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Abstract

Intensity-duration-frequency (IDF) curves are commonly used in
engineering practice for the hydraulic design of flood protec-
tion infrastructures and flood risk management. IDF curves are
simple functions between the rainfall intensity, the timescale at
which the rainfall process is studied, and the return period.
This work proposes and tests a new methodological framework for
the spatial analysis of extreme rainfall intensities at different time
scales, taking advantage of two different precipitation datasets: local
observational and gridded products. On the one hand, the proposed
method overcomes or reduces known issues related to observational
datasets (missing data and short temporal coverage, outliers, system-
atic biases and inhomogeneities, etc.). On the other hand, it allows
incorporating appropriately terrain dependencies on the spatial dis-
tribution of the extreme precipitation regime. Finally, it allows to
estimate the IDF curves at regional level in contrast with the local
approach only based on rain gauges commonly used in practice.
The method has been tested to compute IDF curves all over the
Basque Country, contrasting results with respect to local analyses.
Results show the method robustness against outliers, missing data,
systematic biases and short length time series. Moreover, since GEV-
parameters from daily gridded dataset are used as covariates, the
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2 Spatial extreme model for rainfall intensity

proposed approach allows coherent spatial interpolation/extrapolation
of IDF curves properly accounting for the influence of orographic factors.
In addition, due to the current coexistence of local observations and
gridded datasets at regional (e.g. The Alps), national (e.g. Spain,
France, etc.) or international scale (e.g. E-OBS for Europe or Daymet
for the United States of America), the proposed methodology has
a wide range of applicability in order to fulfill the known gaps of
the observational datasets and reduce the uncertainty related with
analysis and characterization of the extreme precipitation regime.

Keywords: precipitation extremes, return values, IDF curves

1 Introduction

Intensity-duration-frequency (IDF) curves are probably one of the most com-
monly used tools in engineering practice, which are very useful for the
hydraulic design of flood protection infrastructures and flood risk manage-
ment in general, having a great variety of applications (Grimaldi et al, 2011).
IDF curves are simple functions between the rainfall intensity, the timescale
at which the rainfall process is studied, and the return period. For more infor-
mation about IDF curves, we recommend the state-of-the-art review by Salas
et al (2020) related to probable maximum precipitation (PMP), closely related
topic to IDF curves.

This practical interest has encouraged water management administrations
to display rain gauges over the watersheds they manage to measure the amount
of water that has fallen in real-time, which provide average rainfall intensities
during time intervals of 10/15 minutes. These records allow the construction
of IDF curves for different time scales, which should be updated from time-
to-time to include the additional information gathered over time, and/or new
methodological developments.

However, a common shortcoming of these datasets is that they do not
usually have long enough records all over the area of interest to make return
period estimates with confidence. As a result, most IDF curve adjustments are
based on daily datasets with longer series (see Yan et al, 2021, and references
therein). In addition, fitted IDF curves at locations where rain gauges are
available provide local information about the extreme precipitation regime,
which can not be easily extrapolated to the rest of the target region. In order
to solve the spatial coverage problem of the observational networks and due to
the known problems of these datasets (missing data, outliers, inhomogeneities
due to instrumental and/or location changes, etc.) (Klein Tank et al, 2002;
Herrera et al, 2012, 2019a) a commonly used approach is to build gridded
(“regionalized” or “interpolated”) datasets based on quality controlled obser-
vational networks, which cover long time periods and the region analyzed.
In recent years, many gridded datasets have been developed at regional (Frei
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and Schär, 1998; Bedia et al, 2013; Artetxe et al, 2019), national (Yatagai
et al, 2007; Belo-Pereira et al, 2011; Herrera et al, 2012, 2019a), continental
(Haylock et al, 2008; Thornton et al, 2020) and/or global (Lange, 2016, 2019;
Dirk N. Karger et al, 2021) scale based on different interpolation approaches.
Despite the known limitations of the interpolated datasets to reproduce the
observed extreme values (Klok and Klein Tank, 2009; Herrera et al, 2012,
2019a), in general they are able to properly described the spatial dependencies
of the variable and, depending on the stations density (Hofstra et al, 2010;
Herrera et al, 2019b), the influence on the rainfall distribution of orographic
factors, such as elevation, distance from shoreline, blockages, exposures, curva-
tures, etc. Based on the advantages and shortcomings of both types of rainfall
datasets a question appears: could a gridded dataset be used as a complement
of rain gauges for the IDF-curve estimation problem?

In this sense, the combination of different datasets for extreme value anal-
ysis is not new. Extreme mixed models have been used to combine reanalysis
and instrumental data. Mı́nguez et al (2013) proposes the mixed extreme value
(MEV) climate model for wave analysis. This method allows correcting dis-
crepancies between instrumental and reanalysis records in the upper tail and
it is consistent with extreme value theory. However, in order to characterize
stochastically the differences between instrumental and reanalysis maxima, it
only uses information about annual maxima. In Mı́nguez and Del Jésus (2015)
the method is extended to be applied with alternative models such as Pareto-
Poisson (Leadbetter et al, 1983) or Peaks Over Threshold (POT, Davidson
and Smith (1990)), which are known to be more robust because they use more
information during the estimation process.

In addition, recent advances in the extreme value theory (see Coles (2001);
Katz et al (2002) as general references) allow modeling the natural variabil-
ity of extreme events of environmental and geophysical variables based on
regression models. These methods introduce time-dependent variations within
a certain time scale (year, season or month) and the possibility to construct
regression models to show how the variables of interest may depend on other
measured covariates. Examples of these kinds of models can be found in
Carter and Challenor (1981), which proposes a month-to-month distribution
assuming that data are identically distributed within a given month. Smith
and Shively (1995) constructed a regression model for the frequency of high-
level ozone exceedances in which time and meteorology are regressors. Morton
et al (1997) apply a seasonal POT model to wind and significant wave height
data. Analogous models but applied to different geophysical variables can be
found in Coles (2001), Katz et al (2002) or Méndez et al (2007). Méndez
et al (2006) developed a time-dependent POT model for extreme significant
wave height which considers the parameters of the distribution as functions
of time (harmonics within a year, exponential long-term trend, the Southern
Oscillation Index (SOI), etc.). Brown et al (2008) studied the global changes
in extreme daily temperature since 1950 considering possible trends and the
influence of the North Atlantic Oscillation (NAO). Menéndez et al (2009) and
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Izaguirre et al (2010) developed a time-dependent model based on the Gen-
eralized Extreme Value (GEV) distribution that accounts for seasonality and
interannual variability of extreme monthly significant wave height. Northrop
(2004) proposes a regression model to describe a region-of-influence approach
for flood frequency analysis.

The motivation of this work comes, firstly, from the effort that the Basque
Country’s Government has made in recent years to improve the knowledge
about the climate and water resources of the region, and secondly, from the
purpose to take full advantage of all climatic information available all over the
Basque Country, which includes instrumental rain gauges of high temporal
frequency (see Fig. 1) and a high spatial resolution gridded dataset of daily
precipitation (Artetxe et al, 2019). In addition, the Basque Water Agency
(Uraren Euskal Agentzia) has promoted and carried out many hydrological
and meteorological studies in order to define the average annual rainfall and
the regime of extremes, however most of these studies have not collected IDF
curves, information of interest to many administrations and individuals, and
in those locations where IDF curves have been defined, they have become
obsolete and, therefore, it is necessary to update them.

In summary, the aim of this work is to take advantage of the precipitation
datasets available for the Basque Country to present a new methodological
framework for the spatial analysis of extreme rainfall intensities at different
time scales with the following features:

1. Being robust with respect to abnormally high records (outliers). Given the
number of available rain gauges, it is advisable to have a methodology that
is not sensitive to these anomalous data.

2. Being robust in case the data provided by a rain gauge contains systematic
biases due to location, exposure to wind and/or obstacles, among other
causes.

3. Being robust with respect to the existence of gaps in time series enabling
not to discard records of incomplete years with a high percentage of gaps
in the series.

4. Make it robust with respect to the length of the series. There is no doubt
that the longer the record, the lower the uncertainty in return period esti-
mations. It would be convenient to have a method that gives more weight
to long records than to short ones, without the need to discard short ones
from the analysis. Note that it is recognized in the technical literature that
when using short records, there is a lack of information on large hydro-
logical events, which is one of main drawbacks in flood frequency analysis
and there is a need of “temporal information expansion,” to obtain reliable
enough results concerning quantiles of large return periods (Salas et al,
2020).

5. Allowing coherent spatial interpolation/extrapolation, i.e. taking into
account the influence of orographic factors such as elevation, distance from
shoreline, blockages, exposures, curvatures, etc.
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In order to achieve these goals, in this paper we propose the combination of
instrumental data given by rain gauges and the tail information given by the
high-resolution daily precipitation gridded dataset over the Basque Country.
We characterise the tail of intensity rainfall for different timescales from instru-
mental records and using the tail behavior of daily precipitations as covariates.
Those covariates allows us to interpolate/extrapolate the tail of intensity rain-
fall for different timescales all over the gridded domain. It is precisely in those
covariates where the influence of orographic factors such as elevation, distance
from shoreline, blockages, exposures, curvatures, etc. is gathered.

Note that the current availability of daily precipitation gridded datasets
makes the proposed method highly applicable to make a coherent and robust
spatial analysis of extreme intensity rainfall for different timescales, i.e. to
make IDF curves. In addition, the positive features of the method and its
robustness might justify the effort of developing specific high resolution daily
precipitation gridded data sets prior making any extreme value analysis of
intensity rainfall.

The rest of the manuscript is organized as follows. Section 2 presents the
observational (2.1) and gridded datasets (2.2) used, and the proposed extreme
value analysis model (2.3). Section 3 shows the performance on real data from
Basque Country. Finally, in Section 4 relevant conclusions are drawn.

2 Data and Methods

In this section, firstly, the observational precipitation data and the gridded
dataset are described, including the interpolation method used to build the
high resolution daily precipitation gridded dataset for the Basque Country,
and secondly, the spatial extreme value model is described in detail.

2.1 Basque Water Agency Rain Gauges

Figure 1 shows the observational network deployed by the Basque Water
Agency (Uraren Euskal Agentzia) covering the different watersheds of the
region. This dataset is composed by 131 rain gauges distributed all over the
Basque Country covering the period 1989-2020 (see Appendix A for a detailed
description of the stations network). The average precipitation amount is reg-
istered at 10- and 15-minute time intervals, obtaining the values at different
timescales (30, 60, 120, 180, 240, 360, 720 and 1440 minutes) by aggregating
the corresponding 10- or 15-minute values using a rolling window.

Note that, despite the large number of rain gauges available, in previous
analyses many stations were discarded due to:

1. uncertainties associated with the measurements,
2. the differences in measurement technology among rain gauges, and
3. the disparity in record lengths.

Moreover, precipitation records were brushed up before its use, checking
for missing values and outliers. In this sense, filtering anomalous data when
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Fig. 1 Rain gauges locations all over the Basque Country. Each type of marker is associated
with a different watershed.

dealing with the right tail is complex if you do not have clear indicators that
there might be an inconsistency in the data.

An important issue for any extreme value analysis is the record length. In
this particular case, the vast majority of the records are more than 5 years old
as shown in Figure 2. The standards of good practice advise not to perform
extreme analyzes with less than 10 years of data, however we have set out 5
years as minimum length used in this analysis, disregarding those with lower
record length. There are two reasons: a) the minimum of ten years can be
slightly reduced in case of using the peaks-over-threshold approach, and b)
one of the aims of the manuscript is to show how the proposed method allows
not to disregard short record lengths from the analysis.

Fig. 2 Cumulative distribution function of record lengths associated with rain gauges in
the Basque Country.
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2.2 Daily precipitation gridded dataset

In the framework of the https://www.euskadi.eus/web01-a2ingkli/es/
contenidos/documentacion/klima2050/en def/index.shtml a high spatial reso-
lution (1 km2) gridded dataset for daily precipitation and mean, maximum and
minimum daily temperatures was developed covering the period 1971-2016,
which was updated until 2019 for this study, by applying the methodology
proposed in Artetxe et al (2019).

This grid was developed considering a quality controlled observational
dataset that combines stations belonging to the Spanish National Weather
Service (AEMET), the Basque Weather Service (EuskalMet) and the Basque
Water Agency (URA - Uraren Euskal Agentzia). Only stations with at least
20 consecutive years with at least the 80% of the data were included in the
final dataset. In the case of the EuskalMet and URA stations, due to the
shorter time coverage, the threshold was reduced to at least 10 years. In addi-
tion, stations with less than the 50% of the monthly time series, considering
for each month the same 80% threshold of data available, were removed of
the final dataset. In addition, precipitation outliers were identified consider-
ing as threshold 4 times the 90th percentile of the rainy days and removed
from the time series. As a result, the final dataset considered for the interpo-
lation contained 244 (164) stations for precipitation (temperature) (see Fig. 3
in Artetxe et al, 2019).

In order to reach the final resolution a three–step regression-kriging (Hengl
et al, 2007) interpolation process was conducted:

� First, the monthly rainfall values were obtained by regression consider-
ing as regressors a set of basic covariates describing terrain characteristics
including elevation, distance to coastline, and topographic blocking effects.

� Secondly, the monthly residual obtained with the regression model was inter-
polated with ordinary kriging and added to the monthly value obtained with
the regression model.

� Finally, the daily anomaly was obtained by applying ordinary kriging
(Atkinson and Lloyd, 1998; Biau et al, 1999; Haylock et al, 2008; Herrera
et al, 2012) to the regression residuals. Both the daily anomaly and the
monthly values are combined to obtain the final daily estimations.

The high-resolution orography was obtained from the digital elevation
model https://lta.cr.usgs.gov/GTOPO30 (Gesch et al, 1999) with an spatial
resolution of 30” which corresponds to 1km at these latitudes.

