
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Coenen, W., Lesshafft, L., Garnaud, X., & Sevilla, A. 
(2017). Global instability of low-density jets. Journal 
of Fluid Mechanics, 820, 187–207. 

DOI: https://doi.org/10.1017/jfm.2017.203

© 2017 Cambridge University Press

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1017/jfm.2017.203


1

Global instability of low-density jets

W. Coenen1,2 †, L. Lesshafft3, X. Garnaud3 ‡ and A. Sevilla1

1Grupo de Mecánica de Fluidos, Universidad Carlos III de Madrid,
Av. Universidad 30, 28911 Leganés (Madrid), Spain

2Department of Mechanical and Aerospace Engineering, University of California San Diego,
9500 Gilman Dr., La Jolla, CA 92093-0411, USA

3Laboratoire d’Hydrodynamique (LadHyX), École polytechnique – CNRS,
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The global stability of laminar axisymmetric low-density jets is investigated in the low
Mach number approximation. The linear modal dynamics is found to be characterised by
two features: a stable arc branch of eigenmodes and an isolated eigenmode. Both features
are studied in detail, revealing that, whereas the former is highly sensitive to numeri-
cal domain size and its existence can be linked to spurious feedback from the outflow
boundary, the latter is the physical eigenmode that is responsible for the appearance of
self-sustained oscillations in low-density jets observed in experiments at low Mach num-
bers. In contrast to previous local spatio-temporal stability analyses, the present global
analysis permits, for the first time, the determination of the critical conditions for the
onset of global instability, as well the frequency of the associated oscillations, without
additional hypotheses, yielding predictions in fair agreement with previous experimen-
tal observations. It is shown that under the conditions of those experiments, viscosity
variation with composition, as well as buoyancy, only have a small effect on the onset of
instability.

Key words:

1. Introduction

Submerged jets become globally unstable, achieving a self-sustained oscillatory state,
when their density is sufficiently smaller than that of their surroundings, as clearly evi-
denced by many experimental, theoretical and numerical studies. The phenomenon was
first recognised thanks to the pioneering work of Monkewitz & Sohn (1988), who demon-
strated the existence of a region of local absolute instability close to the injector of a
turbulent heated jet by means of a quasi-parallel linear stability analysis. The global
transition has been experimentally characterised in detail both for hot jets (Monkewitz
et al. 1990) and for light jets, where the density difference is due to the injection of
fluid of smaller molecular weight than that of the ambient (Kyle & Sreenivasan 1993;
Hallberg & Strykowski 2006), and also by means of a number of local stability analyses
which accounted for the origin of the phenomenon with increasing detail (Jendoubi &
Strykowski 1994; Lesshafft & Huerre 2007; Coenen et al. 2008; Lesshafft & Marquet 2010;
Coenen & Sevilla 2012). These studies have been complemented by direct numerical sim-
ulations (Lesshafft et al. 2007) that unambiguously demonstrated the link between the
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existence of locally absolutely unstable regions in the near field of low-density jets and
the onset of global self-sustained oscillations.

Recently, several global linear stability analyses of submerged jet configurations, avoid-
ing the quasi-parallel approximation, have been performed thanks to the availability of
sufficient computational power and the development of appropriate numerical techniques.
Nichols & Lele (2011a) pioneered the use of a global approach to study hot and cold
compressible jets. Garnaud et al. (2013a,b) considered the case of constant-density in-
compressible jets, revealing that global modes are strongly affected by the domain length
and the numerical discretisation, while the frequency response is robust and explains the
origin of the preferred mode in globally stable jets. In contrast with the case of constant-
density jets, the important experiments of Hallberg & Strykowski (2006) strongly suggest
the existence of an isolated eigenmode responsible for the global transition for sufficiently
low values of the Reynolds number. Isolated eigenmodes in low-density jets have indeed
been detected by Nichols & Lele (2010) for supersonic cases, and by Qadri (2014) for a
low Mach number configuration.

The main objective of the present work is to provide a detailed characterisation of the
global stability properties of light He/N2 laminar jets in the low Mach number limit,
by means of modal and frequency response analyses. Two key questions addressed are
whether there exists an isolated eigenmode that explains the experimentally observed
transition in low-density jets, and what are the differences between the global stability
properties of constant-density and low-density jets.

The paper begins with the mathematical formulation in §2. In §3 we study a slowly
developing globally stable jet, followed by an analysis of a rapidly spreading helium jet
in §4. Finally, concluding remarks are given in §5.

2. Formulation

We consider an axisymmetric laminar low-density He/N2 jet, discharging with a con-
stant flow rate Q∗ from an injector pipe with radius R∗ into an ambient of N2. The
ratio of the density ρ∗j of the jet and the ambient density ρ∗N2

is given by S = W ∗j /W
∗
N2

.

Here W ∗j = [Yj/W
∗
He + (1−Yj)/W ∗N2

]−1 is the mean molecular weight of the jet mixture,
determined by the initial mass fraction Yj of He. In other terms, to obtain a jet with
jet-to-ambient density ratio S, an initial mass fraction Yj = (S−1 − 1)/(W ∗N2

/W ∗He − 1)
of He is injected. The viscosity µ∗j of the jet can be related to µ∗He and µ∗N2

through
Hirschfelder et al. (1954)’s law (see Coenen & Sevilla 2012, eq. 2.11). Note that in the
formulation dimensional quantities are indicated with an asterisk ∗. The jet exit values
ρ∗j , µ∗j are used as scales for the dimensionless density ρ and viscosity µ, whereas the jet
radius R is used as the characteristic length scale, yielding the dimensionless cylindrical
coordinate system (x, r). The velocity field u = (u, v) is non-dimensionalised with the
mean velocity U∗m = 4Q∗/(πR∗2). All flow quantities are taken to be independent of the
azimuth φ throughout this study; only axisymmetric perturbations are considered.

