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Abstract: A set of second order holonomic difference equations was deduced from a set
of simultaneous rational approximation problems. Some orthogonal forms involved in the
approximation were used to compute the Casorati determinants for its linearly independent solutions.
These solutions constitute the numerator and denominator sequences of rational approximants to
ζ(3). A correspondence from the set of parameters involved in the holonomic difference equation to
the set of holonomic bi-sequences formed by these numerators and denominators appears. Infinitely
many rational approximants can be generated.

Keywords: holonomic difference equation; integer sequences; irrationality; multiple orthogonal
polynomials; orthogonal forms; recurrence relation; simultaneous rational approximation

1. Introduction

Apéry’s proof [1] of the irrationality of the number ζ(3) (where ζ(s) = ∑∞
n=1 n−s, Re s > 1) is

based on the second order difference equation (three-term recurrence relation)

αnyn+1 + βnyn + γnyn−1 = 0, n = 1, 2, . . . ,
αn = (n + 1)3, βn = −(2n + 1)(17n2 + 17n + 5), γn = n3,

(1)

where the two independent solutions, namely, the sequence of integers (qn)n≥0 defined by the initial

conditions q0 = 1 and q1 = 5, (more specifically qn = ∑n
k=0 (

n+k
k )

2
(n

k)
2 [2,3]) and the sequence of

rationals (pn)n≥0 determined by the initial conditions p0 = 0, p1 = 6, form rational approximants
(pn/qn)n≥0 to the number ζ(3). This sequence of approximants can be expressed as the sequence
of convergents of the corresponding continued fraction. Such a sequence shows the irrationality of
ζ(3). Indeed, the inclusions qn, pnl3

n ∈ Z, where ln denotes the least common multiple of {1, 2, . . . , n},
together with the prime number theorem, ln = O

(
e(1+ε)n

)
for any ε > 0, and Poincaré’s theorem [4–6]

yield for the error-term sequence rn = qnζ(3)− pn, the estimate

lim sup
n→∞

n
√

l3
n|rn| ≤ e3(

√
2− 1)4 < 1.

In [7] the proof is addressed from the perspective of Hermite-Padé approximation problem
involving multiple orthogonal polynomials [8–10], but that proof was not connected with Equation (1).
A natural question arises: Do the coefficients in (1) depend on other integers as well as n in order that the
derived sequences pn and qn guarantee the irrationality of ζ(3)? Following this perspective, the primary
goal of this paper was to obtain a second order holonomic difference equation as an alternative
to the Equation (1) by using rational approximation techniques in the context of Hermite-Padé
approximation. In this paper we use the term "holonomic" to indicate that the coefficients in the
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linear difference equation depend on other parameters as well as n (see [11,12] for this notion in the
context of differential equations involving some Krall-type and Sobolev-type orthogonal polynomials).
The holonomic character of Equation (36) leads to infinitely many sequences of rational approximants
to ζ(3). This is because the holonomic sequences that are produced depend on up to three integer
parameters (almost freely selected). Usually, the deduction of the Equation (1) makes use of the
algorithm of creative telescoping due to Gosper and Zeilberger [13]. However, the use of this
technique is combinatorially more complicated when dealing with holonomic sequences that depend
on several parameters.

Our goal was to find and solve a set of second order holonomic difference equations (see (36))

αn,Ωy(i,j)n+1 + βn,Ωy(i,j)n + γn,Ωy(i,j)n−1 = 0, n = 1, 2, . . . , 1 ≤ i ≤ 4, 1 ≤ j ≤ 3, (2)

with initial conditions q(i,j)0 (Ω), q(i,j)1 (Ω) ∈ Q and p(i,j)0 (Ω), p(i,j)1 (Ω) ∈ Q, respectively. The expressions
for the coefficients αn,Ω, βn,Ω, and γn,Ω are given in Section 3. Ω ⊂ Z3 represents a set of integer
parameters involved in the polynomial solutions of the approximation problems (5) and (6). Let Ω =

Ωi,j, where

Ωi,1 = ρ, ρ ∈ N \ {1},
Ωi,2 = ϑ, ϑ ∈ Z\ {−1, 0, 1} ,
Ωi,3 = (υ, χ, ψ), υ, χ ∈ N, χ ≥ υ, ψ ∈ N∪ {0},

for i = 1, 2, 3, 4, (3)

and N, Z, and Q denote the sets of all positive integers, integer numbers, and rational numbers,
respectively.

For a given integer or a combination of given integers as in (3) we found the corresponding
holonomic solutions (pn)n≥0 and (qn)n≥0, which form the numerator and denominator sequences
of the rational approximants to ζ(3). Indeed, we give a correspondence from the set Ω to the set
of bi-sequences (qn, pn) that are solutions of the holonomic three-term recurrence relations (2) with
variable coefficients depending on integer parameters.

The paper is structured as follows. In Section 2 we introduce Hermite-Padé approximation
problems near infinity with polynomial solutions. These solutions depend on integer parameters Ω
that satisfy a set of conditions. In Section 3 we compute the Casorati determinants for sequences of
numerators and denominators of the rational approximants to ζ(3). Different series representations
of the number ζ(3) are derived. Moreover, from the Casorati determinant we deduce the second
order holonomic difference equation satisfied by the sequences of both numerators and denominators
of the rational approximants. In Section 4 we asymptotically estimate the error-term sequence of
our approximations by using steepest descent method. Then, we verify that the generated rational
approximants (in Section 2.1) and reprove the irrationality of ζ(3). In Section 5 several comparisons
(computations) involving rational approximants and Apéry’s approximants are given. We make
concluding remarks in Section 6.