Note that the monthly value for precipitation corresponds to the total
precipitation amount for that month and, thus, the daily anomaly is defined
as the quotient between the daily precipitation value and the total monthly
precipitation amount. As a result, the daily value is obtained by multiplying
the estimated monthly values and the daily anomalies.

The final result constitutes a high-resolution gridded dataset of daily values
of precipitation all over the Basque Country, including the main topographic

Basque Climate Change Strategy - KLIMA 2050
Basque Climate Change Strategy - KLIMA 2050
GTOPO30
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dependencies given by the observations due to the regression model used in
the interpolation process.

2.3 Spatial extreme value analysis model

Before describing the proposed spatial extreme value analysis model for inten-
sity rainfall, we provide some insights about extreme value distributions
(Castillo, 1988; Castillo et al, 2005, 2008) required to understand where our
model comes from.

2.3.1 Extreme value analysis models

Given any random variable X, the distribution of the maximum of a sample of
size n drawn from a population with cumulative probability distribution (CDF)
FX(x), assuming independent observations, corresponds to FX(x)n. However
this result does not tell us anything for large samples, i.e. when n → ∞,
because:

lim
n→∞

FX(x)n =

{︃
1 if FX(x) = 1
0 if FX(x) < 0

(1)

To avoid degeneracy, a linear transformation is looked for such that:

lim
n→∞

FX(an + bnx)
n = H(x); ∀x (2)

are not degenerate, where an and bn are constants, which depend on n.
It turns out (Fisher and Tippett (1928); Tiago de Oliveira (1958); Galam-

bos (1987)) that only one parametric family satisfies (2) and it is known as
generalized extreme value (GEV) distribution with CDF given by:

H(x; µ, ψ, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
exp

⎧⎪⎨⎪⎩−
[︃
1 + ξ

(︃
x− µ
ψ

)︃]︃−1

ξ

+

⎫⎪⎬⎪⎭ ; ξ ̸= 0,

exp

{︃
− exp

[︃
−
(︃
x− µ
ψ

)︃]︃}︃
;
−∞ < x <∞

ξ = 0
,

where [a]+ = max(0, a), µ, ψ, ξ are the location, scale and shape parameters,
respectively, and the support is x ≤ µ − ψ/ξ if ξ < 0, x ≥ µ − ψ/ξ if ξ > 0,
or −∞ < x < ∞ if ξ = 0. The GEV distribution includes three distribution
families corresponding to the different types of the tail behavior: Gumbel
family (ξ = 0) with a light tail decaying exponentially; Fréchet distribution
(ξ > 0) with a heavy tail decaying polinomially; and Weibull family (ξ < 0)
with a bounded tail.

Distribution (3) is useful for analysing maximum rainfall intensity for dif-
ferent time scales if annual maxima series (AMS) are considered. The main
problem with respect to AMS is that many records belonging to the right
tail of the distribution are discarded. That is the reason why we rather using
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the Peaks Over Threshold method (POT) (Davidson and Smith, 1990). The
basic idea is that high exceedances occur in clusters associated with single
storms. By separating out the peaks within those clusters, they will be approx-
imately independent and can be fitted using the Poisson-Generalized Pareto
Distribution (GPD) model. The latter relies on the following assumptions:

1. The number of independent storm peaks N exceeding threshold u in any
one year follows a Poisson distribution with parameter λ.

2. The random variable X associated with independent storm peaks above
the threshold u follows a Pareto distribution with cumulative distribution
function:

G(x− u; σ, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1−

[︃
1 + ξ

(︃
x− u
σ

)︃]︃−1

ξ

+

; ξ ̸= 0,

1− exp

[︃
−
(︃
x− u
σ

)︃]︃
;
−∞ < x <∞

ξ = 0
,

where [a]+ = max(0, a), σ, ξ are the scale and shape parameters, respec-
tively, and the support is u < x ≤ u + σ/|ξ| if ξ < 0, x ≥ u if ξ > 0, or
u < x <∞ if ξ = 0. The GPD distribution also includes three distribution
families corresponding to the different types of the tail behavior: Exponen-
tial family (ξ = 0); Pareto tail distribution (ξ > 0); and one analogous to
the Weibull family (ξ < 0) and a bounded tail.

Supposing that x > u, this model allows to derive the cumulative
distribution function of annual maxima as follows:

Prob

(︃
max

1 ≤ i ≤ N
Xi ≤ x

)︃
=Prob(N = 0) +

∞∑︂
n=1

Prob(N = n)G(x− u)n

= e−λ +

[︄ ∞∑︂
n=1

e−λλn

n!
G(x− u)n

]︄
=e

−λ

[︄
1+ξ

(︄
x− u
σ

)︄]︄−
1

ξ

.

(3)
Considering the asymptotic relationship between return period (T ) and

annual maxima given by Beran and Nozdryn-Plotnicki (1977):

T = − 1

log

(︃
Prob

[︃
max

1 ≤ i ≤ N
Xi ≤ x

]︃)︃ , (4)

the following relationship between Pareto-Poisson model and return period is
derived:

T =
1

λ(1−G(x− u))
. (5)
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Conversely, quantile xT associated with given return period T is obtained
by solving the following implicit equation:

G(xT − u) = 1− 1

λT
. (6)

An advantage of this model is that it is entirely consistent with GEV. In
fact expression (3) is equal to (3) if:

σ = ψ + ξ(u− µ), λ =

[︃
1 + ξ

(︃
u− µ
σ

)︃]︃−1

ξ
. (7)

Remark 1 We encourage using Poisson-GPD model because it allows taking more
than one data for each year if more than one exceedances are present, and disregard
those years whose maximum can be much below several order statistics with respect
to other years. Besides, contrary to the thought that POT values converge to GPD
given that the threshold tends to infinity (Salas et al, 2020), they do converge given
that the threshold tends to the upper end of the random variable, which must be
limited by physical considerations Castillo et al (2008).

2.3.2 Spatial model

A common practice in modern statistics is building regression models to show
how the variable of interest may depend on other covariates. It is usual to
include covariates in the location, scale and shape parameters associated with
temporal variation such as in Mı́nguez et al (2010); Izaguirre et al (2012);
Yan et al (2021). However, it is also possible to include covariates linked to
geographic locations. In this specific case, the spatial model we propose has
the following parameterization of the location, scale and shape parameters
associated with the k-th element of the same spatial grid used for the daily
precipitation regionalized dataset:

µk = β0 + β1µ
d
k (8)

log(ψk) = α0 + α1 log(ψ
d
k) (9)

ξk = γ0 + γ1ξ
d
k , (10)

where parameters µd
k, ψ

d
k and ξdk are the location, scale and shape parameters of

the annual maximum distribution associated with daily precipitation records
for k-th element of the spatial grid. Even though the model is described in
terms of GEV parameters, we recommend using the POT method explained
in the previous section for fitting both the spatial and the local models. GEV
parameters can be obtained afterwards using expression (7).
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2.3.3 Maximum likelihood estimation

For parameter statistical inference the method of maximum likelihood is used,
maximizing the following log-likelihood function:

ℓ(xk; k = 1, . . . , nr,θ) =

nr∑︂
k=1

nk∑︂
i=1

log

(︄
dH(x; µk, ψk, ξk)

dx

⃓⃓⃓⃓
x=xk

i

)︄
(11)

where xk; k = 1, . . . , nr is the set of intensity rainfall records for any timescale
associated with peaks over threshold at rain gauge k, being nr the number of
rain gauges available, and xki the i-th element of the corresponding record. θ
is the set of parameters to be estimated, i.e. θ ∈ {β0, β1, α0, α1, γ0, γ1}. Note
that the log-likelihood function is composed by the log-likelihood functions
for each rain gauge location, i.e. we perform a unique parameter estimation
process for the spatial model, which contrast with the traditional individual
fitting process usually performed in this type of analyses.

If we expand the log-likelihood function (11) using the relationship between
GEV and Poisson-GPD models, it becomes:

ℓ(xk; ∀k,θ) =
nr∑︂
k=1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{nk log(λk)− Tkλk − nk log(σk)

−

[︄(︃
1 +

1

ξk

)︃ nk∑︂
i=1

log

(︃
1 + ξk

xki − uk
σk

)︃]︄}︄
if ξk ̸= 0

nk log(λk)− Tkλk − nk log(σk)−
nk∑︂
i=1

(︃
xki − uk
σk

)︃
if ξk = 0

(12)
where GPD-scale and Poisson parameters in terms of GEV parameters
correspond to:

σk = ψk + ξk(uk − µk)

λk =

[︃
1 + ξk

(︃
uk − µk

σk

)︃]︃− 1

ξk if ξk ̸= 0

λk = exp

(︃
−uk − µk

σk

)︃
if ξk = 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
; ∀k, (13)

which could be substituted in (12) to express the log-likelihood function as a
function of GEV location (µk), scale (ψk) and shape (ξk) parameters. Finally,
expressions (8)-(10) allows to express the log-likelihood function as a function
of model parameters θ ∈ {β0, β1, α0, α1, γ0, γ1}. Note that we estimate both
GEV parameters and the regression parameters simultaneously for the whole
region through the optimization of the likelihood function.

The maximization of the log-likelihood function can be done using an
unconstrained nonlinear optimization routine, or even a constrained optimiza-
tion method including upper and lower bounds for some parameters could be
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used. In this particular application we used a Trust Region Reflective Algo-
rithm under Matlab (MATLAB, 2018) with upper and lower bounds through
the function fmincon. For details about the method see Coleman and Li (1994)
and Coleman and Li (1996). The trust region reflective algorithm has been
chosen because i) analytical first order derivative information can be included
and ii) upper and lower bounds on parameters can be considered easily. Note
that although the MLE parameter fitting is an unconstrained maximization
problem, we rather use a constrained optimization solver to include parameter
bounds, which makes the estimation more robust. All Newton-type routines
require the user to supply starting values. However, the importance of good
starting values can be overemphasized and, in this case, simple guesses are
enough (Smith, 2001).

2.3.4 Automatic regression model selection based on
sensitivity analysis

Parameterizations like (8)-(10) allow constructing complex models that better
capture the characteristics of the extreme tail behavior related to rain intensity
for different timescales. However, in order to avoid over fitting, we have to
establish a compromise between obtaining a good fit and keeping the model
as simple as possible (Akaike, 1973; Schwarz, 1978; Hurvich and Tsai, 1989;
George and Foster, 1994). In this particular case, we use the method proposed
in Mı́nguez et al (2010), a pseudo-steepest descent algorithm, which at every
iteration and based on sensitivity analysis (first and second-order derivative)
information, selects the best parameter to be introduced in the model that
maximizes the increment in the log-likelihood function, which in this case
is the parameter whose score test statistic absolute value is maximum. The
algorithm continues including new parameters until the likelihood ratio test
rejects the inclusion of new parameters.

Let us assume θ̂
(j)

be the optimal maximum likelihood estimation of a sub-

set from θ ∈ {β0, β1, α0, α1, γ0, γ1} at iteration j, being ℓ(j)
(︂
θ̂
(j)
)︂
the optimal

log-likelihood function value. The iterative process continues as follows:

Step 1: Set new values for parameter vector θ, such that,

θi =

{︄
θ̂
(j)

i if θi ∈ θ(j)

0 otherwise
(14)

Step 2: Compute for each parameter θi the corresponding score test statistic
absolute value as follows;

S(θi) =
U(θi)

2

Iii
, (15)

where U(θi) is the score (the derivative of the log-likelihood function) asso-
ciated with parameter θi, and and Iii is the corresponding diagonal element
of the the observed Fisher information matrix, i.e. the negative of the log-
likelihood Hessian matrix. We use the score test statistic as selection criterion
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because in order to compare the different sets of parameters, they should be
divided by the square root of their variance so that, for each parameters set,
its square has expectation 1 under the null hypothesis. The score test statistic
has this property, i.e. is properly scaled. Thus, the parameter with maximum
score test statistic is considered the most influential parameter and it is the
one chosen for the next iteration. Derivatives and hessian required to compute
(15) can be obtained numerically by finite differences.

Step 3: The next set of parameters θ(j+1) results from the union between set
θ(j) and parameter with maximum score test statistic:

θ(j+1) = θ(j) ∪ θi
⃓⃓⃓
S(θi) = max

∀k
S(θk). (16)

Step 4: Compute the a new estimation of this new set of parameters θ̂
(j+1)

,

being ℓ(j+1)
(︂
θ̂
(j+1)

)︂
the optimal log-likelihood function value. Note that a

good starting point for the optimization routine is the vector θ from (14).
[Step 5:] Compute the log-likelihood ratio statistic or deviance as follows:

T = 2
{︂
ℓ(j+1)

(︂
θ̂
(j+1)

)︂
− ℓ(j)

(︂
θ̂
(j)
)︂}︂

. (17)

If the true model is given by the set of parameters θ̂
(j)

, the deviance follows
a chi-square distribution with 1 degree of freedom (the difference in cardinality
between the two sets). There are two possibilities:

1. If T is bigger than the upper-α point of the χ2
1 distribution, the null hypoth-

esis is rejected, being the proper model that given by θ̂
(j+1)

. Update the
iteration counter j ← j + 1 and go to Step 1.

2. If T is lower than or equal to the upper-α point of the χ2
1 distribution, the

null hypothesis is accepted. The proper model is that given by θ̂
(j)

. Stop
the process.

Remark 2 Although we initially propose a purely based statistical method for param-
eter selection, we also recommend to follow the practical guidelines given by Castillo
et al (2008), which encourages to disregard domains of attraction based on physi-
cal considerations. In this particular case, precipitation has a physical limit which
allows us to disregard Frechet. In those cases where the proposed parameter selec-
tion method derives in a Frechet tail, we should reconsider and take Gumbel. Note
that Frechet tail behaviour might be induced by the presence of a high return period
within our data set.