The Reynolds number of the jet is assumed to be large, Re = ρ∗jU
∗
mR
∗/µ∗j � 1, result-

ing in a slender jet flow. The importance of buoyancy effects can be estimated through
the Richardson number Ri = (ρ∗N2

− ρ∗j )g∗R∗/(ρ∗jU
∗
m

2). For comparison with experi-

ments, it is useful to write this as Ri = Gr/Re2, where Gr = ρ∗j (ρ∗N2
− ρ∗j )g∗R∗3/µ∗j

2 =

(1/S − 1)g∗R∗3/ν∗j is a Grashof number. The latter only depends on the injector radius
and the properties of the gas mixture, which usually do not vary within the same exper-
imental campaign. For simplicity, we will neglect buoyancy effects, i.e. we will assume
Ri � 1, except for the comparison with experiments in §4.2. Furthermore, for the de-
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scription of the resulting jet flow it is assumed that the characteristic jet velocity U∗m
is much smaller than the ambient speed of sound, so that the simplifications associated
with the low Mach number approximation (Williams 1985; Nichols et al. 2007) can be
applied. This implies that the density variations in the jet are only due to variations in
molecular weight, and are not related to pressure variations. It also means that if the jet
discharges with the same temperature as the ambient, the flow will remain isothermal
everywhere, and the energy equation is not needed in the description. Furthermore, in
the low Mach number limit, the viscous stress term that is proportional to the second
coefficient of viscosity can be incorporated in the definition of the variable p. This p rep-
resents the pressure difference from the unperturbed ambient distribution, scaled with
the characteristic dynamic pressure ρ∗jU

∗
m

2. The jet is then effectively described by the
continuity, momentum conservation and species conservation equations,

∂ρ

∂t
+∇ · (ρu) = 0 , (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+

1

Re
∇2u + Ri

1− Sρ
1− S ex , (2.2)

ρ

(
∂Y

∂t
+ u · ∇Y

)
=

1

Re Sc
∇ · (ρ∇Y ) , (2.3)

together with the relation between the mass fraction Y of He and the density ρ of the
jet,

Y = Yj(1/ρ− S)/(1− S) . (2.4)

In (2.3) the Schmidt number Sc = µ∗j/(ρ
∗
jD∗) is based on the values of the viscosity and

density at the jet exit. For example, the two density ratios used in the present work, S =
0.143 and S = 0.5, correspond to Schmidt numbers Sc = 1.69 and Sc = 0.49, respectively.
For simplicity, the variation of the viscosity with the composition is not taken into account
in the conservation equations (2.1)-(2.3), and is thus neglected in the results, except
for the comparison with experiments of §4.2, where its influence is studied separately.
To the latter aim, the viscous term in (2.2) is written as Re−1∇ · [µ(∇u +∇uT )] and
Hirschfelder’s law (see Coenen & Sevilla 2012, eq. 2.11) is used to relate the dimensionless
viscosity µ = µ∗/µ∗j to the mass fraction Y .

2.1. Base flow

As a base state for the linear stability analysis, a steady solution (ū, v̄, p̄, ρ̄) of the low
Mach number Navier-Stokes equations (2.1)-(2.3) is employed. The flow domain under
consideration is depicted in figure 1. In order to mimic experimental conditions, a short
injector pipe of length xp is included, bounded by a wall Γw of thickness 0.02 that ends
on a 5.7◦ knife edge. At the pipe inlet Γi a velocity profile ūi(r) is imposed, taken from a
collection of profiles that is obtained by solving the laminar boundary-layer equations in
a circular pipe (see Coenen & Sevilla 2012, §2.1.1). Because the flow in the short injector
pipe of the domain will further develop, the velocity profile ūi(r) at the inlet must be
carefully chosen to obtain a certain desired velocity profile ū0(r) at the jet exit plane.
We will characterise the latter profile through the inverse of its dimensionless momentum
thickness D/θ0, defined by

θ0 =

∫ ∞
0

ū0(r)

ū0(0)

[
1− ū0(r)

ū0(0)

]
dr, (2.5)

and scaled with the jet diameter D = 2R for consistency with Hallberg & Strykowski
(2006). For the computations of the results of the present work a pipe length xp = 3
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Figure 1. Schematic representation of the numerical domain. The boxed numbers on the bound-
aries indicate the level of refinement through the distance h between discretisation points. The
areas with different grid resolutions that are obtained in this manner are indicated by the grey
shading.
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Figure 2. Radial profiles of axial velocity ū and rescaled density (ρ̄ − 1)/(S − 1) at
x = 0, 10, 20, 30, 40, 50, together with streamlines and contours of the density field ρ̄, for (a)
S = 0.143, Re = 360, D/θ0 = 24.3, and (b) S = 0.5, Re = 1000, D/θ0 = 24.3.
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was used, with the exception of the transition points with D/θ0 > 30 of figure 12, for
which a pipe length xp = 1.5 was used. It was verified that larger values of xp did not
affect the results. The remaining boundaries of the flow domain are the axis Γa, the
lateral boundary Γt and the downstream outlet boundary Γo, as labelled in figure 1.
Stress-free boundary conditions are imposed on the latter two. Because the jet entrains
fluid through the lateral boundary, the density at that boundary must be fixed to 1/S
to obtain the desired jet-to-ambient density ratio. The radial extent of the domain was
set to rmax = 10, and it was checked that larger values did not change the results. The
downstream extent xmax does not influence the computation of the base flow, but it does
affect various results of the stability analysis, as will be explained in detail in §3 and §4;
values in the range 40 6 xmax 6 100 were used. To summarise, the boundary conditions
for the base flow are

ū− ūi = v̄ = ρ̄− 1 = 0 on Γi, (2.6)

ū = v̄ = n · ∇ρ̄ = 0 on Γw, (2.7)

ρ̄− 1

S
= −p̄n +

1

Re
n · ∇

(
ū

v̄

)
= 0 on Γt (2.8)

−p̄n +
1

Re
n · ∇

(
ū

v̄

)
= 0 on Γo, (2.9)

v̄ = ∂rū = ∂rρ̄ = 0 on Γa, (2.10)

where n is the outward normal vector on the boundary.
The governing equations are discretised using Taylor-Hood elements, quadratic (P2)

for the density and velocity, and linear (P1) for the pressure, to satisfy the Ladyzenskaja-
Babuška-Brezzi condition. The refinement of the unstructured mesh is controlled through
the distance h between discretisation points on the boundaries of the domain and on
auxiliary lines, as indicated in figure 1. It was checked that the results were converged
with respect to further mesh refinements. The steady base flow is computed using a
Newton-Raphson method and the FreeFem++ software (Hecht 2012). Figure 2 shows
the resulting base flow for the two cases that will be studied in detail in §3 and §4:
S = 0.143, Re = 360, D/θ0 = 24.3, and S = 0.5, Re = 1000, D/θ0 = 24.3.