2. Hermite-Padé Approximation

We derived a set of rational approximants classified in twelve types p(i,j)n /q(i,j)n (1 ≤ i ≤ 4, 1 ≤
j ≤ 3) depending on certain parameters, which can be used to generate infinitely many rational
approximants to ζ(3). For that purpose, we formulated and solved the following problem:

For the system of polylogarithms Lis(z−1) = ∑∞
j=1 z−j/js, s = 1, 2, 3, find the polynomials

A(i,j)
n (z) =

n

∑
k=0

a(i,j)k,n zk, B(i,j)
n−δi,3

(z) =
n−δi,3

∑
k=0

b(i,j)k,n−δi,3
zk, (δi,j is the Kronecker delta function) (4)
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C(i,j)
n (z), and D(i,j)

n (z) such that the following interpolation conditions at infinity

A(i,j)
n (z)Li1(z−1) + B(i,j)

n−δi,3
(z)Li2(z−1) + C(i,j)

n (z) = O
(

z−n−δi,1
)

, (5)

A(i,j)
n (z)Li2(z−1) + 2B(i,j)

n−δi,3
(z)Li3(z−1) + D(i,j)

n (z) = O
(
z−n) , i = 1, 2, 3, 4, j = 1, 2, 3, (6)

hold, provided the following extra conditions involving the coefficients of polynomials (4) are fulfilled

A(i,j)
n (1) = 0, (7)∫ 1

0
F(i,j)

n (x)xαdx = 0, δi,2

∫ 1

0
G(i,j)

n (x)xαdx = 0, (8)

where
F(i,j)

n (x) = A(i,j)
n (x) + B(i,j)

n−δi,3
(x) log x, G(i,j)

n (x) = F(i,j)
n (x) log x, (9)

and

α =
{

t ∈ Q : θ(i,j)(t) = 0
}

,

θ(i,j)(t) :=
(t + n + 1)δi,3 [δ1,j(t + n + ρ) + δ2,j(t + ϑn + 1) + δ3,j(υt− χn− ψ)]δi,2+1

(t− n + 1)2−δi,1
, (10)

with ρ ∈ N \ {1}, ϑ ∈ Z\ {−1, 0, 1}, υ, χ ∈ N (χ ≥ υ), ψ ∈ N∪ {0}.
Condition (7) implies the following relation

2ζ(3)
n−δi,3

∑
k=0

b(i,j)k,n−δi,3
+ D(i,j)

n (1) = r(i,j)n = error-term sequence, (11)

since Lis(1) = ζ(s), Re s > 1, while conditions (8)–(10) introduce certain dependence of parameters in
the coefficients of polynomials (4), and consequently, in the coefficients of polynomials C(i,j)

n (z) and
D(i,j)

n (z), respectively (see expressions (17) and (18) below).
For each pair (i, j), the interpolation problems (5) and (6), together with (7) and (8), leads to a

linear system of equations for the unknown coefficients of A(i,j)
n (z), B(i,j)

n−δi,3
(z), C(i,j)

n (z), and D(i,j)
n (z),

which are uniquely determined (see [10]).
Focusing on the polynomial solutions of (5) and (6), we show that such solutions can be derived

from the orthogonality relations (12) with conditions (7) and (8), instead of solving the aforementioned
linear system of equations. Let A(i,j)

n (x) and B(i,j)
n−δi,3

(x) be two polynomials, such that F(i,j)
n (x) and

G(i,j)
n (x) are as in (9). Let

∫ 1

0
F(i,j)

n (x) xkdx = 0, k = 0, . . . , n− 2 + δi,1,

∫ 1

0
G(i,j)

n (x) xkdx = 0, k = 0, . . . , n− 2,

(12)

be subject to the conditions (7) and (8). These relations lead to a linear system of equations for the
unknown coefficients of A(i,j)

n (x) and B(i,j)
n−δi,3

(x), respectively. As a consequence of (12) we have

∫ 1

0
p (x)

F(i,j)
n (x)
z− x

dx = p(z)
∫ 1

0

F(i,j)
n (x)
z− x

dx,

∫ 1

0
q (x)

G(i,j)
n (x)
z− x

dx = q(z)
∫ 1

0

G(i,j)
n (x)
z− x

dx,

(13)
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where p(z) and q(z) are arbitrary polynomials of degree at most n + δi,1 − 1 and n− 1, respectively.
Denoting

r(i,j)n,1 (z) =
∫ 1

0

F(i,j)
n (x)
z− x

dx, r(i,j)n,2 (z) =
∫ 1

0

G(i,j)
n (x)
z− x

dx,

Equation (13) implies that r(i,j)n,1 (z) = O
(
z−n−δi,1

)
and r(i,j)n,2 (z) = O (z−n). Now, setting p(z) = q(z) = 1

in Equations (13) and using (9), one obtains

∫ 1

0

F(i,j)
n (x)
z− x

dx =
∫ 1

0

A(i,j)
n (x) + B(i,j)

n−δi,3
(x) log x

z− x
dx (14)

= A(i,j)
n (z)Li1(z−1) + B(i,j)

n−δi,3
(z)Li2(z−1)− C(i,j)

n (z),

∫ 1

0

G(i,j)
n (x)
z− x

dx =
∫ 1

0

A(i,j)
n (x) + B(i,j)

n−δi,3
(x) log x

z− x
log xdx (15)

= A(i,j)
n (z)Li2(z−1) + 2B(i,j)

n−δi,3
(z)Li3(z−1)− D(i,j)

n (z),

where

Lik(z−1) =
1

(k− 1)!

