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NOTE ON THE GENERALIZED CONFORMABLE DERIVATIVE

ALBERTO FLEITAS, JUAN E. NÁPOLES VALDÉS, JOSÉ M. RODRÍGUEZ,
AND JOSÉ MARÍA SIGARRETA-ALMIRA

Abstract. We introduce a definition of a generalized conformable derivative
of order α > 0 (where this parameter does not need to be integer), with
which we overcome some deficiencies of known local derivatives, conformable
or not. This definition allows us to compute fractional derivatives of functions
defined on any open set on the real line (and not just on the positive half-
line). Moreover, we extend some classical results to the context of fractional
derivatives. Also, we obtain results for the case α > 1.

1. Preliminaries

The origins of fractional calculus date back to Newton and Leibniz in the 17th
century, and thus, this branch of mathematical analysis can be considered as old as
classical calculus (see [26]). Fractional calculus extends derivation and integration
to arbitrary non-integer orders, meaning by that, rational, real or even complex
orders. The fact is that fractional calculus, at present, is successfully used to
model a broad range of phenomena that occur in physics, economy and science.
For example, it has been observed that the time or space evolution of many physical
processes can be more precisely described when derivatives of fractional order are
introduced (see, e.g., [7, 8, 9, 10, 13, 2, 22]). In practice, and in many occasions, all
that needs to be done is replacing the time derivative in a given evolution equation
by a derivative of fractional order. And the most interesting part is that this is not
the result of chance; on the contrary, there is a strong mathematical foundation for
it, as several studies show (see [4, 25, 18, 16, 19, 22, 2, 23, 24]). For a complementary
study on the recent developments in the field of fractional calculus as well as its
applications see [11, 6, 14, 27].

One of the most surprising and appealing parts of the theory is that classi-
cal fractional derivatives (e.g., Caputo and Riemann–Liouville) are not collecting
merely local information. By contrast, fractional operators keep track of the his-
tory of the process being studied; this feature allows modeling the non-local and
distributed responses that commonly appear in natural and physical phenomena.
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444 A. FLEITAS ET AL.

On the other hand, one has to recognize that these fractional derivatives Dα

show some serious drawbacks; among them:

(1) Most of the fractional derivatives (except Caputo-type), do not satisfy
Dα(1) = 0, if α is not a natural number.

(2) Neither of the fractional derivatives satisfies the classical product rule for
two functions, Dα(fg) = gDα(f) + fDα(g).

(3) Neither of the fractional derivatives satisfies the classical quotient rule for
two functions, Dα( fg ) = gDα(f)−fDα(g)

g2 , with g 6= 0.
(4) Neither of the fractional derivatives satisfies the chain rule for composite

functions, Dα(f ◦ g)(t) = Dα(f(g))Dαg(t).
(5) Fractional derivatives do not have a corresponding “calculus”.
(6) Neither of the fractional derivatives satisfies the indices rule, DαDβ(f) =

Dα+β(f).

A few years ago, some definitions of local fractional derivatives (firstly con-
formable, but also non-conformable more recently) were introduced. For this pur-
pose, a certain incremental quotient was considered. In this way, a new direction
in fractional calculus was opened.

The suitability of the adjective conformable in this context is questionable. Con-
formable fractional derivatives were initially defined so that Dαf(t)→ f ′(t) when
α → 1; i.e., when α → 1, Dαf(t) preserves the angle of the tangent line to the
curve, while in the non-conformable case this angle is not conserved.

Both in the conformable and in the non-conformable case, these local derivatives
have been defined in a very limited range; basically, for 0 < α < 1. Actually, the
attempts to extend them for orders beyond that interval are, certainly, very scarce.

In this paper, we present a definition of a generalized conformable derivative
of order α > 0 (where α is allowed to take either integer or non-integer values),
with which the aforementioned deficiencies are avoided and that fills the gap of
derivatives of higher order, so far non-existent. This definition allows us to compute
fractional derivatives of functions defined on any open set on the real line (and not
just on the positive half-line). Moreover, we extend some classical results to the
context of fractional derivatives. Also, we obtain results for the case α > 1.

