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Abstract

Thin-walled hollow shapes are of great interest in many industries with weight

constraints due to their availability, low price, and strength to weight ratio.

However, they are also prone to localized bending collapse, which can be used

as an energy absorption mechanism during deformation. Up until now, indus-

trial applications have relied on numerical simulations, non-standardized tests,

and a handful of theories to address the bending collapse behavior. In this pa-

per, a modification to the most widely used theory is presented and adapted

for hollow shapes with greater thickness that cannot be considered “thick. To

verify the accuracy of the proposed modifications, a comparison with a detailed

FEM model, validated through various three-point bending collapse experimen-

tal tests, has been performed. The results seem to show that the proposed

modifications can predict the maximum load and collapse stage behavior of hol-

low shapes with more accuracy than the original analytical model. Thus, the

proposed modification may be used to predict the collapse behavior of com-

mercially available square and rectangular hollow shapes in different fields of

application.

Keywords: bending collapse, three-point bending test, thin-walled collapse,

∗Corresponding author
Email address: dlavayen @ pucp.edu.pe (Daniel Lavayen Farfan)

Preprint submitted to Thin-Walled Structures 2021
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1. Introduction

One of the design rules of lightweight design consists of using the full load

capacity of the material [1, 2]. This means that unlike classical mechanical de-

sign where only the elastic region is taken into consideration for calculations,

lightweight design also considers the plastic deformation regions of the material5

to take the material to its maximum load capacity. This is particularly useful in

the automotive and aerospace industries, where structures have to be light and,

at the same time, able to withstand high loads and to absorb the kinetic energy

from impacts and collisions. The absorption of energy is typically performed by

plastic deformations. For instance, the superstructure of a bus or coach must be10

able to absorb the kinetic energy from an impact and dissipate it as plastic de-

formations in certain parts of the structure. However, if this deformation is too

large, then the deformed structure may crush the passengers, resulting in severe

injury or death. Therefore, a correct and accurate calculation of the plastic and

even collapse behavior of the structures and materials is needed, especially in15

the early stages of design.

When working with light structures, thin-walled, hollow shapes are preferred

since they provide acceptable resistance and stiffness with low weight. Steel

square hollow shapes (SHS) and rectangular hollow shapes (RHS) are exten-20

sively used in numerous manufacturing industries with weight constrains and

high load requirements because of their availability, relatively low price, and

different sizes. The problem with these structural shapes is that, due to their

thin walls, they are prone to localized plastic collapse when a large bending

moment is applied. It has been found, however, that localized collapse is a ma-25

jor energy absorption mechanism in these structures. The main difficulty with

studying this failure mechanism is that “classical” theories cannot describe it,
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since it happens at a specific zone of the structure. Numerical simulations and

experimental tests are an option and have been proven to offer accurate results,

but they are often time-intensive and/or expensive, thus inadequate in the early30

stages of design. There has also been a handful of theoretical analyses devoted

to bending collapse.

The earliest works by Kecman [3, 4], in the 1980s, have set the basis of study

of bending collapse and were performed in order to assess the energy absorp-35

tion of thin-walled RHS used in structures for buses. Also during those years,

Wierzbicki and Abramowicz [5, 6, 7] performed a more detailed study on ax-

ial and bending collapse of hollow shapes and found certain similarities between

both. Later works by Kim and Reid [8], Shin et al. [9], Liu et al. [10], Kim et al.

[11] as well more recent ones by Huang et al. [12, 13], offered different analytical40

approaches to the bending collapse of thin-walled shapes, all based on Kecman’s

work, addressing its limitations, offering corrections, and even expanding to in-

clude composite reinforcements. The bending collapse phenomenon has been

validated through extensive experimentation and numerical simulations. How-

ever, even after addressing its limitations, Kecman’s original model is still used45

by many researchers and engineers to study the bending collapse of thin-walled

closed shapes. The main way to address the collapse behavior is through a

bending moment - angle (M − θ) curve for the plastic hinge that forms in the

component under bending load, as well as the maximum moment reached and

area under the curve, which consists of the energy absorbed through plastic50

deformation.