∫ 1

0

logk−1 x
z− x

dx, k = 1, 2, 3, (16)

C(i,j)
n (z) =

∫ 1

0

A(i,j)
n (z) + B(i,j)

n−δi,3
(z) log x− F(i,j)

n (x)

z− x
dx, (17)

D(i,j)
n (z) =

∫ 1

0

(
A(i,j)

n (z) + B(i,j)
n−δi,3

(z) log x
)

log x− G(i,j)
n (x)

z− x
dx. (18)

Therefore, the above system of functions (16) and polynomials (4), (17), and (18) represent the
simultaneous rational approximation problem near infinity (5) and (6). Notice that the orthogonality
conditions (12) along with (7) and (8) are equivalent to the interpolation conditions at infinity, (5)
and (6). The solution of this problem depends only on the coefficients of the polynomials A(i,j)

n (z)
and B(i,j)

n−δi,3
(z), since the coefficients for z−ν (1 ≤ ν ≤ n− 1 + δi,1) in the Laurent series expansion

of A(i,j)
n (z)Li1(z−1) + B(i,j)

n−δi,3
(z)Li2(z−1) and for z−ν (1 ≤ ν ≤ n − 1) in the series expansion of

A(i,j)
n (z)Li2(z−1) + 2B(i,j)

n−δi,3
(z)Li3(z−1) vanish, while the coefficients for zν (0 ≤ ν ≤ n) coincide with

the corresponding coefficients of C(i,j)
n (z) and D(i,j)

n (z), respectively.

2.1. Explicit Expressions for Coefficients of the Vector Polynomial

We determined the common vector denominator (A(i,j)
n (z), B(i,j)

n−δi,3
(z)) for the vector type II

approximation problems (14) and (15). Define

R(i,j)
1,n (t) =

∫ 1

0
F(i,j)

n (x)xtdx, R(i,j)
2,n (t) =

∫ 1

0
G(i,j)

n (x)xtdx, (t > −1). (19)

Thus, we have the following sequences of rational functions

R(i,j)
1,n (t) =

n

∑
k=0

a(i,j)k,n

t + k + 1
−

n−δi,3

∑
k=0

b(i,j)k,n−δi,3

(t + k + 1)2 , n− δi,3 ≥ 0, (20)

and

R(i,j)
2,n (t) = 2R(i,j)

1,n (t)

[
n−2

∑
k=0

1
t− k

−
n−δi,3+1

∑
k=1

1
t + k

+ ϕ(i,j)(t)

]
, (21)
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where
ϕ(i,j)(t) =

d
dt

log θ(i,j)(t), and R(i,j)
2,n (t) =

d
dt

R(i,j)
1,n (t) .

The expressions (20) and (21) represent the analytic continuation of the two functions given in (19),
respectively.

From the orthogonality conditions (13), as well as from (7) and (8), it follows that

R(i,j)
1,n (t) = R1,n(t)θ(i,j)(t), where R1,n(t) =

(−t)2
n

(t + 1)2
n+1

, n ∈ N, (22)

and (t)n = t(t + 1) · · · (t + n− 1), (t)0 = 1, is the Pochhammer symbol.
Hence, the coefficients in (20) are as follows

b(i,j)k,n−δi,3
= − lim

t→−(k+1)
(t + k + 1)2 R(i,j)

1,n (t), k = 0, . . . , n− δi,3,

= −
(

n + k
k

)2(n
k

)2
θ(i,j) (−k− 1) , b(i,j)0,n−δi,3

= −θ(i,j)(−1), (23)

and

a(i,j)k,n = Res
t=−k−1

R(i,j)
1,n (t), k = 0, . . . , n− δi,3,

= 2b(i,j)k,n−δi,3

[
Hn+k−1 − 2Hk + Hn−k−δi,3

− ϕ(i,j) (−k− 1)
]

, (24)

where H(r)
k denotes the Harmonic Number k of order r (H(1)

k = Hk and H0 = 0). In addition,
the following relation holds

a(3,j)
n,n = lim

t→−(n+1)
(t + n + 1) R(3,j)

1,n (t) =
(−1)δ3,j

n2−δ2,j

(
2n− 1
n− 1

)2
σ3,j, j = 1, 2, 3, (25)

where σ3,1 = ρ− 1, σ3,2 = ϑ− 1, σ3,3 = υ(n + 1) + χn + ψ. Observe that if ln denotes the least common
multiple of {1, 2, . . . , n}, and k = 0, . . . , n− δi,3, m = 0, . . . , n, the following inclusions

nωi,j b(i,j)k,n−δi,3
, nωi,j lna(i,j)m,n ∈ Z, where

(
ωi,j
)

4,3 =


1 0 1
2 0 2
1 0 1
2 1 2

 , (26)

hold.
We now derive an explicit expression for the sequences involved in (11). From expressions (11), (18),

and (23)–(25) one gets
q(i,j)n ζ(3)− p(i,j)n = r(i,j)n , n− δi,3 ≥ 0, (27)

where

q(i,j)n = 2
n−δi,3

∑
k=0

b(i,j)k,n−δi,3
, p(i,j)n = D(i,j)

n (1) = 2
n−δi,3

∑
k=1

b(i,j)k,n−δi,3
H(3)

k −
n

∑
k=1

a(i,j)k,n H(2)
k , (p(i,j)0 = 0). (28)

Finally, since R(i,j)
1,n (t) = O

(
t−2−δi,3

)
as t→ ∞, we have

n

∑
k=0

a(i,j)k,n =
n

∑
k=0

Res
t=−k−1

R(i,j)
1,n (t) = −Res

t=∞
R(i,j)

1,n (t) = 0,
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which is in accordance with (7).

3. Second Order Holonomic Difference Equation

We begin by obtaining an explicit expression for the Casorati determinant involving the above
functions (19)–(21) and sequences (23)–(27); i.e.