This paper relies on the introduction and use of a local fractional derivative
GαT , depending on a general kernel function T (t, α), which includes at once several
fractional derivatives introduced and studied earlier in [22, 17, 3]. More specifically:

(1) If α ∈ (0, 1] and T (t, α) = t1−α, then the conformable fractional derivative
defined in [22] is obtained.

(2) If α ∈ (0, 1] and T (t, α) = k(t)1−α, then the general conformable fractional
derivative defined in [3] is obtained.

(3) If α ∈ (0, 1] and T (t, α) = et
−α , then the non-conformable fractional deriv-

ative defined in [17] is obtained.
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2. Main results

In this section, a new definition of a local generalized fractional derivative of a
function at a point t is introduced, and some results similar to those of classical
calculus are obtained.

Given s ∈ R, we denote by dse the upper integer part of s, i.e., the smallest
integer greater than or equal to s.

Definition 2.1. Given an interval I ⊆ R, f : I → R, α ∈ R+ and a positive
continuous function T (t, α) on I, the derivative GαT f of f of order α at the point
t ∈ I is defined by

GαT f(t) = lim
h→0

1
hdαe

dαe∑
k=0

(−1)k
(
dαe
k

)
f
(
t− khT (t, α)

)
.

If a = min{t ∈ I} (respectively, b = max{t ∈ I}), then GαT f(a) (respectively,
GαT f(b)) is defined with h → 0− (respectively, h → 0+) instead of h → 0 in the
limit.

If we choose the function T (t, α) = tdαe−α, then we obtain the following partic-
ular case of GαT . Note that T (t, α) = tdαe−α = 1 for every α ∈ N.

Definition 2.2. Let I ⊆ (0,∞) be an interval, f : I → R and α ∈ R+. The
conformable derivative Gαf of f of order α at the point t ∈ I is defined by

Gαf(t) = lim
h→0

1
hdαe

dαe∑
k=0

(−1)k
(
dαe
k

)
f
(
t− khtdαe−α

)
.

We know from the classical calculus that if f is a function defined in a neigh-
borhood of the point t, and there exists Dnf(t), then

Dnf(t) = lim
h→0

1
hn

n∑
k=0

(−1)k
(
n

k

)
f(t− kh).

Therefore, if α = n ∈ N and f is smooth enough, then Definition 2.2 coincides with
the classical definition of the n-th derivative.

In [22] a conformable derivative is defined in the following way. Given f :
(0,∞) → R and α ∈ (0, 1], the derivative of f of order α at the point t is defined
by

Tαf(t) = lim
h→0

f(t)− f(t− ht1−α)
h

.

It is clear then that Tα is a particular case of Gα when α ∈ (0, 1] and T (t, α) = t1−α.
See [1, 20, 21] for more information on Tα.

In [22] the following local fractional derivative is defined.

Definition 2.3. Given f : (0,∞)→ R, the derivative Tαf of f of order α ∈ R+ is
defined by

Tαf(t) = lim
h→0

f (dαe−1)(t)− f (dαe−1)(t− htdαe−α)
h

.

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)



446 A. FLEITAS ET AL.

We can establish the following differences between our definition and the gener-
alized derivative Tα:

(1) Definition 2.1 permits direct inferences for the fractional derivative of any
positive order, whereas in Definition 2.3, the fractional derivative can be
applied only to the last derivative.

(2) Definition 2.3 can be applied only to functions defined on a subset of R+,
and the generality of Definition 2.1 allows us to consider fractional deriva-
tives of functions defined on R.

We start by proving the following result.

Theorem 2.4. Let I ⊆ R be an interval, f : I → R and α ∈ R+.
(1) If there exists Ddαef at the point t ∈ I, then f is GαT -differentiable at t and

GαT f(t) = T (t, α)dαeDdαef(t).
(2) If α ∈ (0, 1], then f is GαT -differentiable at t ∈ I if and only if f is differ-

entiable at t; in this case, we have GαT f(t) = T (t, α)f ′(t).

Proof. Assume first that there exists Ddαef at the point t. If we take q = hT (t, α)
in the definition of GαT f , then we obtain

GαT f(t) = T (t, α)dαe lim
q→0

1
qdαe

dαe∑
k=0

(−1)k
(
dαe
k

)
f(t− kq)

= T (t, α)dαeDdαef(t).