2.2. Direct eigenmodes

All experimental and numerical evidence indicate that the global instability in light jets
gives rise to axisymmetric flow oscillations, and the present analysis therefore is restricted
to axisymmetric disturbances. All flow quantities are independent of the azimuthal coor-
dinate, and the azimuthal velocity is always zero. Small unsteady axisymmetric perturba-
tions are introduced into the steady base flow as (u, v, ρ, p) = (ū, v̄, ρ̄, p̄) + ε(u′, v′, ρ′, p′).
The evolution of these perturbations (primed quantities) is then governed to leading
order by the equations (2.1–2.4), linearised around the base flow,

∇ · u′ = − 1

Re Sc
∇ ·

(
1

ρ̄
∇ρ′ − ρ′

ρ̄2
∇ρ̄
)
, (2.11)

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū +

ρ′

ρ̄
ū · ∇ū = −1

ρ̄
∇p′ + 1

Re

1

ρ̄
∇2u′ − Ri

S

1− S
ρ′

ρ̄
ex , (2.12)

∂ρ′

∂t
+ ū · ∇ρ′ + u′ · ∇ρ̄− ρ′

ρ̄
ū · ∇ρ̄ = − 1

Re Sc
ρ̄∇ ·

(
1

ρ̄
∇ρ′ − ρ′

ρ̄
∇ρ̄
)
. (2.13)

Assuming temporal normal-mode solutions

(u′, v′, ρ′, p′) = (û, v̂, ρ̂, p̂) e−iωt , (2.14)
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the linearised equations can be written in the form of a generalised eigenvalue problem

−iωBq̂ = Lq̂ , (2.15)

where q̂(r, x) = [û(r, x), v̂(r, x), ρ̂(r, x), p̂(r, x)]T is the vector-valued eigenfunction that
contains all perturbation quantities. For what follows, let q̃, L and B be understood to
be the eigenvector and the matrices of the discretised eigenvalue problem, −iωB q̃ = Lq̃,
that is to be solved numerically.

The following boundary conditions are imposed for the perturbation variables (bound-
ary labels as given in figure 1):

û = v̂ = 0 on Γi,Γw , (2.16)

−p̂n +
1

Re
n · ∇

(
û

v̂

)
= 0 on Γt,Γo , (2.17)

v̂ = ∂rû = 0 on Γa . (2.18)

The discrete system matrices L and B are constructed with a finite element formalism in
FreeFEM++, analogous to the incompressible computations by Garnaud et al. (2013a),
using P2 elements for ρ̂, û, v̂ and P1 elements for p̂. These matrices are then exported to
Matlab for the solution of the eigenvalue problem, by use of the ARPACK library, and for
all further post-processing. The eigenvalue computation involves an LU decomposition
for inversion of the shifted system.

2.3. Adjoint eigenmodes

The physical discussion of eigenmode dynamics in §4 will be based on the structural
sensitivity formalism proposed by Giannetti & Luchini (2007). Such an analysis requires
the computation of the adjoint discrete eigenvector q̃† associated with a given eigenvalue
ω of the direct problem (2.15). The form of the adjoint eigenvalue problem, of which
q̃† is a solution, depends on the definition of an inner product. Let the inner product
between two perturbation states q̂1 and q̂2 be defined as the standard spatial integral in
cylindrical coordinates,

〈q̂1, q̂2〉 =

∫
Ω

(û∗1û2 + v̂∗1v̂2 + ρ̂∗1ρ̂2 + p̂∗1p̂2)rdrdx = q̃H
1 Qq̃2 . (2.19)

Again, the symbols q̂1,2 are meant to represent the continuous spatial distribution of
perturbations, whereas q̃1,2 represent the discretised form, containing all N degrees of
freedom of the discrete problem. The N×N matrix Q contains the metric coefficients for
a given spatial discretisation, reflecting the area size of the individual mesh elements as
well as the weight factor r from the integral. It is a diagonal, positive definite Hermitian
matrix.

With this definition, the discrete adjoint eigenvalue problem is found to be

iω†Q−1BHQq̃† = Q−1LHQq̃† . (2.20)

Each adjoint eigenvalue ω† is the complex conjugate of an associated direct eigenvalue
ω.

For the presentation of results in §3 and §4, direct eigenvectors are always normalised
such that

‖q̃‖2 = q̃HQq̃ = 1 , (2.21)

whereupon the associated adjoint eigenvectors are normalised according to

q̃†HQB q̃ = 1 . (2.22)
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2.4. Eigenvalue sensitivity

The sensitivity of an eigenvalue measures how much the eigenvalue is affected by vari-
ations of the associated operator. According to the procedure proposed by Giannetti &
Luchini (2007), a spatial map of the sensitivity of ω with respect to ‘internal feedback’ in-
teractions can be obtained by measuring the local overlap between the direct and adjoint
eigenfunctions. The idea is to introduce small variations into the system matrix L that
modify the coupling between perturbation variables at a given point in space. Several
choices are possible to estimate the effect of such modifications in the local structure of
the operator on the eigenvalue. We adopt here the original formulation chosen by Gi-
annetti & Luchini (2007), which provides an upper-bound estimation of the eigenvalue
drift due to modified velocity-velocity coupling. The formulation is slightly altered to
include the density. It is convenient to first define the 3 × N matrix Uxi

that extracts
from a vector q̃ the velocity components and density [û(xi), v̂(xi), ρ̂(xi)]