W
(

q(i,j)n , r(i,j)n

)
= det

(
q(i,j)n r(i,j)n

q(i,j)n+1 r(i,j)n+1

)
= −W

(
q(i,j)n , p(i,j)n

)
, n ≥ 1,

W
(

q(i,j)0 , r(i,j)0

)
= −q(i,j)0 p(i,j)1 .

Lemma 1. The following relation

W
(

q(i,j)n , p(i,j)n

)
= 2

[
a(i,j)n+1,n+1R(i,j)

1,n (n) + b(i,j)n−δi,3+1,n−δi,3+1

(
R(i,j)

2,n (n) + R(i,j)
2,n (n− 1)

)
(29)

+ b(i,j)n−δi,3,n−δi,3+1R(i,j)
2,n (n− 1)

]
, n ≥ 1,

holds.

Proof. Consider the integral

In,Ω = 2
∫ 1

0

F(i,j)
n (x) F(i,j)

n+1 (x)
1− x

dx, n ≥ 1.

Let Ω represent the generic dependence of the parameters ρ, ϑ, υ, χ, and ψ defined in (3).
Using formulas (13) and the fact that A(i,j)

n (1) = 0, one gets

In,Ω = 2B(i,j)
n−δi,3

(1)
∫ 1

0

G(i,j)
n+1(x)
1− x

dx = q(i,j)n r(i,j)n+1. (30)

On the other hand,

F(i,j)
n (x)F(i,j)

n+1(x)
1− x

= B(i,j)
n−δi,3+1(1)

G(i,j)
n (x)
1− x

− F(i,j)
n (x)

(
Ã(i,j)

n (x) + B̃(i,j)
n−δi,3

(x) log x
)

,

where

Ã(i,j)
n (x) =

A(i,j)
n+1(1)− A(i,j)

n+1(x)
1− x

, B̃(i,j)
n−δi,3

(x) =
B(i,j)

n−δi,3+1(1)− B(i,j)
n−δi,3+1(x)

1− x
.

Hence,

In,Ω = 2
∫ 1

0

F(i,j)
n (x) F(i,j)

n+1 (x)
1− x

dx = q(i,j)n+1r(i,j)n − 2
[

a(i,j)n+1,n+1R(i,j)
1,n (n) (31)

+ b(i,j)n−δi,3+1,n−δi,3+1

(
R(i,j)

2,n (n) + R(i,j)
2,n (n− 1)

)
+ b(i,j)n−δi,3,n−δi,3+1R(i,j)

2,n (n− 1)
]

.

Equating (30) and (31), one obtains (29).

The first-order linear inhomogeneous difference equation with variable coefficients involved in
the Casorati determinant (29) can be written as follows

hn+1 = fnhn + gn, fn 6= 0, n ≥ 1, (32)
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where hn = r(i,j)n , fn = q(i,j)n+1/q(i,j)n , gn = W
(

q(i,j)n , r(i,j)n

)
/q(i,j)n . Observe that its solution is given by

hn =

(
n−1

∏
m=0

fm

)(
A0 +

n−1

∑
m=0

gm

∏m
k=0 fk

)
, A0 = ζ(3)q(i,j)0 .

Hence, from (32) we have

r(i,j)n =
q(i,j)n

q(i,j)0

A0 − q(i,j)0

n−1

∑
m=0

W
(

q(i,j)m , p(i,j)m

)
q(i,j)m+1q(i,j)m

 , (33)

and

p(i,j)n = q(i,j)n

n−1

∑
m=0

W
(

q(i,j)m , p(i,j)m

)
q(i,j)m+1q(i,j)m

, n ≥ 1. (34)

Expression (34) gives a different representation for the sequences of numerators (28) of the rational
approximants to the number ζ(3) provided one is able to explicitly compute (29). Moreover, both
from Theorem 2 (see Section 4) and from Theorem 1 below limn→∞ r(i,j)n /q(i,j)n = 0. Therefore, from
Equation (33) the series

ζ(3) =
∞

∑
m=1

W
(

q(i,j)m−1, p(i,j)m−1

)
q(i,j)m−1q(i,j)m

, (35)

converges, which leads to different series representations of this number for different sequences(
q(i,j)n

)
n≥0

.

Example 1. Let i = 1 and j = 2. From Equation (29) we see that

W
(

q(1,2)
n , p(1,2)

n

)
=

2Nn,ϑ

n3 (n + 1)3 , n ≥ 1,

where

Nn,ϑ = 24ϑ2n3 + 30ϑ2n2 + 16ϑ2n+ 3ϑ2 + 9ϑn2 + 5ϑn+ ϑ− 12n3− 21n2− 11n− 2, ϑ ∈ N \ {1}.

The right hand side of the above expression Nn,ϑ is a polynomial of degree 2 in ϑ, whose zeros ϑ1,n and ϑ2,n
are non-integers depending on n. Therefore, Nn,ϑ 6= 0 for ϑ ∈ N \ {1}, and n ≥ 1. Indeed,

ϑk,n =
−(1 + 5n + 9n2)±

√
25 + 270n + 1239n2 + 3090n3 + 4425n4 + 3456n5 + 1152n6

2(3 + 16n + 30n2 + 24n3)
, k = 1, 2,

and limn→∞ ϑ1,n = 1/
√

2 and limn→∞ ϑ2,n = −1/
√

2. Finally, from (35)

ζ(3) =
∞

∑
n=1

2Nn,ϑ

n3(n + 1)3q(1,2)
n q(1,2)

n+1

+
p(1,2)

1
2(3ϑ− 2)

,

where q(1,2)
n = 2

(
∑n

k=0 (
n+k

k )
2
(n

k)
2 (ϑn−k)

n+k

)
, n ≥ 1.

