
Vol:.(1234567890)

The Journal of Supercomputing (2019) 75:1686–1696
https://doi.org/10.1007/s11227-018-02739-9

1 3

On the use of many‑core machines for the acceleration
of a mesh truncation technique for FEM

Jose A. Belloch1 · Adrian Amor‑Martin2 · Daniel Garcia‑Donoro3 ·
Francisco J. Martínez‑Zaldívar4 · Luis E. Garcia‑Castillo2

Published online: 4 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Finite element method (FEM) has been used for years for radiation problems in the
field of electromagnetism. To tackle problems of this kind, mesh truncation tech-
niques are required, which may lead to the use of high computational resources.
In fact, electrically large radiation problems can only be tackled using massively
parallel computational resources. Different types of multi-core machines are com-
monly employed in diverse fields of science for accelerating a number of applica-
tions. However, properly managing their computational resources becomes a very
challenging task. On the one hand, we present a hybrid message passing inter-
face + OpenMP-based acceleration of a mesh truncation technique included in a
FEM code for electromagnetism in a high-performance computing cluster equipped
with 140 compute nodes. Results show that we obtain about 85% of the theoretical
maximum speedup of the machine. On the other hand, a graphics processing unit
has been used to accelerate one of the parts that presents high fine-grain parallelism.

Keywords Acceleration · Parallelization · MPI · OpenMP · Electromagnetism ·
Finite elements

1 Introduction

Finite element method (FEM) has been proven as a reliable, versatile and flexible
tool for electromagnetism in the last decades. This method is based on the division
of the physical domain into simpler geometrical shapes (tetrahedra are commonly
used for a number of reasons) over which the solution is approximated by polynomi-
als of a certain order. In this way, the original partial differential equations obtained
from electromagnetism are translated into an algebraic system of equations. This
code has been already verified and validated for several real problems [1, 2].

 * Jose A. Belloch
 jbelloc@ing.uc3m.es

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2595-1828
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-02739-9&domain=pdf

1687

1 3

On the use of many-core machines for the acceleration of a mesh…

However, when FEM is applied to large scale problems in terms of electri-
cal size, huge computational resources are required since the volumetric meshes
mandatory in FEM lead to huge and highly sparse matrices. These matrices are
commonly solved through direct solvers due to accuracy reasons and the neces-
sity of sophisticated preconditioners to achieve convergence in iterative solvers
[3]. Moreover, the use of direct solvers allows an efficient introduction of a num-
ber of different right-hand sides (RHS), present in some problems, e.g., when
computing radar cross section (RCS) of a target.

Moreover, when applying FEM to radiation problems, the free space has to be
included in the volumetric mesh, which is critical since it can generate not only
inaccurate solutions, but also increase significantly the computational time. Dif-
ferent mesh truncation techniques have already been provided in the literature [4,
5]. A technique based on a domain decomposition method (DDM), called finite
element-iterative integral equation evaluation (FE-IIEE), was previously devel-
oped to obtain a certain accuracy in these radiation problems [6].

The fact that the current processors are composed of multiple cores has allowed
to accelerate multiple applications in different fields. In fact, a high variety of
programming technologies are available, including OpenMP [7] and MPI [8], that
can be used for exploiting the cores of a processor and coordinating between dif-
ferent processors and machines. A platform that is suited for task-oriented paral-
lelization is Xeon Phi [9]. Another kind of acceleration can be achieved by the
use of graphics processing units (GPUs). Following Flynn’s taxonomy [10], from
a conceptual point of view, a GPU can be viewed as a single-instruction multiple-
data machine (SIMD), i.e., a computer in which a single flow of instructions is
executed on different data sets. Thus, GPUs achieves high performances when the
application presents fine-grain parallelism. The CUDA platform [11] provides a
computing framework that enables the use of graphics processing units (GPUs).
Since the appearance of CUDA programming, many researchers in different areas
have made use of it to achieve better performance in their respective fields. For
example, in image processing [12], in acoustics [13], and even in solving electro-
magnetic problems that involve the method of moments or finite-difference time-
domain [14, 15]. However, GPU is not a technique commonly used in FEM when
using direct solvers to obtain the solution of the system of equations.

Two different accelerations are assessed in this work. On one side, we propose
an MPI + OpenMP-based acceleration of a mesh truncation technique included
on a finite element code for electromagnetism in a high-performance computing
(HPC) cluster equipped with 140 compute nodes. On the other side, we accelerate
by using a GPU an specific part of the FE-IIEE that is composed of a high num-
ber of multiply and add (MAD) operations. For this last part, our work is focused
on the issues of computing multiple RHS concurrently.