T = Uxi q̃ at a
given discretisation point xi. Following the derivation in Giannetti & Luchini (2007), the
structural sensitivity in the present context is then characterised by the scalar quantity

λ(xi) = ‖Uxi
Qq̃†‖ ‖Uxi

q̃‖ . (2.23)

Giannetti & Luchini (2007) argue that flow regions with a large value of λ influence
strongly the eigenvalue selection, and thus represent the ‘core’ or ‘wavemaker’ of the
eigenmode. Additional information can be obtained by analysing the components of the
structural sensitivity tensor S(xi) = Uxi

Qq̃†(Uxi
q̃)H , which represent how changes in

the feedback from axial velocity, radial velocity, and density into the axial momentum,
radial momentum, and species conservation equation can affect the eigenvalue (see, for
example, Qadri et al. 2015). Note that the Frobenius norm of S is equal to the structural
sensitivity λ. It is noted that the choice to only include the density and velocity in (2.23)
is rather arbitrary. The quantity λ could just as well be based on momentum, vorticity
or combinations thereof, if such a choice appeared physically more sensible.

Marquet et al. (2008) developed the theoretical framework to assess the sensitivity of
a global eigenmode to arbitrary (not necessarily solution of the Navier–Stokes equations)
modifications of the base flow. In the present work we will use this concept to study how
modifications in the base flow velocity ū = (ū, v̄) affect the growth rate ωi:

∇ū ωi = (∇ū ωi,∇v̄ ωi) = Re
[
−∇(û)H · û† +∇û† · û∗

]
, (2.24)

where û and û† contain the velocity components of the direct and adjoint eigenmodes.

2.5. Pseudospectrum

As Trefethen & Embree (2005) note in their preface, ‘eigenvalues might be meaningful
in theory, but they [can] not always be trusted on a computer’. This remark is highly
pertinent for the present study: the linearised Navier–Stokes operator is known to be non-
normal (see the review by Chomaz 2005), and this property has important implications
for the sensitivity of eigenmodes with respect to details of the discretisation and to finite
precision arithmetics. In the study of non-normal dynamics, the pseudospectrum provides
a very valuable basis for physical discussion.

According to Trefethen & Embree (2005), the ε-pseudospectrum can be defined in
at least three equivalent ways. For the purpose of the present study, we will adopt the
definition that a given complex frequency ω is an ε-pseudoeigenvalue of the linear flow
equations if

‖(iωB + L)−1‖ = ε−1 . (2.25)
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Figure 3. Eigenvalue spectra of a jet at Re = 1000, S = 0.5 and D/θ0 = 24.3, obtained in
numerical domains of different length.

The operator (iωB+L)−1 is the resolvent of L, and its spectral norm is given by its largest
singular value σ. In physical terms, the largest singular value represents the optimal gain
that can be achieved when forcing the system at frequency ω. We obtain ε−1 = σ as the
leading singular value in the same way as Garnaud et al. (2013b).

3. Analysis of a slowly developing stable jet: the arc branch

The first case to be investigated is a jet of Reynolds number Re = 1000 and density
ratio S = 0.5. A shear layer thickness given by D/θ0 = 24.3 is measured at the nozzle
exit. While Re = 1000 may seem to be a low value for a jet, in laminar conditions it
yields a very slow viscous spreading, as can be seen in figure 2(b).

The eigenvalue spectrum for this setting is shown in figure 3, where different panels
contain results obtained with different numerical box lengths xmax between 40 and 100.
The radial extent in all cases is rmax = 10. The dominant feature of the spectrum is an
upper arching branch of eigenvalues, named the arc branch in the following. Eigenvalues
are distributed along it with an even spacing in the real frequency. All eigenvalues are
confined to the stable half-plane of ω, but in the case of the shortest box length, xmax =
40, the arc branch nearly crosses into the unstable domain. Clearly, convergence with
respect to the box length xmax is not achieved. This is consistent with the analysis of
constant-density jets by Garnaud et al. (2013a), who argue that a further increase of
xmax is not guaranteed to ever lead to convergence. It seems unreasonable anyway to
assume that the linear dynamics more than 100 radii downstream of the nozzle, in a
hypothetical steady flow, should have any physical relevance.

A lower branch of densely packed eigenvalues is also observed. These modes have been
discussed by Garnaud et al. (2013a), and they will not be investigated in more depth in
this paper.

If the entire spectrum of a flow is stable, its dynamics in a noisy environment is
determined by the response to external forcing. The linear frequency response of the
present jet is represented in figure 4(a) by the optimal energy gain as a function of real
forcing frequency (see §2.5), as calculated in numerical domains of different length. The
gain curve is clearly affected by domain truncation in the case of the shortest box length,
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Figure4.ForcingresponseofajetatRe=1000, S=0.5andD/θ0=24.3.(a)Optimalgain
asafunctionofrealforcingfrequency. Differentcoloursdenoteresultsobtainedinnumerical
domainsofdifferentlengths,asindicatedinthelegend.(b)Pseudospectrum,representedasthe
inverseoftheoptimalgainforcomplexforcingfrequencies, =σ 1(ω).Thecasexmax =60is
represented.

xmax =40,butallcurvesobtainedwithlargerdomainsareseentobeincloseagreement.
The maximumgainisreachedatωr=1.55,correspondingtoavalueoftheStrouhal
numberbasedonthejetdiameterSt= ωr/π=0.49.Itisremarkablethattheforced
(exogenous)dynamicsiswellconvergedwithrespecttotheboxlength,whiletheunforced
(endogenous)dynamicsisnot.Notealsothatthe maximumgain,O(107),isverylarge
comparedtothatoftheconstant-densitysetting,O(102),investigatedbyGarnaudetal.
(2013b),forthesamevalueoftheReynoldsnumber.The maindifferencebetweenthe
twoconfigurationsliesinthechoiceofthebasestate,whichinthecaseofGarnaudetal.
(2013b)wasa model meanflowwithconstantdensity.