Theorem 1. The sequences
(

p(i,j)n

)
n≥1

,
(

q(i,j)n

)
n≥1

, and
(

r(i,j)n

)
n≥1

satisfy the following second order

holonomic difference equation

αn,Ωyn+2 + βn,Ωyn+1 + γn,Ωyn = 0, n = 1, 2, . . . , (36)



Mathematics 2019, 7, 1176 8 of 16

where
αn,Ω = W(i,j)

n Θn, γn,Ω = W(i,j)
n+1Θn, Θn ∈ Z, (37)

and βn,Ω is a polynomial of degree p ∈ N in the variable n. The initial values y1 and y2 are given in (27)
and (28).

Proof. From Lemma 1, we have

r(i,j)n+2 =
q(i,j)n+2

q(i,j)n+1

r(i,j)n+1 −
W(i,j)

n+1

q(i,j)n+1

,

r(i,j)n =
q(i,j)n

q(i,j)n+1

r(i,j)n+1 +
W(i,j)

n

q(i,j)n+1

,

where W(i,j)
n = W

(
q(i,j)n , p(i,j)n

)
. Thus, multiplying the first equation by W(i,j)

n , the second one by

−W(i,j)
n+1, and adding, one gets

W(i,j)
n r(i,j)n+2 −

W(i,j)
n

q(i,j)n+2

q(i,j)n+1

+ W(i,j)
n+1

q(i,j)n

q(i,j)n+1

 r(i,j)n+1 + W(i,j)
n+1r(i,j)n = 0, n ≥ 1. (38)

Multiplying this equation by an integer constant Θn, we have

αn,Ωr(i,j)n+2 − β̃n,Ωr(i,j)n+1 + γn,Ωr(i,j)n = 0, n = 1, 2, . . . ,

where αn,Ω = W(i,j)
n Θn, and γn,Ω = W(i,j)

n+1Θn. Since for n = 1, 2, . . ., W(i,j)
n , W(i,j)

n+1 ∈ Q, there exists
Θn ∈ Z such that αn,Ω, γn,Ω ∈ Q. Moreover,

β̃n,Ω = αn,Ω
q(i,j)n+2

q(i,j)n+1

+ γn,Ω
q(i,j)n

q(i,j)n+1

. (39)

This leads to the second order recurrence relation

αn,Ωyn+2 − β̃n,Ωyn+1 + γn,Ωyn = 0, n = 1, 2, . . . , (40)

satisfied by the sequences (q(i,j)n )n≥1, (p(i,j)n )n≥1 and (r(i,j)n )n≥1. Furthermore, from (40) one can write

β̃n,Ω = αn,Ω
p(i,j)n+2

p(i,j)n+1

+ γn,Ω
p(i,j)n

p(i,j)n+1

= αn,Ω
r(i,j)n+2

r(i,j)n+1

+ γn,Ω
r(i,j)n

r(i,j)n+1

= αn,Ω
q(i,j)n+2

q(i,j)n+1

+ γn,Ω
q(i,j)n

q(i,j)n+1

.

From (39) we see that there exists a positive integer p such that the sequence β̃n,Ω/np converges
when n→ ∞. Thus, by setting n = 1, . . . , p + 1 in relation (39) we obtain a linear system of equations
for determining explicitly the coefficients of β̃n = apnp + ap−1np−1 + · · ·+ a0. The solution of the
resulting system gives us the coefficient βn,Ω given in (36) and (37), where β̃n,Ω = −βn,Ω. This
completes the proof of the theorem.

Example 2. Consider the sequences
(

p(1,2)
n

)
n≥1

,
(

q(1,2)
n

)
n≥1

, and
(

r(1,2)
n

)
n≥1

. We show that the second order

recurrence relation

αn,ϑyn+2 + βn,ϑyn+1 + γn,ϑyn = 0, n = 1, 2, . . . , ϑ ∈ N \ {1}, (41)
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holds, where

αn,ϑ = (n + 2)3(24ϑ2n3 + 30ϑ2n2 + 16ϑ2n + 3ϑ2 + 9ϑn2 + 5ϑn + ϑ

−12n3 − 21n2 − 11n− 2),

βn,ϑ = −2(408ϑ2n6 + 2346ϑ2n5 + 5336ϑ2n4 + 6130ϑ2n3 + 3810ϑ2n2

+1268ϑ2n + 172ϑ2 + 153ϑn5 + 769ϑn4 + 1417ϑn3 + 1143ϑn2 + 382ϑn
+52ϑ− 204n6 − 1275n5 − 3181n4 − 4011n3 − 2667n2 − 886n− 120),

γn,ϑ = n3(24ϑ2n3 + 102ϑ2n2 + 148ϑ2n + 73ϑ2 + 9ϑn2 + 23ϑn + 15ϑ

−12n3 − 57n2 − 89n− 46),

(42)

and the initial values y1 and y2 are given in (27) and (28).
Let

Wn = W(1,2)
n =

2Nn

n3 (n + 1)3 .

Then, from (38), setting Θn = n3 (n + 1)3 (n + 2)3, we have

αn,ϑr(1,2)
n+2 − β̃n,ϑr(1,2)

n+1 + γn,ϑr(1,2)
n = 0, n = 1, 2, . . . ,

where αn,ϑ and γn,ϑ are given in (42), and

β̃n,ϑ = αn,ϑ
q(1,2)

n+2

q(1,2)
n+1

+ γn,ϑ
q(1,2)

n

q(1,2)
n+1

. (43)

Denoting β̃n = an6 + bn5 + cn4 + dn3 + en2 + f n + g and setting n = 1, 2, . . . , 7 in relation (43) we
obtain a linear system of equations for determining its coefficients explicitly. Finally, one obtains the coefficient
βn given in (42).