2.3.5 Practical implementation

Once we have described the main ingredients of the method proposed, in
this section we enumerate the required steps in order to analyse the rainfall
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intensity for a given timescale or duration d. Prior to this analysis, it is required
to fit the GEV model for each location associated with the high resolution
daily gridded data set. We make this fitting using the maximum likelihood
method for each point and we have at our disposal the location, scale and
shape parameters (µd

k, ψ
d
k and ξdk ; ∀k ) at each point of the grid. These are

used as covariates for our spatial model. Next, the spatial fitting process is as
follows:

1. Let assume we have at our disposal nr time series of precipitation intensities
at fixed temporal resolution t0 at r different locations. Typical values are,
for instance, t0 ∈ {5, 10, 15} minutes.

2. The number of elements in each time series might be different among them
and equal to n0k; k = 1, . . . , r. The total duration of each time series is
equal to Tk = t0n

0
k; k = 1, . . . , r.

3. Time series must be aggregated at the desired duration (d) using a moving
window with length d/t0. Note that these temporal series are highly tem-
porally correlated, however, the selection procedure to determine the peaks
over threshold will remove temporal autocorrelation for each series in the
final data set.

4. For each time series a threshold uk; k = 1, . . . , r must be selected, and
then the peaks of clusters above the threshold are taken. We recommend to
use a minimum distance in time criteria to ensure that peaks truly belong
to independent storms. These data constitutes vectors xk; k = 1, . . . , r to
be fitted. Note that criteria to select the appropriate thresholds are given
in Davidson and Smith (1990).

5. Given the locations of data gauges, interpolate location, scale and shape
parameters µd

k, ψ
d
k, ξ

d
k ; k = 1, . . . , r using the gridded parameters. The

interpolation could be done using the nearest neighbour criteria, lineal,
bilineal interpolation, or any other spatial interpolation method. It mostly
depends on the spatial resolution and how gridded parameters change over
space.

6. Next step is the automatic regression model selection explained in detail in
section 2.3.4. We recommend start fitting the model using the set of param-
eters θ(0) = {β0, α0}, which corresponds to the same Gumbel distribution
all over the rain gauge locations, and using as initial values for the opti-
mization routine the mean and the logarithm of the standard deviation of
all samples, respectively.

7. Once the optimal model and parameter values are achieved, the rainfall
intensity distribution for a given timescale or duration d at any location
inside the grid is available.

2.3.6 Leave-One-Out Cross-Validation (LOOCV)

To test the robustness of the proposed method, we also perform a leave-one-
out cross-validation to compare the spatial model at each location where data
is available. In this particular case, we fit a different spatial model at each
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location by removing the data associated with the specific location. With this
strategy we can estimate how good is the model performance in locations where
we have no observations, which would give us a hint about how confidence
and/or reliable we could be while using the spatial interpolation proposed by
our model. Note that there is not any station in common between the Basque
Water Agency rain gauges and the observational network used to build the
gridded dataset, ensuring the independence needed in the any cross-validation
approach.

2.3.7 Diagnostics

The model proposed in this paper is based on several assumptions. For this
reason, once the parameter estimation process is completed, it is very impor-
tant to make and run different diagnostic plots and statistical hypothesis tests
to check whether the selected distributions might be considered appropriate
or not.

� Cramer-von Mises and Anderson-Darling tests proposed by Chen and Bal-
akrishnan (1995) to check at each location if the GPD fits (local and spatial)
are acceptable. The null hypothesis (H0) is that the exceedances at each
location xk − uk follow the fitted Generalized Pareto distributions. If H0

is not rejected then the original data is accepted to come from the GPD
distribution.

� Sample autocorrelation and partial autocorrelation functions related to the
transformed sample zP

k coming from:

G(xk − uk) = Φ(zP
k ); k = 1, . . . , np (18)

These functions help checking the independence assumption between peaks
over threshold, whose values should be within the confidence bounds.

� To further explore the independence hypothesis, the Ljung-Box (Box and
Pierce, 1970; Ljung and Box, 1978) lack-of-fit hypothesis test (Brockwell
and Davis, 1991) for model misidentification is applied to the transformed
sample zP

k . This test indicates the acceptance or not of the null hypothesis
that the model fit is adequate (no serial correlation at the corresponding
element of Lags).

� Cramer-von Mises and Anderson-Darling tests proposed by Chen and Bal-
akrishnan (1995) to check at each location if the Poisson-GPD (using the
GEV equivalence) fits (local and spatial) are acceptable. The null hypothe-
sis (H0) is that the annual maxima at each location xAMS

k follow the fitted
Generalized Extreme Value distributions. If H0 is not rejected then the
original data is accepted to come from the GEV distributions. Note that
xAMS
k correspond to the annual maxima series extracted from peaks over

threshold.
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3 Application to the estimation of IDF curves in
the Basque Country

This section describes the application of the proposed method with the aim
of constructing IDF curves all over the Basque Country based on the 131 rain
gauges (see Figure 1) and the high resolution daily precipitation grid described
in sections 2.1 and 2.2, respectively. To make the analysis, we follow the steps
given in section 2.3.5.

3.1 Annual maxima daily rainfall fitting over the 1km of
spatial resolution grid

The first step consists of analyzing the daily rainfall data from 1971 to 2019
over the grid of 1km of spatial resolution and fitting annual maxima to an
extreme value distribution. Note that in this case we have 49 years of data,
for this reason, we use the AMS method using the GEV as shown in the
section 2.3.1. We have not used The Pareto-Poisson model because the thresh-
old parameter must be selected carefully, and we have 12,389 points to be
fitted, that is the reason to select AMS instead.

In addition, we check at every node of the grid if the shape parameter is sta-
tistically significant or not using the likelihood ratio test given in section 2.3.5,
step 5.

We fitted 12,389 distributions, all of them Gumbel with null shape parame-
ter, to all locations where data were available. Results associated with location
(µ) and scale (ϕ) parameters are shown in Figures 3(a) and 3(b), respectively.
Note that units correspond to millimeters of daily precipitation. These two
graphs clearly point out how the orography (see Figure 4) affects the rainfall
behaviour also at the tail of the distribution so, in order to include this driver
in our model, we consider these quantities as spatial covariates in the spatial
model.

3.2 Local and spatial extreme value analysis at rain
gauge locations

Once the covariates are available for the spatial model, we proceed to the
fitting process for different durations. We are going to consider the following
timescales: 10, 20, 30, 60, 120, 180, 240, 360, 720 and 1440 minutes with the
following considerations:

1. For the 10 and 20 minute timescales we only consider in the fitting process
rain gauges with a ten minute record frequency.

2. For the rest of timescales, we used the data from all the rain gauges regard-
less of the recording frequency. However, we take into consideration each
recording frequency for appropriate re-scaling.

3. For comparison purposes, besides the spatial analysis we also make local
extreme value analysis.
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Table 1 provides both local and spatial extreme value fitting information
associated with analyzed rain gauges, in particular the following information
is given:

1. Name of the rain gauge.
2. Poisson fitted parameter (λ) associated with Poisson-GPD model in events

per year.
3. Scale parameter (σ) from GPD distribution of precipitation exceedances in

mm.
4. Shape parameter (ξ).
5. Selected threshold (u) in mm.
6. Location (µ) and scale (ψ) parameters related to GEV annual maxima

distribution.
7. pW-values related to Cramer-von Mises test associated with GPD fitting.

Note that we do not provide the Anderson-Darling test results in this table,
however we compare both tests results in next subsections.

8. p1, p2, p3, p4-values associated with Ljung-Box lack-of-fit hypothesis test to
check whether exceedances over the threshold are temporally independent.

9. pmax
W -values related to Cramer-von Mises test associated with GEV annual

maxima fitting.

From these Tables the following considerations are in order:

1. Most of the local fitted distributions correspond to Gumbel, i.e. null shape
parameter ξ = 0. However, there are 9 rain gauges (Berriatua, Aixola,
Lastur Pluviometro, La Garbea, Mañaria, Orozko (Altube), Oiz, Muxika,
Ereñozu) where local tail behaviour corresponds to Frechet ξ > 0, and 2
of them (Bidania, Estanda) correspond to Weibull ξ < 0 (bold faced shape
parameter values). This contrasts with spatial fitted results, where all rain
gauges correspond to Gumbel. Note that in those locations where the local
tail is different from Gumbel either the length of the record is short or there
exist a very large event which pushes the tail towards Frechet behaviour.
This last effect is observed in Figure 5 for the fitting process associated
with 1440 minutes timescale in Lastur (LAST), where the precipitation
event above 200 mm pushes the local fitted tail towards Frechet, while the
spatial fit is Gumbel.

2. pW -values related to Cramer-von Mises test associated with GPD local and
spatial fitting are simultaneously above significance level α = 0.05 in all
locations but in 10, being 9 out of 10 above 0.01 and the minimum equal to
0.007, i.e. the hypothesis of exceedances coming from Pareto distribution is
rarely rejected. It is worth emphasizing that in Estanda the null hypothesis
related to the local fitting is accepted (Weibull tail) but the one for spatial
fitting (Gumbel tail) is rejected.

3. Regarding the independence assumption for peaks, most p-values from
Ljung-Box lack-of-fit hypothesis test are above significance level α = 0.05,
i.e. independence assumption between peaks is also rarely rejected.
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4. If we check the assumption of annual maxima coming from GPD-Poisson
distribution, analogous results are obtained. p-values from Cramer-von
Mises test associated with GEV annual maxima fitting are mostly above
significance level α = 0.05, i.e. the hypothesis of annual maxima coming
from GPD-Poisson or GEV distribution is rarely rejected.

5. In the spatial model, both optimal parameters γ0 and γ1 from the
shape parameterization (10) are equal to zero, i.e. all fitted distributions
correspond to Gumbel.

6. Hypothesis tests related to spatial fitting provide the same diagnostics than
the local model. The main assumptions required for extreme characteri-
zation through GPD-Poisson distribution are rarely rejected, which also
confirms good fitting diagnostics.

7. All results associated with the rest of timescales: 20, 30, 60, 120, 180, 240,
360, 720 and 1440 minutes are analogous.
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(a) Gumbel location parameter µ in mm.

(b) Gumbel scale parameter σ in mm.

Fig. 3 Gumbel fitted parameters associated with daily annual maxima rainfall over the 1
km spatial resolution grid.
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Fig. 4 Digital elevation model in meters over the study area.
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Table 1: Local (L) and spatial (S) EV fitting related to 10 minutes
timescale at available rain gauges.

Name Type λ(e/year) σ(mm) ξ u(mm) µ(mm) ψ(mm) pW p1 p2 p3 p4 pmax
W

Ilarduia L 2.283 2.900 0.000 4.600 6.994 2.900 0.597 0.123 0.260 0.358 0.453 0.686
Ilarduia S 2.291 2.855 0.000 4.600 6.967 2.855 0.599 0.123 0.260 0.359 0.453 0.684
Berriatua L 2.479 2.138 0.258 4.700 6.886 2.701 0.256 0.126 0.245 0.418 0.041 0.132
Berriatua S 2.426 2.855 0.000 4.700 7.230 2.855 0.215 0.051 0.140 0.268 0.054 0.010
Iruzubieta L 1.712 2.088 0.000 4.772 5.895 2.088 0.375 0.902 0.935 0.524 0.141 0.886
Iruzubieta S 2.480 2.855 0.000 4.772 7.366 2.855 0.326 0.913 0.938 0.528 0.145 0.882
Beluntza L 2.069 3.133 0.000 3.667 5.944 3.133 0.488 0.196 0.224 0.380 0.543 0.033
Beluntza S 3.574 2.860 0.000 3.667 7.310 2.860 0.487 0.197 0.227 0.382 0.546 0.034
Sarria L 2.433 3.395 0.000 4.418 7.437 3.395 0.310 0.882 0.498 0.669 0.632 0.251
Sarria S 2.661 2.857 0.000 4.418 7.215 2.857 0.316 0.883 0.497 0.669 0.630 0.276
Subijana (Peaje) L 2.575 2.798 0.000 4.271 6.918 2.798 0.561 0.836 0.716 0.726 0.690 0.880
Subijana (Peaje) S 2.429 2.850 0.000 4.271 6.800 2.850 0.561 0.837 0.717 0.726 0.691 0.877
Behobia L 2.687 2.623 0.000 5.102 7.694 2.623 0.223 0.570 0.615 0.804 0.855 0.088
Behobia S 2.580 2.862 0.000 5.102 7.814 2.862 0.231 0.571 0.615 0.804 0.857 0.085
Endara L 1.716 3.090 0.000 7.462 9.131 3.090 0.516 0.484 0.704 0.381 0.546 0.881
Endara S 1.309 2.870 0.000 7.462 8.235 2.870 0.510 0.483 0.702 0.381 0.545 0.880
Endara L 2.891 2.767 0.000 6.200 9.138 2.767 0.225 0.438 0.273 0.445 0.606 0.910
Endara S 2.032 2.870 0.000 6.200 8.235 2.870 0.230 0.437 0.273 0.446 0.607 0.904
Endara antigua L 2.583 4.512 0.000 6.300 10.582 4.512 0.799 0.824 0.944 0.982 0.200 0.419
Endara antigua S 1.876 2.868 0.000 6.300 8.104 2.868 0.766 0.820 0.940 0.980 0.196 0.413
Mungia (DAEM) L 2.520 2.603 0.000 4.900 7.306 2.603 0.280 0.751 0.726 0.878 0.368 0.498
Mungia (DAEM) S 2.205 2.859 0.000 4.900 7.161 2.859 0.294 0.743 0.725 0.877 0.368 0.548
Aixola L 2.882 2.426 0.273 4.300 7.277 3.238 0.181 0.518 0.795 0.318 0.202 0.715
Aixola S 3.086 2.858 0.000 4.300 7.521 2.858 0.159 0.437 0.669 0.402 0.240 0.235
Altzola L 2.938 1.944 0.000 4.500 6.595 1.944 0.517 0.394 0.656 0.815 0.886 0.077
Altzola S 2.732 2.861 0.000 4.500 7.375 2.861 0.599 0.383 0.635 0.798 0.872 0.082
Arantzazu Pluviometro L 2.248 2.515 0.000 5.200 7.237 2.515 0.058 0.356 0.255 0.434 0.291 0.482
Arantzazu Pluviometro S 2.046 2.856 0.000 5.200 7.245 2.856 0.060 0.354 0.255 0.434 0.288 0.526
Araotz L 2.582 3.155 0.000 4.900 7.893 3.155 0.689 0.678 0.086 0.174 0.284 0.168
Araotz S 2.194 2.856 0.000 4.900 7.144 2.856 0.673 0.675 0.087 0.176 0.287 0.181
Arrasate L 2.456 3.161 0.000 4.100 6.940 3.161 0.152 0.698 0.910 0.969 0.913 0.043
Arrasate S 3.036 2.862 0.000 4.100 7.278 2.862 0.145 0.697 0.910 0.968 0.913 0.058

