cases based on the NASA CRM

The second aeroelastic test case is based on the NASA
CRM67 and will be referred to as Synthetic-CRM (SCRM).
The SCRM structural beam model has been generated from
the global FEM (gFEM) model “V15wingbox” available in
the NASA Common Research Model website repository.51
The gFEM has been converted to a beam-based FE model
by means of a modal equivalence process68 and is based on
the CRM outer mold line at 1 g load factor. To exhibit the
sought level of wingtip deflection in flying conditions and
trigger geometric nonlinearities, the value of the synthetic
Young Modulus has been fine-tuned. The same strategy as
for the previous test case, i.e., adding four rigid elements at
several wing sections along the span, guarantees an appro-
priate interfacing between the structural and fluid meshes.
The model is simply supported at the section corresponding
to the wing-fuselage intersection, and symmetry constraint
is applied to the far inboard section, see Figure 5.

With respect to the wing shape, the original NASACRM,
featuring a wing + body layout, has been modified removing
the fuselage and extending the wing root till the symmetry
plane, maintaining the TE and LE sweep angles. The mesh
used for the Euler case, built and validated in a previous ef-
fort66 features 1,529,927 tetrahedral elements while the wing
boundary consists of 71,998 triangular elements. As depicted
in Figure 5, the computational domain has a bullet shape, ex-
tending approximately for 20 root chords downstream, for
21 root chords upstream and for 10 semi-spans laterally. Nu-
merical solution of the CFD equation has been performed
with same options as for the previous test case (see Table 2).
For the splining process, interpolating polynomials of order
2 are selected together with weight Radial Basis Functions
of degree of smoothness 2. The number of nearest structural
neighbour points is 280.

For the RANS-SA simulation a different mesh is used
which has been built and validated in a previous effort.11 It
consists of 1,549,052 hexahedral elements while the wing
boundary features 10,669 elements. As depicted in Figure 6,

Table 3 Numerical options for the RANS-SA-based CFD problem.

Parameter Value

Multi-Grid levels nr. 0
Convective flow num. method JST
Pseudo-time num. method Euler implicit
Linear solver FGMRES
Linear solver precond. ILU

the computational domain is a box, extending approximately
for 16 root chords downstream, for 12 root chords upstream
and for 4 semi-spans laterally. Main CFD options for this test
case are given in Table 3. With this mesh, for the splining
process, interpolating polynomials of order 2 are selected
together with weight Radial Basis Functions of degree of
smoothness 2. The number of nearest structural neighbour
points is 230.

For all applications concerning this test case, considered
flight condition is a steady flight at M = 0.85 and sea level
(ρ = 1.2250 kg/m3).

4 Results

In this section results of the verification campaign of the cou-
pled aerostructural sensitivities are shown first. Thereafter,
wing shape optimizations carried out on the test cases are pre-
sented and results are discussed. In particular, when showing
optimization results, several subcases are discussed to high-
light, by means of physical considerations, the relevance
of performing wing optimization including the aerostruc-
tural coupling. Since considered DVs are relative to the wing
aerodynamic surface, such optimization will be referred to
as AeroStructural Wing Shape Optimization (ASWSO). On
the other hand, a less effective, though computationally less
intensive, procedure would be performing the optimization
of the wing surface considering a rigid configuration (i.e.,
without the inclusion of aerostructural coupling effects); such
optimization will be referred to as AerodynamicWing Shape
Optimization (AWSO).

4.1 Sensitivities verification

Extending the work of Bombardieri et al.7 in which the cal-
culation of selectedAD-based cross sensitivities was verified
for the proposed aeroelastic test case (i.e., the sensitivity of
CD and CL with respect to the structure Young Modulus), in
this effort further verification results are shown. Total deriva-
tives of the drag coefficient with respect to the wing surface
jig-shape parameters are considered. Sensitivities are evalu-
ated for the ONERAM6 aeroelastic test case using the coarse
mesh version (see Section 3) and Euler flow model.
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Fig. 3 Meshes for the Euler-based ONERA M6 test case. Fluid domain dimensions are given as function of the wing root chord c and semi-span
b/2.

Grid point A

Grid point B

Control point A
Control point B

(a)

(b)

Fig. 4 ONERA M6 coarse mesh wing surface with the grid points (a)
and control points (b) considered for sensitivities verification.