Observe that the characteristic equation for the above equation with coefficients (42) is t2 − 34t + 1,
which coincides with the one derived from (1). Using Poincaré’s Theorem [6] the asymptotic estimates q(1,2)

n =

O
((√

2 + 1
)4n
)

and r(1,2)
n = O

((√
2− 1

)4n
)

hold. In Section 4 a more accurate asymptotic expression

for general cases, when i = 1, 2, 3, 4, and j = 1, 2, 3, are studied.

An interesting consequence of Theorem 1 is the continued fraction representation of the number
ζ(3). Below we present one of a number of possible continued fraction representations that follows
from our results.

Example 3. Let ϑ = 2. The following continued fraction expansion holds:

ζ(3) =
9 |
| 8

+
−184 |
| 359

+
−30672 |
| Q3

+
P4 |
| Q4

+ · · ·+ Pn |
| Qn

+ · · · , (44)

where
Pn = −9(n− 2)3(n− 1)3

(
28n3 − 213n2 + 543n− 464

)
(28n3 − 45n2 + 27n− 6),

and
Qn = 6(476n6 − 2907n5 + 7077n4 − 8715n3 + 5715n2 − 1926n + 264).

Recall that two continued fractions

a0 +
b1 |
| a1

+
b2 |
| a2

+
b3 |
| a3

+ · · ·+ bn |
| an

, a′0 +
b′1 |
| a′1

+
b′2 |
| a′2

+
b′3 |
| a′3

+ · · ·+ b′n |
| a′n

,
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are said to be equivalent if there exists a non-zero sequence (cn)n≥0, with c0 = 1, such that (see [14], p. 20)

a′n = cnan, n = 0, 1, 2, . . . , b′n = cncn−1bn, n = 1, 2, . . .

Furthermore, if (pn)n≥−1 and (qn)n≥−1 are two sequences such that q−1 = 0, p−1 = q0 = 1 and the
Casorati determinant pnqn−1 − pn−1qn is different from zero for n = 0, 1, 2, . . ., then there exists a unique
continued fraction

a0 +
b1 |
| a1

+
b2 |
| a2

+
b3 |
| a3

+ · · ·+ bn |
| an

, (45)

whose n-th numerator is pn and n-th denominator is qn, for each n ≥ 0. More precisely (see [14, p. 31])

a0 = p0, a1 = q1, b1 = p1 − p0q1,

an =
pnqn−2 − pn−2qn

pn−1qn−2 − pn−2qn−1
, bn =

pn−1qn − pnqn−1

pn−1qn−2 − pn−2qn−1
, n = 2, 3, . . .

Now, by setting p−1 = q0 = 1, p0 = q−1 = 0 in the case ϑ = 2, one gets

a1 = 8, a2 = 359/24, b1 = 9, b2 = −23/3. (46)

Moreover, from the recurrence relation (41), one has

yn = − βn−2

αn−2
yn−1 −

γn−2

αn−2
yn−2.

Thus, we have constructed the elements of the continued fraction (45) which satisfy (46); i.e.,

an = − βn−2

αn−2
, bn = −γn−2

αn−2
, n ≥ 3.

With the choice c0 = c1 = 1, c2 = 24, and cn = −αn−2, for n ≥ 3, we obtain the continued fraction (44).

4. Asymptotic Expression for the Remainder

In this section we use the steepest descent method to asymptotically estimate the holonomic
remainder sequences r(i,j)n .

Lemma 2. The following relation holds:

1
2πi

∫ −1/2+i∞

−1/2−i∞
R(i,j)

1,n (ν)
( π

sin πν

)2
dν =

∞

∑
t=0

R(i,j)
2,n (t). (47)

Proof. The integral (47) can be expressed as a limit of contour integrals along the contour Γn,i,j that
runs along the imaginary line from −1/2 + iLn,i,j to −1/2− iLn,i,j and then counterclockwise along a
semicircle centered at −1/2 from −1/2 + iLn,i,j to −1/2− iLn,i,j. The semicircle radius Ln,i,j > n + 2
guarantees that n + 1 singularities of the integrand function are enclosed within the curve. The rational
function R(i,j)

1,n (t) = O
(

L−2
n,i,j

)
on the arc of Γn,i,j, while the function (sin πz)−1 is bounded. Using the

residue theorem, one can then compute (47). Indeed,

Res
t=n

(
R(i,j)

1,n (z)
( π

sin πz

)2
)
= R(i,j)

2,n (n), n = 0, 1, 2, . . . ,
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which can be easily checked by considering the following expansions at the integers

R(i,j)
1,n (z) = R(i,j)

1,n (n) + R(i,j)
2,n (n) (z− n) +O

(
(z− n)2

)
,( π

sin πz

)2
=

1

(z− n)2 +O (1) .

Therefore,
1

2πi

∫ −1/2+i∞

−1/2−i∞
R(i,j)

1,n (ν)
( π

sin πν

)2
dν =

∞

∑
t=0

R(i,j)
2,n (t),

holds.

Theorem 2. The following asymptotic formula holds:

r(i,j)n =
−π3/2η(i,j)

n3/2−δi,421/4

(√
2− 1

)4n
(1 + o (1)) , where

(
η(i,j)

)
4,3

=


−1 − |ϑ|ϑ 1

1 |ϑ|
ϑ 1

1 |ϑ|
ϑ −1

1 1 −1

 .