The rest of the paper is structured as follows: FEM formulation is briefly
described in Sect. 2, flowchart of the parallelization for the truncation technique
is included in Sect. 3; speedup and numerical results are included in Sect. 4; and
finally conclusions are drawn in Sect. 5.

1688 J. A. Belloch et al.

1 3

2 Variational formulation

A weak formulation based on the double curl vector wave equation to characterize
the electromagnetic field in a given problem domain is introduced in the FEM code.
In the frequency domain, the double curl vector wave equation is

where � is the electric field, k0 is the wavenumber in vacuum, and � is the excitation
related to impressed currents within the problem domain. Dirichlet �D , Neumann
�N and Cauchy �C boundary conditions are included in the code with the definitions

where �̂ is the outward normal unit vector from the surface where the boundary con-
dition is applied, and � can be either the exterior boundary for open region prob-
lems or the excitation related to a waveport.

Then, Galerkin method is used on (1) to obtain the variational formulation of the
problem as explained in the following.

Find � ∈ � such that

where the bilinear (c1 , c2 and c3) and linear forms (l) are defined with

and the space of functions is

To discretize the FEM domain, second-order isoparametric curl-conforming tetrahe-
dral and triangular prismatic finite elements [16, 17] are used.

(1)� ×
1

�r

(� × �) − k2
0
�r� = �,

(2)�̂ × � = 0, on 𝛤D,

(3)�̂ ×
1

𝜇ri

(� × �) = 0, on 𝛤N,

(4)�̂ ×
1

𝜇ri

(� × �) + jk0(�̂ × �̂ × �) = � , on 𝛤C,

(5)c1(�,�) − k2
0
c2(�,�) + � c3(�,�) = l(�), ∀� ∈ �,

(6)

c1(�,�) =∫
Ω

(� × �) ⋅

(

1

𝜇r

� × �

)

dΩ,

c2(�,�) =∫
Ω

� ⋅ 𝜀r� dΩ,

c3(�,�) =∫
𝛤C

(�̂ × �) ⋅ (�̂ × �)d𝛤C,

(7)l(�) = ∫
Ω

(� ⋅�) dΩ − ∫
�C

(� ⋅ �)�C,

(8)� ∶= {� ∈ �(curl,Ω), �̂ × � = 0 on 𝛤D}.

1689

1 3

On the use of many-core machines for the acceleration of a mesh…

For open region problems, as introduced in Sect. 1, a non-standard mesh trunca-
tion technique (FE-IIEE [6]) is included. FE-IIEE is based on a two-domain decom-
position multiplicative Schwarz paradigm, dividing the original infinite domain into
two overlapping domains limited by a finite FEM domain bounded by an exterior
surface S and by an infinite domain exterior to the auxiliary boundary S′ located
within S, as it is shown in Fig. 1.

In practice, the distance between S and S′ is a small fraction of the wavelength,
typically in the range of 0.05 � to 0.2 � , hence allowing the truncation boundary to
be placed very close to the sources. Following the Schwarz paradigm, FE-IIEE iter-
ates between these two domains until the scattering field error between two consecu-
tive iterations is lower than a given threshold or until the maximum number of itera-
tions is reached. Note that these iterations only involve changes on the right-hand
side of the problem. This means that the FEM matrix needs to be factorized only in
the first iteration, and only forward and backward substitutions are involved in the
remaining iterations when a direct solver is used.

Specifically, the integral equation representation of the exterior field to S′ pro-
vides an improved version of the residual function � related to the Cauchy boundary
conditions at each iteration step. Thus, an asymptotically exact absorbing boundary
condition for FEM is implemented retaining the original sparse nature of the finite
element matrices. In practice, the use of the FE-IIEE method means that function
� now is the weighted sum of � inc and � scat [6], where � inc is set to zero for radia-
tion problems and � scat is computed in each iteration of the FE-IIEE method. The
computation of � scat requires a number of operations which reminds of method of
moments, with different computational requirements than FEM. Indeed, this spe-
cific part of the code is the most suitable to be run on GPU since it is composed
of the combination of multiple parameters. Firstly, Green’s function is computed,
whose operations are implemented by a dozen of multiplications between com-
plex numbers, which involves 5 operations each (4 real multiplications and a sum).
Afterward, combinations of J-current and M-current are used to obtain the potential
� and � × � (see blue box in Fig. 2 and note that for this formulation, based on
electric field, � = �), which involves the combination of thousands of complex ele-
ments. All of the described operations are carried out independently for each of the

Fig. 1 Decomposition in two
domains for FE-IIEE

1690 J. A. Belloch et al.

1 3

RHS. Thus, porting this part of the code that fits within the SIMD paradigm to a
GPU can provide a boost in the performance.