First, sensitivities of CD with respect to the vertical dis-
placement for two selected wing surface nodes of the jig-
shape (variable uFα

in Table 1) are verified. Such nodes are
depicted in Figure 4(a) and are located outboard, in corre-
spondence of the LE (grid point A) and of the TE (grid point
B). The AD-based sensitivities provided by the framework
are compared to the ones evaluated by a central FD scheme.
For FD-based sensitivities a parametric study of the step size
is conducted for the selected design variables in order to de-
liver converged values. Results of such campaign are shown
in Table 4 for a fixed angle of attack (AoA = 3.06 deg) for
two different synthetic Young Modulus E of the structure,

whereas in Table 5 the same comparison is proposed for a
fixed lift coefficient (CL = 0.22 ) and one value of E.

For the calculation of the sensitivities with respect to
the vertical FFD CP displacements, the chain rule is applied
as shown in equation (22) in Section 2.3. The FFD-box uses
Bezier basis functions of order 10, 8, 1 chord-wise, span-wise
and along the thickness, respectively. The relativeCPs chosen
for verification are shown in Figure 4(b). CP A is located
inboard, in correspondence of the compression side of the
wing LE while CP B is located outboard, in correspondence
of the suction side of the wing LE. Comparison between
sensitivities predicted by the framework with AD and by
central FD is provided in Table 6 for fixed AoA = 3.06 deg
and one value of E.

Excellent agreement between sensitivities calculated by
the two methods is found. It is, anyway, pointed out that, due
to truncation errors, FDs are not reliable33 in detecting errors
below O(10−2).

4.2 Euler-based optimization of the ONERA M6

This section discusses the results of the optimization of the
ONERA M6 aeroelastic test case. Optimization constraints
are shown in Table 7. DVs are vertical positions (z direc-
tion with respect to reference system in Figure 3) of CPs of
the FFD-box shown in Figure 4(b), employing Bezier basis
functions of order 10, 8, 1 chord-wise, span-wise and along
the thickness, respectively. CPs on the symmetry plane are
kept fixed as an effective way to prevent a change in shape of
the relative airfoil. The synthetic Young Modulus has been
tuned for the structure to exhibit wing-tip deflection of ap-
proximately 13% of the semi-span and trigger geometrical
nonlinearities (see Figure 11).
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Fig. 5 Meshes for the Euler-based SCRM test case. Fluid domain dimensions are given as function of the wing root chord c and semi-span b/2.

Table 4 Aerostructural sensitivities of CD with respect to vertical jig shape boundary displacements uFαz calculated using FD and AD for two
values of the synthetic E, AoA = 3.06 and M∞ = 0.8395.

E = 40 [GPa] E = 20 [GPa]

Grid pt. A Sens. Relative error to FD Sens. Relative error to FD
FD - 0.004372394124 – 0.006691539871 –
AD - 0.004366897122 0.1257% 0.006698868402 0.1094%

Grid pt. B Sens. Relative error to FD Sens. Relative error to FD
FD 0.011288968085 – 0.001710656774 –
AD 0.011265754131 0.2056% 0.001710362610 1.719e-04%

Table 5 Aerostructural sensitivities of CD with respect to vertical jig-
shape node displacements uFαz calculated using FD andAD.CL = 0.22,
M∞ = 0.8395 and E = 40 GPa.

Grid pt. A Sens. Relative error to FD
FD 0.0080559423 –
AD 0.0080589472 0.0373%

Grid pt. B Sens. Relative error to FD
FD 0.00162756262 –
AD 0.00162795035 0.0238%

Table 6 Aerostructural sensitivities of CD with respect to vertical CP
displacements uCP

Fαz
calculated using FD and AD. AoA = 3.06, M∞ =

0.8395 and E = 40 GPa.

CP A Sens. Relative error to FD
FD 0.0043083629927 –
AD 0.0043296403878 0.4914%

CP B Sens. Relative error to FD
FD 0.0120379174801 –
AD 0.0120349705805 0.0244%

4.2.1 Aerodynamic wing shape optimization

First, an AWSO is run for the test case. Result of this opti-
mization, in terms of CD vs optimization iterations is shown

Table 7 Set of constraints and total number of DVs used for the opti-
mization of the ONERA M6 aeroelastic test case.