Thefullpseudospectrumoftheslowlydevelopingjetisshowninfigure4(b).Twoob-
servationsarepointedout:firstly,thearcbranchisseentoalignapproximatelywitha
pseudospectrumcontour(herewithavalueofapproximately10−8);secondly,thepseu-
dospectrumvariationsbelowthearcbrancharemarkedlydifferentfromthoseabovethe
branch.Belowthearcbranch,thepseudospectrumindeedisnearlyconstant,compared
tothestrongvariationsintheupperpartofthedomain.

Foraphysicalinterpretation,eigenfunctionsofthefirstsixarcbranch modesare
representedinfigure5bytheirpressurecomponentalongthenozzlelipline,r=1,asa
functionofx.Absoluterealvalues|Re(̂p)|areplottedinlogarithmicscale,andthephase
isadjustedsuchthatRe(̂p)iszeroatx=59inallcases.Theeigenfunctionstakethe
formofwavepackets;theirparticularityliesinthefactthateach modefitsaninteger
numberof wavelengthsinsidethenumericaldomain. Onlythefirstsixeigenfunctions
areshown,butthesamecharacteristicappliestoallarcbranch modes.Thenumberof
wavelengthsincreasessteadilyasone movesalongthearcbranchfromlowtohigher
realfrequencyvalues.Thisobservationsuggeststhatthearcbranchiscomposedofbox
modes,similartoresonance modesinapipeoffinitelength,aconjecturethatdeserves
futureinvestigation.
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Figure 5. Pressure eigenfunction along r = 1 for several modes of the arc branch for S = 0.5,
Re = 1000 and D/θ0 = 24.3, with a numerical domain length xmax = 60.
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Figure 6. Eigenvalue spectra of a jet at Re = 360, S = 0.143 and D/θ0 = 24.3, obtained in
numerical domains of different length.

4. Analysis of a rapidly spreading pure helium jet

A jet with parameters S = 0.143 (pure helium), D/θ0 = 24.3 and Re = 360 is consid-
ered next. The strong density contrast is certain to result in absolute instability close to
the nozzle (Coenen & Sevilla 2012), and the low value of the Reynolds number leads to
a fast viscous spreading of the jet base flow, as seen in figures 2(a).

The eigenvalue spectrum for this setting is shown in figure 6, where different panels
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Figure 7. (a) Spatial structure of the eigenfunction of axial velocity û corresponding to the
most unstable eigenmode for S = 0.143, Re = 360, D/θ0 = 24.3, together with |Re(û)| along
r = 0.5. (b) Spatial structure of the adjoint eigenmode associated with the direct mode shown
in (a). (c) Structural sensitivity λ, as defined by (2.23). (d) Sensitivity ∇ū ωi = (∇ū ωi,∇v̄ ωi)
of the growth rate to modifications of the base flow.

again contain results obtained with different numerical box lengths xmax between 40
and 100. The radial extent still is maintained at rmax = 10. One single eigenvalue ω =
0.9197 − 0.0042i, very near marginal instability, is identically obtained (within |∆ω| =
0.0015) independently of xmax. This eigenmode, indeed the only one that seems to be
converged with respect to box size, will be denoted here as the isolated mode.

An arc branch can be discerned, similar to the one described in §3. In the spectrum
of the shortest numerical box, figure 6(a), the eigenvalues along this branch are still
evenly distributed. With larger box lengths, this regularity persists at low frequencies,
but breaks down in the vicinity of the isolated mode. The pattern observed here resembles
the “zipper phenomenon”, described by Heaton et al. (2009) and Nichols & Lele (2011b).

4.1. The isolated mode

The fact that the isolated mode is robust with respect to xmax indicates that it must
be quite distinct from the arc branch modes described earlier. A first characterisation of
this mode is attempted by inspecting its spatial eigenfunction, shown in figure 7. Note
that the results that are shown were obtained with xmax = 60, although for clarity only a
fraction of the domain (up to x = 40 and r = 3) is shown. The top frame (a) represents a
snapshot of the axial velocity perturbation. Quite in contrast with the arc branch modes
in figure 5, the region of significant eigenfunction amplitude is found to be well contained
in the centre of the domain. This is seen even clearer when looking at the inset where the
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−3 0 10 20 30 40
x

0
1
2
3

r |ρ̂†û∗|
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Figure 8. Absolute value of the components of the structural sensitivity tensor S
corresponding to the most unstable eigenmode for S = 0.143, Re = 360, D/θ0 = 24.3.

modulus of the perturbation values along a line r = 0.5 is plotted in logarithmic scale.
At the inflow and at the outflow boundaries, the perturbations are at least five orders of
magnitude smaller than at their maximum location.

A numerical solution of the associated discrete adjoint eigenvalue problem retrieves
the complex conjugate counterparts of the direct eigenvalues, as shown in figure 6, with
high accuracy (arc branch and isolated mode). The adjoint eigenfunction of the isolated
mode is displayed in figure 7(b). It is strongly localised around the nozzle edge, marking
this region as being the most receptive to initial perturbations for triggering the direct
eigenmode.

Direct and adjoint eigenmodes may then be multiplied, according to (2.23), in order
to estimate the flow region in which local feedback mechanisms contribute most to the
existence of the global eigenmode. This quantity λ is represented in figure 7(c). A well-
localised maximum is found around x = 13, concentrated near the lower part of the shear
layer; the potential core is also highlighted. Comparing the individual components of the
sensitivity tensor S , shown in figure 8, reveals that feedback proportional to the density
perturbation ρ′ into the axial and—to a lesser degree—radial momentum equations forms
the strongest contribution to changes in the eigenvalue. Note that it does not tell us
whether these changes are stabilizing or destabilizing. From inspection of the stability
equations (2.11)–(2.13) at zero Richardson number, we can thus draw the conclusion
that the convection term ū · ∇ū to which ρ′ is proportional plays a highly important
role for the growth rate and frequency of the isolated eigenmode that is responsible for
the self-sustained global oscillations in low-density jets. The fact that the feedback has a
stronger effect in the axial momentum equation than in the radial momentum equation
can easily be explained by remembering that the slenderness of this moderately large
Reynolds number jet flow implies that ū� v̄ and consequently ū∂ū/∂x� ū∂v̄/∂x.