In Fig. 2 more details about how FE-IIEE is embedded in the FEM code are
included. Typical flowchart for FEM solver is included in the green box while blue
boxes show how boundary conditions are imposed on domain S. The boundary con-
ditions are updated until the convergence criteria are achieved.

3 Parallelization

The code was initially designed for small HPC cluster environments, and it has
recently experienced a number of modifications in order to be able to run on large-
scale computer systems and hence, to be able to deal with larger problems in terms
of number of unknowns. Thus, the code has been written from scratch to make an
efficient use of HPC platforms. HOFEM implements a hybrid parallel methodology
based on the use of MPI processes and OpenMP threads within each process. This
hybrid methodology is already used in direct solvers as MUMPS [18], which lever-
aged from the code to obtain the solution with high accuracy from the system of
equations generated with FEM so it is efficient to use the same scheme in the code.

A workflow particularized for the FE-IIEE method is included in Fig. 3. Here, a
process is denoted as a box (numbered as p0, p1, and so on) and a thread is plot-
ted as a smaller box below the process being filled with color if the thread is used.
In this example, four threads per process are shown in the workflow. At first, all the
input data are read and then, for each frequency, a typical assembly of FEM system
of equations is performed. In this assembly, different elements are assigned to each
process while loops are accelerated with OpenMP threads. To solve the system of
equations, MUMPS is used—as a direct solver—and if the problem is open region,
FE-IIEE is enabled so that the scattering field is computed, the right-hand side is
updated only in p0, and then the system of equations is solved. This is repeated until
the convergence error is achieved or the maximum number of iterations is reached.
In this solving step, the matrix is factorized in the first iteration and then forward
and backward substitutions are applied for the remaining iterations. In this loop, the
performance of OpenMP is critical to attain a good speedup as shown in Sect. 4.

Fig. 2 Conceptual flowchart for FE-IIEE

1691

1 3

On the use of many-core machines for the acceleration of a mesh…

It has to be noted how the number of RHS affects to the scalability of the
code. The number of RHS is related, e.g., to the spatial resolution when com-
puting monostatic radar cross section (RCS): if plane for � = 90◦ is character-
ized with an angle sampling of two degrees, 181 points—which means 181 exci-
tations, so 181 RHS if no more excitations are present in the electromagnetic
problem—will be needed; in fact, if a 3D half-sphere wants to be characterized
with the same angle sampling, 8281 RHS are needed—91 points in � planes
(from � = 0 to � = 180◦), and 91 possible values of �(from � = 0 to � = 180◦).
The most expensive part in terms of computational time is the factorization of
the matrix, which is performed once for each frequency. Then, to add more RHS
when using a direct solver simply means applying more forward and backward
substitutions. However, the scattering field used in FE-IIEE method has to be
computed for each different RHS, which makes it suitable for accelerating with
GPU due to the distinctive features of its computation.

p0 p1 p2 pn... Assembly
FEM

matrix

Solve system
of equations

p0 p1 p2 pn...

Yes

Yes

Calculate
scattering

eld

p0 ... Update
global RHS

FE-IIEE enabled

p0 p1 p2 pn...

More frequencies

Postprocess

No

No

Solve system
of equations

p0 p1 p2 pn...

Conv/Iter
achieved

Yes

No

MPI Division

Fig. 3 Parallel workflow for FE-IIEE

1692 J. A. Belloch et al.

1 3

3.1 GPU‑based implementation for accelerating RHS

The parallelization of the GPU consists on launching as many GPU-threads (execu-
tions in parallel that are launched at the GPU) as the number of RHS in the electro-
magnetic problem, so that each GPU-thread deals independently with one RHS. In
Fig. 4, the parallelization of the computations of � scat composed of multiple RHS is
shown. Performance tests were carried out using an Intel(R) Xeon(R) CPU E5-2697
v2 @ 2.70 GHz and a Nvidia GPU K20c [19].