Assume now that α ∈ (0, 1]. Thus, dαe = 1 and the previous argument gives

GαT f(t) = T (t, α) lim
q→0

f(t)− f(t− q)
q

= T (t, α)f ′(t),

and there exists GαT f(t) if and only if there exists f ′(t). �

The following result contains some basic properties of the derivative GαT .

Theorem 2.5. Let I ⊆ R be an interval, f, g : I → R and α ∈ R+. Assume that
f, g are GαT -differentiable functions at t ∈ I. Then the following statements hold:

(1) af + bg is GαT -differentiable at t for every a, b ∈ R, and GαT (af + bg)(t) =
aGαT f(t) + bGαT g(t).

(2) If α ∈ (0, 1], then fg is GαT -differentiable at t and GαT (fg)(t) = f(t)GαT g(t)+
g(t)GαT f(t).

(3) If α ∈ (0, 1] and g(t) 6= 0, then f/g is GαT -differentiable at t and GαT
(
f
g

)
(t) =

g(t)GαT f(t)−f(t)GαT g(t)
g(t)2 .

(4) GαT (λ) = 0, for every λ ∈ R.
(5) GαT (tp) = Γ(p+1)

Γ(p−dαe+1) t
p−dαeT (t, α)dαe, for every p ∈ R \ Z−.

(6) GαT (t−n) = (−1)dαe Γ(n+dαe)
Γ(n) t−n−dαeT (t, α)dαe, for every n ∈ Z+.
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Proof. Items (1) and (4) follow from the definition of GαT .
If α ∈ (0, 1], then Theorem 2.4 gives that f, g are differentiable functions at t,

and GαTh(t) = T (t, α)h′(t) for any differentiable function h. These facts imply
items (2) and (3).

Finally, since f(t) = tp is a C∞ function on (0,∞), Theorem 2.4 gives GαT (tp) =
T (t, α)dαeDdαe(tp). �

Although Theorem 2.4 provides a way to obtain Gαf , unfortunately the index
law for iterated derivatives is not fulfilled. In this direction we propose a general
rule in order to compute iterated conformable derivatives.

Theorem 2.6. Let I ⊆ (0,∞) be an interval, f : I → R and α1, α2, . . . , αn ∈ (0, 1].
If there exists Dnf(t) for some t ∈ I, then

Gαn · · ·Gα2Gα1f(t) = t−α1−α2−···−αn
n∑
k=1

bn,k t
kf (k)(t),

with

bn,n = 1, bn,0 = 0, for n ≥ 1,
bn,k = (k − α1 − · · · − αn−1) bn−1,k + bn−1,k−1, for k < n,

bn,1 =
n−1∏
j=1

(1− α1 − · · · − αj−1), for n > 1.

Proof. Since T (t, α) = t1−α for α ∈ (0, 1], Theorem 2.4 gives the result if n = 1.
Assume that the result holds for n − 1 and let us prove that it holds for n.

Theorem 2.4 gives

Gαn · · ·Gα2Gα1f(t) = Gαn
( n−1∑
k=1

bn−1,k t
k−α1−···−αn−1f (k)(t)

)

=
n−1∑
k=1

bn−1,k (k − α1 − · · · − αn−1)tk−α1−···−αn−1−1t1−αnf (k)(t)

+
n−1∑
k=1

bn−1,k t
k−α1−···−αn−1t1−αnf (k+1)(t)

=
n−1∑
k=1

bn−1,k (k − α1 − · · · − αn−1)tk−α1−···−αnf (k)(t)

+
n∑
k=2

bn−1,k−1 t
k−α1−···−αnf (k)(t),
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and this gives bn,k = (k − α1 − · · · − αn−1) bn−1,k + bn−1,k−1 for k < n (since
bn,0 = 0) and bn,n = bn−1,n−1 = 1. Also,

bn,1 = (1− α1 − · · · − αn−1) bn−1,1

= (1− α1 − · · · − αn−1)
n−2∏
j=1

(1− α1 − · · · − αj−1)

=
n−1∏
j=1

(1− α1 − · · · − αj−1)

for n > 1, and this finishes the proof. �

In [12], the previous result is generalized as follows.