Experimental setups to determine the collapse behavior through the M − θ

curves have also changed during the years. The earliest test rigs consisted of

a cantilever beam setup. In this configuration, the free end of the cantilever is55

loaded through a system of cables and pulleys. The fixed end is either clamped

to larger I-shapes fixed to the ground or casted into a concrete block. These test-

ing rigs have been used by Kecman [3] and Brown and Tidbury [14]. However,
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later research works have moved to a simpler setup consisting of a three-point

bending test of the corresponding hollow shape. Authors such as Lee et al.60

[15, 16], Liu and Day [10], Ruiz et al.[17], Eksi and Genel [18], Kadir et al. [19],

Phadatare and Hujare [20], Liu et al. [21], Huang et al. [12, 22, 23, 13], Xie

[24], among others have used the three-point bending test. The advantage of

using a three-point bending setup is that it can be easily installed on almost

any universal testing machine; unlike the cantilever test setup, which requires65

additional preparations for the fixed support and load application. Moreover,

Kecman’s theory, despite having been tested and corroborated with a cantilever

test, has also been used to compare results with three-point bending test results.

Currently, the only instance, with cantilever-like setups, is to assess the70

energy absorption in structural nodes of buses, according to the UN/ECE Reg-

ulation 66 [25] for the rollover test of bus structures. Although this method is

more frequently used in the industry and testing institutions, there has been

research based on these test setups, such as Hashemi et al. [26], Liang et al.

[27, 28, 29], Rincon et al. [30], all related to bus structures. Both test methods75

(cantilever bending and three-point bending) generally seem to produce similar

results under certain circumstances.

It is also worth noting that a formal definition of how thin are thin-walled

shapes has yet to be found. The most important factor is not the thickness80

itself but thickness-to-height ratio (t/b). Most of the aforementioned authors,

who focus on collapse theories for thin-walled hollow shapes, typically analyze

hollow shapes with a thickness-to-height ratio lower than 0.03. However, not

much research has been found that focuses on ratios 0.03 < t/b < 0.1, which

are typically commercially available and can still be considered thin and used85

by numerous manufacturers.
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2. Theoretical analysis

2.1. Basic collapse theory

As mentioned before, the bending collapse theory developed by Kecman [3]

is still widely used to obtain the theoretical M−θ curve for thin-walled SHS and

RHS under bending, in general to develop lightweight structures. The original

model, shown in Fig. 1, considers that the plastic deformations during collapse

are concentrated along the numerous hinge lines and requires information from

experimental tests, namely, the rolling radius along the hinge lines and the so-

called nominal flow stress. Due to the repeatability of the collapse phenomenon

in hollow steel structures, an empirical expression for the rolling radius has been

suggested [3]. Moreover, the nominal flow stress was initially approximated to

the ultimate strength of the material by Kecman [3]. Since the plastic deforma-

tion occurs mainly along the hinge lines, the energy absorbed by such lines Wi

can be calculated as a function of the angle θ and used to determine the M − θ

curve through numerical derivation as follows:

M(θ) :=
d

dθ
Wtotal(θ) ≈

Wtotal(θ + ∆θ)−Wtotal(θ)

∆θ
(1)

where Wtotal =
∑8

i=1Wi (each term Wi is described in Eq. 19 to 26 in the

Appendix).90

Each of the work terms Wi can be described depending on the hinge bending

moment. In order to assess it, the hinge bending moment per unit length mp,

which depends on the flow stress σ0, is defined.

mp =
1

4
σ0t

2 (2)

The original theory by Kecman [3] has been proven to give a fairly good95

approximation for the collapse response of SHS and RHS. However, three ma-

jor limitations have been encountered when applying it to medium-thin-walled

shapes, defined by the authors as those with thickness-to-height ratios in the

range of 0.03 < t/b < 0.1, which are used by many manufacturers and cannot
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Figure 1: Original theoretical model by Kecman [4].

be defined as thick-walled. The first encountered limitation seemingly comes100

from the fact that Kecman’s theory considers that all points in the through-

the-thickness direction go into yielding at the same time, which is not the case

for the medium-thin-walled shapes. Most of the surveyed literature focuses on

ratios of t/b in the range of t/b < 0.03, where this assumption is fairly accept-

able. Furthermore, the second limitation is related to the material model used.105

Most of the surveyed research has been performed with materials that can be

represented fairly well with a elastic-perfectly plastic behavior. Even when this

is not an explicit assumption of Kecman’s model, the fact that certain terms

of the energy absorbed by the hinge lines are expressed in terms of a constant

flow stress, regardless of the deformation, shows that it is in fact an “implicit”110

assumption. Since material models with plastic hardening are not fully contem-

plated, some modification in the original model is required. This is especially

important, since the maximum moment may be significantly underestimated

for thicker shapes. Finally, the third and last limitation encountered is related

to the fact that Kecman’s model only considers the M − θ after the maximum115

moment is reached, in other words, it only considers the collapse stage. The

energy absorbed before reaching this point is assumed to be negligible as it

corresponds to elastic deformations with a minuscule rotation angle θm, where
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the maximum moment Mm occurs. In other words, θm is set to zero and only

plastic angles are plotted. This approximation may be adequate for thin-walled120

shapes, however, it no longer applies when the thickness increases, as shown in

Fig. 2.
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Figure 2: Moment- angle M−θ curve for different SHS 50x50 with various thicknesses. Results

obtained with numerical simulations of a three-point bending test and steel S275.

