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Abstract: Given any function f : Z+ → R+, let us define the f -index I f (G) = ∑u∈V(G) f (du) and
the f -polynomial Pf (G, x) = ∑u∈V(G) x1/ f (du)−1, for x > 0. In addition, we define Pf (G, 0) =

limx→0+ Pf (G, x). We use the f -polynomial of a large family of topological indices in order to study
mathematical relations of the inverse degree, the generalized first Zagreb, and the sum lordeg indices,
among others. In this paper, using this f -polynomial, we obtain several properties of these indices
of some classical graph operations that include corona product and join, line, and Mycielskian,
among others.

Keywords: inverse degree index; generalized first Zagreb index; sum lordeg index; corona product;
join of graphs; line graph; Mycielskian graph; polynomials in graphs

1. Introduction

A topological index is a single number that represents a chemical structure via the molecular graph,
in graph theoretical terms, whenever it correlates with a molecular property. Hundreds of topological
indices have been recognized to be useful tools in research, especially in chemistry. Topological
indices have been used to understand physicochemical properties of compounds. They usually enclose
topological properties of a molecular graph in a single real number. Several topological indices were
introduced by the seminal work by Wiener [1]. They have been studied and generalized by several
researchers since then. In particular, topological indices based on end-vertex degrees of edges have
been studied over almost 50 years (see, e.g., [2–11]).

A graph, usually denoted G(V(G); E(G)), consists of a set of vertices V(G) together with a set
E(G) of unordered pairs of vertices called edges. The number of vertices in a graph is usually denoted
n = |V(G)|, while the number of edges is usually denoted m = |E(G)|; these two basic parameters are
called the order and size of G, respectively. Miličević and Nikolić defined in reference [12] the first
variable Zagreb index as

Mα
1 (G) = ∑

u∈V(G)

dα
u,

where du is the degree of the vertex u and α ∈ R.
Note that M2

1 is the first Zagreb index M1, M−1
1 is the inverse index ID, M3

1 is the forgotten index
F, etc.
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The harmonic index, defined in reference [13] as

H(G) = ∑
uv∈E(G)

2
du + dv

,

has been studied in the last years (see, e.g., [14–19]).
In reference [20], the harmonic polynomial of a graph G is defined as

H(G, x) = ∑
uv∈E(G)

xdu+dv−1,

and the harmonic polynomials of some graphs are computed. The harmonic polynomials of the line of
some graphs are computed in reference [21].

This polynomial owes its name to the fact that 2
∫ 1

0 H(G, x) dx = H(G).
The inverse degree index ID(G) of a graph G is defined by

ID(G) = ∑
u∈V(G)

1
du

= ∑
uv∈E(G)

( 1
d2

u
+

1
d2

v

)
.

The inverse degree index first attracted attention through numerous conjectures (see [13]).
This index has been studied in reference [22–26].

The inverse degree polynomial of a graph G was defined in reference [27] as

ID(G, x) = ∑
u∈V(G)

xdu−1.

We have
∫ 1

0 ID(G, x) dx = ID(G).
Given any function f : Z+ → R+, let us define the f -index

I f (G) = ∑
u∈V(G)

f (du)

and the f -polynomial
Pf (G, x) = ∑

u∈V(G)

x1/ f (du)−1,

for x > 0. In addition, we define Pf (G, 0) = limx→0+ Pf (G, x). Note that Pf (G, x) = ID(G, x) when
f (t) = 1/t.

The degrees of the vertices are graph invariants, i.e., if two graphs are isomorphic, then the
corresponding vertices by any isomorphism have the same degrees. Hence, the f -polynomial is also a
graph invariant, i.e., two isomorphic graphs have the same ID polynomial.

Polynomials have proved to be useful in the study of several topological indices (see, e.g., [27–29]).
There are many papers studying several topological indices of graph operations (see, e.g.,[27–30]).
Throughout this paper, G = (V(G), E(G)) denotes a (non-oriented) finite simple (without

multiple edges and loops) graph without isolated vertices. The main aim of this paper is to study
mathematical relations of the inverse degree, the generalized first Zagreb, and the sum lordeg indices,
among others. In order to do that, we use the f -polynomial of a large family of topological indices,
introduced in reference [31]. We obtain inequalities (and even closed formulas in the case of the ID
polynomial) involving the f -polynomial of many classical graph operations, which include corona
product, join, line and Mycielskian, among others. These results allow us to obtain new inequalities for
the inverse degree, the generalized first Zagreb, and the sum lordeg indices of these graph operations.
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2. Definitions and Background

In the following sections, we obtain inequalities for the f -polynomial of many classical graph
operations, which include corona product, join, line and Mycielskian, among others. The f -polynomial
of other graph operations (Cartesian product, lexicographic product, and Cartesian sum) is studied in
reference [31]. The different kinds of graph operations are an important research topic (see [32] and
the references therein). Some large graphs are composed from some existing smaller ones by using
several graph operations, and many properties of such large graphs are strongly associated with those
of the corresponding smaller ones.

Let us recall the definitions of some classical products in graph theory.
The join G1 + G2 is defined as the graph obtained by taking one copy of G1 and one copy of G2

and joining by an edge each vertex of G1 with each vertex of G2.
The corona product G1 ◦ G2 is the graph obtained by taking |V(G1)| copies of G2 and joining each

vertex of the i-th copy with the vertex vi ∈ V(G1).
The ID polynomial is related to the polynomials associated to some topological indices.
In reference [33], Shuxian defined the following polynomial related to the first Zagreb index:

M∗1(G, x) := ∑
u∈V(G)

duxdu .

Note that x(xID(G, x))′ = M∗1(G, x).
The ID polynomial is also related to other polynomials, like the harmonic polynomial (see [27]

and Propositions 7–10 in this paper).
The following result states some of the main properties of Pf .