Theorem 2.7. Let I ⊆ R be an interval, t ∈ I, f : I → R, n ≥ 2 and
α1, α2, . . . , αn ∈ (0, 1]. Assume that T (n−k)(t, αk) exists for 1 ≤ k ≤ n − 1. Let
us define T k = (T (t, αk), T ′(t, αk), T ′′(t, αk), . . . , T (n−k)(t, αk)) if 1 ≤ k < n, and
Tn = T (t, αn). Then GαnT G

αn−1
T · · ·Gα1

T f(t) exists if and only if f (n)(t) exists, and
we have in this case

GαnT G
αn−1
T · · ·Gα1

T f(t) = Qn(t)f (n)(t) + Pn(t),

where Pn = pn(T 1, . . . , Tn, f
′, . . . , f (n−1)) and pn is a polynomial on (n2+3n−2)/2

variables which is homogeneous of degree n+ 1 and

Qn(t) = T (t, αn)T (t, αn−1) · · ·T (t, α2)T (t, α1).

Theorem 2.4 has the following consequences.

Proposition 2.8. Let I ⊆ R be an interval, f : I → R and α ∈ R+. If there exists
Ddαef on I and GαT f = 0 on I, then f is a polynomial of degree at most dαe − 1
on I.

Proposition 2.9. Let f be a function with a local extreme at t0. If f is GαT -
differentiable on t0 for some α ∈ (0, 1], then GαT (t0) = 0.

Note that if T (t, n) = 1 when n ∈ N (in particular, if T (t, α) = tdαe−α) and
there exists Dnf(t), then Theorem 2.4 gives GnT f(t) = Dnf(t).

An argument similar to the one in the proof of Theorem 2.5 provides the chain
rule for this fractional derivative.

Theorem 2.10. Let α ∈ (0, 1], g a GαT -differentiable function at t and f a differ-
entiable function at g(t). Then f ◦ g is GαT -differentiable at t, and GαT (f ◦ g)(t) =
f ′(g(t))GαT g(t).

Following [22], if f : [0,∞) → R, then we define Gαf(0) = limt→0+ Gαf(t)
when this limit exists (in this case it is not possible to apply Definition 2.2, since
T (t, α) = tdαe−α and T (0, α) = 0). Note that the statement in Theorem 2.4 does
not hold in general for Gαf(0).
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Proposition 2.11. For each positive integer n and α ∈ (n− 1, n) such that n(n−
α) /∈ Z, there are functions f : [0,∞) → R such that f is Gα-differentiable on
[0,∞) and Ddn(1−(n−α))ef(0) does not exist.

Proof. Recall that Gα = GαT with T (t, α) = tn−α. Theorem 2.5 gives Gα(tp) =
Γ(p+1)

Γ(p+1−n) t
p−n(tn−α)n, for every p ∈ R\Z− and t > 0. If we choose p = n(1−(n−α)),

then we have

Gα(tp) = Γ(p+ 1)
Γ(p+ 1− n) t

p−n(tn−α)n = Γ(p+ 1)
Γ(p+ 1− n)

for every t > 0 and so for every t ≥ 0.
Since p = n(1− (n− α)) /∈ Z, we have that

(
Ddpetp

)
(0) =

(
Ddn(1−(n−α))etp

)
(0)

does not exist, and this finishes the proof. �

If we take α = n− 1/2 in Proposition 2.11, then we obtain the following result.

Corollary 2.12. For each odd integer n greater than 1, there are functions f :
[0,∞) → R such that f is Gn−1/2-differentiable on [0,∞) and D(n+1)/2f(0) does
not exist.

As an application of fractional calculus, the following result provides a new proof
of some known combinatorial identities.

Proposition 2.13. For each pair of positive integers r < n we have
n∑
k=0

(
n

k

)
(−1)kkr = 0,

n∑
k=0

(
n

k

)
(−1)kkn = (−1)nn!.

Proof. For each fixed n, let us choose α ∈ (n−1, n)\Q; thus, p = n(1−(n−α)) /∈ Z.
Let g : [0,∞) → R be the function g(t) = tp. The argument in the proof of
Proposition 2.11 gives

Gαg(t) = Γ(p+ 1)
Γ(p+ 1− n) 6= 0

for every t ≥ 0, since p /∈ Z. We have

Γ(p+ 1)
Γ(p+ 1− n) = Gαg(1) = lim

h→0
h−n

n∑
k=0

(−1)k
(
n

k

)
(1− kh)p.