The integration of the GPU code with the original HOFEM software has been
cumbersome since HOFEM was developed in Fortran and a wrapper that connecting
both codes has been developed. As a consequence, the number of memory transac-
tions between GPU and CPU has been increased and thus, the boost in the perfor-
mance has not been as significant as it was expected initially. Despite these facts,
Fig. 5 shows that, using a GPU for computing a scattering vector � scat , a better per-
formance than original HOFEM software with CPU is obtained when the scattering
field is composed by more than 2000 RHS.

4 Results

Given aside the acceleration using the GPU implementation, the speedup of the
whole code in an HPC environment—HPC cluster of Xidian University (XDHPC),
equipped with 140 compute nodes (each one with two twelve-core Intel Xeon 2690
V2 2.2 GHz CPUs with 64 GB RAM and 1.8 TB hard disk) connected by 56 Gbps
InfiniBand network—is included. Here, the second-order basis functions for tetrahe-
dra introduced in [16] are used. A snapshot of the car together with the 3D represen-
tation of the RCS of the car at 500 MHz is illustrated in Fig. 6.

Figure 7 reports the parallel performance of the FEM code considering only
the execution of the FE-IIEE truncation technique. As it was described in the
previous section, once the code computes the solution of the problem, the FE-
IIEE technique is executed (when enabled), avoiding any undesired reflec-
tion from the truncation boundary that can disturb the solution. The parallel

rhs=0 rhs=1 rhs=2

scat

CPU-thread carries out
the computation of

each RHS sequentially

1)Green Function
2) Pote tial V
3)rotV

Each GPU-thread carries out
the computation of a RHS

rhs=0

rhs=1

rhs=2

Fig. 4 GPU-based parallelization of the scattering vector that is composed of multiple RHS

1693

1 3

On the use of many-core machines for the acceleration of a mesh…

performance obtained by HOFEM during these phases is near 85% almost in all
the configurations when using 480 cores. For a smaller number of cores the per-
formance is even higher. It is worth mentioning that, during the execution of the
FE-IIEE method, a back substitution process is required in order to compute the
solution of the system, slightly degrading parallel performance.

Number of RHS
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(s

ec
)

0

20

40

60

80

100

120
Performance varying different RHS

cpu-time
gpu-time

Fig. 5 Performance comparison between the use of the CPU and the use of GPU inside the HOFEM
software in order to compute � scat with multiple RHS

(a) Geometry of the problem. (b) RCS (planewave illuminates the front)

Fig. 6 RCS analysis of a Chevrolet impala at 500 MHz

1694 J. A. Belloch et al.

1 3

5 Conclusions

We have presented a GPU-based implementation in order to accelerate one spe-
cific part of the FE-IIEE that is composed of multiple RHS. The proposed GPU
implementation outperforms the CPU implementation when the number of RHS
is upper to 2000.

On the other hand, we have presented a FEM formulation developed from
scratch to be used in HPC environments. Details of the acceleration of a non-
standard mesh truncation technique designed for open problems are given.
Results show that up to 85% of the theoretical maximum speedup of the machine
is obtained with the computation of an RCS of a target modeled as a car.

Acknowledgements This work has been financially supported by TEC2016-80386-P, TIN2017-82972-R,
CAM S2013/ICE-3004 projects and “Ayudas para contratos predoctorales de Formación del Profesorado
Universitario FPU”.

References

 1. Garcia-Donoro D, García-Castillo LE, Ting SW (2016) Verification process of finite-element
method code for electromagnetics: using the method of manufactured solutions. IEEE Antennas
Propag Mag 7(2):28–38

 2. Garcia-Donoro D, Ting S, Amor-Martin A, Garcia-Castillo LE (2016) Analysis of planar micro-
wave devices using higher order curl-conforming triangular prismatic finite elements. Microw
Opt Technol Lett 58(8):1794–1801

120 240 360 480

1.0

1.5

2.0

2.5

3.0

3.5

4.0 12 threads per process
 6 threads per process
 4 threads per process

78 %

85 %

100 %

FE
-II

EE
 s

pe
ed

up

number of cores

Fig. 7 Speedup graph corresponding to the mesh truncation phase

1695

1 3

On the use of many-core machines for the acceleration of a mesh…

 3. Ernst OG, Gander MJ (2012) Why it is difficult to solve helmholtz problems with classical itera-
tive methods. In: Lakkis O et al (eds) Numerical analysis of multiscale problems. Springer, Ber-
lin, pp 325–363