Continue
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Name Type λ(e/year) σ(mm) ξ u(mm) µ(mm) ψ(mm) pW p1 p2 p3 p4 pmax
W

Eitzaga L 2.800 2.117 0.000 3.700 5.880 2.117 0.358 0.623 0.454 0.652 0.801 0.453
Eitzaga S 3.804 2.858 0.000 3.700 7.519 2.858 0.320 0.644 0.448 0.645 0.794 0.426
Elosua L 2.320 3.279 0.000 4.600 7.359 3.279 0.686 0.169 0.314 0.446 0.561 0.888
Elosua S 2.855 2.862 0.000 4.600 7.602 2.862 0.675 0.171 0.316 0.448 0.564 0.947
Lastur Pluviometro L 2.478 1.941 0.254 5.000 6.981 2.444 0.262 0.479 0.444 0.633 0.734 0.756
Lastur Pluviometro S 2.440 2.864 0.000 5.000 7.555 2.864 0.223 0.281 0.346 0.536 0.687 0.094
Mendaro L 2.456 2.584 0.000 4.800 7.122 2.584 0.046 0.157 0.191 0.227 0.284 0.018
Mendaro S 2.475 2.861 0.000 4.800 7.393 2.861 0.048 0.157 0.191 0.227 0.284 0.014
Oñati L 2.712 2.657 0.000 4.316 6.966 2.657 0.219 0.590 0.376 0.572 0.605 0.223
Oñati S 2.805 2.857 0.000 4.316 7.262 2.857 0.225 0.589 0.378 0.574 0.608 0.205
San Prudentzio L 2.626 3.371 0.000 4.300 7.555 3.371 0.309 0.807 0.918 0.957 0.595 0.180
San Prudentzio S 2.749 2.858 0.000 4.300 7.190 2.858 0.277 0.810 0.916 0.958 0.599 0.225
Urkulu L 2.515 2.857 0.000 4.800 7.435 2.857 0.217 0.664 0.886 0.892 0.928 0.797
Urkulu S 2.254 2.855 0.000 4.800 7.121 2.855 0.217 0.664 0.886 0.892 0.928 0.799
Moreda L 2.550 2.645 0.000 4.250 6.726 2.645 0.549 0.727 0.680 0.834 0.906 0.794
Moreda S 2.284 2.846 0.000 4.250 6.600 2.846 0.549 0.726 0.678 0.832 0.905 0.807
Paganos L 2.813 2.964 0.000 3.629 6.695 2.964 0.494 0.353 0.637 0.273 0.332 0.159
Paganos S 2.902 2.849 0.000 3.629 6.665 2.849 0.482 0.353 0.637 0.273 0.333 0.163
Iturrieta (Granja) L 2.103 3.278 0.000 5.000 7.436 3.278 0.232 0.912 0.848 0.421 0.569 0.100
Iturrieta (Granja) S 1.983 2.855 0.000 5.000 6.955 2.855 0.215 0.907 0.847 0.424 0.572 0.117
Kanpezu L 2.750 3.720 0.000 4.300 8.063 3.720 0.142 0.980 0.994 0.941 0.853 0.053
Kanpezu S 2.487 2.855 0.000 4.300 6.901 2.855 0.130 0.984 0.993 0.945 0.859 0.064
Navarrete L 2.901 2.441 0.000 4.775 7.375 2.441 0.702 0.723 0.541 0.740 0.803 0.819
Navarrete S 2.084 2.850 0.000 4.775 6.869 2.850 0.745 0.725 0.538 0.736 0.801 0.749
Roitegi L 2.927 1.894 0.000 3.456 5.490 1.894 0.149 0.971 0.927 0.545 0.625 0.382
Roitegi S 3.313 2.855 0.000 3.456 6.876 2.855 0.165 0.958 0.926 0.552 0.626 0.434
Abusu L 2.723 2.689 0.000 4.900 7.594 2.689 0.650 0.316 0.600 0.690 0.829 0.012
Abusu S 2.242 2.861 0.000 4.900 7.210 2.861 0.665 0.319 0.603 0.693 0.831 0.008
Altube (Peaje) L 2.172 3.887 0.000 4.300 7.316 3.887 0.502 0.128 0.211 0.270 0.117 0.926
Altube (Peaje) S 2.723 2.859 0.000 4.300 7.164 2.859 0.421 0.126 0.213 0.273 0.122 0.904
Amorebieta L 2.695 2.572 0.000 4.500 7.050 2.572 0.354 0.947 0.918 0.681 0.380 0.336
Amorebieta S 2.585 2.857 0.000 4.500 7.213 2.857 0.370 0.942 0.918 0.681 0.383 0.299
Aranguren L 2.337 2.533 0.000 4.000 6.150 2.533 0.654 0.612 0.370 0.299 0.426 0.307
Aranguren S 2.936 2.856 0.000 4.000 7.075 2.856 0.678 0.615 0.366 0.298 0.424 0.293
Arboleda L 2.823 1.428 0.000 4.200 5.682 1.428 0.008 0.990 0.725 0.049 0.087 0.744

Continue
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Name Type λ(e/year) σ(mm) ξ u(mm) µ(mm) ψ(mm) pW p1 p2 p3 p4 pmax
W

Arboleda S 3.193 2.861 0.000 4.200 7.521 2.861 0.015 0.975 0.757 0.054 0.095 0.665
Areta L 2.715 3.390 0.000 4.400 7.787 3.390 0.742 0.974 0.733 0.761 0.882 0.192
Areta S 2.651 2.859 0.000 4.400 7.187 2.859 0.711 0.964 0.724 0.753 0.877 0.227
Balmaseda L 2.421 2.500 0.000 4.282 6.493 2.500 0.744 0.344 0.623 0.783 0.733 0.979
Balmaseda S 2.682 2.857 0.000 4.282 7.100 2.857 0.733 0.340 0.615 0.776 0.728 0.977
Berna L 2.847 2.155 0.000 4.400 6.655 2.155 0.027 0.411 0.197 0.355 0.285 0.035
Berna S 2.686 2.857 0.000 4.400 7.222 2.857 0.041 0.402 0.196 0.353 0.290 0.019
Derio L 2.740 2.115 0.000 4.700 6.832 2.115 0.177 0.305 0.580 0.778 0.879 0.987
Derio S 2.454 2.863 0.000 4.700 7.270 2.863 0.176 0.300 0.571 0.771 0.875 0.983
Deusto L 2.690 2.741 0.000 4.100 6.812 2.741 0.254 0.163 0.318 0.408 0.471 0.427
Deusto S 2.941 2.859 0.000 4.100 7.185 2.859 0.263 0.164 0.319 0.409 0.471 0.425
Elorrio L 2.543 2.457 0.000 4.000 6.293 2.457 0.072 0.117 0.252 0.155 0.217 0.207
Elorrio S 3.047 2.853 0.000 4.000 7.179 2.853 0.082 0.116 0.249 0.153 0.215 0.189
Galindo (CABB) L 2.588 1.618 0.000 3.788 5.326 1.618 0.443 0.155 0.363 0.226 0.240 0.018
Galindo (CABB) S 3.318 2.859 0.000 3.788 7.217 2.859 0.370 0.166 0.382 0.234 0.245 0.014
Gardea L 2.476 2.825 0.000 4.700 7.261 2.825 0.395 0.493 0.191 0.345 0.442 0.252
Gardea S 2.372 2.858 0.000 4.700 7.169 2.858 0.395 0.492 0.190 0.345 0.442 0.241
Igorre L 2.555 2.562 0.000 4.700 7.103 2.562 0.745 0.466 0.511 0.350 0.490 0.453
Igorre S 2.441 2.860 0.000 4.700 7.252 2.860 0.749 0.462 0.509 0.345 0.483 0.394
Iurreta L 2.857 1.567 0.000 4.049 5.694 1.567 0.471 0.535 0.823 0.940 0.619 0.169
Iurreta S 3.035 2.855 0.000 4.049 7.219 2.855 0.569 0.472 0.770 0.911 0.600 0.170
La Garbea L 2.350 1.815 0.339 3.500 5.298 2.425 0.063 0.935 0.952 0.378 0.537 0.514
La Garbea S 4.028 2.859 0.000 3.500 7.483 2.859 0.071 0.761 0.950 0.423 0.585 0.068
Llodio L 2.551 2.789 0.000 3.600 6.212 2.789 0.853 0.188 0.094 0.193 0.098 0.468
Llodio S 3.562 2.859 0.000 3.600 7.232 2.859 0.855 0.188 0.094 0.192 0.097 0.498
Mañaria L 2.738 1.432 0.547 4.299 6.224 2.485 0.223 0.480 0.748 0.640 0.793 0.604
Mañaria S 2.911 2.857 0.000 4.299 7.352 2.857 0.278 0.246 0.501 0.665 0.806 0.435
Ordunte L 2.358 3.002 0.000 4.000 6.575 3.002 0.669 0.070 0.163 0.293 0.442 0.136
Ordunte S 3.291 2.860 0.000 4.000 7.406 2.860 0.671 0.070 0.164 0.294 0.443 0.166
Orduña L 2.280 2.469 0.000 4.000 6.035 2.469 0.742 0.721 0.923 0.695 0.306 0.911
Orduña S 2.825 2.853 0.000 4.000 6.963 2.853 0.735 0.723 0.924 0.698 0.301 0.897
Orozko (Altube) L 2.496 1.609 0.378 4.500 6.259 2.274 0.045 0.500 0.729 0.816 0.572 0.352
Orozko (Altube) S 2.568 2.858 0.000 4.500 7.196 2.858 0.026 0.643 0.799 0.844 0.538 0.089
Punta Galea (DAEM) L 2.455 3.221 0.000 4.700 7.593 3.221 0.740 0.085 0.157 0.200 0.203 0.092
Punta Galea (DAEM) S 2.501 2.859 0.000 4.700 7.320 2.859 0.740 0.083 0.154 0.196 0.197 0.118
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Name Type λ(e/year) σ(mm) ξ u(mm) µ(mm) ψ(mm) pW p1 p2 p3 p4 pmax
W

Sangroniz L 2.980 1.992 0.000 4.100 6.275 1.992 0.032 0.058 0.139 0.159 0.269 0.204
Sangroniz S 3.006 2.860 0.000 4.100 7.248 2.860 0.041 0.060 0.141 0.161 0.271 0.182
Saratxo L 2.316 2.177 0.000 4.600 6.428 2.177 0.152 0.946 0.868 0.952 0.986 0.688
Saratxo S 2.383 2.857 0.000 4.600 7.081 2.857 0.191 0.914 0.850 0.943 0.982 0.619
Sodupe-Herrerias L 2.890 2.498 0.000 4.200 6.850 2.498 0.172 0.468 0.621 0.448 0.382 0.738
Sodupe-Herrerias S 2.823 2.857 0.000 4.200 7.165 2.857 0.189 0.476 0.623 0.449 0.383 0.728
Sodupe-Kadagua L 2.927 2.070 0.000 2.597 4.820 2.070 0.571 0.778 0.239 0.386 0.241 0.302
Sodupe-Kadagua S 4.699 2.856 0.000 2.597 7.017 2.856 0.516 0.765 0.247 0.395 0.249 0.323
Urkizu L 2.424 2.905 0.000 4.300 6.872 2.905 0.592 0.249 0.399 0.594 0.523 0.548
Urkizu S 2.809 2.859 0.000 4.300 7.253 2.859 0.590 0.249 0.399 0.595 0.524 0.587
Zaratamo L 2.307 3.126 0.000 4.111 6.724 3.126 0.023 0.837 0.978 0.450 0.586 0.276
Zaratamo S 2.976 2.861 0.000 4.111 7.231 2.861 0.021 0.832 0.977 0.453 0.588 0.304
Herrera (Puerto) L 2.795 3.099 0.000 4.300 7.485 3.099 0.109 0.766 0.931 0.880 0.699 0.788
Herrera (Puerto) S 2.455 2.850 0.000 4.300 6.860 2.850 0.104 0.767 0.932 0.880 0.702 0.775
Laurgain L 2.143 3.110 0.000 6.000 8.371 3.110 0.328 0.683 0.550 0.436 0.435 0.018
Laurgain S 1.468 2.856 0.000 6.000 7.096 2.856 0.313 0.678 0.551 0.436 0.433 0.016
Cerroja (balsa) L 2.955 2.239 0.000 3.700 6.126 2.239 0.071 0.405 0.581 0.771 0.682 0.512
Cerroja (balsa) S 3.937 2.860 0.000 3.700 7.620 2.860 0.074 0.407 0.584 0.774 0.684 0.548
Oiz L 2.543 1.691 0.255 3.100 4.881 2.144 0.166 0.002 0.007 0.012 0.009 0.082
Oiz S 5.012 2.859 0.000 3.100 7.709 2.859 0.161 0.003 0.011 0.020 0.017 0.004
Oleta L 2.431 2.783 0.000 4.700 7.171 2.783 0.487 0.987 0.825 0.943 0.968 0.487
Oleta S 2.396 2.853 0.000 4.700 7.194 2.853 0.490 0.986 0.825 0.943 0.968 0.480