If

w(h) =
n∑
k=0

(
n

k

)
(−1)k(1− kh)p,

then

Drw(h) = cp,r

n∑
k=0

(
n

k

)
(−1)k+r(1− kh)p−rkr,

with r < n (r ∈ N), and

cp,r = p (p− 1)(p− 2) · · ·
(
p− (r − 1)

)
= Γ(p+ 1)

Γ(p+ 1− r) .
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Note that cp,r 6= 0, since p /∈ Z. Hence, by applying Bernoulli–L’Hôpital’s rule
n times, we obtain

cp,n = Gαg(1) = lim
h→0

cp,r(−1)r
∑n
k=0

(
n
k

)
(−1)k(1− kh)p−rkr

(n− r)!n(n− 1) · · · (n+ 1− r)

= lim
h→0

cp,n(−1)n
∑n
k=0

(
n
k

)
(−1)k(1− kh)p−nkn

n!

= cp,n(−1)n
∑n
k=0

(
n
k

)
(−1)kkn

n! .

Hence,
n∑
k=0

(
n

k

)
(−1)kkr = lim

h→0

n∑
k=0

(
n

k

)
(−1)k(1− kh)p−rkr = 0,

n∑
k=0

(
n

k

)
(−1)kkn = (−1)nn! �

Note that there are important differences between the results obtained in the case
of α ∈ (0, 1], which are generalizations of classical theorems, and the (unexpected)
results obtained for α ∈ (1, 2] (see for example Theorem 2.14 and Proposition 2.16).

Theorem 2.14. Let I ⊆ R be an interval, f : I → R and α, β ∈ R+ with dαe =
dβe. Then f is GαT -differentiable at t ∈ I if and only if it is GβT -differentiable at t,
and furthermore,

GαT f(t) =
(
T (t, α)
T (t, β)

)dαe
GβT f(t).

In particular, f is GαT -differentiable if and only if it is GdαeT -differentiable.

Proof. Since dαe = dβe, if we take q = hT (t, α) in the definition of GαT f , then we
obtain

GαT f(t) = T (t, α)dαe lim
q→0

1
qdαe

dαe∑
k=0

(−1)k
(
dαe
k

)
f(t− kq)

=
(
T (t, α)
T (t, β)

)dαe
T (t, β)dαe lim

q→0

1
qdβe

dβe∑
k=0

(−1)k
(
dβe
k

)
f(t− kq)

=
(
T (t, α)
T (t, β)

)dαe
GβT f(t),

and there exists GαT f(t) if and only if there exists GβT f(t). �

Proposition 2.15. Given any t0 ∈ R, there exists a function g : R→ R which is
GαT -differentiable at t0 for every α > 1, and which is not GαT -differentiable at t0
for α ∈ (0, 1].
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Proof. Let us define a function f : R→ R as follows: f(t) = 0 if t ∈ Q and f(t) = t
otherwise.

Since f is not differentiable at 0, Theorem 2.4 gives that f is notGαT -differentiable
at 0 for α ∈ (0, 1].

Since −h ∈ Q if and only if −kh ∈ Q for every k ∈ Z+, we have for every h ∈ R,
n∑
k=0

(−1)k
(
n

k

)
f(−kh) = 0

for every n ∈ N with n ≥ 2. Thus, we have
n∑
k=0

(−1)k
(
n

k

)
f
(
− khT (0, α)

)
= 0

for every h ∈ R and n ∈ N with n ≥ 2. Hence, f is GnT -differentiable at 0 for every
n ∈ N with n ≥ 2, and so Theorem 2.14 gives that f is GαT -differentiable at 0 for
every α > 1.

Finally, given any t0 ∈ R, the function g(t) = f(t− t0) is GαT -differentiable at t0
for every α > 1, and it is not GαT -differentiable at t0 for α ∈ (0, 1]. �

Proposition 2.16. Given any t0 ∈ R, there exists a GαT -differentiable function
g : R→ R at t0 for every α ∈ (1, 2], and which is not continuous at t0.