 4. Bérenger J-P (2007) Perfectly matched layer (PML) for computational electromagnetics. Synth Lect
Comput Electromagn 2(1):1–117

 5. Webb JP, Kanellopoulos VN (1989) Absorbing boundary conditions for the finite element solu-
tion of the vector wave equation. Microw Opt Technol Lett 2(10):370–372. https ://doi.org/10.1002/
mop.46500 21010

 6. Fernandez-Recio R, Garcia-Castillo LE, Gomez-Revuelto I, Salazar-Palma M (2011) Convergence
study of a non-standard Schwarz domain decomposition method for finite element mesh truncation
in electromagnetics. Progr Electromagn Res (PIER) 120:439–457

 7. OpenMP: The OpenMP API specification for parallel programming. http://openm p.org/. Accessed 3
Jan 2019

 8. Message Passing Interface Forum. http://www.mpi-forum .org/. Accessed 3 Jan 2019
 9. Sodani A, Gramunt R, Corbal J, Kim H, Vinod K, Chinthamani S, Hutsell S, Agarwal R, Liu Y

(2016) Knights landing: second-generation Intel Xeon Phi product. IEEE Micro 36(2):34–46
 10. Flynn M (1972) Some computer organizations and their effectiveness. IEEE Trans Comput

21:948–960
 11. Nvidia CUDA Developer Zone. https ://devel oper.nvidi a.com/cuda-zone. Accessed 10 Apr 2014
 12. Liu W, Schmidt B, Voss G, Muller-Wittig W (2007) Streaming algorithms for biological sequence

alignment on GPUs. IEEE Trans Parallel Distrib Syst 18(9):1270–1281
 13. Belloch JA, Gonzalez A, Martínez-Zaldívar FJ, Vidal AM (2011) Real-time massive convolution for

audio applications on GPU. J Supercomput 58(3):449–457
 14. Peng S, Nie Z (2008) Acceleration of the method of moments calculations by using graphics pro-

cessing units. IEEE Trans Antennas Propag 56(7):2130–2133
 15. De Donno D, Esposito A, Tarricone L, Catarinucci L (2010) Introduction to GPU computing and

CUDA programming: a case study on FDTD [EM programmer’s notebook]. IEEE Antennas Propag
Mag 52(3):116–122

 16. Salazar-Palma M, Sarkar TK, García-Castillo LE, Roy T, Djordjevic AR (1998) Iterative and self-
adaptive finite-elements in electromagnetic modeling. Artech House Publishers Inc, Norwood

 17. Amor-Martin A, Garcia-Donoro D, Garcia-Castillo LE (2016) Second-order Nedelec curl-con-
forming prismatic element for computational electromagnetics. IEEE Trans Antennas Propag
64(10):1–12

 18. MUMPS Solver. http://mumps .ensee iht.fr/. Accessed 3 Jan 2019
 19. K20 (2014) NVIDIA Kepler Architecture. http://www.nvidi a.com/conte nt/PDF/keple r/NVIDI

A-Keple r-GK110 -Archi tectu re-White paper .pdf. Accessed 31 July 2018

Affiliations

Jose A. Belloch1 · Adrian Amor‑Martin2 · Daniel Garcia‑Donoro3 ·
Francisco J. Martínez‑Zaldívar4 · Luis E. Garcia‑Castillo2

 Adrian Amor-Martin
 aamor@ing.uc3m.es

 Daniel Garcia-Donoro
 daniel@xidian.edu.cn

 Francisco J. Martínez-Zaldívar
 fjmartin@dcom.upv.es

 Luis E. Garcia-Castillo
 legcasti@ing.uc3m.es

1 Depto. de Tecnología Electrónica, Universidad Carlos III de Madrid, Madrid, Spain
2 Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Madrid,

Spain

https://doi.org/10.1002/mop.4650021010
https://doi.org/10.1002/mop.4650021010
http://openmp.org/
http://www.mpi-forum.org/
https://developer.nvidia.com/cuda-zone
http://mumps.enseeiht.fr/
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://orcid.org/0000-0002-2595-1828

1696 J. A. Belloch et al.

1 3

3 School of Electronic Engineering, Xidian University, Xi’an, China
4 Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de

València, Valencia, Spain

	On the use of many-core machines for the acceleration of a mesh truncation technique for FEM
	Abstract
	1 Introduction
	2 Variational formulation
	3 Parallelization
	3.1 GPU-based implementation for accelerating RHS

	4 Results
	5 Conclusions
	Acknowledgements
	References