Aerodynamic constraints

CL = 0.286

Geometric constraints

t/c (sec. at 16.4% span) ≥ 9.64%
t/c (sec. at 32.8% span) ≥ 9.60 %
t/c (sec. at 49.2% span) ≥ 9.58%
t/c (sec. at 65.7% span) ≥ 9.49%

Number of DVs = 198

in Figure 7. For the optimal shape aCD reduction of 35.38%
with respect to the baseline configuration is achieved. Fig-
ure 8 shows the Cp distribution for the top and front view
of the baseline (left) and optimal (right) designs. It can be
noted how the optimal design doesn’t feature the character-
istic lambda shock of the original design.

4.2.2 Aerostructural wing shape optimization

AnASWSO is then run.CD evolution is shown for this case in
Figure 9. For the optimal wing a reduction of CD of 35.39%
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Fig. 6 Aerodynamic mesh for the RANS-SA-based SCRM test case.
Fluid domain dimensions are given as function of the wing root chord
c and semi-span b/2.

Fig. 7 CD reduction for the Euler-based AWSO of the ONERA M6
wing.

is obtained with respect to the baseline configuration in its
relative flying shape (i.e., the wing in its deformed shape at
aeroelastic equilibrium).

Figure 10 shows theCp distribution for the baseline (left)
and optimal (right) designs. From the top view it is apparent
how the original design at aeroelastic equilibrium features
a similar shock wave pattern as the one observed in its un-

Fig. 8 Euler-based AWSO of the ONERAM6 wing:Cp distribution on
the baseline and the optimized designs.

Fig. 9 CD reduction for the Euler-based ASWSO of the ONERA M6
aeroelastic test case.

deflected condition. Aerostructural optimal wing achieves a
reduction of CD by alleviating the shock wave in its flying
shape. The front view allows to appreciate the maximum
wing-tip deflection for both designs.

4.2.3 AWSO and ASWSO comparison

Relevance of pursuing an aerostructural optimization can be
inferred from Table 8, which compares the CD for the flying
shapes of the original design, the AWSO optimal design, and
the ASWSO optimal design. It can be seen how the AWSO
optimum in operation shows a value of the CD which is far
from the “real” optimum evaluated by means of an ASWSO.
This discrepancy can be explained by the fact that AWSO
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Fig. 10 Euler-based ASWSO of the ONERAM6 wing:Cp distribution
on the baseline and the optimized designs at aeroelastic equilibrium.

Table 8 Comparison of CD between ASWSO, AWSO optima and the
original configuration in flying shape, for the Euler-based ONERAM6
test case.

Configuration CD Diff. %

ASWSO optimum 0.00775 –
AWSO optimum 0.00824 6.32%
Original 0.01199 35.39%

optimizes the wing around its rigid configuration which is,
de-facto, an off-design point with respect to the flying shape
in which the wing operates and which is naturally consid-
ered by an ASWSO. The more the wing is flexible, the more
the rigid shape differs from the shape at aeroelastic equi-
librium. For this same reason, if large wing deflections are
expected, geometrical nonlinearities should be considered in
aerostructural optimization.

Figure 11 shows a detail of the tip deflection for the
three configurations. It is interesting to notice how the wing
optimized considering the aerostructural coupling displays a
larger tip deflection than the other wings.

For the flying shapes of the AWSO and ASWSO optima,
Figure 12 shows, for selected sections along the wing span,
the airfoil shapes (with their relative position in space) and
the Cp distribution. Airfoils for both optimized configura-
tions are different than the symmetric airfoils characteristic
of the original ONERA M6 aerodynamic surface. It can be
noticed, close to the wing tip (sections at 70% and 90%
span), the higher deflection of the ASWSO optimal wing.

Fig. 11 Comparison between ASWSO, AWSO optima and the original
configuration flying shapes for the Euler-based ONERA M6 test case:
detail of the wing tip.

Table 9 Set of constraints and total number of DVs used for the opti-
mization of the Euler-based SCRM aeroelastic test case.