Jaizkibel L 2.463 1.800 0.000 4.900 6.523 1.800 0.785 0.143 0.240 0.414 0.574 0.326
Jaizkibel S 3.115 2.869 0.000 4.900 8.160 2.869 0.820 0.143 0.237 0.411 0.571 0.326
Oiartzun L 2.588 2.160 0.000 5.700 7.754 2.160 0.099 0.690 0.734 0.562 0.715 0.028
Oiartzun S 1.887 2.858 0.000 5.700 7.515 2.858 0.087 0.704 0.750 0.558 0.713 0.014
Oiartzun DFG L 2.546 2.880 0.000 6.200 8.892 2.880 0.548 0.730 0.406 0.566 0.214 0.494
Oiartzun DFG S 1.933 2.867 0.000 6.200 8.089 2.867 0.546 0.730 0.407 0.567 0.214 0.454
Almike (Bermeo) L 2.757 2.727 0.000 4.400 7.165 2.727 0.007 0.777 0.568 0.768 0.591 0.517
Almike (Bermeo) S 2.754 2.856 0.000 4.400 7.294 2.856 0.007 0.776 0.566 0.767 0.589 0.506
Arteaga L 2.656 2.900 0.000 4.100 6.932 2.900 0.710 0.019 0.022 0.050 0.041 0.169
Arteaga S 2.965 2.854 0.000 4.100 7.201 2.854 0.711 0.019 0.022 0.050 0.041 0.168
Matxitxako L 2.548 2.487 0.000 5.000 7.326 2.487 0.324 0.172 0.354 0.557 0.715 0.660
Matxitxako S 2.665 2.861 0.000 5.000 7.805 2.861 0.335 0.173 0.358 0.560 0.719 0.636
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Name Type λ(e/year) σ(mm) ξ u(mm) µ(mm) ψ(mm) pW p1 p2 p3 p4 pmax
W

Muxika L 2.570 2.092 0.267 4.501 6.747 2.692 0.279 0.304 0.236 0.389 0.506 0.059
Muxika S 2.518 2.855 0.000 4.501 7.138 2.855 0.267 0.206 0.178 0.318 0.424 0.002
Espejo L 2.763 4.121 0.000 4.100 8.289 4.121 0.170 0.876 0.894 0.907 0.641 0.649
Espejo S 2.494 2.849 0.000 4.100 6.703 2.849 0.179 0.861 0.891 0.904 0.644 0.684
Agauntza L 2.300 3.258 0.000 5.300 8.013 3.258 0.170 0.856 0.195 0.200 0.228 0.328
Agauntza S 1.977 2.855 0.000 5.300 7.247 2.855 0.156 0.869 0.199 0.201 0.230 0.355
Alegia L 1.617 3.388 0.000 6.666 8.294 3.388 0.241 0.871 0.484 0.222 0.202 0.805
Alegia S 1.245 2.854 0.000 6.666 7.292 2.854 0.254 0.875 0.485 0.218 0.200 0.831
Ameraun L 1.945 2.688 0.000 6.300 8.088 2.688 0.101 0.444 0.709 0.654 0.742 0.035
Ameraun S 1.731 2.861 0.000 6.300 7.869 2.861 0.101 0.446 0.712 0.658 0.744 0.027
Amundarain L 2.804 3.179 0.000 4.700 7.978 3.179 0.688 0.755 0.588 0.397 0.537 0.898
Amundarain S 2.439 2.855 0.000 4.700 7.245 2.855 0.669 0.754 0.596 0.401 0.540 0.900
Araxes L 2.606 2.677 0.000 4.547 7.111 2.677 0.137 0.280 0.518 0.566 0.722 0.804
Araxes S 2.752 2.854 0.000 4.547 7.436 2.854 0.136 0.280 0.517 0.566 0.721 0.808
Arriaran DFG L 2.366 2.507 0.000 5.000 7.159 2.507 0.114 0.042 0.030 0.014 0.031 0.738
Arriaran DFG S 2.300 2.860 0.000 5.000 7.382 2.860 0.119 0.041 0.030 0.014 0.031 0.733
Belauntza L 2.844 2.939 0.000 4.800 7.872 2.939 0.021 0.726 0.918 0.800 0.906 0.432
Belauntza S 2.643 2.855 0.000 4.800 7.575 2.855 0.020 0.727 0.919 0.802 0.908 0.434
Berastegi L 2.746 2.822 0.000 5.300 8.151 2.822 0.615 0.538 0.467 0.213 0.121 0.841
Berastegi S 2.490 2.860 0.000 5.300 7.909 2.860 0.615 0.538 0.467 0.213 0.121 0.834
Bidania L 1.808 3.155 -0.364 5.300 6.981 2.543 0.758 0.640 0.499 0.666 0.712 0.446
Bidania S 2.268 2.859 0.000 5.300 7.642 2.859 0.801 0.555 0.468 0.624 0.688 0.546
Estanda L 2.585 3.704 -0.310 4.800 7.848 2.760 0.822 0.983 0.662 0.821 0.717 0.794
Estanda S 2.259 2.857 0.000 4.800 7.128 2.857 0.000 0.937 0.569 0.770 0.763 0.947
Ibiur (Estación) L 1.553 3.515 0.000 5.526 7.073 3.515 0.259 0.917 0.475 0.497 0.658 0.092
Ibiur (Estación) S 1.898 2.856 0.000 5.526 7.356 2.856 0.234 0.920 0.480 0.501 0.663 0.121
Ibiur Pluviometro L 2.894 2.601 0.000 5.000 7.764 2.601 0.086 0.141 0.059 0.104 0.172 0.389
Ibiur Pluviometro S 2.177 2.855 0.000 5.000 7.221 2.855 0.093 0.142 0.059 0.104 0.173 0.342
Lareo L 2.676 2.437 0.000 5.000 7.399 2.437 0.175 0.109 0.272 0.285 0.084 0.944
Lareo S 2.451 2.858 0.000 5.000 7.562 2.858 0.159 0.107 0.268 0.279 0.082 0.903
Lasarte L 2.826 2.438 0.000 5.209 7.741 2.438 0.478 0.761 0.944 0.495 0.570 0.274
Lasarte S 2.157 2.855 0.000 5.209 7.403 2.855 0.468 0.760 0.944 0.494 0.568 0.315
Leitzaran (Andoain) L 2.735 2.839 0.000 4.800 7.657 2.839 0.626 0.798 0.628 0.137 0.234 0.040
Leitzaran (Andoain) S 2.416 2.854 0.000 4.800 7.317 2.854 0.628 0.798 0.628 0.137 0.234 0.037
Ordizia L 2.662 2.539 0.000 4.900 7.386 2.539 0.585 0.547 0.746 0.581 0.531 0.504
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Name Type λ(e/year) σ(mm) ξ u(mm) µ(mm) ψ(mm) pW p1 p2 p3 p4 pmax
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Ordizia S 2.319 2.857 0.000 4.900 7.303 2.857 0.548 0.550 0.755 0.585 0.533 0.525
Troya L 2.901 2.635 0.000 4.400 7.207 2.635 0.130 0.241 0.401 0.464 0.417 0.814
Troya S 2.712 2.858 0.000 4.400 7.252 2.858 0.128 0.240 0.400 0.464 0.417 0.811
Zaldibia L 2.634 2.910 0.000 5.200 8.019 2.910 0.234 0.877 0.182 0.332 0.411 0.046
Zaldibia S 2.225 2.857 0.000 5.200 7.486 2.857 0.232 0.877 0.182 0.332 0.411 0.043
Zarautz (DAEM) L 2.495 2.815 0.000 5.100 7.674 2.815 0.799 0.194 0.217 0.177 0.220 0.083
Zarautz (DAEM) S 2.069 2.856 0.000 5.100 7.176 2.856 0.802 0.194 0.217 0.177 0.221 0.071
Zegama L 2.627 3.264 0.000 5.000 8.153 3.264 0.100 0.481 0.082 0.134 0.202 0.227
Zegama S 2.146 2.857 0.000 5.000 7.181 2.857 0.090 0.480 0.079 0.132 0.198 0.233
Zizurkil L 2.572 2.392 0.000 4.500 6.760 2.392 0.719 0.289 0.426 0.509 0.585 0.839
Zizurkil S 2.576 2.854 0.000 4.500 7.201 2.854 0.702 0.287 0.427 0.513 0.590 0.867
Aitzu L 2.946 2.318 0.000 4.269 6.773 2.318 0.059 0.364 0.609 0.748 0.866 0.093
Aitzu S 2.950 2.861 0.000 4.269 7.364 2.861 0.071 0.366 0.617 0.752 0.869 0.072
Aizarnazabal L 2.619 2.118 0.000 4.900 6.939 2.118 0.141 0.806 0.894 0.966 0.981 0.497
Aizarnazabal S 2.105 2.857 0.000 4.900 7.027 2.857 0.176 0.819 0.904 0.969 0.982 0.406
Barrendiola DFG meteo L 2.516 2.534 0.000 5.136 7.474 2.534 0.065 0.975 0.401 0.285 0.364 0.858
Barrendiola DFG meteo S 2.235 2.858 0.000 5.136 7.435 2.858 0.069 0.970 0.401 0.287 0.366 0.853
Erdoizta L 2.153 3.034 0.000 5.400 7.727 3.034 0.871 0.869 0.986 0.616 0.666 0.728
Erdoizta S 2.024 2.860 0.000 5.400 7.417 2.860 0.868 0.870 0.986 0.617 0.665 0.731
Ibaieder L 1.719 2.426 0.000 5.914 7.229 2.426 0.113 0.704 0.233 0.035 0.072 0.042
Ibaieder S 1.495 2.857 0.000 5.914 7.063 2.857 0.130 0.701 0.233 0.035 0.071 0.031
Matxinbenta L 2.835 2.562 0.000 4.300 6.970 2.562 0.512 0.945 0.083 0.152 0.220 0.791
Matxinbenta S 2.903 2.858 0.000 4.300 7.346 2.858 0.529 0.941 0.083 0.153 0.221 0.816
BARRENDIOLA L 2.981 2.483 0.000 4.200 6.912 2.483 0.839 0.090 0.134 0.252 0.325 0.991
BARRENDIOLA S 3.084 2.857 0.000 4.200 7.417 2.857 0.859 0.090 0.133 0.251 0.325 0.990
Añarbe (estación) L 2.058 2.731 0.000 6.285 8.257 2.731 0.411 0.943 0.966 0.981 0.611 0.059
Añarbe (estación) S 1.751 2.863 0.000 6.285 7.888 2.863 0.419 0.946 0.967 0.981 0.610 0.047
Artikutza Eskas L 1.871 3.168 0.000 7.196 9.180 3.168 0.261 0.803 0.099 0.201 0.321 0.259
Artikutza Eskas S 1.504 2.868 0.000 7.196 8.366 2.868 0.257 0.812 0.100 0.203 0.325 0.264
Ereñozu L 2.945 2.114 0.287 5.891 8.568 2.884 0.839 0.237 0.464 0.314 0.272 0.561
Ereñozu S 1.744 2.857 0.000 5.891 7.480 2.857 0.804 0.206 0.414 0.231 0.213 0.076
Igeldo DFG L 2.749 2.536 0.000 6.000 8.564 2.536 0.246 0.478 0.760 0.720 0.855 0.469
Igeldo DFG S 1.587 2.858 0.000 6.000 7.321 2.858 0.259 0.484 0.765 0.725 0.858 0.316
Miramon L 1.806 1.942 0.000 5.800 6.948 1.942 0.487 0.495 0.282 0.467 0.557 0.791
Miramon S 1.688 2.858 0.000 5.800 7.296 2.858 0.468 0.482 0.272 0.454 0.548 0.805
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Name Type λ(e/year) σ(mm) ξ u(mm) µ(mm) ψ(mm) pW p1 p2 p3 p4 pmax
W