Proposition 1. If G is a graph with order n and f : Z+ → R+, then:

• Pf (G, x) is a polynomial if and only if 1/ f (du) ∈ Z+ for every u ∈ V(G),
• Pf (G, x) is a positive C∞ function on (0, ∞),
• Pf (G, x) is a continuous function on [0, ∞) if and only if Pf (G, 0) < ∞,
• Pf (G, x) is a continuous function on [0, ∞) if and only if f (du) 6 1 for every u ∈ V(G),
• Pf (G, x) is an integrable function on [0, A] for every A > 0, and

∫ 1
0 Pf (G, x) dx = I f (G),

• Pf (G, x) is increasing on (0, ∞) if and only if f (du) 6 1 for every u ∈ V(G),
• Pf (G, x) is strictly increasing on (0, ∞) if and only if f (du) 6 1 for every u ∈ V(G), and f (dv) 6= 1 for

some v ∈ V(G),
• Pf (G, x) is convex on (0, ∞) if f (du) ∈ (0, 1/2] ∪ [1, ∞) for every u ∈ V(G),
• Pf (G, x) is strictly convex on (0, ∞) if f (du) ∈ (0, 1/2] ∪ [1, ∞) for every u ∈ V(G), and f (dv) /∈
{1/2, 1} for some v ∈ V(G),

• Pf (G, x) is concave on (0, ∞) if f (du) ∈ [1/2, 1] for every u ∈ V(G),
• Pf (G, x) is strictly concave on (0, ∞) if f (du) ∈ [1/2, 1] for every u ∈ V(G), and f (dv) /∈ {1/2, 1} for

some v ∈ V(G),
• Pf (G, 1) = n.

Proof. The first statement is direct, since Pf (G, x) is a polynomial if and only if 1/ f (du)− 1 ∈ Z for
every u ∈ V(G).

The second and third statements are direct.
The fourth statement holds since Pf (G, x) is a continuous function on [0, ∞) if and only if

1/ f (du)− 1 > 0 for every u ∈ V(G).
Since f > 0, 1/ f (du)− 1 > −1 for every u ∈ V(G), and Pf (G, x) is an integrable function on

[0, A] for every A > 0. Thus, a simple computation gives
∫ 1

0 Pf (G, x) dx = I f (G).
If there exists u ∈ V(G) with f (du) > 1, then 1/ f (du)− 1 < 0 and limx→0+ x1/ f (du)−1 = ∞; thus,

limx→0+ Pf (G, x) = ∞, and Pf (G, x) is not increasing on (0, ∞). If f (du) 6 1 for every u ∈ V(G), then
1/ f (du)− 1 > 0 for every u ∈ V(G), and so Pf (G, x) is increasing on (0, ∞). If this is the case, Pf (G, x)



Mathematics 2019, 7, 1074 4 of 18

is strictly increasing on (0, ∞) if 1/ f (dv)− 1 > 0 for some v ∈ V(G), i.e., f (dv) 6= 1 for some v ∈ V(G);
if f (du) = 1 for every u ∈ V(G), then Pf (G, x) is constant, and so it is not strictly increasing on (0, ∞).

If f (du) ∈ (0, 1/2] ∪ [1, ∞) for every u ∈ V(G), then 1/ f (du) − 1 ∈ (−1, 0] ∪ [1, ∞) for every
u ∈ V(G), and Pf (G, x) is convex on (0, ∞). If this is the case, Pf (G, x) is strictly convex on (0, ∞) if
1/ f (dv)− 1 ∈ (−1, 0) ∪ (1, ∞) for some v ∈ V(G), i.e., f (dv) /∈ {1/2, 1} for some v ∈ V(G).

If f (du) ∈ [1/2, 1] for every u ∈ V(G), then 1/ f (du)− 1 ∈ [0, 1] for every u ∈ V(G), and Pf (G, x)
is concave on (0, ∞). If this is the case, Pf (G, x) is strictly concave on (0, ∞) if 1/ f (dv)− 1 ∈ (0, 1) for
some v ∈ V(G), i.e., f (dv) /∈ {1/2, 1} for some v ∈ V(G).

Finally, Pf (G, 1) = ∑u∈V(G) 1 = n.

In particular, if α ∈ R and f (t) = tα, then Proposition 1 gives
∫ 1

0 Pf (G, x) dx = Mα
1 (G).

In particular, we have the following properties.

Proposition 2. If G is a k-regular graph with order n and f : Z+ → R+, then Pf (G, x) = nx1/ f (k)−1.

The following result shows the polynomial Pf for well-known graphs, such as: Kn (complete
graph), Cn (cycle graph), Qn (hypercube graph), Kn1;n2 (complete bipartite graph), Sn (star), Pn (path
graph), and Wn (wheel graph).

Proposition 3. If f : Z+ → R+, then

Pf (Kn, x) = nx1/ f (n−1)−1, Pf (Cn, x) = nx1/ f (2)−1,

Pf (Qn, x) = 2nx1/ f (n)−1, Pf (Kn1,n2 , x) = n1x1/ f (n2)−1 + n2x1/ f (n1)−1,

Pf (Sn, x) = x1/ f (n−1)−1 + (n− 1)x1/ f (1)−1, Pf (Pn, x) = (n− 2)x1/ f (2)−1 + 2x1/ f (1)−1,

Pf (Wn, x) = x1/ f (n−1)−1 + (n− 1)x1/ f (3)−1.