Aerodynamic constraints

CL = 0.5

Geometric constraints

t/c (sec. at 0.34% span) ≥ 15.6%
t/c (sec. at 16.32% span) ≥ 12.5%
t/c (sec. at 27.01% span) ≥ 11.2%
t/c (sec. at 38.49% span) ≥ 10.4%
t/c (sec. at 49.76% span) ≥ 10.0%
t/c (sec. at 60.74% span) ≥ 9.8%
t/c (sec. at 71.89% span) ≥ 9.6%
t/c (sec. at 83.07% span) ≥ 9.5%
t/c (sec. at 94.14% span) ≥ 9.5%

Number of DVs = 418

4.3 Euler-based optimization of the SCRM

This section discusses the results of the Euler-based opti-
mization performed on the SCRM aeroelastic test case. Op-
timization costraints are shown in Table 9. An FFD box is
built based on Bezier functions of order 10, 18, 1 chord-wise,
span-wise and along the thickness, respectively, as depicted
in Figure 13. DVs are the vertical positions of all FFD-box
CPs. CPs on the symmetry plane are kept fixed as an ef-
fective way to prevent changes in the shape of the relative
airfoil. The synthetic Young Modulus has been tuned for the
structure to exhibit wing-tip deflection of approximately the
6% of the semi-span (see Figure 18).

4.3.1 Aerodynamic wing shape optimization

Results of theAWSOprocess in terms of drag coefficient evo-
lution are shown in Figure 14, from which aCD reduction of
9.13% can be inferred. Figure 15 shows the Cp distribution
for the top and front view of the baseline (left) and optimal
(right) designs. On the optimal design, the shock redistribu-
tion and alleviation along the wing span are apparent.
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Fig. 12 Flying shape comparison between AWSO and ASWSO optima for the Euler-based ONERA M6 test case. For selected stations along the
wing span both Cp distributions and airfoil shapes (with relative position in space) are shown.

Fig. 13 FFD box used for the Euler-based optimization of the SCRM
aeroelastic model.

4.3.2 Aerostructural wing shape optimization

Figure 16 depicts the drag coefficient evolution versus op-
timization iterations for an ASWSO on the aeroelastic test
case. A CD reduction of 3.84% with respect to the base-
line configuration is obtained, which, even if representing a
significant improvement, is smaller than the one observed
for the AWSO case. It is also underlined how optimization
parameters needed more tuning if compared to the AWSO
case, witnessing an increased complexity of the problem due
to the aerostructural coupling. It can be speculated that for

Fig. 14 CD reduction for the Euler-based AWSO of the SCRM wing.

such test case, opening the design space, in particular adding
DVs relative to the structural domain (e.g., wing-box element
sizes), may be needed for larger efficiency improvements.
Figure 17 depicts the Cp distribution on baseline (left) and
optimal (right) designs. It can be noted, from the top view
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Fig. 15 Euler-based AWSO of the SCRM wing: Cp distribution on the
baseline and the optimized designs.

of the optimized configuration, the shock redistribution and
alleviation close to the wing tip. The front view allows to ap-
preciate the maximum wing-tip deflection for both designs.

Fig. 16 CD reduction for the Euler-based ASWSO of the SCRM wing.

4.3.3 AWSO and ASWSO comparison

Results of the optimization campaign are summarized in Ta-
ble 10 where the CD for the flying shapes of the original de-
sign, the AWSO and the ASWSO optimal designs are shown,
while Figure 18 depicts a detail of the tip deflection for the
three configurations. As already observed in the previous test
case, the AWSO optimum in its flying shape has a consider-
ably higher CD than the one of the ASWSO. However, this

Fig. 17 Euler-based ASWSO of the SCRM wing: Cp distribution on
the baseline and the optimized designs at aeroelastic equilibrium.

Table 10 Comparison ofCD between ASWSO, AWSO optima and the
original configuration in flying shape, for the Euler-based SCRM test
case.

Configuration CD Diff. %

ASWSO optimum 0.01163 –
AWSO optimum 0.01243 6.87%
Original 0.01210 4.04%

test case shows a relevant peculiarity: performances of the
AWSOoptimal wing are considerably poorer than the ones of
the original (unoptimized) design at aeroelastic equilibrium.
Hence, the computational costs of performing an aerody-
namic shape optimization without considering the flexibility
of the structure might not payback in more efficient wings
when operating in their actual flying shape.

Fig. 18 Comparison between ASWSO, AWSO optima and the original
configuration flying shapes for the Euler-based SCRM test case: detail
of wing tip.

For the flying shapes of the AWSO and ASWSO op-
tima, Figure 19 shows, for selected sections along the wing
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span, the Cp distribution and the airfoil shapes (with their
relative position in space). Cp distribution highlights how
shock-related gradients are generally much weaker for the
ASWSO optimum with respect to its AWSO counterpart,
which has been, de-facto, optimized about a different oper-
ating condition. It can also be noted how ASWSO optimum
has a smaller tip deflection compared to the AWSO one (as
also shown in Figure 18), showing hence an opposite trend
with respect to the one seen for the ONERA M6 test case.