All the aforementioned limitations are evident when comparing the result-

ing M − θ curves of shapes with different thicknesses (see Fig. 2). When a125

medium-thin-walled, rectangular or square hollow shape is used, the maximum

moment is significantly increased (which is expected since the second moment of

inertia is also increased); however, a not-so-evident consequence is that θm, cor-

responding to Mm, is no longer negligible. This fact indicates that the collapse

does not occur immediately after the elastic portion (which is an assumption130

for very thin shapes). This phenomenon was also observed by Huang et al. [12]

and is explained as the failure mode switches from pure bending collapse to col-

lapse with indentation, or even pure indentation (depending on the length of the

shape). An alternate explanation is proposed for medium-thin-walled shapes:
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since the yielding does not occur at all points in the through-the-thickness di-135

rection at the same time, there is a significant portion of the M − θ curve with

simultaneous elastic and plastic deformations. Thus, the maximum moment is

not reached immediately after the load reaches the elastic limit value, instead

it happens after most of the points have suffered yielding. The most notable

consequence of it being that the energy absorbed before reaching the maximum140

moment is no longer negligible.

Thin-walled shape Medium-thin-walled shape

Figure 3: For thin-walled SHS (left) collapse begins with low displacement in the three-

point bending test and closely follows Kecman’s model; for thicker medium-thin-walled SHS

(right), the collapse requires a larger displacement from the force applicator and includes some

indentation and subsequently a larger θm. Thus, θm cannot be neglected with thicker shapes.

2.2. Proposed modifications to the collapse theory

To address the limitations in Kecman’s theory for medium-thin-walled shapes,

certain modifications are proposed in this section. Kecman’s model has already

been modified in the past. The first modifications consist of correcting some145

kinematic incompatibilities, however, these corrections provide little improve-

8



ments to the results accuracy as shown by Kim and Reid [8]. Other modifications

consist of changing some terms of the collapse theory, to include the influence

of additional materials, specifically changing the term mp to a more general

m0, as well as the Eq. 19 to 26 [9]. Other modifications have been made to150

include the elastic and elastic-plastic regions of the M − θ curve [12]. However,

it was found that some of these approximations seem to work only for certain

materials, since they were constructed by fitting experimental results of only

one material (e.g. aluminum). In general, a modification to the theory should

include all stages of deformation, namely: elastic, elastic-plastic, and collapse155

(Fig. 3), since θm cannot always be approximated to zero. These stages are

shown in Fig. 4. These modifications should be able to address most of the

aforementioned limitations, evident experimentally in the fact that with larger

ratios of t/b, the hinge lines are no longer well defined, as seen both in Figs. 3

and 5.

θ
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Figure 4: General shape of a M − θ curve, showing three main stages.
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Figure 5: Comparison between collapsed test specimens with t/b = 0.04 (left) and t/b = 0.08

(right). Notice that the thicker specimen (right) does not show well defined hinge lines, thus

a correction is needed.

2.2.1. Elastic deformation stage

The initial stage considers only the effect of elastic deformation, up to the

point where plastic deformation starts. The maximum elastic moment Me and

corresponding angular deformation θe can be estimated when the normal stress

at the top (or bottom) flange of the shape reaches the yield strength. For

a beam in the three-point bending test configuration, the following equations

from technical mechanics, for a simply supported beam with a concentrated

load in the middle, can be used:

Me = 0.9
σY (ab3 − (a− 2t)(b− 2t)3)

6b
(3)

θe =
3Mels

Eb2t(b+ 3a)
(4)

where σY is the yield strength of the material; E is the elasticity modulus; b, a

and t are the height, width and thickness of the hollow shape, respectively; and

ls is the span in between supports of the three-point bending test, as shown in

Fig. 6.165

The elastic deformation zone is then defined as a line between the origin

and the elastic limit point (θe,Me). Notice that depending on the thickness of

the shape, this expression may sometimes slightly overestimate the value of Me,

10



thus the value of 0.9 is introduced to compensate. This seemingly occurs merely170

because the force applicator tends to initially crush the cross sections directly

under it.