Fix δ ∈ Z+ and f : Z+ → R+. We say that f satisfies the δ-additive property 1 (and we write
f ∈ AP1(δ)) if

1
f (x + y)

>
1

f (x)
+

1
f (y)

for every x, y ∈ Z+ with x, y > δ.
f satisfies the δ-additive property 2 (and we write f ∈ AP2(δ)) if

1
f (x + y)

6
1

f (x)
+

1
f (y)

for every x, y ∈ Z+ with x, y > δ.
Finally, f satisfies the δ-additive property 3 (and we write f ∈ AP3(δ)) if

1
f (x + y)

6 min
{ 1

f (x)
,

1
f (y)

}
for every x, y ∈ Z+ with x, y > δ.

Remark 1. Note that if f ∈ APj(δ) for some 1 6 j 6 3, then f ∈ APj(δ
′) for every δ′ > δ.

If f is an increasing function on [δ, ∞), then f ∈ AP3(δ).
Note that f (t) = 1/t satisfies the 1-additive properties 1 and 2, i.e., f ∈ AP1(1) ∩ AP2(1).

The following result appears in reference [31].

Theorem 1. Let α ∈ R and f (t) = tα.
(1) If α 6 −1, then f ∈ AP1(1).
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(2) If α ∈ [−1, 0], then f ∈ AP2(1).
(3) If α > 0, then f ∈ AP3(1).

Next, we present two useful improvements (for convex functions) of Chebyshev’s inequality.

Lemma 1 ([34]). If f1, . . . , fk are non-negative convex functions on [a, b], then

1
b− a

∫ b

a

k

∏
i=1

fi(x) dx >
2k

k + 1

k

∏
i=1

1
b− a

∫ b

a
fi(x) dx.

Lemma 2 ([35], Corollary 5.2). If f1, . . . , fk are non-negative convex functions on [a, b], then

∫ b

a

k

∏
i=1

fi(x) dx 6
2

k + 1

(
k

∏
i=1

∫ b

a
fi(x) dx

)1/k ( k

∏
i=1

(
fi(a) + fi(b)

))1−1/k

.

3. Join of Graphs

Theorem 2. Let δ ∈ Z+ and G1 and G2 be two graphs with order n1 and n2, respectively, and minimum degree
of at least δ, and f : Z+ → R+. The f -polynomial of the join G1 + G2 satisfies the following inequalities for
x ∈ (0, 1].

(1) If f ∈ AP1(δ), then

Pf (G1 + G2, x) 6 x1/ f (n2)Pf (G1, x) + x1/ f (n1)Pf (G2, x).

(2) If f ∈ AP2(δ), then

Pf (G1 + G2, x) > x1/ f (n2)Pf (G1, x) + x1/ f (n1)Pf (G2, x).

(3) If f ∈ AP3(δ), then

Pf (G1 + G2, x) > Pf (G1, x) + Pf (G2, x).

Proof. If u ∈ V(G1) (respectively, u ∈ V(G2)), then its degree in G1 + G2 is du + n2 (respectively,
du + n1).

Assume first that f ∈ AP1(δ). Since du > δ for every u ∈ V(G1) ∪ V(G2), f ∈ AP1(δ), and
x ∈ (0, 1],

Pf (G1 + G2, x) = ∑
u∈V(G1)

x1/ f (du+n2)−1 + ∑
v∈V(G2)

x1/ f (dv+n1)−1

6 ∑
u∈V(G1)

x1/ f (du)−1x1/ f (n2) + ∑
v∈V(G2)

x1/ f (dv)−1x1/ f (n1)

= x1/ f (n2)Pf (G1, x) + x1/ f (n1)Pf (G2, x).

If f ∈ AP2(δ), then a similar argument allows us to obtain the corresponding inequality.
Assume now that f ∈ AP3(δ). We have

Pf (G1 + G2, x) = ∑
u∈V(G1)

x1/ f (du+n2)−1 + ∑
v∈V(G2)

x1/ f (dv+n1)−1

> ∑
u∈V(G1)

x1/ f (du)−1 + ∑
v∈V(G2)

x1/ f (dv)−1 = Pf (G1, x) + Pf (G2, x).

Theorems 1 and 2 have the following consequence.
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Theorem 3. Let G1 and G2 be two graphs with order n1 and n2, respectively, α ∈ R, and f (t) = tα.
The f -polynomial of the join G1 + G2 satisfies the following inequalities for x ∈ (0, 1].

(1) If α 6 −1, then

Pf (G1 + G2, x) 6 xn−α
2 Pf (G1, x) + xn−α

1 Pf (G2, x).

(2) If α ∈ [−1, 0], then

Pf (G1 + G2, x) > xn−α
2 Pf (G1, x) + xn−α

1 Pf (G2, x).

(3) If α > 0, then
Pf (G1 + G2, x) > Pf (G1, x) + Pf (G2, x).

Theorem 3 has the following consequence.

Corollary 1. Given two graphs G1 and G2, with order n1 and n2, respectively, the ID polynomial of the join
G1 + G2 is

ID(G1 + G2, x) = xn2 ID(G1, x) + xn1 ID(G2, x).

Since f (t) = t
√

log t ∈ AP3(2), Theorem 2 has the following consequence.

Corollary 2. Let G1 and G2 be two graphs without pendant vertices and with order n1 and n2, respectively.
If f (t) = t

√
log t, then the f -polynomial of the join G1 + G2 satisfies for x ∈ (0, 1]

Pf (G1 + G2, x) > Pf (G1, x) + Pf (G2, x).

Next, we obtain bounds for I f (G1 + G2) by using the previous inequalities for Pf (G1 + G2, x).

Proposition 4. Let δ ∈ Z+ and let G1 and G2 be two graphs with order n1 and n2, respectively, and a minimum
degree of at least δ. If f ∈ AP3(δ), then

I f (G1 + G2) > I f (G1) + I f (G2).