Añarbe (estación) L 2.027 2.781 0.000 6.300 8.265 2.781 0.335 0.713 0.894 0.902 0.691 0.056
Añarbe (estación) S 1.742 2.863 0.000 6.300 7.888 2.863 0.341 0.710 0.892 0.901 0.690 0.047
Abetxuko (DAEM) L 2.727 2.630 0.000 3.400 6.038 2.630 0.738 0.295 0.567 0.765 0.715 0.776
Abetxuko (DAEM) S 3.293 2.851 0.000 3.400 6.797 2.851 0.758 0.296 0.569 0.767 0.716 0.786
Alegria (canal) L 2.934 2.762 0.000 3.600 6.572 2.762 0.086 0.132 0.265 0.216 0.329 0.087
Alegria (canal) S 3.039 2.852 0.000 3.600 6.771 2.852 0.089 0.132 0.265 0.216 0.330 0.083
Arkaute I L 2.548 2.795 0.000 4.300 6.914 2.795 0.287 0.761 0.834 0.587 0.731 0.400
Arkaute I S 2.419 2.853 0.000 4.300 6.820 2.853 0.288 0.760 0.836 0.587 0.731 0.383
Barazar L 2.731 2.427 0.000 4.500 6.938 2.427 0.418 0.515 0.357 0.560 0.647 0.366
Barazar S 2.684 2.860 0.000 4.500 7.324 2.860 0.440 0.524 0.363 0.567 0.651 0.330
Etura L 2.629 2.178 0.000 3.400 5.506 2.178 0.187 0.926 0.398 0.584 0.529 0.088
Etura S 3.296 2.852 0.000 3.400 6.802 2.852 0.173 0.931 0.398 0.579 0.518 0.074
Gasteiz (Lakua) L 2.793 2.973 0.000 3.700 6.754 2.973 0.574 0.806 0.238 0.349 0.394 0.969
Gasteiz (Lakua) S 2.986 2.852 0.000 3.700 6.820 2.852 0.561 0.808 0.237 0.348 0.393 0.973
Gorbea (Embalse) L 2.372 2.917 0.000 4.000 6.520 2.917 0.094 0.066 0.166 0.308 0.461 0.191
Gorbea (Embalse) S 3.196 2.858 0.000 4.000 7.321 2.858 0.093 0.066 0.167 0.308 0.461 0.207
Kapildui L 2.763 3.272 0.000 3.700 7.026 3.272 0.428 0.322 0.228 0.358 0.385 0.225
Kapildui S 3.147 2.851 0.000 3.700 6.969 2.851 0.407 0.318 0.227 0.357 0.386 0.241
Otxandio (Iberdrola) L 2.818 3.231 0.000 4.656 8.003 3.231 0.365 0.725 0.312 0.375 0.501 0.269
Otxandio (Iberdrola) S 2.537 2.857 0.000 4.656 7.315 2.857 0.373 0.731 0.307 0.368 0.494 0.297
Ozaeta (Iberdrola) L 2.754 3.972 0.000 4.300 8.323 3.972 0.421 0.190 0.025 0.054 0.104 0.300
Ozaeta (Iberdrola) S 2.495 2.855 0.000 4.300 6.910 2.855 0.360 0.180 0.023 0.051 0.099 0.500
Salvatierra L 2.542 3.060 0.000 4.300 7.154 3.060 0.341 0.587 0.511 0.628 0.682 0.613
Salvatierra S 2.482 2.855 0.000 4.300 6.896 2.855 0.325 0.588 0.511 0.630 0.684 0.626
Trebiño L 2.477 2.195 0.000 3.833 5.824 2.195 0.619 0.373 0.463 0.633 0.735 0.179
Trebiño S 2.740 2.851 0.000 3.833 6.706 2.851 0.592 0.357 0.454 0.623 0.722 0.195
Urkiola L 2.684 4.139 0.000 4.454 8.541 4.139 0.176 0.931 0.969 0.393 0.504 0.038
Urkiola S 2.850 2.859 0.000 4.454 7.448 2.859 0.126 0.947 0.970 0.390 0.499 0.078
Zaldiaran (Repetidor) L 2.941 3.127 0.000 3.500 6.873 3.127 0.026 0.327 0.614 0.800 0.896 0.912
Zaldiaran (Repetidor) S 3.274 2.852 0.000 3.500 6.883 2.852 0.024 0.329 0.617 0.801 0.897 0.915
Zambrana L 2.857 2.433 0.000 3.900 6.454 2.433 0.338 0.482 0.330 0.148 0.225 0.482
Zambrana S 2.569 2.848 0.000 3.900 6.588 2.848 0.367 0.480 0.334 0.150 0.227 0.406
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Apparently, both local and spatial fittings at locations where rain gauges
exist seem to be appropriate. However, we need to define an objective criteria
to decide which one is more consistent, and more important, does the spatial
model hold the desired characteristics set out previously (see Section 1)? Let
us analyse results with respect to those features:

1. Being robust with respect to abnormally high records (outliers).
In this particular case, there are several locations where one single extreme
event pushes the tail towards Frechet. For example, Figure 5 shows a return
period fitting diagnostic plot for precipitation duration of 1440 minutes
at Lastur (LAST) rain gauge. Local fitting corresponds to Frechet type
with a positive shape parameter, while the spatial fitting corresponds to
Gumbel, which is more consistent with respect to Gumbel fittings around
this location. In both cases, the hypothesis of annual maxima coming from
the fitted distribution can not be rejected with p-values equal to 0.87 and
0.41, respectively. However, the maximum record of 207.2 mm has less than
100 years of return period for the local fitting, while for the spatial case it
corresponds to a return period of about 167 years. Note that the probability

Fig. 5 Fitted return periods for 1440 minutes timescale at Lastur (LAST) rain gauge.

of occurrence of a 167-year return period (λ = 1/167) over a record of 31
years corresponds to:

1− Prob(Y = 0)31 = 1−
(︃
λ0

0!
e−λ

)︃31

= 0.17 (19)

which is likely. This result and the Gumbel fits associated to close locations
shows the coherence of spatial fitted model at this specific rain gauge.

2. Being robust in case the data provided by a rain gauge contains
systematic biases due to location, exposure to wind, obstacles,
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or other causes. In this particular case, we know from a previous report
about the quality of rain gauges that Matxitxako (C019) rain gauge under-
estimates precipitation, mainly due to wind exposure. Figure 6 shows a
return period fitting diagnostic plot for precipitation duration of 1440 min-
utes at this location. Note that even though diagnostic fitting tests do not
reject either the local or the spatial fitting with p-values equal to 0.21 and
0.24, respectively. This is probably due to the uncertainty associated with
the short record length, return periods related to a particular precipitation
amount given by the spatial fitting are significantly lower than the local
equivalents, i.e. the spatial model makes the model less prone to return
period underestimation due to instrumental bias. This correction is induced
by the spatial coherence given by the model.

Fig. 6 Fitted return periods for 1440 minutes timescale at Matxitxako (C019) rain gauge.

Another example about the robustness of the spatial model against
instrumental bias corresponds to the fitting at Zaldiaran (Repetidor) rain
gauge, where in addition to underestimation induced by wind exposure
the presence of physical obstacles (branch trees) is also confirmed. Note in
Figure 7 how the spatial model pushes up return period estimates clearly
above local fitting estimates and empirical data.

3. Being robust with respect the existence of gaps in the record,
enabling not to discard records of incomplete years with a high
percentage of gaps in the series. This feature is taken into consideration
due to the fact that exceedances over threshold are chosen instead of annual
maxima, and exceedances mostly occur uniformly distributed during the
year.

4. Make it robust with respect to the length of the series. There is
no doubt that the longer the record, the lower the uncertainty in return
period estimations. It would be convenient to have a method that gives
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Fig. 7 Fitted return periods for 1440 minutes timescale at Zaldiaran (Repetidor) (C070)
rain gauge.

more weight to long records than to short ones, without the need to discard
short ones from the analysis. In this particular case, the spatial model
considered allows to make a unique fitting process where the longer the
record the higher the influence according to expression (11).

5. Allowing coherent spatial interpolation/extrapolation, i.e. taking
into account the influence of orographic factors such as elevation,
distance from shoreline, blockages, exposures, curvatures, etc. In
this particular case, the spatial coherence and the influence of those factors
are taken into consideration though covariates related to GEV parameters
from daily gridded data set. If we compare the digital elevation model in
Figure 4 with respect to 100 years return period estimates for different
timescales, such as 10 and 1440 minutes shown in Figures 8(a) and 8(b)
respectively, a clear influence of orographic factors is observed.

Previous results show the performance of the method when there are data
issues, but there are many locations where both local and spatial fits are very
similar, which increase the confidence in the return period estimates at those
locations, and the confidence in the proposed model. Figures 9(a) and 9(b)
shown return period estimates at Altzola and Sarria rain gauges using local
and spatial analysis. In both cases the resulting return period estimates are
very similar, which shows that when the data quality at rain gauge locations
is appropriate, both local and spatial analyses provide consistent results. This
behaviour has been observed at many locations and with different timescales.

3.3 Leave-one-out cross validation

We have also performed a leave-one-out cross validation procedure to check the
interpolation capabilities associated with the spatial model. Figure 10 shows
the scatter plot associated with location and scale spatial fitted parameters for
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(a) 10 minutes timescale.

(b) 1440 minutes timescale

Fig. 8 100 year return period estimates in mm over the 1 km spatial resolution grid.

a) all rain gauges data (abscisas axis) and b) leave-one-out process (ordinates
axis). Results show that the estimated parameters between both approaches
are indistinguishable, with points following almost a perfect straight diago-
nal. However, numerical results change from the third decimal. We only show
results associated with 10 minutes timescale, but these results are analogous
for the rest of timescales and prove the robustness of the proposed method,
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which makes return period estimations less prone to bias due to difficulties in
data gathering.

3.4 Model validation using a large high quality rain gauge

The longest record used in the analysis corresponds to Lastur (LAST) rain
gauge with 31.875 years, which is relatively short for an extreme value anal-
ysis. In order to check the coherence of return period estimations given by
the spatial model, we have at our disposal a long record of 85.55 years at San
Sebastián-Igeldo (1024E) rain gauge, with UTM coordinates (577907, 4795405)
and 259 m heigh, which was not used during the fitting process. Fortu-
nately, we also have another rain gauge (Igeldo DFG) which contains a record
length of 24.371 years at 250 m altitude and very close (less than 500 m)
to Sebastián-Igeldo (1024E) rain gauge. This proximity allows us to com-
pare results obtained using the proposed method and the local analysis, with
the shorter record, with respect to the longest additional record, i.e. validate
results.

Note that both local and spatial return periods at Igeldo DFG rain gauge
are very similar (see Figure 11(a)), and in both cases we can not reject the null
hypothesis that data comes from both distributions. On the other hand, the
spatial model particularized at Sebastián-Igeldo (1024E) rain gauge location
is shown in Figure 11(b). In this particular case, instrumental data is slightly
above the spatial return period fitted model, which runs almost parallel to the
local fitted model. However, we can not reject the null hypothesis that the
data at this location comes from the fitted spatial model. In fact, the spatial
model is between local model confidence bands. This result indicates that even
though we are using relatively short records, mostly below 30 years, the use of
longer series of spatial gridded data products allows getting consistent results.

3.5 Model validation comparing with dimensionless IDF
curves

The ratio between the precipitation of a given duration and that of 24 hours
is an indication of the degree of torrential rains in a region. In rain gauges
with a significant record length, it is an observed fact that these proportions
remain approximately constant and independent of the return period consid-
ered. This feature is widely used in practice especially when no many records
of timescales lower than 6 hours are available. In those cases, we use those
records to compute those relations and use them all over the study area.

However, if we make this analysis at all rain gauges locations using return
periods associated with local and spatial analysis, we get results shown in
Figures 12(a) and 12(b), respectively. Note that dashed lines related to “valle”,
“monte” and “costa” are the curves used in previous reports to make IDF
analyses. Dots corresponds to values related to specific rain gauges and return
periods, while we have fitted power curves to those data in an attempt to get
representative expressions for each return period considered. Note that data
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dispersion for the local case is large, clearly contradicting the initial hypothesis
that proportions remain approximately constant. The spatial analysis also has
dispersion around fitted curves, but considerably lower than the local case. In
addition, fitted power curves are almost independent from return period, i.e.
spatial analysis seems to be more consistent with this hypothesis of constant
proportions.

3.6 Cramer-von Mises vs Anderson-Darling tests

We performed to validation tests to check the null hypothesis that exceedances
and annual maxima follow the fitted distributions respectively. In particular,
we used the modification of the Cramer-von Mises and Anderson-Darling dis-
tributional fitting tests proposed by Chen and Balakrishnan (1995), which
work with the GPD and GEV distributions and where user can provide the
distribution parameters. However, we only show the Cramer-von Mises test
results. The reason is that very similar results are obtained in both cases, as
shown in Figure 13. The figure shows the scatter plot of p-values related to
local and spatial analyses associated with Cramer-von Mises test statistic (left
panel) and Anderson-Darling test statistic (right panel). Note that local and
spatial analyses present very similar diagnostics, with p-values slightly chang-
ing around the diagonal. If we compare the scattet plots for both tests, they
are very similar in terms of dispersion and variation range, which justifies why
we only present results associated with Cramer-von Mises test.

3.7 Further discussion on the type of tail obtained from
the analyses

Koutsoyiannis et al (1998); Koutsoyiannis (1998a,b); Papalexiou and Kout-
soyiannis (2013) have done an extensive work in comparing and concluding in
the best GEV type for the rainfall extremes. In those studies it is clear that
the rainfall extremes follow a GEV type II distribution (with shape parame-
ter values converging at 0.1− 0.15), and this type of GEV should be preferred
mainly for high return periods (T > 50 years) because the Gumbel distribu-
tion is very conservative and clearly underestimates the rainfall extremes. In
those studies, it is pointed out that because of the short time series available
(20− 30 years available) for the extreme analysis, the Gumbel distribution is
falsely chosen as the best fit. Even though the type 1 error is small and test
statistics accept Gumbel as a suitable distribution, the type 2 error is quite
large (up to 80%). Thus, even though here the test statistics are accepting
and fitting Gumbel distribution, 30 years (at best case) of observation data
may hide the true distribution and cause a severe underestimation of the IDF
curves especially at high return periods.

In our analysis most of the fitting models correspond to Gumbel, which
contradicts Koutsoyiannis and coauthors findings. The reason is that we com-
pute and show confidence bands for return periods. It is well-known that
uncertainty associated with long return period estimation, especially when
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dealing with short records, is usually large. We rather trust the proper sta-
tistical analysis and take into consideration the uncertainty when using the
information about return period estimates. Let consider the example shown in
Figure 11(b), where the spatial model is validated with a very long record (≈85
years); in this particular case, even the local analysis using the Pareto-Poisson
model with this long record returns the Gumbel distribution as best fit, disre-
garding the hypothesis that the shape parameter is statistically different from
zero. In our opinion, engineers should work with not only the point estimates
of return periods but their uncertainties as well. This will avoid underestima-
tion of return periods and forcing the statistical models to follow a predefined
tail without further extreme value analysis statistical considerations.