Proof. From relations (20)–(24), we have

q(i,j)n ζ(3)− p(i,j)n = 2
n−δi,3

∑
k=0

b(i,j)k,n−δi,3

∞

∑
l=1

1
l3 − 2

n−δi,3

∑
k=1

b(i,j)k,n−δi,3

k

∑
l=1

1
l3 +

n

∑
k=1

a(i,j)k,n

k

∑
l=1

1
l2

=
∞

∑
t=0

n−δi,3

∑
k=0

2b(i,j)k,n−δi,3

(t + k + 1)3 −
n

∑
k=0

a(i,j)k,n

(t + k + 1)2

 =
∞

∑
t=0

R(i,j)
2,n (t) = r(i,j)n ,

which, combined with expression (47), yields

r(i,j)n =
1

2πi

∫ 1/2+i∞

1/2−i∞
R1,n (ν− 1)

( π

sin πν

)2
θ(i,j) (ν− 1) dν. (48)

Taking into account that

log θ(i,j) (ν− 1) =



log
(ν + n)δi,3 (ν + n + ρ− 1)δi,2+1

(ν− n)2−δi,1
, j = 1,

log
(ν + n)δi,3 (ν + nϑ)δi,2+1

(ν− n)2−δi,1
, j = 2,

log
(ν + n)δi,3 (υ(ν− 1)− χn− ψ)δi,2+1

(ν− n)2−δi,1
, j = 3,

a straightforward computation shows that for ν = (n + 1)t

log
(1− ν)2

n
(ν)2

n+1

( π

sin πν

)2
θ(i,j) (ν− 1) = log g(i,j) (t) + 2 (n + 1) f (t)

− (2 + δi,4) log (n + 1) + 2 log 2π +O
(

n−1
)

,
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where

g(i,j)(t) =



(t + 1)2−δi,1−δi,4

(t− 1)2−δi,1
g(t), j = 1,

(t + 1)δi,3 (t + ϑ)δi,2+1

(t− 1)2−δi,1
g (t) , j = 2,

(t + 1)δi,3 (υt− χ)δi,2+1

(t− 1)2−δi,1
g (t) , j = 3,

and
g(t) =

1 + t
(1− t) t2 , f (t) = (1− t) log (1− t) + 2t log t− (1 + t) log (1 + t) .

Thus, expression (48) transforms into

r(i,j)n =
2πi

n1+δi,4

∫ 1/
√

2+i∞

1/
√

2−i∞
g(i,j) (t) e2(n+1) f (t)

(
1 +O

(
n−1

))
dt.

The point t = 1/
√

2 is the unique maximum point for Re f (t) on the contour of integration. Using
the steepest descent method we obtain

r(i,j)n = − π3/2η(i,j)

21/4n1+δi,4(n + 1)1/2

∣∣∣g(i,j) (√2−1
)∣∣∣ (√2− 1

)4n+4 (
1 +O

(
n−1

))
,

which gives the required estimate.

Finally, we point out that the holonomic sequences of rational approximants obtained in this paper
reprove the irrationality of ζ(3). Suppose on the contrary that ζ (3) = p/q, where p ∈ Z, q ∈ N, then

qnωi,j l3
nr(i,j)n = nωi,j l3

nq(i,j)n p− qnωi,j l3
n p(i,j)n ,

is an integer different from zero. Notice that using the inclusions (26) and the fact that ls
n ∑k

l=1
1
ls ∈ Z,

k = 0, 1, . . . , n, s ∈ Z+, one obtains nωi,j q(i,j)n ∈ Z and nωi,j l3
n p(i,j)n ∈ Z. Therefore,

1 ≤ qnωi,j l3
n

∣∣∣r(i,j)n

∣∣∣ = O(l3
n

(√
2− 1

)4n
)

,

contradicting the above assumption for ζ(3), since for any ε > 0 and any sufficiently large n the

estimate ln < e(1+ε)n yields e3
(√

2− 1
)4

< 1.

5. Discussion of Results

We discuss our results with the aid of graphics and tables. Denote π
(i,j)
n = p(i,j)n /q(i,j)n , where the

integers i, j are such that 0 ≤ i ≤ 4, 0 ≤ j ≤ 3. By π
(0,0)
n we denote the Apéry’s approximants, where

q(0,0)
n =

n

∑
k=0

b(n)k , b(n)k =

(
n + k

k

)2(n
k

)2
,

p(0,0)
n =

n

∑
k=1

(
b(n)k H(3)

k − a(n)k H(2)
k

)
, a(n)k = (Hn+k − 2Hk + Hn−k) b(n)k .

(49)

In Figure 1, a comparison between twelve selected rational approximants from the set π
(i,j)
n

corresponding to different choices of parameters and Apéry’s approximants π
(0,0)
n is given. This

comparison is depicted by means of a rectangular array of squares formed by thirteen rows and
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nine columns in a grayscale output, in which the color of each square is determined by the value of
the function

f (π(i,j)
n ) =

∣∣∣∣(log
∣∣∣ζ(3)− π

(i,j)
n

∣∣∣)−1
∣∣∣∣ , 0 ≤ i ≤ 4, 0 ≤ j ≤ 3, n = 2, . . . 10, (50)

ranges from 0.0144346 . . . to 0.137009 . . . . The values close to the minimum of (50) are shown as white
squares while its maxima are shown as dark squares. Indeed, ten iterations (see columns in Figure 1)
are enough to show the accuracy of our results in the approximation to ζ(3). Clearly, in Figure 1 the
darkness decreases as the number of iterations grows, which is in accordance with the analytical results
on the asymptotic behavior of the remainders discussed in Section 4. In addition, in Tables 1 and 2, we
compare the rates of convergence of four selected cases among infinitely many options of the studied
holonomic rational approximants versus π

(0,0)
n ; namely, π

(1,1)
n for ρ = 2, π

(1,2)
n for ϑ = 2, and π

(1,3)
n for

υ = χ = ψ = 1.