Proof. Theorem 2 gives
Pf (G1 + G2, x) > Pf (G1, x) + Pf (G2, x)

for every x ∈ (0, 1]. Thus, Proposition 1 gives

I f (G1 + G2) =
∫ 1

0
Pf (G1 + G2, x) dx >

∫ 1

0
Pf (G1, x) dx +

∫ 1

0
Pf (G2, x) dx = I f (G1) + I f (G2).

Theorem 4. Let δ ∈ Z+, and let G1 and G2 be two graphs with order n1 and n2, respectively, and a minimum
degree of at least δ, and a > 0. If f : Z+ ∩ [δ, ∞)→ (0, a/2], then the following inequalities hold.

(1) If f ∈ AP1(δ), then

I f (G1 + G2) 6
2
3

( a n1 f (n2)

a + f (n2)
I f (G1)

)1/2
+

2
3

( a n2 f (n1)

a + f (n1)
I f (G2)

)1/2
.

(2) If f ∈ AP2(δ), then

I f (G1 + G2) >
4
3

( f (n2)

a + f (n2)
I f (G1) +

f (n1)

a + f (n1)
I f (G2)

)
.
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Proof. Let us define the function g = f /a. Thus, g : Z+ ∩ [δ, ∞) → (0, 1/2] and Proposition 1 gives
that Pg(G1, x) and Pg(G2, x) are convex functions on (0, ∞) and continuous on [0, ∞); hence, they are
convex on [0, 1].

If f ∈ AP1(δ), then f /a ∈ AP1(δ) and Theorem 2 gives

Pf /a(G1 + G2, x) 6 xa/ f (n2)Pf /a(G1, x) + xa/ f (n1)Pf /a(G2, x).

Note that f /a 6 1/2 gives a/ f − 1 > 1, and so Pf /a(Gi, 0) = 0 and Pf /a(Gi, 1) = ni for i = 1, 2.
Since a/ f (n2) > 2, we have that xa/ f (n2) is also a convex function on [0, 1], and Lemma 2 gives

∫ 1

0
xa/ f (n2)Pf /a(G1, x) dx 6

2
3

( ∫ 1

0
xa/ f (n2)dx

∫ 1

0
Pf /a(G1, x) dx

)1/2

·
(
(0 + 1)

(
Pf /a(G1, 0) + Pf /a(G1, 1)

))1/2

=
2
3

(
n1

f (n2)

a + f (n2)
I f /a(G1)

)1/2

=
2
3

( n1 f (n2)

a + f (n2)

1
a

I f (G1)
)1/2

.

We obtain in a similar way

∫ 1

0
xa/ f (n1)Pf /a(G2, x) dx 6

2
3

( n2 f (n1)

a + f (n1)

1
a

I f (G2)
)1/2

.

Hence,

1
a

I f (G1 + G2) = I f /a(G1 + G2) =
∫ 1

0
Pf /a(G1 + G2, x) dx

6
2
3

( n1 f (n2)

a + f (n2)

1
a

I f (G1)
)1/2

+
2
3

( n2 f (n1)

a + f (n1)

1
a

I f (G2)
)1/2

.

If f ∈ AP2(δ), then f /a ∈ AP2(δ) and Theorem 2 gives

Pf /a(G1 + G2, x) > xa/ f (n2)Pf /a(G1, x) + xa/ f (n1)Pf /a(G2, x).

Thus, Lemma 1 gives

1
a

I f (G1 + G2) = I f /a(G1 + G2) =
∫ 1

0
Pf /a(G1 + G2, x) dx

>
4
3

∫ 1

0
xa/ f (n2)dx

∫ 1

0
Pf /a(G1, x) dx +

4
3

∫ 1

0
xa/ f (n1)dx

∫ 1

0
Pf /a(G2, x) dx

=
4
3

f (n2)

a + f (n2)

1
a

I f (G1) +
4
3

f (n1)

a + f (n1)

1
a

I f (G2).

Corollary 3. Let δ ∈ Z+, and let G1 and G2 be two graphs with order n1 and n2, respectively, and a minimum
degree of at least δ, and a > 0. If f : Z+ ∩ [δ, ∞)→ (0, a/2] and f ∈ AP1(δ), then

I f (G1 + G2) 6
2
3

(n1a
3

I f (G1)
)1/2

+
2
3

(n2a
3

I f (G2)
)1/2

.
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Proof. Since F(t) = at/(a + t) is an increasing function on t ∈ [0, ∞) and f 6 a/2,

ni
a f (nj)

a + f (nj)
6 ni

a a
2

a + a
2
=

nia
3

,

and Theorem 4 gives the desired inequality.

Next, we obtain inequalities for several topological indices of joins of graphs.
Theorems 1 and 4 (with a = 2) and Proposition 4 have the following consequence.

Corollary 4. Let G1 and G2 be two graphs with order n1 and n2, respectively, and α ∈ R.
(1) If α 6 −1, then

Mα
1 (G1 + G2) 6

2
3

( 2n1nα
2

2 + nα
2

Mα
1 (G1)

)1/2
+

2
3

( 2n2nα
1

2 + nα
1

Mα
1 (G2)

)1/2
.

(2) If α ∈ [−1, 0], then

Mα
1 (G1 + G2) >

4
3

( nα
2

2 + nα
2

Mα
1 (G1) +

nα
1

2 + nα
1

Mα
1 (G2)

)
.

(3) If α > 0, then
Mα

1 (G1 + G2) > Mα
1 (G1) + Mα

1 (G2).

Corollary 4 gives the following result.

Corollary 5. If G1 and G2 are two graphs with order n1 and n2, respectively, then

4
3

( 1
2n2 + 1

ID(G1) +
1

2n1 + 1
ID(G2)

)
6 ID(G1 + G2)

6
2
3

( 2n1

2n2 + 1
ID(G1)

)1/2
+

2
3

( 2n2

2n1 + 1
ID(G2)

)1/2
.