4.3.4 Optimization with uncoupled sensitivities

Section 4.3.3 underlines how, for certain conditions, the com-
putational effort of an AWSO doesn’t necessarily payback
with more efficient wings with respect to the baseline. On
the other hand,ASWSO is computationallymore demanding.
An intermediate approach thatmight combine the advantages
of AWSO and ASWSO is to consider the aerostructural cou-
pling in the primal problem and neglect it for sensitivities
evaluation. Such uncoupled sensitivities are the purely aero-
dynamic ones, calculated around the wing flying shape, and
can be evaluated using the current framework with a single
iteration of the adjoint solver (NADJ = 1 in Algorithm 2).

For the current application, Figure 20 depicts the com-
parison between the ASWSO and the intermediate optimiza-
tion approach in terms of drag coefficient evolution versus
optimization iterations, for a fixed computational time. The
ASWSO reaches the minimum drag coefficient after 6 itera-
tions, and the relative computational time is taken as refer-
ence. In the case of the intermediate approach, less accurate
gradients evaluation results in a lower convergence rate of the
objective function, providing, for the same run time (equiva-
lent to approximately 8 iterations), a drag coefficient 0.43%
higher than the ASWSO optimum. It is important to stress
out that such intermediate approach is less robust and can
compromise convergence of the optimization process due to
the inconsistency between the primal and the dual problems.

4.3.5 Speed, scalability and memory usage

In this section basic benchmarks are given for the discussed
ASWSO. For this particular application, 10 primal FSI itera-
tions (NFSI = 10 in Algorithm 1) deliver an OF converged up
to 5 significant digits while 9 adjoint FSI iterations (NADJ = 9
in Algorithm 2) deliver sensitivities converged up to 4 sig-
nificant digits, which is a common value for many optimiza-
tion applications.27 For the primal and the relative adjoint
problems, CFD density residual tolerance is set to 10−10.
Table 11 shows the speed and scalability of the primal and
adjoint computations. Benchmarks have been performed on
Majorana, a one node machine equipped with two Intel Xeon
E5-2697 v4 and 128 GB of memory. It is underlined how, for

Table 11 Wall-clock run time for the primal and adjoint computa-
tions with increasing number of CPU treads. CFD mesh has 1,529,927
volume elements.

Treads Primal run
time [s]

Adjoint run
time [s] Adjoint/Primal

8 9480 3499 0.37
16 6077 2369 0.39
32 4247 1912 0.45
64 4766 3062 0.64

the current implementation, SU2 performs flow/mesh defor-
mation problems in parallel while pyBeam works in single
core, both in the primal and the adjoint problems execution. It
can be appreciated how, the adjoint run takes always less than
the relative primal one. Considering the number of DVs for
this application (see Table 10), advantages in terms of sensi-
tivities evaluation time are evident if comparing AD-based
adjoint with other strategies such as FD. In terms of memory
usage, the primal problemhas amemory peak of 9GB,which
coincides with the flow solution stage, whereas the adjoint
solution takes 57.9 GB of memory during the solution of the
mesh deforming/flow adjoint problems. The large memory
peak is due to the computational path recording operated by
CoDiPack which, for the current implementation, occurs si-
multaneously for the mesh deformation and the flow adjoint
problems solution.

4.4 RANS-SA-based optimization of the SCRM

One last optimization is performed for the SCRM aeroelas-
tic test case considering a RANS-SA-based flow model for
CFD: this counts as the highest-fidelity optimization per-
formed within this effort. A Reynolds number of 40 millions
is used in standard air conditions; Sutherland viscositymodel
is employed.

With respect to the previous test case of Section 4.3,
some changes have been performed to reduce the overall
computational effort of the optimization: the syntheticYoung
Modulus is 20% larger and FFD box Bezier functions are of
order 4, 9, 1 chord-wise, span-wise and along the thickness
respectively. DVs are the vertical positions of all FFD-box
CPs, for a total number of 100. CPs on the symmetry plane
are kept fixed as an effective way to prevent change in the
shape of the relative airfoil.