2.2.2. Elastic-plastic deformation stage

During the elastic-plastic deformation stage, there are two phenomena oc-

curring simultaneously: there are cross sections with both elastic and plastic de-175

formations, and the zones with plastic strains also endure hardening. This stage

typically occurs quickly in thin-walled shapes, but it is significant in medium-

thin-walled shapes, as shown in the comparison in Fig. 3. This region can

be approximated by a parabola, that passes through the points (θe,Me) and

(θm,Mm). However, this information is not enough to fully define the parabola.180

The maximum moment Mm, defined later in the collapse stage, cannot be sur-

passed, which means that the point (θm,Mm) can work as a vertex of the

parabola. Since there is no analytical expression for the angle θm, it is proposed

that its value is obtained by fitting the results from the numerical simulations.

The procedure is further detailed in the following section.185

2.2.3. Collapse stage and modifications

A comparison for the collapse stage in thin-walled and medium-thin-walled

shapes is shown in Fig. 3. The first modification to the original theory was

described by Kecman himself. The numerical derivation mentioned in Eq. 1

typically results in extremely high bending moments for very low angles (typ-190

ically 10 to 20 times than the actual maximum bending moment). Kecman

initially attempted to overcome this limitation, by calculating Mm and con-

necting the point (0,Mm) (neglecting θm) to the curve M − θ with a tangent

line. Since this procedure is empirical, later authors usually intersect the M − θ

with an horizontal line that passes through Mm, and thus obtaining θm. In this195

research, it is observed that the initial correction by Kecman can still be used

for “medium-thin-walled” SHS and RHS. However, the resulting Mm and θm

are usually underestimated so further modifications are introduced.
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All terms for the energy absorbed during collapse depend on Eq. 2; and in

turn, this equation is dependent on the flow stress σ0. During the formation

of the hinge lines, not all points reach the yield stress σY and the flow stress

σ0 at the same time, thus the approximation σ0 = σB , as well as the use of

σY are no longer adequate. Wierzbicki and Abramowicz [6, 7] estimated that

the nominal flow stress is actually less than the ultimate strength σB ; whereas

Kim and Reid [8] estimated that, depending on σcr (see Appendix, Eq. 13), the

nominal flow stress can be estimated as the average of both σY and σB . In this

work, an effective yield strength σY e and an effective flow stress σ0e are defined

based on a linear relationship between σY and σB :

σY e = ae · σY + (1− ae) · σB (5)

σ0e = ce · σY + (1− ce) · σB (6)

where 0 ≤ ae ≤ 1 and 0 ≤ ce ≤ 1. These factors are in turn dependent on the200

thickness-to-height ratio t/b for SHS, as well as the height-to-width ratio b/a

for RHS. For this work, the reference M −θ curves are obtained from numerical

simulations of the three-point bending test (described in the following section),

and each factor is determined from said results as follows:

• ae: This factor determines the effective yield strength, and is directly205

responsible for the maximum moment Mm. Thus, only the Mm is used to

determine ae for different t/b proportions for SHS (and b/a for RHS). Mm

is obtained through numerical simulations, and the relationship of ae and

t/b and b/a can be fitted from the simulation results for different ratios

(see Fig. 12 and 13 in the results section).210

• ce: This factor describes the behavior after the maximum moment is

reached, as the Eq. 2 (which is needed for Eqs. 19 to 26) requires the ef-

fective flow stress. This value is determined by minimizing the difference

between the energy absorbed after collapse from numerical simulations

12



and the energy absorbed after collapse using the proposed model. Both215

absorbed energy values are obtained using the area under each curve after

Mm is reached.

• θm, i.e. the angle where Mm occurs, is obtained with numerical simula-

tions for various values of t/b and b/a. This value is used to “offset” the

collapse stage obtained by the original model. The relationship between220

θm and t/b can also be fitted from the numerical results (see Figs. 14 and

15 in the results section).