The sum lordeg index
SL(G) = ∑

u∈V(G)

du
√

log du

is one of the Adriatic indices introduced in reference [36].
Since f (t) = t

√
log t is an increasing function on [1, ∞), f ∈ AP3(2). Thus, we have the following:

Lemma 3. If f (t) = t
√

log t, then f ∈ AP3(2).

Lemma 3 and Proposition 4 have the following consequence.

Corollary 6. If G1 and G2 are graphs without pendant vertices and with order n1 and n2, respectively, then

SL(G1 + G2) > SL(G1) + SL(G2).

4. Corona Products

Theorem 5. Let G1 and G2 be two graphs with order n1 and n2, respectively, and f : Z+ → R+.
The f -polynomial of the corona product G1 ◦ G2 satisfies the following inequalities for x ∈ (0, 1].

(1) If f ∈ AP1(1), then

Pf (G1 ◦ G2, x) 6 x1/ f (n2)Pf (G1, x) + n1x1/ f (1)Pf (G2, x).
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(2) If f ∈ AP2(1), then

Pf (G1 ◦ G2, x) > x1/ f (n2)Pf (G1, x) + n1x1/ f (1)Pf (G2, x).

(3) If δ ∈ Z+, G1 and G2 have a minimum degree of at least δ, and f is increasing on Z+ ∩ [δ, ∞), then

Pf (G1 ◦ G2, x) > Pf (G1, x) + n1Pf (G2, x).

Proof. If u ∈ V(G1), then its degree in G1 ◦ G2 is du + n2. If G(i)
2 is a copy of G2 in G1 ◦ G2 and

v ∈ V(G(i)
2 ), then its degree in G1 ◦ G2 is dv + 1.

Assume first that f ∈ AP1(1). Since f ∈ AP1(1) and x ∈ (0, 1],

Pf (G1 ◦ G2, x) = ∑
u∈V(G1)

x1/ f (du+n2)−1 + n1 ∑
v∈V(G2)

x1/ f (dv+1)−1

6 ∑
u∈V(G1)

x1/ f (du)−1x1/ f (n2) + n1 ∑
v∈V(G2)

x1/ f (dv)−1x1/ f (1)

= x1/ f (n2)Pf (G1, x) + n1x1/ f (1)Pf (G2, x).

If f ∈ AP2(1), then a similar argument allows us to obtain the corresponding inequality.
Finally, assume that G1 and G2 have a minimum degree of at least δ, and f is increasing on

Z+ ∩ [δ, ∞). We have

Pf (G1 ◦ G2, x) = ∑
u∈V(G1)

x1/ f (du+n2)−1 + n1 ∑
v∈V(G2)

x1/ f (dv+1)−1

> ∑
u∈V(G1)

x1/ f (du)−1 + n1 ∑
v∈V(G2)

x1/ f (dv)−1 = Pf (G1, x) + n1Pf (G2, x).

Theorems 1 and 5 have the following consequence.

Corollary 7. Let G1 and G2 be two graphs with order n1 and n2, respectively, and let α ∈ R and f (t) = tα.
The f -polynomial of the corona product G1 ◦ G2 satisfies the following inequalities for x ∈ (0, 1].

(1) If α 6 −1, then

Pf (G1 ◦ G2, x) 6 xn−α
2 Pf (G1, x) + n1xPf (G2, x).

(2) If α ∈ [−1, 0], then

Pf (G1 ◦ G2, x) > xn−α
2 Pf (G1, x) + n1xPf (G2, x).

(3) If α > 0, then
Pf (G1 ◦ G2, x) > Pf (G1, x) + n1Pf (G2, x).

Corollary 7 has the following consequence.

Corollary 8. Given two graphs G1 and G2 with order n1 and n2, respectively, the ID polynomial of the corona
product G1 ◦ G2 is

ID(G1 ◦ G2, x) = xn2 ID(G1, x) + n1xID(G2, x).

Theorem 5 has the following consequence.
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Corollary 9. Let G1 and G2 be two graphs without pendant vertices and with order n1 and n2, respectively.
If f (t) = t

√
log t, then the f -polynomial of the corona product G1 ◦ G2 satisfies for x ∈ (0, 1]

Pf (G1 ◦ G2, x) > Pf (G1, x) + n1Pf (G2, x).

Next, we obtain bounds for I f (G1 ◦ G2) by using the previous inequalities for Pf (G1 ◦ G2, x).

Proposition 5. Let δ ∈ Z+, and let G1 and G2 be two graphs with order n1 and n2, respectively, and a
minimum degree of at least δ. If f is increasing on Z+ ∩ [δ, ∞), then

I f (G1 ◦ G2) > I f (G1) + n1 I f (G2).

Proof. Theorem 5 gives
Pf (G1 ◦ G2, x) > Pf (G1, x) + n1Pf (G2, x)

for every x ∈ (0, 1]. Thus, Proposition 1 gives the desired inequality.

Theorem 6. Let G1 and G2 be two graphs with order n1 and n2, respectively, and a > 0. If f : Z+ → (0, a/2],
then the following inequalities hold.

(1) If f ∈ AP1(1), then

I f (G1 ◦ G2) 6
2
3

( an1 f (n2)

a + f (n2)
I f (G1)

)1/2
+

2n1

3

( an2 f (1)
a + f (1)

I f (G2)
)1/2

.

(2) If f ∈ AP2(1), then

I f (G1 ◦ G2) >
4
3

( f (n2)

a + f (n2)
I f (G1) +

n1 f (1)
a + f (1)

I f (G2)
)

.