It is tempting, but hardly pertinent, to try to relate the spatial distribution of the
structural sensitivity to a supposed jet-column character of the eigenmode. The distinc-
tion between jet-column and shear layer modes is meaningful in the context of a local
analysis. A physical examination of the active instability mechanisms in the isolated mode
should ideally be based on the role of the baroclinic torque, following the local analysis
of Lesshafft & Huerre (2007). However, it is not clear how the structural sensitivity could
be exploited for such a discussion.

It is noted from figure 7 that the shapes of the direct and adjoint eigenmodes, as well
as their pointwise product, compare well with the results of Qadri (2014), shown in his
figure 4.1. Recently, Qadri et al. (2015) have analysed self-sustained oscillations in lifted
diffusion flames. In their configuration, fuel with a density 7 times smaller than that of
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Figure 9. Results of a local stability analysis for the case S = 0.143, Re = 360, D/θ0 = 24.3.

the ambient is injected at a Reynolds number, based on the present scales, of approxi-
mately 500, with a moderately steep velocity profile, D/θ0 = 25. Given the similarities
with the present set-up, it is not surprising that there are also many similarities between
their ‘mode A’ and the isolated eigenmode under consideration here. For example, the
structural sensitivity component with the strongest contribution in their work is that
associated with changes in the mixture fraction feedback into the axial momentum equa-
tion (figure 6 of Qadri et al. 2015). Upstream of the diffusion flame, in the isothermal jet
zone where the sensitivity of their mode A peaks, the mixture fraction is equivalent to
the density, so that their strongest sensitivity component is in fact the analogue of û†ρ̂∗

in the present analysis, which has indeed been shown to be the strongest contributor
to the structural sensitivity (figure 8). We would like to point out, however, that the
low-density jet region in Qadri et al. (2015) is bounded by a diffusion flame downstream,
and is thus not a canonical jet configuration.

Figure 7(d) shows the sensitivity of the growth rate of the global mode to arbitrary
modifications of the base flow. The magnitude [(∇ū ωi)

2+(∇v̄ ωi)
2]1/2 is indicated by the

colour, whereas the arrows indicate the direction (∇ū ωi,∇v̄ ωi) in which the base flow
has to be modified to achieve a positive increment in the growth rate, i.e. to destabilize
the global mode. The results are in line with those observed by Tammisola (2012) for
unconfined wake flows, i.e. a region of high sensitivity just downstream of the injector,
followed by on oscillatory pattern in a region that stretches from approximately 5 to 20
radii downstream of the injector. This sensitivity measure can be further separated in
two parts: the sensitivity to changes in the base flow advection, and the sensitivity to
changes in the energy extraction from base flow gradients (‘production’). It was found
(not shown in the figure) that the contribution of the production part corresponds to the
region of high sensitivity adjacent to the nozzle, while the advection part dominates in
the second region of high sensitivity farther downstream. A change in the velocity profiles
just downstream of the injector in the direction indicated by (∇ū ωi,∇v̄ ωi) would cause
a thinning of the shear layer, increasing the streamwise velocity gradient while bringing
together the inflection points of the density and velocity profiles. From a local stability
point of view (Lesshafft & Marquet 2010; Coenen & Sevilla 2012), it is not surprising
that such a change would cause a destabilisation of the flow.

If the isolated mode is not the result of non-local pressure feedback, which in the
present setting could only arise from spurious effects at the outflow boundary, then it
is expected to be linked to the presence of local absolute instability. According to pre-
vious studies, for instance Lesshafft et al. (2007), global instability in jets requires an
absolutely unstable region of finite extent adjacent to the nozzle exit. To confirm the
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absolute character of the local instability near the nozzle in the present base flow, a local
spatio-temporal stability analysis has been performed. To that aim, at each downstream
position x, the basic flow is assumed to be locally parallel, with radial profiles of velocity
ū(r) = (ū(r), 0) and density ρ̄(r); small perturbations are introduced as normal modes
[ûl(r), iv̂l(r), p̂l(r), ρ̂l(r)] exp[i(kx−ωt)], with complex axial wavenumber k = kr +iki and
complex angular frequency ω = ωr + iωi. Here k, ω, and t are non-dimensionalised using
R∗ and U∗m. Substitution of the normal modes into the equations of motion, linearised
around the steady base flow, yields a system of ordinary differential equations that, to-
gether with appropriate boundary conditions, provides a generalised eigenvalue problem
(see, for instance, Coenen & Sevilla 2012), to be interpreted as a dispersion relation
D(k, ω; Re, S,D/θ0, . . . , ū, v̄, p̄, ρ̄) = 0 between k and ω. Here we are concerned with the
absolute or convective character of the instability. Therefore we need to find the spatio-
temporal instability modes with zero group velocity, i.e. modes for which dω/dk = 0.
The growth rate ω0,i of these is called the absolute growth rate and determines whether
the instability is convective, ω0,i < 0, or absolute, ω0,i > 0. The condition dω/dk = 0
is equivalent to the existence of a double root, or saddle point, in the complex k-plane,
∂D/∂k|k=k0

= 0. Among all the saddle points that may exist, only the one with the
largest value of ω0,i, while satisfying the Briggs–Bers criterion, determines the large-time
impulse response of the flow (see, for instance, Huerre 2000, and references therein).
The numerical method used to determine (ω0,i, k0,i) is described in Coenen & Sevilla
(Appendix B 2012)