These factors are calculated and obtained for various calibration sizes of

SHS and RHS corresponding to different ratios. These calibration sizes are

displayed in Tables 2 and 3. Next, the obtained factors ae, ce and θm are tested225

and verified by predicting the complete behavior in SHS and RHS for sizes not

used in the calibration. The sizes used to verify the accuracy of the proposed

modification are displayed in Tables 4 and 5. Using the factors ae, ce and θm,

the following procedure is proposed to obtain the bending collapse behavior:

Step 1. Determine the maximum collapse moment Mm (see appendix), which230

depends on factor ae, which in turn depends on the ratio t/b (and b/a

for RHS). Depending on the case, ae can be determined with a curve

fit (SHS) or a surface fit (RHS), both are shown in the next section.

Step 2. Calculate modified Kecman curve, based on factor ce, and define a

tangent line that crosses the point (0,Mm). This corresponds to the235

original Kecman modification. Depending on the case, ce can be deter-

mined with a curve fit (SHS) or a surface fit (RHS), both are shown in

the next section.

Step 3. Offset the resulting curve horizontally, until the top of the curve reaches

the point (θm,Mm). By offsetting the curve, the elastic and elastic-240

plastic stages can be included. Depending on the case, θm can be de-

termined with a curve fit (SHS) or a surface fit (RHS), both are shown

in the next section.
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Step 4. Connect the origin with point (θe,Me) with a line, which describes the

elastic stage.245

Step 5. Connect the point (θe,Me) with point (θm,Mm) with a parabola, with

vertex at (θm,Mm). This parabola describes the elastic-plastic stage.

It should be noted that even though we propose that the values of ae, ce and

θm should be obtained by numerical simulations (validated through experimen-

tal tests), they could also be determined using experimental tests if different250

shape sizes are available.

3. Procedure

3.1. Experimental test setup

As mentioned above, there are two alternatives to obtain a bending collapse

(either with experiments or simulations): a cantilever test and a three-point255

bending test; the latter being the most commonly used in recent literature and

simpler to reproduce. In this work, a three-point bending test is performed of

different hollow shapes, with different values of ratios t/b, but maintaining a

ratio of ls/b = 10 to ensure bending collapse with minimum indentation. The

scheme in Fig 6 is used as the base for the experimental setup, seen in Fig. 7.260

The tested sizes are shown in Table 1. Since the hollow shapes are manufactured

by welding, the weld is always kept in the bottom part (in contact with the

supports), so that it is subjected to traction along the weld, thus limiting its

possible influence on the collapse behavior.

For all tests, the force applicator consists of a cylinder with 30 mm diameter,265

connected to a force sensor capable of measuring up to 200 kN. Two pairs

of support cylinders have been used. The first pair consist on the supports

shown in Fig. 7, which also have a diameter of 30 mm. However, for the

tests of the specimens SHS50x50x2 and SHS50x50x4, a pair of supports with

48 mm of diameter are used, which have a stronger base. The reason for the270

switch is the fact that the larger shapes required a larger ls to obtain bending

collapse, and the lateral force that the supports must endure is larger than the

14
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Figure 6: Three-point bending test scheme. 1: test specimen (RHS or SHS), 2: force applica-

tor, 3: supports

maximum lateral force that the first pair of supports could withstand. All tests

are performed with a velocity of 1 mm/s.

Figure 7: Experimental setup for the three-point test scheme.

Material properties are extracted from coupons obtained from the sides of275

the hollow shapes. For each shape size, two coupons are obtained. The geometry

of the test coupons is defined according to standard ASTM A370. The resulting

engineering stress and strain curves are shown in Fig. 8.

It is worth noting that one of the resulting stress and strain curves shows an

15



Table 1: Dimensions of tested specimens.

Nomenclature height b width a thickness t ratio t/b Span ls

(mm) (mm) (mm) (-) (mm)

SHS25x25x1.5 25 25 1.5 0.06 250

SHS25x25x2 25 25 2 0.08 250

RHS30x80x1.5 30 80 1.5 0.05 300

SHS50x50x2 50 50 2 0.04 475

SHS50x50x4 50 50 4 0.08 475

elastic-perfectly plastic behavior, however, the other coupons do exhibit plas-280

tic hardening. Even when all shapes are sold as S275, they do not have the

same actual values for yield and ultimate strengths although they satisfy the

minimum requirements to be classified as such. This is most likely due to the

manufacturing process for each shape. It should be noted, that the forming pro-

cess of hollow shapes requires plastic deformations of the base material, which285

increases both the yield and ultimate strengths.

