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Abstract
Finite element method (FEM) has been used for years for radiation problems in the 
field of electromagnetism. To tackle problems of this kind, mesh truncation tech-
niques are required, which may lead to the use of high computational resources. 
In fact, electrically large radiation problems can only be tackled using massively 
parallel computational resources. Different types of multi-core machines are com-
monly employed in diverse fields of science for accelerating a number of applica-
tions. However, properly managing their computational resources becomes a very 
challenging task. On the one hand, we present a hybrid message passing inter-
face  +  OpenMP-based acceleration of a mesh truncation technique included in a 
FEM code for electromagnetism in a high-performance computing cluster equipped 
with 140 compute nodes. Results show that we obtain about 85% of the theoretical 
maximum speedup of the machine. On the other hand, a graphics processing unit 
has been used to accelerate one of the parts that presents high fine-grain parallelism.

Keywords Acceleration · Parallelization · MPI · OpenMP · Electromagnetism · 
Finite elements

1 Introduction

Finite element method (FEM) has been proven as a reliable, versatile and flexible 
tool for electromagnetism in the last decades. This method is based on the division 
of the physical domain into simpler geometrical shapes (tetrahedra are commonly 
used for a number of reasons) over which the solution is approximated by polynomi-
als of a certain order. In this way, the original partial differential equations obtained 
from electromagnetism are translated into an algebraic system of equations. This 
code has been already verified and validated for several real problems [1, 2].
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However, when FEM is applied to large scale problems in terms of electri-
cal size, huge computational resources are required since the volumetric meshes 
mandatory in FEM lead to huge and highly sparse matrices. These matrices are 
commonly solved through direct solvers due to accuracy reasons and the neces-
sity of sophisticated preconditioners to achieve convergence in iterative solvers 
[3]. Moreover, the use of direct solvers allows an efficient introduction of a num-
ber of different right-hand sides (RHS), present in some problems, e.g., when 
computing radar cross section (RCS) of a target.

Moreover, when applying FEM to radiation problems, the free space has to be 
included in the volumetric mesh, which is critical since it can generate not only 
inaccurate solutions, but also increase significantly the computational time. Dif-
ferent mesh truncation techniques have already been provided in the literature [4, 
5]. A technique based on a domain decomposition method (DDM), called finite 
element-iterative integral equation evaluation (FE-IIEE), was previously devel-
oped to obtain a certain accuracy in these radiation problems [6].

The fact that the current processors are composed of multiple cores has allowed 
to accelerate multiple applications in different fields. In fact, a high variety of 
programming technologies are available, including OpenMP [7] and MPI [8], that 
can be used for exploiting the cores of a processor and coordinating between dif-
ferent processors and machines. A platform that is suited for task-oriented paral-
lelization is Xeon Phi [9]. Another kind of acceleration can be achieved by the 
use of graphics processing units (GPUs). Following Flynn’s taxonomy [10], from 
a conceptual point of view, a GPU can be viewed as a single-instruction multiple-
data machine (SIMD), i.e., a computer in which a single flow of instructions is 
executed on different data sets. Thus, GPUs achieves high performances when the 
application presents fine-grain parallelism. The CUDA platform [11] provides a 
computing framework that enables the use of graphics processing units (GPUs). 
Since the appearance of CUDA programming, many researchers in different areas 
have made use of it to achieve better performance in their respective fields. For 
example, in image processing [12], in acoustics [13], and even in solving electro-
magnetic problems that involve the method of moments or finite-difference time-
domain [14, 15]. However, GPU is not a technique commonly used in FEM when 
using direct solvers to obtain the solution of the system of equations.

Two different accelerations are assessed in this work. On one side, we propose 
an MPI + OpenMP-based acceleration of a mesh truncation technique included 
on a finite element code for electromagnetism in a high-performance computing 
(HPC) cluster equipped with 140 compute nodes. On the other side, we accelerate 
by using a GPU an specific part of the FE-IIEE that is composed of a high num-
ber of multiply and add (MAD) operations. For this last part, our work is focused 
on the issues of computing multiple RHS concurrently.

The rest of the paper is structured as follows: FEM formulation is briefly 
described in Sect. 2, flowchart of the parallelization for the truncation technique 
is included in Sect. 3; speedup and numerical results are included in Sect. 4; and 
finally conclusions are drawn in Sect. 5.
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2  Variational formulation

A weak formulation based on the double curl vector wave equation to characterize 
the electromagnetic field in a given problem domain is introduced in the FEM code. 
In the frequency domain, the double curl vector wave equation is

where � is the electric field, k0 is the wavenumber in vacuum, and � is the excitation 
related to impressed currents within the problem domain. Dirichlet �D , Neumann 
�N and Cauchy �C boundary conditions are included in the code with the definitions

where �̂ is the outward normal unit vector from the surface where the boundary con-
dition is applied, and �  can be either the exterior boundary for open region prob-
lems or the excitation related to a waveport.