Proof. Consider the sequence of prime numbers {pk}∞k=1 greater than 2. Let us
define a function f : R→ R as follows:

f

(
− 1

2npk

)
= pk

2n , for k ≥ 1, n ∈ Z,

f(t) = 0, otherwise.
Since

lim
k→∞

f

(
− 1
pk

)
= lim
k→∞

pk =∞,

f is not continuous at 0.
If q = 1/(2npk) for some k ≥ 1, n ∈ Z, then

f(0)− 2f
(
− 1

2npk

)
+ f

(
− 1

2n−1pk

)
= −2pk2n + pk

2n−1 = 0,

and so f(0)− 2f(−q) + f(−2q) = 0 for every q ∈ R. Hence, for each α ∈ (1, 2] and
h ∈ R, we have

f(0)− 2f
(
− hT (0, α)

)
+ f

(
− 2hT (0, α)

)
= 0,

and so GαT f(0) = 0 for every α ∈ (1, 2].
Therefore, given any t0 > 0, the function g(t) = f(t − t0) is GαT -differentiable

at t0 for every α ∈ (1, 2], and it is not continuous at t0. �

Theorem 2.17. Let f : [a, b]→ R be a continuous function such that f(a) = f(b)
and f is GαT -differentiable on (a, b) for some α ∈ (0, 1]. Then there exists c ∈ (a, b)
such that GαT f(c) = 0.
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Proof. Since f is continuous on [a, b], and f(a) = f(b), there is at least a point of
local extreme c ∈ (a, b). Since f is GαT -differentiable at c with α ∈ (0, 1], we have

GαT f(c) = GαT f(c+) = lim
h→0+

f(c)− f(c− hT (c, α))
h

= GαT f(c−) = lim
h→0−

f(c)− f(c− hT (c, α))
h

.

Since T (c, α) > 0 and c is a point of local extreme of f , we conclude that GαT f(c+)
and GαT f(c−) have opposite signs, and so Proposition 2.9 gives GαT f(c) = 0. �

Theorem 2.18. Let f : [a, b]→ R be a continuous function, GαT -differentiable on
(a, b) for some α ∈ (0, 1]. Then there exists c ∈ (a, b) such that

c1−α

αT (c, α) G
α
T f(c) = f(b)− f(a)

bα − aα
.

Proof. Let us consider the function

g(t) = f(t)− f(a)− f(b)− f(a)
bα − aα

(tα − aα).

This function g satisfies the hypotheses of Rolle’s theorem (Theorem 2.17) and,
therefore, there exists c ∈ (a, b) ⊂ (0,∞) such that GαT g(c) = 0. Then we have

GαT f(t) = GαT

(
g(t) + f(a) + f(b)− f(a)

bα − aα
(tα − aα)

)
= GαT g(t) + f(b)− f(a)

bα − aα
GαT (tα),

GαT f(c) = f(b)− f(a)
bα − aα

GαT (tα)(c).

Since α ∈ (0, 1], Theorem 2.4 gives GαT (tα) = T (t, α)α tα−1, and we conclude that

GαT f(c) = T (c, α)α cα−1 f(b)− f(a)
bα − aα

. �

Theorem 2.19. Let f : [a, b]→ R be a continuous function, GαT -differentiable on
(a, b) for some α ∈ (0, 1]. If GαT f(t) = 0 for all t ∈ (a, b), then f is constant on
[a, b].

Proof. Let us consider s, t ∈ [a, b] with s 6= t. Without loss of generality we can
assume that s < t. By Theorem 2.18, there exists c ∈ (s, t) ⊆ (a, b) ⊂ (0,∞) such
that

c1−α

αT (c, α) G
α
T f(c) = f(t)− f(s)

tα − sα
.

Since GαT f(c) = 0, we conclude that f(s) = f(t), and so f is constant on [a, b]. �

Corollary 2.20. Let f be a continuous function on [a, b] which is GαT -differentiable
on (a, b) for some α ∈ (0, 1]. Then GαT f(t) ≥ 0 (respectively, ≤ 0) if and only
if f is a non-decreasing (respectively, non-increasing) function. If GαT f(t) > 0
(respectively, < 0), then f is a strictly increasing (respectively, decreasing) function.
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Theorem 2.21. Let f, g be continuous functions on [a, b], GαT -differentiable on
(a, b) for some α ∈ (0, 1]. If GαT f(t) ≥ GαT g(t) for all t ∈ (a, b), then the following
statements hold:

(1) If f(a) = g(a), then f(t) ≥ g(t) for all t ∈ [a, b].
(2) If f(b) = g(b), then f(t) ≤ g(t) for all t ∈ [a, b].