3.2. Numerical simulation setup

The scheme in Fig. 6 is used as a base to build the numerical model, seen

in Fig. 9. The FEM model is built in Ansys Classic (APDL) 2019R1, with

the dimensions and material properties as input parameters, which are changed290

for the different sizes and material properties. The parameters are defined in

Matlab, where a script modifies the APDL input files. Once modified, they are

sent to Ansys via the toolbox Ansys AAS (Ansys as a server) [31]. The results

of each simulation are then exported and can be read in Matlab for further post-

processing. The FEM model consists of 8-node brick elements with 3 elements295

in the through-the-thickness direction of the shapes. Furthermore, the mesh is

refined near the contact zone of the force applicator, with elements of 1 mm

of length in the longitudinal direction. The top and bottom faces near the

force applicator and supports are covered with penalty-based contact elements.

16
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Figure 8: Engineering stress-strain curves from the coupons extracted from the test specimens.

Averaged results. All samples are rated as S275.

The force applicator and the supports are modeled using one target element300

each, which is shaped as a hollow rigid cylinder with its movement constrained

through a pilot node at its axis. This configuration offers adequately accurate

results, with less elements and allows the boundary conditions to be set on

pilot nodes at the center of the cylinders. The results do not differ significantly

from previous simulations, where the supports and force applicator were meshed305

with a finer mesh and numerous elements in the cylinders (and longer simulation

time). Since the focus of the research is on the collapse of the hollow shapes, the

cylinders are modeled as rigid bodies. Pilot nodes are also added at both ends

of the test specimen, to restrict the average movement out of the bending plane,

without restricting each particular node to move in the out-of-plane direction.310

These constraints are added for stability and produce near-zero reaction forces.

All models have up to 205000 nodes and up to 162000 elements. The supports

are initially in contact with the SHS (or RHS), and the force applicator is

initially located with an offset of 5 mm above the top face of the test specimen,

so there is no initial contact. The model and its details can be seen in Fig. 9.315
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Figure 9: Numerical model for the bending collapse. Details of the numerical model: Top

right: force applicator in the initial position and refinement of the mesh in the collapse portion.

bottom right: Mapped meshing in the through-the-thickness direction.

The model also includes fillets with radii that depend on the dimensions

of the shape, according to standards EN 10219 and EN 10305. Authors such

as Zhang et al.[32] have found that the presence fillets may have a significant

influence in the maximum moment and later response. It has been theorized by

the aforementioned author, that the fillets act as triggers for the collapse. In320

fact, the hollow shape standards EN 10219 and EN 10305 establish a range of

acceptable fillet radii according to the size. Thus, fillets are included in the ge-

ometry for the FEM simulations. It is worth noting that their influence appears

to be present only on the maximum moment, not in the collapse stage itself,

thus its influence is included in ae. The theoretical model (seen in Fig. 1) does325

not take the fillets into account. It can be argued that since the arc length of

the fillets is rather small when compared with the height or width of the shape,
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its influence on the collapse stage is negligible.

The velocity of load application is also important since the response and330

M − θ curves change for static and impact loads. Dynamic response can also

be approximated from the static loading, by multiplying the static response

curve by a factor Kd that depends on the material, in case of steel Kd = 1.2

[25]. Thus, only a quasi-static test scenario is performed. The selected force

applicator velocity is set to 1 mm/s. The SHS and RHS are made of steel S275.335

A linear elastic model is used for the elastic portion of the stress-strain curve;

since plastic deformations are expected, a piecewise plastic hardening rule is

also used. The plastic hardening rule is based on the true-stress and true-strain

curve obtained from Fig. 8 (for the validation of the numerical model) and from

[33] (for the calculation of different sizes).340

The main outputs of the simulation are the imposed vertical displacement uy

and the reaction force on the pilot node of the force applicator fy. These results

cannot be used to make a direct comparison between the numerical simulations

and the proposed analytical model; since the output of the latter is a M − θ

curve instead of a fy − uy curve. These results are also highly dependent on

the length between supports ls (seen in Fig. 6). In order to make a comparison

between the two approaches, the internal bending moment from the numerical

simulation is determined using the section method (from technical mechanics)

and assuming a quasi-static process, both for a simply supported beam (Eq. 7).