Figure 1. From left to right are displayed, in gray-scale output, the values of function (50) for n =

2, . . . , 10, and from top to bottom its arguments are: π
(0,0)
n , π

(1,1)
n for ρ = 2, π

(2,1)
n for ρ = 4, π

(3,1)
n for

ρ = 913, π
(4,1)
n for ρ = 23, π

(1,2)
n for ϑ = 2, π

(2,2)
n for ϑ = 784, π

(3,2)
n for ϑ = 93, π

(4,2)
n for ϑ = 57, π

(1,3)
n

for υ = χ = ψ = 1, π
(2,3)
n for υ = 49, χ = 891, ψ = 97, π

(3,3)
n for υ = 413, χ = 732, ψ = 231, and π

(4,3)
n

for υ = 713, χ = 3427, ψ = 231. For n = 10 (last column), a high level of coincidence between all
rational approximants was already observed .

Table 1. Comparison between Apéry’s rational approximants π
(0,0)
n and holonomic rational

approximants π
(1,1)
n for ρ = 2.

n π
(0,0)
n ζ (3)− π

(0,0)
n π

(1,1)
n ζ (3)− π

(1,1)
n

2 351
292 2.109× 10−6 1327

1104 0.00006

3 62,531
52,020 1.968× 10−9 104,377

86,832 5.776× 10−8

4 11,424,695
9,504,288 1.778× 10−12 58,624,219

48,769,920 5.211× 10−11

...
...

...
...

...

50 · 2.795× 10−153 · 9.250× 10−152
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Table 2. Comparison between Apéry’s rational approximants π
(0,0)
n and holonomic rational

approximants π
(1,2)
n for ϑ = 2, and π

(1,3)
n for υ = χ = ψ = 1.

n π
(0,0)
n ζ (3)− π

(0,0)
n π

(1,2)
n ζ (3)− π

(1,2)
n π

(1,3)
n ζ (3)− π

(1,3)
n

2 351
292 2.109× 10−6 1077

896 0.00004 2231
1856 9.489× 10−6

3 62,531
52,020 1.968× 10−9 1987

1653 3.686× 10−8 783,217
651,564 6.216× 10−9

4 11,424,695
9,504,288 1.778× 10−12 34,774,333

28,929,024 3.006× 10−11 118,221,931
98,349,696 4.550× 10−12

...
...

...
...

...
...

...

50 · 2.795× 10−153 · 3.505× 10−152 · 3.114× 10−153

In the above discussions the computational software [15] was used.

6. Concluding Remarks

The main point of interest in this paper is the deduction in Section 3 of the holonomic difference
Equation (36). The non-holonomic equation (Equation (1)) was the cornerstone of Apéry’s original
proof [1], which seemed unrelated to constructive approximation. The holonomicity is a consequence
of the Hermite-Padé approximation problems formulated near infinity (5) and (6) along with some extra
conditions for the vector polynomials involved. In the present contribution, we used a straightforward
technique involving Casorati determinants to obtain the recurrence coefficients in the holonomic
difference equation. A set of holonomic rational approximants with good rates of convergence to ζ(3)
is discussed in Sections 4 and 5. In Section 4, most of the used techniques are standard in the field, but
we present them for completeness of the study; in particular, the use of the steepest descent method.

In the study of rational approximants for the Euler constant [16], the authors also used Casorati
determinants to reduced 10-term recurrence relations (which involved Hermite-Padé approximants) to
the 4-term recurrences.

Other techniques for deriving recurrence relations rely on the algorithm of creative telescoping.
The use of these techniques is more complicated in our context due to the dependence of integer
parameters (up to three) in addition to the non-holonomic variable n. In the literature, several results
connect recurrence relations, continued fractions, and irrationality as well as the use of contiguous
relations of hypergeometric series to derive rational approximants; however, similar results involving
a holonomic phenomenon are absent. This paper focuses on the study of such a situation in the well
known case of ζ(3) (an early draft of our work can be found in [17], also contained in the Ph. D. Thesis
of the second author).

The other approach to the irrationality of ζ(3) deals with the perturbation of the rational function

R1,n(t) =
(−t)2

n
(t+1)2

n+1
, n ∈ N, introduced by Beukers in ([18], p. 97) and by Nesterenko in [19,20]. In the

next example, for a couple of rational perturbations of R1,n(t), the generated sequences of rational
approximants differ from the Apéry’s approximants given in (49). Nevertheless, such sequences
(as will be discussed) might not guarantee a priori that reproving the irrationality of ζ(3) is possible.
Alternatively, we propose deriving the perturbed rational functions (as in expression (22)) from
a Hermite-Padé approximation problem along with extra conditions.

Consider the following two perturbations:

R(1)
1,n =

(−t)2
n

(t + 1)2
n+1

(
t + n + 1
t + n + 2

)
, (51)

and

R(2)
1,n =

(−t)2
n

(t + 1)2
n+1

(
ant2 + bn

t− n + 1

)
, (52)
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where an = 4n (2Hn − H2n−1)− 1, bn = (n + 1)an − 2n. For (51) and (52), the derived corresponding
sequences

(
p(i)n

)
n≥0

and
(

q(i)n

)
n≥0

, i = 1, 2, fail to prove the irrationality of ζ(3) because: (1) The

multiplication by l3
n in the resulting linear form q(i)n ζ(3)− p(i)n = r(i)n will not eliminate the rational terms

in the sequences l3
n

(
p(i)n

)
n≥0

. (2) The additional requirements to transform them into integers cause the

error-term sequence to diverge. However, the convergence of
(

p(i)n /q(i)n

)
n≥0

to the number ζ(3) is good,

as it is depicted in Figure 2, and their rates of convergence are as reasonable as Apéry’s approximants.

Figure 2. Function (50) is plotted for n = 2, . . . , 10 in the following three situation: Symbol • is used for
depicting Apéry’s approximants, while � and � are used for the approximants derived from (51) and
(52), respectively.
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