Proof. Consider the function h(t) = f(t)− g(t). Then h is continuous on [a, b] and
GαT -differentiable on (a, b). Theorem 2.5 gives that GαTh(t) = GαT f(t)−GαT g(t) ≥ 0
for all t ∈ (a, b), and so h is a non-decreasing function by Theorem 2.20. Hence,
h(a) ≤ h(t) ≤ h(b) for every t ∈ [a, b].

If h(a) = f(a)− g(a) = 0, then f(t)− g(t) = h(t) ≥ h(a) = 0 for every t ∈ [a, b].
If h(b) = f(b) − g(b) = 0, then f(t) − g(t) = h(t) ≤ h(b) = 0 for every t ∈

[a, b]. �

We can use again Rolle’s theorem (Theorem 2.17) to prove the following result,
which generalizes the mean value theorem (Theorem 2.18).

Theorem 2.22. Let f, g : [a, b]→ R be continuous functions, GαT -differentiable on
(a, b) for some α ∈ (0, 1]. Then there exists c ∈ (a, b) such that(

g(b)− g(a)
)
GαT f(c) =

(
f(b)− f(a)

)
GαT g(c).

Furthermore, if g(a) 6= g(b) and GαT g(c) 6= 0, then
GαT f(c)
GαT g(c) = f(b)− f(a)

g(b)− g(a) .

Proof. Let us define

F (t) =
(
g(b)− g(a)

)(
f(t)− f(a)

)
−
(
f(b)− f(a)

)(
g(t)− g(a)

)
.

Since F satisfies the assumptions of Rolle’s theorem (Theorem 2.17), there exists
c ∈ (a, b) such that GαTF (c) = 0. Hence,

GαTF (c) =
(
g(b)− g(a)

)
GαT f(c)−

(
f(b)− f(a)

)
GαT g(c) = 0,

and this gives the result. �

This result has a direct consequence which is a fractional version of Bernoulli–
L’Hôpital’s rule.

Corollary 2.23. Let f, g be functions such that limt→a f(t) = limt→a g(t) = 0. If
there exists limt→aG

α
T f(t)/GαT g(t) for some α ∈ (0, 1], then

lim
t→a

f(t)
g(t) = lim

t→a

GαT f(t)
GαT g(t) .

Let us state now some results on fractional derivatives of order α > 1.

Theorem 2.24. Let I ⊆ R be an interval, f : I → R and α ∈ (1, 2]. If f has a
turning point in t ∈ I and is GαT -differentiable at t, then GαT f(t) = 0.
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Proof. We can assume that there exists ε > 0 such that f is concave in (t, t + ε)
and convex in (t − ε, t), since otherwise we can consider −f instead of f . Since f
is convex in (t− ε, t), if 0 < h < ε/(2T (1, α)) then

f
(
t− hT (1, α)

)
≤ 1

2 f
(
t− 2hT (1, α)

)
+ 1

2 f(t),

f(t)− 2f
(
t− hT (1, α)

)
+ f

(
t− 2hT (1, α)

)
h2 ≥ 0,

GαT f(t) ≥ 0.

Since f is concave in (t, t + ε), a similar argument gives GαT f(t) ≤ 0, and we
conclude that GαT f(t) = 0. �

By using the argument in the proof of Theorem 2.24, we obtain the following
result.

Theorem 2.25. Let I ⊆ R be an interval, f : I → R a convex (respectively,
concave) function and α ∈ (1, 2]. If f is GαT -differentiable at t ∈ I, then GαT f(t) ≥ 0
(respectively, GαT f(t) ≤ 0).

Now we present our fractional version of Flett’s theorem.

Theorem 2.26. Let f : [a, b] → R be a GαT -differentiable function on [a, b] for
some α ∈ (0, 1] such that f ′(a) = f ′(b). Then there exists c ∈ (a, b) such that

GαT f(c)
T (c, α) = f(c)− f(a)

c− a
.

Proof. Without loss of generality we can assume that f ′(a) = f ′(b) = 0, for if this
is not the case, we could work with f(t)− tf ′(a). Let us consider the function

H(t) =
{
f(t)−f(a)

t−a , t 6= a,

0, t = a.