Aerodynamic and geometric constraints are the same as
for the test case in Section 4.3. To solve the fluid primal and
relative adjoint problem, the non-frozen-turbulent approach
is used.3,41

Figure 21 depicts the drag coefficient evolution versus
optimization iterations for an ASWSO on test case. ACD re-
duction of 17.97% with respect to the baseline configuration
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Fig. 19 Comparison between AWSO and ASWSO optima in flight condition for the Euler-based SCRM M6 test case. Cp distributions and airfoil
shapes on selected stations.

Fig. 20 Comparison between the CD reduction of the ASWSO and
the intermediate optimization approach for the Euler-based SCRM test
case.

(in its relative flying shape) is obtained. Figure 22 depicts the
Cp distribution on baseline (left) and optimal (right) designs.

Fig. 21 CD reduction for RANS-SA-basedASWSOof the SCRMwing.

It can be noted the shock alleviation in correspondence of the
wing kink and its redistribution close to the wing tip. More-
over, the flying shape of the optimized configuration has a
higher wing-tip deflection with respect to the baseline one,



DR
AF
T

Aerostructural Wing Shape Optimization Assisted by Algorithmic Differentiation 19

showing an opposite trend with respect to the one observed
in the Euler case (see Figure 18).

Fig. 22 RANS-SA-based ASWSO of the SCRM wing: Cp distribution
on the baseline and the optimized designs at aeroelastic equilibrium.

5 Conclusions and future works

In this work a method for high-fidelity gradient-based aero-
structural optimization of wings is presented, assisted by
algorithmic differentiation and including aerodynamic and
structural nonlinearities. The proposed approach is modular:
each one of the single discipline solvers is interfaced at high
level through a Python wrapper to solve the static aeroelas-
tic equilibrium (primal problem). Moreover, each solver has
implemented its own adjoint capability, employing algorith-
mic differentiation and levering on a fixed-point formulation,
hence, allowing the evaluation of discrete-consistent coupled
aerostructural sensitivities to be used in gradient-based opti-
mization.

For the fluid problem the solver is the CFD module of
SU2, whereas for the structural problem a nonlinear beam
FE solver, embedding AD library CodiPack at native level,
has been ad-hoc developed to demonstrate the approach.
An interface module provides loads/displacements transfer
between the two solvers.

Capability of the method is demonstrated performing
aerostructural wing shape optimization on aeroelastic test
cases of potential industrial interest, based on the ONERA
M6 and CRM wings. Geometrical nonlinearities are always
taken into account, and different levels of fidelity are em-
ployed at aerodynamic level (Euler and RANS-SA flowmod-
els).

Results of numerical optimization campaign show inter-
esting trends, all highlighting the relevance of considering
aerostructural coupling. Wings optimized neglecting such
coupling, i.e., optimized not considering the deflection of
the wing, perform relatively worse when considered in their
actual flying shape configuration. For one test case it is even
found that optimization carried out neglecting the aerostruc-
tural coupling leads to wings with lower performances with
respect to the ones of the initial nonoptimized baseline, when
both are considered in their relative flying shapes. Such re-
sult strongly warns against the practice of performing aero-
dynamic shape optimization without considering flexibility
of the structure. An intermediate approach is also explored,
in which the aerostructural coupling is considered at the pri-
mal solver level only. Comparison with the fully-coupled
approach is discussed.

An optimization performed considering RANS-SA tur-
bulence model is then shown. The current AD implemen-
tation easily allowed the adoption of non-frozen turbulence
assumption both in the primal and the adjoint execution and
optimization of the wing shape delivered a noticeable drag
coefficient reduction.

Basic benchmarks of the implementation, in terms of
speed, scalability and memory usage are also shown.

The optimization framework is released as open-source
within the SU2 multiphysics suite in order to provide easy
access to an aerostructural optimization tool (and relative
primal aerostructural solver) to a potentially large audience.
Thanks to the modular approach, users can easily experiment
with different discipline modules.

Concerning futureworks, the framework can be expanded,
with little effort, to introduce structural objective functions
and design variables, compatibly with the discipline solver
capabilities.Moreover, revision of theADoperational scheme
of the current framework may allow to achieve a reduced
RAM footprint during the code registration process per-
formed by CoDiPack, for computationally intensive cases
featuring largemeshes and higher-fidelity flowmodels (RANS
or higher).

Replication of results

The employed framework is currently on GitHub in the
branch feature_pyBeam_ShapeDesignV2 of SU2 repository
and will soon be available in the official release of the suite.

PyBeam organization on GitHub provides the complete
set of test cases discussed above in the repositorySAMO_testcases.
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