On the other hand, the angle θ can be approximated by a geometric relationship

(Eq. 8), assuming that the bending angle along the beam is negligible and the

center portion of the beam acts as a hinge:

M =
fyls

4
(7)

θ = 2 arctan

(
2uy
ls

)
(8)
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3.3. Results and validation of the numerical simulation

Using the results from the three-point bending experiment, as well as the

mechanical properties obtained from the coupons, the accuracy of the numerical

model can be evaluated and the model validated. It is important to note that345

the material properties are not the same for every size, and the corresponding

properties are taken from Fig. 8. The model includes characteristics such as

fillets (average fillet radius) and can be used for materials with either perfectly

plastic behavior or plastic hardening. The comparison of the results is performed

by using the M − θ curves as shown in Fig. 10.350

The numerical model seems to adequately reproduce the experimental re-

sults. Each experimental test was performed three times, except for the 50x50x2

shape. For this last one, the test was also performed with the longitudinal weld

in the lateral and top positions. No significant difference or apparent influence

of the weld on the collapse behavior or the maximum moment has been found.355

3.4. Dimensions for the test specimens in the numerical simulations

Different dimensions are chosen to obtain M−θ curves and fit the results for

the parameters ae, ce and θm. The results are analyzed in function of certain

ratios for the SHS and RHS. The thickness-to-height ratio t/b is used to address

the relative thickness of the test specimen, for both SHS and RHS. The height-360

to-width ratio b/a is also used to address the influence of the width of the test

specimen. In order to better understand the meaning of the last factor, the

following visual aid is provided in Fig. 11.

To guarantee a bending collapse failure instead of indentation, a minimum

proportion of ls/b ≥ 9 is chosen [12]; simulations were also run to verify this365

value. The length l = 500 mm is selected to guarantee bending collapse for all

tested specimens, which corresponds to ls = 450 mm, giving 50 mm to both

extremes. This means that a maximum height b of 50 mm is used. Different

thicknesses for various heights are then chosen to obtain t/b ratios in the range

of 0.03 ≤ t/b ≤ 0.1, which correspond to the medium-thin-walled shapes, the370
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Figure 10: Comparison of the experimental results and numerical results with different shape

sizes.

focus of this study. These values are detailed in Table 2.

It is also worth noting, that the length between supports has a minor in-

fluence on θm, as long as bending collapse is guaranteed. Bending collapse

occurs due to the influence of only the bending moment in the beam, thus the375
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Figure 11: Visual aid showing wide and narrow rectangular hollow shapes.

maximum moment should not be significantly affected by different lengths ls.

However, θ is determined through an approximation (recall Eq. 8) which de-

pends on uy; thus, larger values of ls give larger uy and, in turn, make θ grow.

The authors did not find a significant difference in the maximum moment when

ls is increased, and only a slight increase in θm. It should be noted, however,380

that in case that a more compliant material was used (e.g. aluminum), a larger

increase should be expected.

Table 2: SHS dimensions for calibration- all taken from standard EN 10305.

SHS (b× b× t) t/b Thickness

25x25x1.5 0.06 medium-thin

25x25x2 0.08 medium-thin

30x30x2 0.067 medium-thin

40x40x1.5 0.038 medium-thin

40x40x2 0.05 medium-thin

50x50x1.5 0.03 thin

50x50x2 0.04 medium-thin

50x50x4 0.08 medium-thin

50x50x5 0.1 medium-thin

For the RHS, the standard EN 10305 and material S275 are also used. The

chosen dimensions must satisfy the same conditions for the SHS: cover a range

of values of t/b. Moreover, the influence of the ratio b/a also has to be analyzed.385
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There are various combinations of t/b and b/a. In order to avoid analyzing each

possible combination of ratios and having to deal with an excessive sample size

and computational time, Latin-hypercube sampling is used to obtain a reduced

sample size. However, even when there are numerous possible combinations

(around 73 in the considered range), only around 8 different levels are identified390

based on the commercially available sizes. Introducing more levels is not feasi-

ble, since the resulting Latin hypercube levels must be rounded to the nearest

available commercial size. This may result in repeating values, and defeating

the purpose of the Latin-hypercube sampling. The selected sizes are shown in

Table 3. Note that some levels are inevitably repeated.395

Table 3: RHS dimensions for calibration- all taken from standard EN 10305.

RHS (b× a× t) t/b b/a

45x45x1.5 0.033 1

50x80x2 0.04 0.625

50x30x2.5 0.05 1.667

35x70x2 0.057 0.5

40x60x2.5 0.0625 0.667

30x15x2 0.0667 2

40x60x3 0.075 0.667

40x27x3 0.075 1.48

The results obtained with the dimensions selected in Tables 2 and 3 are used

to calibrate the modifications of the theoretical model, i.e. factors ae, ce and

θm. Numerical simulations are also run on the dimensions of the commercially

available shapes, shown in Tables 4 and 5, to compare the accuracy of the

proposed modifications.400

The material properties for the numerical simulations used for the different

shapes have a great influence on the results. Even when they are made from the

same steel, the manufacturing process has a large influence on the final yield and

ultimate strengths as discussed before. To ensure a proper calculation tensile
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Table 4: SHS dimensions for testing- all taken from standard EN 10305.