Theorem 2.4 gives that H is a continuous function on (a, b]; since f ′(a) = 0, H is
continuous on [a, b]. Theorem 2.5 gives that H is GαT -differentiable on (a, b]. So we
have, for a < t ≤ b,

GαTH(t) = GαT

[
f(t)− f(a)

t− a

]
= − (f(t)− f(a))T (t, α)

(t− a)2 + GαT f(t)
t− a

. (2.1)

If H(b) = 0, then we have H(a) = H(b) and the result is an immediate conse-
quence of (2.1) and Rolle’s theorem (Theorem 2.17).

Suppose then that H(b) 6= 0. We can assume that H(b) > 0 (the case H(b) < 0
is similar). Since GαT f(b) = 0, (2.1) gives

GαTH(b) = −H(b)T (b, α)
b− a

< 0.

By Theorem 2.20, there exists c1 ∈ (a, b) such that H(c1) > H(b). Since H is a
continuous function in [a, c1] and 0 = H(a) < H(b) < H(c1), by the intermediate
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value theorem there is c2 ∈ (a, c1) such that H(c2) = H(b). From Rolle’s theorem
on [c2, b] we have

GαTH(c) = − (f(c)− f(a))T (c, α)
(c− a)2 + GαT f(c)

c− a
= 0. �

Corollary 2.27. Let f, g : [a, b] → R be GαT -differentiable functions on [a, b] for
some α ∈ (0, 1], with GαT g(a) 6= 0, g(t) 6= g(a) for all t ∈ (a, b], f ′(a)

g′(a) = f ′(b)
g′(b) and

GαT g(b) (g(b)− b(a)) > 0. Then there exists c ∈ (a, b) such that
(g(c)− g(a))GαT f(c) = (f(c)− f(a))GαT g(c).

Let I ⊆ R be an interval, a, t ∈ I and α ∈ R. In [15] the integral operator JαT,a
is defined for every locally integrable function f on I as

JαT,a(f)(t) =
∫ t

a

f(s)
T (s, α) ds.

The following result appears in [15]. We include its proof for the sake of com-
pleteness.

Proposition 2.28. Let I ⊆ R be an interval, a ∈ I, 0 < α ≤ 1 and f a differ-
entiable function on I such that f ′ is a locally integrable function on I. Then, we
have for all t ∈ I

JαT,a
(
GαT (f)

)
(t) = f(t)− f(a).

Proof. Since f ′ is a locally integrable function on I, Theorem 2.4 gives

JαT,a
(
GαT (f)

)
(t) =

∫ t

a

GαT (f)(s)
T (s, α) ds =

∫ t

a

f ′(s) ds = f(t)− f(a),

which is the desired result. �

The integral operator JαT,a for the choice of the kernel T given by T (t, α) = t1−α

is defined in [22], and [22, Theorem 3.1] shows that
GαJαt1−α,a(f)(t) = f(t),

for every continuous function f on I, a, t ∈ I and α ∈ (0, 1]. Hence, Proposition 2.29
(see [15]) extends to any T this important equality.

Proposition 2.29. Let I ⊆ R be an interval, a ∈ I and α ∈ (0, 1]. Then
GαT
(
JαT,a(f)

)
(t) = f(t),

for every continuous function f on I and a, t ∈ I.

For more information about the integral operator and its applications, see [4, 12,
15]. The following result summarizes some elementary properties of the integral
operator JαT,a.

Theorem 2.30. Let I ⊆ R be an interval, a, b ∈ I and α ∈ R. Suppose that f, g
are locally integrable functions on I, and k1, k2 ∈ R. Then we have

(1) JαT,a
(
k1f + k2g

)
(t) = k1J

α
T,af(t) + k2J

α
T,ag(t);
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(2) if f ≥ g, then JαT,af(t) ≥ JαT,ag(t) for every t ∈ I with t ≥ a;
(3)

∣∣JαT,af(t)
∣∣ ≤ JαT,a |f | (t) for every t ∈ I with t ≥ a;

(4)
∫ b
a

f(s)
T (s,α) ds = JαT,af(t)− JαT,bf(t) = JαT,af(t)(b) for every t ∈ I.
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Universidad Carlos III de Madrid, Departamento de Matemáticas, Avenida de la Universidad
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