Figure 9 shows the streamwise variation of ω0,r, ω0,i, and k0,r. Absolute instability
prevails over the interval 0 6 x 6 2.6. Couairon & Chomaz (1999) and Lesshafft et al.
(2006) showed that when an absolutely unstable region is bounded by the jet outlet,
the length xAC of this region needs to be sufficiently large for the global mode to be
triggered. Coenen & Sevilla (2012) used the criterion xAC = C/

√
ωi(x = 0) (Chomaz

et al. 1988; Couairon & Chomaz 1999) that contains a free parameter C. They found
that C = 0.85 gave good agreement with the experimental observations of Hallberg &
Strykowski (2006). The same criterion would predict here that the length of the absolutely
unstable region must be 4 radii. In figure 9 we can observe that for this globally marginally
stable flow, this length is approximately 3 radii. From the spatially oscillating structure
of the global mode of figure 7(a), we can also estimate a wavenumber k = 1.4, to be
compared with the value 0.7 ' k0,r ' 0.9 in the absolutely unstable region of figure 9(c).
The frequency of the global mode for this case is ωr = 0.91, whereas the local stability
analysis results in a frequency that ranges from 0.85 to 0.87. The discrepancies between
the two analyses can be attributed to the rapid spatial development of the flow (see
figure 2(a)) that violates the parallel flow hypothesis on which the local analysis is based.
An clear example of this was found recently by Moreno-Boza et al. (2016) when studying
buoyancy-driven flickering in diffusion flames.

As the current value S = 0.143 already represents the case of pure helium, in figure 10
the Reynolds number is varied in order to demonstrate its influence on the isolated
eigenvalue. Indeed, the growth rate ωi is found to increase steadily with the Reynolds
number, crossing into the unstable half-plane before Re = 380, while the Strouhal number
remains almost constant over the plotted interval of Re.

The pseudospectrum of the Re = 360 helium jet is presented in figure 11 for a complete
comparison with the Re = 1000 case in the previous section. Most features are shared
by both configurations, in particular the distinct variations of the energy gain in the
regions above and below the arc branch. The response to forcing at real frequency is
well converged in the case of the Re = 360 jet at all xmax settings. The most prominent
difference with respect to the Re = 1000 case is a sharp resonance peak in the energy gain
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Figure 10. Evolution of the isolated mode with the Reynolds number for a pure helium jet
(S = 0.143) and D/θ0 = 24.3.
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Figure 11. Forcing response of a jet at Re = 360, S = 0.143 and D/θ0 = 24.3. (a) Optimal gain
as a function of real forcing frequency. Different colours denote results obtained in numerical
domains of different lengths, as indicated in the legend. (b) Pseudospectrum, computed as the
inverse of the optimal gain for complex forcing frequencies. The case xmax = 60 is represented.

near the frequency of the isolated mode. The gain remains finite, because the isolated
mode is still slightly stable. The discussion of the arc branch provided in §3 remains valid
in all aspects in the present configuration.

4.2. Comparison with the experiment

The pure helium jet at Re = 360 discussed in §4 has been characterised as being nearly
marginally stable. By tracking the values of the control parameters Re andD/θ0 for which
the growth rate of the isolated mode ωi is zero, a neutral curve can be constructed. In
figure 12(a), such neutral curves in the Re −D/θ0 plane are presented for pure helium
jets (S = 0.143). The solid circles correspond to the results of the global mode analysis
without taking into account buoyancy effects. To the left of the transition points the jet is
globally stable (ωi < 0) whereas to the right it is globally unstable (ωi > 0). These results
are compared with the experimental measurements of Hallberg & Strykowski (2006),
indicated in figure 12(a) as squares with error bars. Care has been taken to convert
the experimentally obtained critical Reynolds numbers, based on the centreline velocity,
to Reynolds numbers based on the mean velocity. Fair agreement is found between the
experimental and the linear neutral curves, but essentially the latter is shifted towards
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Figure 12. (a) Comparison with the experimental results of Hallberg & Strykowski (2006) for
the onset of global instability in a pure He jet (S = 0.143). The experimental results are indicated
with solid squares and error bars, whereas the predictions based on the global mode analysis of
the present work are indicated by the solid circles. The addition of gravitational effects in the
analysis results in the transition points indicated by the solid triangles, and taking into account
the variation of viscosity with composition results in the solid diamonds. The numbers next to
the transition points indicate the Strouhal numbers corresponding to the oscillating mode of the
jet. (b) Frequency response computed for conditions of the experimentally observed transition
points. (c) The maximum optimal gain for the experimentally observed transition points.

higher Reynolds numbers; in other words, the onset of global instability in the linear
calculations is delayed with respect to the experimental observations.

Values next to the transition points in figure 12(a) indicate the Strouhal numbers
near criticality. In the global mode calculations, the Strouhal number St is directly given
by the frequency ωr of the marginally stable eigenmode, whereas in the experiments, it
was obtained by measuring the frequency of the self-sustained oscillations under slightly
supercritical conditions. It can be observed that the agreement between the two is rather
good, with relative differences smaller than 10%.

In an effort to explain the offset between the critical curve given by the stability analysis
and the experimental evidence, we assessed the influence of buoyancy. Strictly speaking,
while estimating the importance of the latter, the characteristic length scale that should
be used in the construction of the Richardson number is not the radius R∗, but the
development length of the jet, of order ReR∗. This modified Richardson number can
be written as Gr/Re. In the experiments of Hallberg & Strykowski (2006) the Grashof
number for the pure helium jet (S = 0.143) is Gr = 138, and the marginal Reynolds
numbers lie in the range 200–700. We can therefore expect that buoyancy has a non-
negligible effect in the experiments. Recomputing the critical curve with the inclusion
of the buoyancy term, with Gr = 138, we obtained the solid triangles of figure 12(a).
Indeed, adding buoyancy destabilises the jet, and slightly improves the agreement with
the experimental data. Nevertheless, its influence is not sufficiently strong to explain the
offset between the stability analysis and the experiments.
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A second physical aspect whose influence has been investigated is the variation of
viscosity with composition. The viscosity of air is 11% lower than that of helium, so
that a small effect on the molecular transport can be expected, changing both the base
flow and the stability properties. Figure 12(a) shows that there is indeed a small shift
of the transition curve (solid diamonds). The variable viscosity is seen to have a slightly
stabilising influence. This seems counterintuitive, as a lower viscosity in the flow field
due to variations with the composition would result in an higher local effective Reynolds
number, and would therefore be expected to destabilize the flow. Nevertheless, subtle
changes in the base flow profiles may just as well counteract this, eventually causing a
net stabilization. A more detailed study may be interesting in flows where variations of
the viscosity are stronger, such as heated jets or diffusion flames.