Proof. Let us define the function g = f /a. Thus, g : Z+ → (0, 1/2] and Proposition 1 gives that
Pg(G1, x) and Pg(G2, x) are convex functions on (0, ∞) and continuous on [0, ∞); hence, they are
convex on [0, 1].

If f ∈ AP1(1), then f /a ∈ AP1(1) and Theorem 5 gives

Pf /a(G1 ◦ G2, x) 6 xa/ f (n2)Pf /a(G1, x) + n1xa/ f (1)Pf /a(G2, x).

Note that f /a 6 1/2 gives a/ f − 1 > 1, and so Pf /a(Gi, 0) = 0 and Pf /a(Gi, 1) = ni for i = 1, 2.
Since a/ f (n2) > 2, we have that xa/ f (n2) is also a convex function on [0, 1], and Lemma 2 gives

∫ 1

0
xa/ f (n2)Pf /a(G1, x) dx 6

2
3

( ∫ 1

0
xa/ f (n2)dx

∫ 1

0
Pf /a(G1, x) dx

)1/2

·
(
(0 + 1)

(
Pf /a(G1, 0) + Pf /a(G1, 1)

))1/2

=
2
3

(
n1

f (n2)

a + f (n2)

1
a

I f (G1)
)1/2

.

We obtain, in a similar way,

n1

∫ 1

0
xa/ f (1)Pf /a(G2, x) dx 6

2n1

3

( n2 f (1)
a + f (1)

1
a

I f (G2)
)1/2

.
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Hence,

1
a

I f (G1 ◦ G2) = I f /a(G1 ◦ G2) =
∫ 1

0
Pf /a(G1 ◦ G2, x) dx

6
2
3

( n1 f (n2)

a + f (n2)

1
a

I f (G1)
)1/2

+
2n1

3

( n2 f (1)
a + f (1)

1
a

I f (G2)
)1/2

.

If f ∈ AP2(δ), then f /a ∈ AP2(δ) and Theorem 5 gives

Pf /a(G1 ◦ G2, x) > xa/ f (n2)Pf /a(G1, x) + n1xa/ f (1)Pf /a(G2, x).

Thus, Lemma 1 gives

1
a

I f (G1 ◦ G2) = I f /a(G1 ◦ G2) =
∫ 1

0
Pf /a(G1 ◦ G2, x) dx

>
4
3

∫ 1

0
xa/ f (n2)dx

∫ 1

0
Pf /a(G1, x) dx +

4n1

3

∫ 1

0
xa/ f (1)dx

∫ 1

0
Pf /a(G2, x) dx

=
4
3

f (n2)

a + f (n2)

1
a

I f (G1) +
4
3

n1 f (1)
a + f (1)

1
a

I f (G2).

Next, we obtain inequalities for several topological indices of the corona product of graphs.
Theorems 1 and 6 (with a = 2) and Proposition 5 have the following consequence.

Corollary 10. Let G1 and G2 be two graphs with order n1 and n2, respectively, and α ∈ R.
(1) If α 6 −1, then

Mα
1 (G1 ◦ G2) 6

2
3

( 2n1nα
2

2 + nα
2

Mα
1 (G1)

)1/2
+

2n1

3

(2n2

3
Mα

1 (G2)
)1/2

.

(2) If α ∈ [−1, 0], then

Mα
1 (G1 ◦ G2) >

4
3

( nα
2

2 + nα
2

Mα
1 (G1) +

n1

3
Mα

1 (G2)
)

.

(3) If α > 0, then
Mα

1 (G1 ◦ G2) > Mα
1 (G1) + n1Mα

1 (G2).

Corollary 10 gives the following result.

Corollary 11. If G1 and G2 are two graphs with order n1 and n2, respectively, then

4
3

( 1
2n2 + 1

ID(G1) +
n1

3
ID(G2)

)
6 ID(G1 ◦ G2)

6
2
3

( 2n1

2n2 + 1
ID(G1)

)1/2
+

2n1

3

(2n2

3
ID(G2)

)1/2
.

Proposition 5 has the following consequence.

Corollary 12. If G1 and G2 are graphs without pendant vertices and with order n1 and n2, respectively, then

SL(G1 ◦ G2) > SL(G1) + n1SL(G2).
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5. Mycielskian Graphs

Given a graph G with V(G) = {v1, . . . , vn}, its Mycielskian graph µ(G) contains G itself as a
subgraph, together with n + 1 additional vertices {u1, . . . , un, w}. Each vertex ui is connected by an
edge to w. In addition, for each edge vivj of G, the Mycielskian graph includes two edges, uivj and
viuj. Thus, if G has order n and size m, then µ(G) has 2n + 1 vertices and 3m + n edges. In addition,

dvi ,µ(G) = 2 dvi , dui ,µ(G) = dvi + 1, dw,µ(G) = n,

for each i = 1, . . . , n, where dv and dv,µ(G) denote the degree of the vertex v in G and µ(G), respectively.
Mycielskian graphs are a construction for embedding any graph into a larger graph with a higher

chromatic number while avoiding the creation of additional triangles (see [37]). Mycielskian graphs
have been used also in mathematical chemistry; see, e.g., [38–41].

Theorem 7. Let G be a graph with order n, a > 0, α ∈ R, f (t) = tα/a, and x ∈ (0, 1].
(1) If α 6 −1, then

Pf /a(µ(G), x) 6 xa2−α−1 Pf (G, xa2−α
) + xaPf /a(G, x) + xan−α−1.

(2) If α ∈ [−1, 0], then

Pf /a(µ(G), x) > xa2−α−1 Pf (G, xa2−α
) + xaPf /a(G, x) + xan−α−1.