4 Conclusions

In this work a new methodological framework for the spatial analysis of
extreme rainfall intensities at different time scales has been described and
tested over the Basque Country. The method presents the following positive
features:

1. It is aligned with the current trend of climate data availability in which
observational and gridded datasets coexist, the former with high temporal
frequency and the latest describing the spatial variability and orographic
dependencies of the different precipitation regimes over a particular region.
In this sense, the proposed framework can be easily adapted to other regions
and applied to make a coherent and robust spatial analysis of extreme
intensity rainfall for different timescales, including IDF curves generation.

2. The proposed approach has proved to be robust with respect to the
main issues coming from observational datasets, which includes outliers,
systematic biases, missing data and short length time series.

3. Dependencies induced by orographic factors, such as elevation, distance
from shoreline, blockages, exposures, curvatures, etc. are properly mod-
elled through the use of covariates coming from the high-resolution gridded
dataset.

The methodology has been used to obtain the IDF curves over the Basque
Country and tested against local observations, including Sebastián-Igeldo
(1024E) rain gauge record, the longest record available, which was not used
during the calibration process. The method shows the statistical coherence
between the estimated local and spatial return periods, with the latest falling
within the confidence intervals of the former.

Finally, the positive features of the method and its robustness might justify
the effort of developing specific high resolution daily precipitation gridded data
sets prior making any extreme value analysis of intensity rainfall.
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For this study, we have at our disposal the following information about rain
gauges:

1. Name of the rain gauge, code and watershed to which it belongs.
2. UTM coordinates and the elevation at which they are located.
3. Start date of the record.
4. End date of the record.
5. Temporal frequency of the records.
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(not a number).
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that we have used in this analysis. Good practice rules advise against con-
ducting extreme value analysis with less than 5 years of data, and for this
reason they are discarded.
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(a) Igeldo DFG rain gauge.

(b) Altzola rain gauge.

Fig. 9 Estimated return periods for 1440 minutes timescale at Altzola and Sarria rain
gauges using: i) local analysis and ii) spatial analysis .
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Fig. 10 Scatter plot associated with location and scale spatial fitted parameters for a) all
rain gauges data (abscisas axis) and b) leave-one-out process (ordinates axis).
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(a) Igeldo DFG rain gauge.

(b) Sebastián-Igeldo (1024E) rain gauge.

Fig. 11 Estimated return periods for 10 minutes timescale at two close locations in San
Sebastián using: i) local analysis with a relatively short record (24.371 years), ii) spatial
analysis using all short records, and iii) local analysis using long record (85.55 years).
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(a) Local analysis.

(b) Spatial analysis.

Fig. 12 Dimensionless IDF curves using extreme value analysis.
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Fig. 13 Scatter plot related to p-values for local and spatial analyses: a) Cramer-von Mises
test statistic (left panel) and b) Anderson-Darling test statistic (right panel).
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Table A1: Rain gauge data available.

Name Code Watershed UTMX UTMY Altitude(m) From To Frequency nº data nº NaN Years

Ilarduia C068 Arakil 558297.0 4747064 596 20/02/2015 00:00 31/10/2020 23:50 10 minutes 299664 208 5.694
Urdalur E074 Arakil 562559.0 4751876 652 26/10/2005 22:00 14/07/2019 21:45 15 minutes 480864 32605 12.784

Berriatua C0BE Artibai 542501.0 4794747 25 01/11/2001 00:00 31/10/2020 23:50 10 minutes 999360 2059 18.962
Iruzubieta C0BD Artibai 538484.0 4789312 110 26/01/2012 12:50 31/10/2020 23:50 10 minutes 461011 147 8.762

Beluntza C025 Baias 508688.0 4756573 687 21/02/2008 02:30 12/12/2013 08:30 10 minutes 305461 350 5.801
Ormijana P070 Baias 505098.0 4741843 645 12/04/2009 22:00 14/07/2019 21:45 15 minutes 359520 11019 9.939
Sarria C0A0 Baias 513848.0 4758370 655 19/05/2011 13:50 31/10/2020 23:50 10 minutes 497293 137 9.452
Subijana (Peaje) C049 Baias 508725.0 4740572 537 01/10/1992 00:00 31/10/2020 23:50 10 minutes 1477152 6544 27.960

Behobia C084 Bidasoa 600414.0 4799749 5 21/05/2013 08:00 31/10/2020 23:50 10 minutes 391776 267 7.444
Endara F1Z1 Bidasoa 599379.0 4791335 273 28/11/1996 12:50 30/09/2020 23:50 10 minutes 1253875 150280 20.982
Endara F1W1 Bidasoa 599379.0 4791335 273 28/11/1996 12:50 30/09/2020 23:50 10 minutes 1253875 307897 17.986
Endara antigua ENDA Bidasoa 599799.0 4792576 200 28/10/1989 00:00 24/10/1996 11:30 10 minutes 367702 21549 6.581

Mungia (DAEM) C057 Butroe 512460.0 4800977 22 06/12/1992 00:00 31/10/2020 23:50 10 minutes 1467648 27733 27.377

Aixola C0D3 Deba 540536.0 4777916 349 10/10/1989 00:00 31/10/2020 23:50 10 minutes 1633680 64209 29.840
Altzola C078 Deba 548867.0 4787631 17 10/12/1995 00:00 31/10/2020 23:50 10 minutes 1309392 2583 24.846
Arantzazu Pluviometro ARAN Deba 547386.0 4759382 600 13/01/1998 12:00 30/09/2020 23:50 10 minutes 1194696 71626 21.353
Araotz ARAO Deba 543354.0 4760985 726 03/03/1987 00:00 30/09/2020 23:50 10 minutes 1766304 584693 22.466
Arrasate C023 Deba 541311.0 4768691 318 22/10/1998 00:00 31/10/2020 23:50 10 minutes 1158624 2078 21.989
Eitzaga C075 Deba 540525.0 4780289 270 06/06/2011 10:40 31/12/2019 23:50 10 minutes 450800 11 8.571
Elosua ELOS Deba 551032.0 4775383 726 01/10/1999 00:00 30/09/2020 23:50 10 minutes 1104624 38901 20.262
Lastur Pluviometro LAST Deba 554285.0 4786830 546 26/11/1985 00:00 30/09/2020 23:50 10 minutes 1832832 156339 31.875
Mendaro MEND Deba 550609.0 4788574 45 01/10/1989 00:00 30/09/2020 23:50 10 minutes 1630512 45902 30.128
Oñati C0D1 Deba 545798.0 4767651 195 31/10/1997 00:00 31/10/2020 23:50 10 minutes 1209888 7454 22.862
San Prudentzio C0D2 Deba 544970.0 4769996 169 08/03/1997 00:00 31/10/2020 23:50 10 minutes 1244016 2256 23.609
Urkulu C0D0 Deba 542991.0 4762167 340 01/10/1989 00:00 31/10/2020 23:50 10 minutes 1634976 24924 30.612

Bollegas R005 Ebro 489094.0 4735889 1095 31/12/2004 23:00 14/07/2019 21:45 15 minutes 509564 3414 14.435
Moreda C031 Ebro 548437.0 4708613 490 28/12/2012 11:30 31/10/2020 23:50 10 minutes 412491 4 7.843
Paganos C060 Ebro 532794.0 4711871 577 06/02/2004 10:40 31/10/2020 23:50 10 minutes 880208 1332 16.710
Sobron (embalse) E005 Ebro 491819.0 4735037 513 30/09/1997 22:00 14/07/2019 21:45 15 minutes 763872 19171 21.238

Iturrieta (Granja) C024 Ega 553515.0 4738088 987 29/10/1998 00:00 31/10/2020 23:50 10 minutes 1157616 31971 21.402
Kanpezu C00A Ega 553957.0 4724980 550 19/05/2015 12:10 31/10/2020 23:50 10 minutes 286919 22 5.455
Lagran P008 Ega 534110.0 4719089 750 30/09/1997 22:00 14/07/2019 21:45 15 minutes 763872 10928 21.473
Navarrete C041 Ega 539067.0 4720514 689 26/04/1992 00:00 31/10/2020 23:50 10 minutes 1499904 13440 28.262
Roitegi C021 Ega 551450.0 4736772 980 12/03/2008 08:10 26/05/2014 23:50 10 minutes 326399 3005 6.149
San Vicente de Arana P009 Ega 552301.0 4731749 800 30/09/1997 22:00 14/07/2019 21:45 15 minutes 763872 23016 21.129

Abusu C0B1 Ibaizabal 507010.0 4788081 23 16/10/1996 00:00 31/10/2020 23:50 10 minutes 1264608 8947 23.874
Altube (Peaje) C035 Ibaizabal 510768.0 4756856 618 17/01/1999 00:00 31/10/2020 23:50 10 minutes 1146096 8162 21.635
Amorebieta C079 Ibaizabal 521701.0 4784906 65 07/07/1998 00:00 31/10/2020 23:50 10 minutes 1174032 3159 22.262
Aranguren C0C1 Ibaizabal 489614.0 4784347 87 10/11/1995 00:00 31/10/2020 23:50 10 minutes 1313712 30659 24.394
Arboleda C061 Ibaizabal 494527.0 4793551 329 30/06/2004 12:30 31/10/2020 23:50 10 minutes 859317 2364 16.293
Areta C032 Ibaizabal 505281.0 4776059 122 06/02/2013 00:00 31/10/2020 23:50 10 minutes 406800 11 7.734
Balmaseda C0C2 Ibaizabal 482208.0 4780281 174 28/05/1994 00:00 31/10/2020 23:50 10 minutes 1390176 21733 26.018
Berna C0B6 Ibaizabal 526625.0 4781434 92 13/06/1994 00:00 31/10/2020 23:50 10 minutes 1387872 20796 25.992
Derio C003 Ibaizabal 511885.0 4793192 30 24/05/1996 00:00 31/10/2020 23:50 10 minutes 1285488 18484 24.089
Deusto C039 Ibaizabal 502602.0 4792076 3 06/11/2001 00:00 31/10/2020 23:50 10 minutes 998640 1460 18.959
Elorrio C074 Ibaizabal 535914.0 4775188 170 29/09/2000 00:00 31/10/2020 23:50 10 minutes 1056672 1671 20.059
Galindo (CABB) C038 Ibaizabal 500099.0 4794602 5 13/11/2013 11:10 31/10/2020 23:50 10 minutes 366413 532 6.956
Gardea C067 Ibaizabal 501592.0 4774734 150 20/08/1995 00:00 31/10/2020 23:50 10 minutes 1325520 29922 24.633
Igorre C033 Ibaizabal 517579.0 4779317 150 23/03/1999 00:00 31/10/2020 23:50 10 minutes 1136736 4582 21.525
Iurreta C036 Ibaizabal 530890.0 4780242 170 17/07/2001 00:00 31/10/2020 23:50 10 minutes 1014768 2164 19.252
La Garbea C045 Ibaizabal 484272.0 4784708 717 11/01/1992 00:00 31/10/2020 23:50 10 minutes 1515168 82649 27.236
Llodio C027 Ibaizabal 504040.0 4776422 207 06/05/1999 00:00 05/02/2013 23:50 10 minutes 723600 2111 13.718

Continue
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Name Code Watershed UTMX UTMY Altitude(m) From To Frequency nº data nº NaN Years

Mañaria C0B7 Ibaizabal 528734.0 4776621 168 03/04/2003 11:30 31/10/2020 23:50 10 minutes 924699 2681 17.530
Ordunte C059 Ibaizabal 476915.0 4778667 300 30/05/1998 00:00 07/10/2020 10:10 10 minutes 1175966 15944 22.055
Orduña C072 Ibaizabal 496952.0 4758819 934 19/02/1997 00:00 31/10/2020 23:50 10 minutes 1246464 46836 22.808
Orozko (Altube) C0B4 Ibaizabal 506869.0 4770195 190 01/07/1994 00:00 31/10/2020 23:50 10 minutes 1385280 57745 25.240
Punta Galea (DAEM) C042 Ibaizabal 497060.0 4802280 61 26/05/1992 00:00 31/10/2020 23:50 10 minutes 1495584 39000 27.694
Sangroniz C0B9 Ibaizabal 505608.0 4792707 7 10/02/2012 00:00 31/10/2020 23:50 10 minutes 458928 40 8.725
Saratxo C051 Ibaizabal 499678.0 4764383 224 21/05/1992 00:00 31/10/2020 23:50 10 minutes 1496304 19938 28.070
Sodupe-Herrerias C0C4 Ibaizabal 496390.0 4783086 70 18/04/2000 00:00 24/07/2015 23:50 10 minutes 802944 2064 15.227
Sodupe-Kadagua C0C3 Ibaizabal 496006.0 4783300 80 23/02/2001 00:00 31/10/2020 23:50 10 minutes 1035504 370557 12.643
Urkizu C0B3 Ibaizabal 518506.0 4781157 75 28/08/1994 00:00 31/10/2020 23:50 10 minutes 1376928 9799 25.993
Zaratamo C0B2 Ibaizabal 509811.0 4785026 55 01/09/1994 00:00 12/02/2016 23:50 10 minutes 1128240 79522 19.939

Herrera (Puerto) C048 Inglares 526619.0 4715979 1188 23/07/1992 00:00 31/10/2020 23:50 10 minutes 1487232 38437 27.546

Laurgain LAUR Iñurritza 568702.0 4789221 210 21/09/1990 00:00 30/09/2020 23:50 10 minutes 1579392 82352 28.463

Cerroja (balsa) C065 Karrantza 466929.0 4784134 675 09/03/2001 00:00 31/10/2020 23:50 10 minutes 1033488 19000 19.288

Oiz C046 Lea 532890.0 4786260 980 18/10/1991 00:00 31/10/2020 23:50 10 minutes 1527408 58812 27.922
Oleta C0BA Lea 539813.0 4798978 14 14/11/2001 04:30 31/10/2020 23:50 10 minutes 997461 2076 18.925

Brazuelo P054 Nela 466474.0 4769272 1074 27/10/1997 23:00 14/07/2019 21:45 15 minutes 761276 51553 20.241