Then, Galerkin method is used on (1) to obtain the variational formulation of the 
problem as explained in the following.

Find � ∈ � such that

where the bilinear ( c1 , c2 and c3 ) and linear forms (l) are defined with

and the space of functions is

To discretize the FEM domain, second-order isoparametric curl-conforming tetrahe-
dral and triangular prismatic finite elements [16, 17] are used.
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For open region problems, as introduced in Sect. 1, a non-standard mesh trunca-
tion technique (FE-IIEE [6]) is included. FE-IIEE is based on a two-domain decom-
position multiplicative Schwarz paradigm, dividing the original infinite domain into 
two overlapping domains limited by a finite FEM domain bounded by an exterior 
surface S and by an infinite domain exterior to the auxiliary boundary S′ located 
within S, as it is shown in Fig. 1.

In practice, the distance between S and S′ is a small fraction of the wavelength, 
typically in the range of 0.05 � to 0.2 � , hence allowing the truncation boundary to 
be placed very close to the sources. Following the Schwarz paradigm, FE-IIEE iter-
ates between these two domains until the scattering field error between two consecu-
tive iterations is lower than a given threshold or until the maximum number of itera-
tions is reached. Note that these iterations only involve changes on the right-hand 
side of the problem. This means that the FEM matrix needs to be factorized only in 
the first iteration, and only forward and backward substitutions are involved in the 
remaining iterations when a direct solver is used.

Specifically, the integral equation representation of the exterior field to S′ pro-
vides an improved version of the residual function �  related to the Cauchy boundary 
conditions at each iteration step. Thus, an asymptotically exact absorbing boundary 
condition for FEM is implemented retaining the original sparse nature of the finite 
element matrices. In practice, the use of the FE-IIEE method means that function 
�  now is the weighted sum of � inc and � scat [6], where � inc is set to zero for radia-
tion problems and � scat is computed in each iteration of the FE-IIEE method. The 
computation of � scat requires a number of operations which reminds of method of 
moments, with different computational requirements than FEM. Indeed, this spe-
cific part of the code is the most suitable to be run on GPU since it is composed 
of the combination of multiple parameters. Firstly, Green’s function is computed, 
whose operations are implemented by a dozen of multiplications between com-
plex numbers, which involves 5 operations each (4 real multiplications and a sum). 
Afterward, combinations of J-current and M-current are used to obtain the potential 
� and � × � (see blue box in Fig.  2 and note that for this formulation, based on 
electric field, � = � ), which involves the combination of thousands of complex ele-
ments. All of the described operations are carried out independently for each of the 

Fig. 1  Decomposition in two 
domains for FE-IIEE
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RHS. Thus, porting this part of the code that fits within the SIMD paradigm to a 
GPU can provide a boost in the performance.

In Fig.  2 more details about how FE-IIEE is embedded in the FEM code are 
included. Typical flowchart for FEM solver is included in the green box while blue 
boxes show how boundary conditions are imposed on domain S. The boundary con-
ditions are updated until the convergence criteria are achieved.

3  Parallelization

The code was initially designed for small HPC cluster environments, and it has 
recently experienced a number of modifications in order to be able to run on large-
scale computer systems and hence, to be able to deal with larger problems in terms 
of number of unknowns. Thus, the code has been written from scratch to make an 
efficient use of HPC platforms. HOFEM implements a hybrid parallel methodology 
based on the use of MPI processes and OpenMP threads within each process. This 
hybrid methodology is already used in direct solvers as MUMPS [18], which lever-
aged from the code to obtain the solution with high accuracy from the system of 
equations generated with FEM so it is efficient to use the same scheme in the code.

A workflow particularized for the FE-IIEE method is included in Fig. 3. Here, a 
process is denoted as a box (numbered as p0, p1, and so on) and a thread is plot-
ted as a smaller box below the process being filled with color if the thread is used. 
In this example, four threads per process are shown in the workflow. At first, all the 
input data are read and then, for each frequency, a typical assembly of FEM system 
of equations is performed. In this assembly, different elements are assigned to each 
process while loops are accelerated with OpenMP threads. To solve the system of 
equations, MUMPS is used—as a direct solver—and if the problem is open region, 
FE-IIEE is enabled so that the scattering field is computed, the right-hand side is 
updated only in p0, and then the system of equations is solved. This is repeated until 
the convergence error is achieved or the maximum number of iterations is reached. 
In this solving step, the matrix is factorized in the first iteration and then forward 
and backward substitutions are applied for the remaining iterations. In this loop, the 
performance of OpenMP is critical to attain a good speedup as shown in Sect. 4.