(3) If α > 0, then

Pf /a(µ(G), x) > xa2−α−1 Pf (G, xa2−α
) + Pf /a(G, x) + xan−α−1.

Proof. Assume first that α 6 −1. Thus, −α > 1 and (dvi + 1)−α > d−α
vi

+ 1. Since x ∈ (0, 1], we have

Pf /a(µ(G), x) =
n

∑
i=1

xa(dvi ,µ(G))
−α−1

+
n

∑
i=1

xa(dui ,µ(G))
−α−1

+ xa(dw,µ(G))
−α−1

=
n

∑
i=1

xa2−α(d−α
vi
−1)+a2−α−1

+
n

∑
i=1

xa(dvi+1)−α−1 + xan−α−1

6 xa2−α−1
n

∑
i=1

(
xa2−α)d−α

vi
−1

+
n

∑
i=1

xad−α
vi

+a−1
+ xan−α−1

= xa2−α−1 Pf (G, xa2−α
) + xaPf /a(G, x) + xan−α−1.

If α ∈ [−1, 0], then (dvi + 1)−α 6 d−α
vi

+ 1, and so

Pf /a(µ(G), x) =
n

∑
i=1

xa2−α(d−α
vi
−1)+a2−α−1

+
n

∑
i=1

xa(dvi+1)−α−1 + xan−α−1

> xa2−α−1
n

∑
i=1

(
xa2−α)d−α

vi
−1

+
n

∑
i=1

xad−α
vi

+a−1
+ xan−α−1

= xa2−α−1 Pf (G, xa2−α
) + xaPf /a(G, x) + xan−α−1.
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If α > 0, then (dvi + 1)−α 6 d−α
vi

, and so

Pf /a(µ(G), x) =
n

∑
i=1

xa2−α(d−α
vi
−1)+a2−α−1

+
n

∑
i=1

xa(dvi+1)−α−1 + xan−α−1

> xa2−α−1
n

∑
i=1

(
xa2−α)d−α

vi
−1

+
n

∑
i=1

xad−α
vi
−1

+ xan−α−1

= xa2−α−1 Pf (G, xa2−α
) + Pf /a(G, x) + xan−α−1.

Theorem 7 has the following consequences.

Corollary 13. If G is a graph with order n, then

ID(µ(G), x) = x ID(G, x2) + x ID(G, x) + xn−1.

Next, we obtain bounds for Mα
1 (µ(G)) by using the previous inequalities for Pf (µ(G), x).

Theorem 8. Let G be a graph with order n and α ∈ R.
(1) If α 6 −1, then

Mα
1 (µ(G)) 6 2α Mα

1 (G) +
2
3

( 2
3

n Mα
1 (G)

)1/2
+ nα.

(2) If α ∈ [−1, 0], then

Mα
1 (µ(G)) >

(
2α +

4
9

)
Mα

1 (G) + nα.

(3) If α > 0, then
Mα

1 (µ(G)) > (2α + 1)Mα
1 (G) + nα.

Proof. Let us consider the function f (t) = tα. Assume first that α > 0. Theorem 7 with a = 1 gives

Pf (µ(G), x) > x2−α−1 Pf (G, x2−α
) + Pf (G, x) + xn−α−1

for x ∈ (0, 1]. Thus,

Mα
1 (µ(G)) =

∫ 1

0
Pf (µ(G), x) dx

>
∫ 1

0
x2−α−1 Pf (G, x2−α

) dx +
∫ 1

0
Pf (G, x) dx +

∫ 1

0
xn−α−1dx

=
∫ 1

0

1
2−α

Pf (G, t) dt + Mα
1 (G) +

[ xn−α

n−α

]1

0

= (2α + 1)Mα
1 (G) + nα.

Note that f (t) 6 1 for every t ∈ Z+ if α 6 0. Thus, 2/ f − 1 > 1, and Pf /2(µ(G), x) is a convex
function on [0, 1] with Pf /2(µ(G), 0) = 0.

Assume now that α 6 −1. Theorem 7 with a = 2 gives

Pf /2(µ(G), x) 6 x21−α−1 Pf (G, x21−α
) + x2Pf /2(G, x) + x2n−α−1
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for x ∈ (0, 1]. Thus,

Mα
1 (µ(G)) = 2 I f /2(µ(G)) = 2

∫ 1

0
Pf /2(µ(G), x) dx

6 2
∫ 1

0
x21−α−1 Pf (G, x21−α

) dx + 2
∫ 1

0
x2Pf /2(G, x) dx + 2

∫ 1

0
x2n−α−1dx

=
∫ 1

0

1
2−α

Pf (G, t) dt + 2
∫ 1

0
x2Pf /2(G, x) dx +

[ x2n−α

n−α

]1

0

= 2α Mα
1 (G) + 2

∫ 1

0
x2Pf /2(G, x) dx + nα.

Since x2 and Pf /2(µ(G), x) are non-negative convex functions on [0, 1], Lemma 2 gives

∫ 1

0
x2Pf /2(G, x) dx 6

2
3

(∫ 1

0
x2dx

∫ 1

0
Pf /2(G, x) dx

)1/2 (
Pf /2(G, 0) + Pf /2(G, 1)

)1/2

=
2
3

( 1
3
· 1

2
Mα

1 (G) n
)1/2

=
1
3

( 2
3

n Mα
1 (G)

)1/2
.

Finally, assume that α ∈ [−1, 0]. Theorem 7 with a = 2 gives

Pf /2(µ(G), x) > x21−α−1 Pf (G, x21−α
) + x2Pf /2(G, x) + x2n−α−1

for x ∈ (0, 1]. Hence, the previous argument gives

Mα
1 (µ(G)) > 2α Mα

1 (G) + 2
∫ 1

0
x2Pf /2(G, x) dx + nα.