Jaizkibel C071 Oiartzun 592442.0 4799511 545 01/01/1995 00:00 16/02/2015 23:50 10 minutes 1058688 12370 19.893
Oiartzun C0F4 Oiartzun 590468.0 4795477 11 05/05/1998 00:00 31/10/2020 23:50 10 minutes 1183104 4430 22.410
Oiartzun DFG OIAR Oiartzun 596645.0 4792980 160 12/07/1990 00:00 30/09/2016 10:10 10 minutes 1379150 36405 25.529

Almike (Bermeo) C069 Oka 521676.0 4806577 106 10/12/2002 00:00 31/10/2020 23:50 10 minutes 941184 6438 17.772
Arteaga C002 Oka 527675.0 4799209 19 12/01/2011 14:00 31/10/2020 23:50 10 minutes 515580 633 9.791
Matxitxako C019 Oka 519132.0 4809442 433 01/09/2008 00:00 31/10/2020 23:50 10 minutes 639936 9 12.167
Muxika C063 Oka 525224.0 4792822 20 20/11/1998 00:00 31/10/2020 23:50 10 minutes 1154448 8384 21.790

Berberana P005 Omecillo 495327.0 4751712 641 28/03/1997 23:00 14/07/2019 21:45 15 minutes 781724 95000 19.585
Corro P061 Omecillo 486187.0 4746828 622 04/08/2009 22:00 14/07/2019 21:45 15 minutes 348576 1719 9.892
Espejo C034 Omecillo 496643.0 4739195 504 23/12/2004 10:40 31/10/2020 23:50 10 minutes 833984 34497 15.201

Agauntza C0E5 Oria 567033.0 4762906 185 25/09/1996 00:00 31/10/2020 23:50 10 minutes 1267632 9756 23.916
Alegia C0E9 Oria 572833.0 4772292 95 21/01/1996 00:00 31/10/2020 23:50 10 minutes 1303344 34956 24.116
Ameraun C052 Oria 585226.0 4776812 285 08/02/1993 00:00 31/10/2020 23:50 10 minutes 1458432 106389 25.706
Amundarain C0E1 Oria 569178.0 4764663 170 30/11/2001 10:20 31/10/2020 23:50 10 minutes 995122 945 18.902
Araxes C0E8 Oria 577477.0 4773796 120 30/03/2011 10:30 31/10/2020 23:50 10 minutes 504513 9 9.592
Arriaran DFG ARRI Oria 561930.0 4768795 287 02/03/1995 11:00 30/09/2020 23:50 10 minutes 1345614 78694 24.088
Belauntza C0EA Oria 577391.0 4776852 105 15/04/1998 00:00 31/10/2020 23:50 10 minutes 1185984 2355 22.504
Berastegi C026 Oria 582837.0 4774959 379 01/09/2000 00:00 31/10/2020 23:50 10 minutes 1060704 7437 20.026
Bidania C058 Oria 568736.0 4777177 592 30/04/1993 00:00 31/10/2020 23:50 10 minutes 1446768 21547 27.098
Estanda C0E7 Oria 563614.0 4766666 200 14/09/1996 00:00 31/10/2020 23:50 10 minutes 1269216 7880 23.982
Ibiur (Estación) C4Z1 Oria 571731.0 4768129 174 17/09/2009 11:30 30/09/2020 23:50 10 minutes 580539 4816 10.946
Ibiur Pluviometro IBIU Oria 571315.0 4769050 270 24/04/1989 11:00 17/10/2013 10:20 10 minutes 1287645 51655 23.500
Lareo LARE Oria 572033.0 4758933 745 21/09/1989 17:40 30/09/2020 23:50 10 minutes 1631846 39835 30.269
Lasarte C0EC Oria 579430.0 4789116 17 24/03/2000 00:00 31/10/2020 23:50 10 minutes 1083888 4281 20.526
Leitzaran (Andoain) C077 Oria 579980.0 4784486 94 09/05/1996 00:00 31/10/2020 23:50 10 minutes 1287648 18330 24.133
Ordizia C043 Oria 566959.0 4766405 243 23/01/1992 00:00 31/10/2020 23:50 10 minutes 1513440 90848 27.048
Troya TROY Oria 557370.0 4765545 440 11/08/1994 10:00 30/09/2020 23:50 10 minutes 1374852 87631 24.474
Zaldibia ZALD Oria 571320.0 4761615 375 29/11/1989 10:00 30/09/2020 23:50 10 minutes 1621956 84472 29.232
Zarautz (DAEM) C064 Oria 569358.0 4793558 80 20/02/1993 00:00 31/10/2020 23:50 10 minutes 1456704 23385 27.251
Zegama C028 Oria 557218.0 4756261 520 11/07/2000 00:00 31/10/2020 23:50 10 minutes 1068192 7139 20.174
Zizurkil C029 Oria 576218.0 4782109 149 22/07/2000 00:00 31/10/2020 23:50 10 minutes 1066608 3296 20.217

Aitzu C0DB Urola 555086.0 4773488 125 31/07/1999 00:00 31/10/2020 23:50 10 minutes 1118016 11059 21.046
Aizarnazabal C0DD Urola 561500.0 4789237 25 19/01/1997 00:00 31/10/2020 23:50 10 minutes 1250928 5600 23.677
Barrendiola DFG meteo BARR Urola 554107.0 4762714 505 22/09/1989 00:00 30/09/2020 23:50 10 minutes 1631808 105994 29.010
Erdoizta ERDO Urola 566743.0 4783605 445 06/12/1990 00:00 30/09/2020 23:50 10 minutes 1568448 78309 28.332
Ibaieder C0DC Urola 560477.0 4780317 98 16/02/1996 00:00 31/10/2020 23:50 10 minutes 1299600 14661 24.430

Continue
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Name Code Watershed UTMX UTMY Altitude(m) From To Frequency nº data nº NaN Years

Matxinbenta C0DE Urola 562229.0 4773487 250 08/02/2002 00:00 31/10/2020 23:50 10 minutes 985104 1869 18.694
BARRENDIOLA B1T1 Urola 553011.0 4761520 550 19/01/2005 14:50 30/09/2020 23:50 10 minutes 825607 14061 15.430

Añarbe (estación) C080 Urumea 593421.0 4786509 183 28/10/1999 00:00 31/10/2020 23:50 10 minutes 1105200 6368 20.892
Artikutza Eskas ARTI Urumea 597144.0 4788113 650 22/10/1999 09:50 30/09/2020 23:50 10 minutes 1101541 4936 20.850
Ereñozu C0F0 Urumea 586134.0 4788037 26 31/08/1997 00:00 31/10/2020 23:50 10 minutes 1218672 4053 23.093
Igeldo DFG IGEL Urumea 577772.0 4795301 250 26/04/1995 10:30 30/09/2020 23:50 10 minutes 1337697 55857 24.371
Miramon C017 Urumea 583465.0 4793184 113 21/04/2010 12:50 31/10/2020 23:50 10 minutes 553891 647 10.519
Añarbe (estación) D1Z1 Urumea 593421.0 4786509 183 28/10/1999 00:00 30/09/2020 23:50 10 minutes 1100736 11024 20.719

Abetxuko (CHE) A317 Zadorra 526418.0 4746786 504 18/08/2014 22:00 14/07/2019 21:45 15 minutes 171936 2390 4.835
Abetxuko (DAEM) C076 Zadorra 526912.0 4746803 510 05/04/2001 00:00 31/10/2020 23:50 10 minutes 1029600 7221 19.438
Alegria (canal) C056 Zadorra 538895.0 4743463 545 19/05/1993 00:00 31/10/2020 23:50 10 minutes 1444032 45617 26.588
Alegria Dulantzi P071 Zadorra 539709.0 4744234 553 16/09/2009 22:00 14/07/2019 21:45 15 minutes 344448 4433 9.697
Arkaute I C001 Zadorra 530475.0 4744433 517 13/05/1992 00:00 14/02/2017 07:40 10 minutes 1302239 63851 23.545
Barazar C053 Zadorra 523439.0 4768083 608 06/12/1992 00:00 04/10/2010 07:10 10 minutes 937628 13127 17.577
Etura C0AA Zadorra 540549.0 4748262 549 31/01/2012 13:00 31/10/2020 23:50 10 minutes 460290 236 8.747
Gasteiz (Lakua) C040 Zadorra 525396.0 4745126 546 24/03/1992 00:00 12/12/2013 08:30 10 minutes 1142404 12417 21.484
Gorbea (Embalse) C044 Zadorra 521589.0 4760576 662 24/10/1992 00:00 31/10/2020 23:50 10 minutes 1473840 54920 26.978
Kapildui C047 Zadorra 537816.0 4734936 1173 12/11/1991 00:00 31/10/2020 23:50 10 minutes 1523808 210561 24.969
Larrinoa A221 Zadorra 521862.0 4757556 598 16/03/2009 23:00 14/07/2019 21:45 15 minutes 362108 6103 10.153
Okina P072 Zadorra 533771.0 4734981 812 03/06/2009 22:00 14/07/2019 21:45 15 minutes 354528 994 10.083
Otxandio (Iberdrola) C054 Zadorra 527894.0 4765356 556 12/12/1992 00:00 31/10/2020 23:50 10 minutes 1466784 29384 27.329
Ozaeta (Iberdrola) C055 Zadorra 541375.0 4751070 548 23/02/1993 00:00 31/10/2020 23:50 10 minutes 1456272 100116 25.784
Salvatierra C030 Zadorra 549355.0 4744857 589 06/02/1999 00:00 31/10/2020 23:50 10 minutes 1143216 5089 21.639
Salvatierra CE P069 Zadorra 549795.0 4745523 620 10/05/2009 22:00 14/07/2019 21:45 15 minutes 356832 2426 10.107
Trebiño C020 Zadorra 524447.0 4729536 578 06/11/2007 10:50 31/10/2020 23:50 10 minutes 683071 3672 12.917
Ullibarri (embalse) E027 Zadorra 531291.0 4753042 545 30/09/1997 22:00 14/07/2019 21:45 15 minutes 763872 21113 21.183
Urkiola C022 Zadorra 528761.0 4771983 709 12/09/1998 00:00 31/10/2020 23:50 10 minutes 1164384 8406 21.978
Urrunaga E028 Zadorra 528222.0 4756195 543 30/09/1997 22:00 14/07/2019 21:45 15 minutes 763872 28831 20.963
Zaldiaran (Repetidor) C070 Zadorra 521556.0 4738051 980 14/07/1994 00:00 31/10/2020 23:50 10 minutes 1383408 42250 25.499
Zambrana C050 Zadorra 509269.0 4724545 470 15/10/1992 00:00 31/10/2020 23:50 10 minutes 1475136 21027 27.647
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Appendix B Estimated parameter confidence
intervals

Once the optimal estimates θ̂ that maximize the log-likelihood function (11)

is available, the estimated parameters θ̂ correspond to mean values, and
assuming that observational errors are normally distributed, the estimated
parameter vectors are distributed as follows:

θ ∼ N
(︂
θ̂,Σθ

)︂
, (B1)

where N denotes the multivariate normal distribution, and Σθ is the variance-
covariance matrix of the parameter estimates. Using the method of maximum
likelihood, if ℓ(·) is twice differentiable with respect to estimated parameters,
and under certain regularity conditions which are often satisfied in practice
(Lehmann and Casella (1998)), then the parameter covariance matrix is equal
to the inverse of the Fisher information matrix (Iθ). Assuming that the log-
likelihood is approximately quadratic in a neighborhood of the maximum, the
Fisher information matrix is equal to the Hessian matrix of the log-likelihood
functions with the sign changed:

Iθ = −∂
2ℓ(θ; xmax)

∂2θ
. (B2)

The (1− α) confidence interval for each parameter is equal to:

θupj = θ̂j +Φ−1(1− α/2)σ̂j , j = 0, 1, . . . , np

θj
lo = θ̂j − Φ−1(1− α/2)σ̂j , j = 0, 1, . . . , np,

(B3)

where np is the number of components of vector θ, Φ−1(1−α/2) is the standard
normal distribution (1− α/2) quantile and σ̂j is the corresponding estimated
standard deviation for parameters j (square root of the corresponding diagonal
term in Σθ).

Appendix C Quantile confidence intervals

From the practical perspective, the calculation of IDF curves requires compu-
tation of quantiles for different return periods (T ) (usually in years). These
estimated return periods x̂T correspond to those from solving expression (6)
from the fitted distribution at the location of interest.

If we are interested in calculating the confidence bands for estimated quan-
tiles xTk

at location k, and it is known that for large sample sizes the quantile
xTk

is asymptotically normal, and thus, the delta method (Oehlert, 1992) can
be applied as follows:

xTk
∼ N

(︂
x̂Tk

,∇T
θxTk

Σθ∇θxTk

)︂
, (C4)
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where ∇θxTk
is the np vector of partial derivatives of quantile expressions

with respect to θ.
Note that equation (C4) allows obtaining the estimated variance σ̂2

xTk
of

the quantile, and the confidence intervals then become:

xupTk
= x̂Tk

+

√︃
n

nk
Φ−1(1− α/2)σ̂xTk

,

xloTk
= x̂Tk

−
√︃

n

nk
Φ−1(1− α/2)σ̂xTk

.
(C5)

Note that the proposed method fits parameters using information from
all local rain gauges simultaneously n =

∑︁nr

i=1 nk, that is why uncertainty in
expression (C5) must be re-scaled to take into consideration the record length
at each specific site k. The required derivatives for the return period quantile
uncertainty estimation are easily obtained analytically or numerically by finite
differences:

∂zq
∂γ

=
zq(γ(1 + ϵ))− zq(γ(1− ϵ))

ϵγ
, (C6)

where γ represents the corresponding parameter and ϵ = 10−6.
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