Fig. 2  Conceptual flowchart for FE-IIEE
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It has to be noted how the number of RHS affects to the scalability of the 
code. The number of RHS is related, e.g., to the spatial resolution when com-
puting monostatic radar cross section (RCS): if plane for � = 90◦ is character-
ized with an angle sampling of two degrees, 181 points—which means 181 exci-
tations, so 181 RHS if no more excitations are present in the electromagnetic 
problem—will be needed; in fact, if a 3D half-sphere wants to be characterized 
with the same angle sampling, 8281 RHS are needed—91 points in � planes 
(from � = 0 to � = 180◦ ), and 91 possible values of �(from � = 0 to � = 180◦ ). 
The most expensive part in terms of computational time is the factorization of 
the matrix, which is performed once for each frequency. Then, to add more RHS 
when using a direct solver simply means applying more forward and backward 
substitutions. However, the scattering field used in FE-IIEE method has to be 
computed for each different RHS, which makes it suitable for accelerating with 
GPU due to the distinctive features of its computation.
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Fig. 3  Parallel workflow for FE-IIEE
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3.1  GPU‑based implementation for accelerating RHS

The parallelization of the GPU consists on launching as many GPU-threads (execu-
tions in parallel that are launched at the GPU ) as the number of RHS in the electro-
magnetic problem, so that each GPU-thread deals independently with one RHS. In 
Fig. 4, the parallelization of the computations of � scat composed of multiple RHS is 
shown. Performance tests were carried out using an Intel(R) Xeon(R) CPU E5-2697 
v2 @ 2.70 GHz and a Nvidia GPU K20c [19].

The integration of the GPU code with the original HOFEM software has been 
cumbersome since HOFEM was developed in Fortran and a wrapper that connecting 
both codes has been developed. As a consequence, the number of memory transac-
tions between GPU and CPU has been increased and thus, the boost in the perfor-
mance has not been as significant as it was expected initially. Despite these facts, 
Fig. 5 shows that, using a GPU for computing a scattering vector � scat , a better per-
formance than original HOFEM software with CPU is obtained when the scattering 
field is composed by more than 2000 RHS.

4  Results

Given aside the acceleration using the GPU implementation, the speedup of the 
whole code in an HPC environment—HPC cluster of Xidian University (XDHPC), 
equipped with 140 compute nodes (each one with two twelve-core Intel Xeon 2690 
V2 2.2 GHz CPUs with 64 GB RAM and 1.8 TB hard disk) connected by 56 Gbps 
InfiniBand network—is included. Here, the second-order basis functions for tetrahe-
dra introduced in [16] are used. A snapshot of the car together with the 3D represen-
tation of the RCS of the car at 500 MHz is illustrated in Fig. 6.

Figure 7 reports the parallel performance of the FEM code considering only 
the execution of the FE-IIEE truncation technique. As it was described in the 
previous section, once the code computes the solution of the problem, the FE-
IIEE technique is executed (when enabled), avoiding any undesired reflec-
tion from the truncation boundary that can disturb the solution. The parallel 

rhs=0 rhs=1 rhs=2
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CPU-thread carries out
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1)Green Function
2) Pote tial V
3)rotV

Each GPU-thread carries out
the computation of a RHS
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rhs=1

rhs=2

Fig. 4  GPU-based parallelization of the scattering vector that is composed of multiple RHS
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performance obtained by HOFEM during these phases is near 85% almost in all 
the configurations when using 480 cores. For a smaller number of cores the per-
formance is even higher. It is worth mentioning that, during the execution of the 
FE-IIEE method, a back substitution process is required in order to compute the 
solution of the system, slightly degrading parallel performance.
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Fig. 5  Performance comparison between the use of the CPU and the use of GPU inside the HOFEM 
software in order to compute � scat with multiple RHS

(a) Geometry of the problem. (b) RCS (planewave illuminates the front)

Fig. 6  RCS analysis of a Chevrolet impala at 500 MHz
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5  Conclusions

We have presented a GPU-based implementation in order to accelerate one spe-
cific part of the FE-IIEE that is composed of multiple RHS. The proposed GPU 
implementation outperforms the CPU implementation when the number of RHS 
is upper to 2000.

On the other hand, we have presented a FEM formulation developed from 
scratch to be used in HPC environments. Details of the acceleration of a non-
standard mesh truncation technique designed for open problems are given. 
Results show that up to 85% of the theoretical maximum speedup of the machine 
is obtained with the computation of an RCS of a target modeled as a car.
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