Since x2 and Pf /2(µ(G), x) are non-negative and convex on [0, 1], Lemma 1 gives

2
∫ 1

0
x2Pf /2(G, x) dx >

8
3

∫ 1

0
x2dx

∫ 1

0
Pf /2(G, x) dx =

4
9

Mα
1 (G).

Theorem 8 has the following consequence for the inverse degree index.

Corollary 14. If G is a graph with order n, then

17
18

ID(G) +
1
n
6 ID(µ(G)) 6

1
2

ID(G) +
2
3

( 2
3

n ID(G)
)1/2

+
1
n

.

6. ID Polynomials of Other Graph Operations

Let us recall the definition of other graph operations.
Let G be a graph. Given an edge e = uv of G, let V(e) = {u, v}. Now we can define the following

five graph operations.
The line graph, denoted by L(G), is the graph whose vertices correspond to the edges of G,

and two vertices are adjacent if and only if the corresponding edges in G share a vertex.
The subdivision graph, denoted by S(G), is the graph obtained from G by replacing each of its

edges by a path of length two, or equivalently, by inserting an additional vertex into each edge of G.
The total graph, denoted by T(G), has as its vertices the edges and vertices of G. Adjacency in

T(G) is defined as adjacency or incidence for the corresponding elements of G.
The graph R(G) is obtained from G by adding a new vertex corresponding to each edge of G and

then joining each new vertex to the end vertices of the corresponding edge. Another way to describe
R(G) is to replace each edge of G by a triangle.
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The graph Q(G) is the graph obtained from G by inserting a new vertex into each edge of G and
by joining edges the pairs of these new vertices that lie on adjacent edges of G.

Given a graph G, we may define the following sets:

EE(G) := {{e, e′} : e, e′ ∈ E(G), e 6= e′, |V(e) ∩V(e′)| = 1},
EV(G) := {{e, v} : e ∈ E(G), v ∈ V(e)}.

We may then write these five graph operations as follows:

L(G) := (E(G), EE(G)),

S(G) := (V(G) ∪ E(G), EV(G)),

T(G) := (V(G) ∪ E(G), E(G) ∪ EV(G) ∪ EE(G)),

R(G) := (V(G) ∪ E(G), E(G) ∪ EV(G)),

Q(G) := (V(G) ∪ E(G), EV(G) ∪ EE(G)).

The following result is elementary.

Proposition 6. If G is a graph with m edges, then

ID(S(G), x) = ID(G, x) + mx, ID(S(G)) = ID(G) +
1
2

m.

The computation of the ID polynomials of other graph operations involves harmonic polynomials.
As we have seen, the line graph L(G) of G is a graph that has a vertex we ∈ V(L(G)) for each edge

e ∈ E(G), and an edge joining wei and wej when ei and ej share a vertex (i.e., L(G) is the intersection
graph of E(G)). It is easy to check that if uv ∈ E(G), then the degree of wuv ∈ V(L(G)) is du + dv − 2.

Line graphs were initially introduced in the papers [1,42], although the terminology of line graph
was used in reference [43] for the first time. They are an active topic of research at this moment.
In particular, several papers study some topological indices on line graphs (see, e.g., [44,45]).

Proposition 7. If G is a graph, then

H(G, x) = x2 ID(L(G), x), ID(L(G)) =
∫ 1

0

H(G, x)
x2 dx.

Proof. We have

H(G, x) = ∑
uv∈E(G)

xdu+dv−1 = ∑
w∈V(L(G))

xdw+1 = x2 ∑
w∈V(L(G))

xdw−1 = x2 ID(L(G), x),

ID(L(G)) =
∫ 1

0
ID(L(G), x) dx =

∫ 1

0

H(G, x)
x2 dx.

Proposition 8. If G is a graph, then

ID(T(G), x) = xID(G, x2) + H(G, x), ID(T(G)) =
1
2

ID(G) +
1
2

H(G).
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Proof. We have

ID(T(G), x) = ∑
u∈V(G)

x2du−1 + ∑
uv∈E(G)

xdu+dv−1 = x ∑
u∈V(G)

(x2)du−1 + H(G, x)

= xID(G, x2) + H(G, x),

ID(T(G)) =
1
2

∫ 1

0
2xID(G, x2) dx +

∫ 1

0
H(G, x) dx =

1
2

∫ 1

0
ID(G, t) dt +

1
2

H(G)

=
1
2

ID(G) +
1
2

H(G).

Proposition 9. If G is a graph with m edges, then

ID(R(G), x) = xID(G, x2) + mx, ID(R(G)) =
1
2

ID(G) +
1
2

m.

Proof. We have

ID(R(G), x) = ∑
u∈V(G)

x2du−1 + ∑
uv∈E(G)

x2−1 = xID(G, x2) + mx,

ID(R(G)) =
1
2

∫ 1

0
2xID(G, x2) dx +

∫ 1

0
mx dx =

1
2

ID(G) +
1
2

m.

Proposition 10. If G is a graph, then

ID(Q(G), x) = ID(G, x) + H(G, x), ID(Q(G)) = ID(G) +
1
2

H(G).

Proof. We have

ID(Q(G), x) = ∑
u∈V(G)

xdu−1 + ∑
uv∈E(G)

xdu+dv−1 = ID(G, x) + H(G, x),

ID(Q(G)) =
∫ 1

0
ID(G, x) dx +

∫ 1

0
H(G, x) dx = ID(G) +

1
2

H(G).

Corollary 15. If G is a graph with m edges, then

ID(S(G)) = ID(R(G)) +
1
2

ID(G) = 2 ID(R(G))− 1
2

m,

ID(Q(G)) = ID(T(G)) +
1
2

ID(G).
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