In figure 12(b) we show the frequency response computed at the transition points of
Hallberg & Strykowski (2006). Because these points are located to the left of the transi-
tion curve obtained with the global mode stability analysis, the jet is globally stable under
these conditions. Nevertheless, the optimal gain is seen to be very high, O(103 − 106),
in a narrow band around the frequency associated with the global mode (see also the
discussion of figure 11). This means that small perturbations that act as a forcing to
the jet may suffer very strong amplifications that may sustain a nonlinear global oscilla-
tion of the jet at the frequency of maximum amplification. In an experiment this could
cause a shift in the observed critical value of the bifurcation parameter. Applying this
hypothesis to the present analysis would mean that, if both the incoming noise and the
necessary amplification threshold to sustain a nonlinear oscillation were constant over
all experimental conditions, the computed frequency response at the experimental tran-
sition points should have values that are of the same order of magnitude. Nevertheless,
figure 12(b) shows that this is not the case here. In fact, the maximum gain is seen to be
larger for the experimental conditions corresponding to higher Reynolds numbers (and
lower D/θ0). It must be mentioned that these results correspond to the optimal forcing,
whose spatial structure varies from case to case, and might be very different from realistic
noise present under experimental conditions. To rule out this variability the computa-
tions were repeated for a fixed spatial forcing distribution (a uniform distribution in the
injection pipe), yielding similar results (not shown here) to the ones of figure 12(b), but
with generally lower values of the gain.

Finally, it is worth mentioning that, as the sensitivity to base flow modifications of
figure 7(d) shows, small changes in the region just downstream of the injector have a
strong influence on the growth rate of the global instability. Although care has been
taken to mimic the experimental set-up of Hallberg & Strykowski (2006), some details,
such as the exact nozzle shape and the sharpness of the nozzle lip, are hard to account
for, and may as well play a role in the discrepancy between experiment and linear theory.

5. Conclusions

The present work gives, for the first time, a detailed account of the linear global
stability of low-density jets. By making use of the low Mach number approximation, all
dynamic effects of density variations in the limit of zero Mach number are retained, while
avoiding the numerically challenging necessity to resolve acoustic wave propagation.

We have found that when the spatial development of the jet flow is sufficiently fast
(Re = 360 and S = 0.143), an isolated eigenvalue dominates the global eigenvalue spec-
trum. This mode has been shown to arise from the presence of absolute instability in light
jets, documented in numerous earlier studies (e.g. Monkewitz & Sohn 1988; Lesshafft &
Huerre 2007; Coenen & Sevilla 2012). It is this mode that causes global instability in
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light jets at low Mach numbers. It has been found to converge without much effort in
our numerical calculations, in particular with respect to the domain size. The structural
sensitivity of this mode is concentrated in a confined region close to the nozzle; accord-
ing to Giannetti & Luchini (2007), it is sufficient to resolve this flow region in order to
accurately compute the eigenvalue.

Unlike previous local stability analyses (e.g. Coenen & Sevilla 2012), in which the
length of the absolutely unstable region that is necessary to trigger a global mode in-
troduces an unknown parameter in the problem, the isolated global eigenmode is able
the determine the critical conditions for the onset of global instability in terms of the
governing flow parameters without any additional hypotheses. This has been employed
to link the isolated mode to the supercritical Hopf bifurcation that was observed in the
helium jet experiments by Hallberg & Strykowski (2006): the neutral curves for the onset
of instability, in the experiments and in the present linear analysis match, within reason-
able accuracy, and the predicted Strouhal numbers agree within ten per cent with the
experimentally reported values at onset. The bifurcation in the experiments takes place
in situations that are characterised as slightly subcritical in the linear framework. An
additional destabilisation due to buoyancy effects has been demonstrated to be insuffi-
cient in order to explain this offset. Including the variation of viscosity with composition
has been shown to have a small stabilising effect, and is thus also ruled out as an essen-
tial ingredient to explain the discrepancy. An inspection of the pseudospectrum however
indicates that small perturbations may suffer a very strong amplification in the slightly
stable regime. According to linear theory, experimental low level noise might therefore be
amplified and observed as sustained coherent wavepackets. A dedicated detailed study
is required to assess this hypothesis, for example by comparing with direct numerical
simulations with a controlled low level forcing.

A second feature of the global eigenvalue spectra of low-density jets is a branch of
eigenvalues, called the arc branch, that, when the spatial development of the jet flow
is sufficiently slow (Re = 1000, S = 0.5) may dominate the spectrum, hindering the
detection of the isolated mode. This arc branch is found to be highly sensitive to the
numerical domain size, consistent with numerous existing studies of jets (Nichols & Lele
2011a; Garnaud et al. 2013a) and boundary layers (Ehrenstein & Gallaire 2005, 2008;
Åkervik et al. 2008). The present results suggest, for the first time, that these eigenmodes
are not only affected by domain truncation, but that their very existence is dependent
on spurious feedback from the outflow boundary. Two observations support this conjec-
ture: first, the arc branch aligns approximately with isocontours of the pseudospectrum,
suggesting a link between a given level of exogenous energy input and the occurrence
of arc branch modes; second, the associated eigenfunctions display an integer number
of wavelengths between inflow and outflow, suggesting a resonance condition. A more
detailed study to prove this conjecture is currently being carried out, but lies out of the
scope of the present work.
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