SHS (b× b× t) t/b

30x30x1.5 0.05

35x35x2 0.057

40x40x3 0.075

45x45x2 0.044

45x45x3 0.067

Table 5: RHS dimensions for testing- all taken from standard EN 10305.

RHS (b× a× t) t/b b/a

30x50x2 0.067 0.6

40x20x2 0.05 2

40x60x4 0.1 0.667

40x27x1.5 0.038 1.481

50x30x2 0.04 1.667

50x70x2 0.04 0.714

50x100x4 0.08 0.5

tests should be carried out first. However, performing them defeats the purpose405

of fast and accurate calculations of the maximum bending moment at the early

stages of design. There is also the possibility that the properties change from

different suppliers. Thus, the calculations of factors ae, θm, and ce are carried

out using the nominal properties of steel S275, which are shown in Table 6.

4. Results and discussion410

In this section, the results obtained with numerical simulations are used to

approximate the relationship between the factors ae, ce, and θm for the various

ratios t/b and b/a. The obtained fits are then tested with sizes not used in the

calibration. Furthermore, the resulting M − θ curves obtained by the proposed

24



Table 6: Mechanical properties of S275, taken from [33].

Property Value Units

Young modulus 200 GPa

Poisson ratio 0.3 -

Minimum yield strength σY 275 MPa

Ultimate strength σB 480 MPa

model are compared to the numerical simulation to test its accuracy, and to415

Kecman’s original theory to verify the improvement for medium-thin-walled

shapes.

4.1. Parameters for the proposed modification of the collapse stage

4.1.1. Effective yield stress factor ae

The resulting ae curve for SHS shows a clear tendency downwards with in-

creasing t/b, as shown in Fig. 12. This means that the effective yield strength

increases with larger ratios of t/b (lower ae translates into a higher σY e). How-

ever, the relationship between ae and t/b is not linear. A polynomial (3rd

degree) fit is proposed, obtaining the following relationship:

ae(t/b) = 1472(t/b)3 − 192.9(t/b)2 − 7.015(t/b) + 1.357 (9)

The goodness of the fit is measured through R-square, resulting in 0.9934; and420

a SSE, resulting in 0.004387. The polynomial fit can be seen in Fig. 12.

It is worth noting that values of ae larger than one, would mean that there

is collapse before yielding, which may occur with very thin-walled shapes. Also,

Kecman’s models consider that ae = 1 and gives good results for thin-walled

shapes. Larger values of t/b mean that the profile is not that thin anymore, and425

the prediction of the maximum moment is not accurate without the factor ae.

For t/b > 0.1, ae seems to converge at around 0.2 for SHS.

As for the RHS, the factor ae tends to decrease with thicker shapes, which

indicates that yielding in the through-the-thickness direction does not occur430
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Figure 12: Relationship between ae and t/b.

at all points at the same time. Moreover, the ratio b/a also influences the

behavior of ae significantly. Lower values of b/a tend to increase ae, meaning

that “narrow” RHS tend to collapse later than “wider” RHS of the same height

b. This behavior can be explained by the fact that, for a set height b, a larger

a (ergo lower b/a) makes the hollow shape also relatively thin-walled in the435

direction perpendicular to the bending plane, making it more prone to collapse,

with faster formation of hinge lines. The relationship between ae vs t/b and b/a

is shown in Fig. 13.

Figure 13: Surface of the relationship between ae and ratios t/b and b/a obtained through a

thin-plate spline interpolation.
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4.1.2. Angle θm at which Mm occurs

Similarly, the angle θm can also be related to the ratio t/b as shown in Fig.

14. It is found that for low values of t/b or very thin-walled shapes, this angle

is almost zero. This fact agrees with the works by previous authors, such as

Kecman [4] and Kim [8], who consider that this angle is negligible. However,

when the thickness increases, the angle θm grows as well and tends to reach

the value of around 0.35 radians. Due to the shape of the simulation points, a

sigmoid fit is proposed as follows:

θm(t/b) =
0.3484

1 + exp

(
− t/b− 0.05972

0.009577

) (10)

The sigmoid-like fit achieves an R-square of 0.9763 and a SSE of 0.003257.440
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Figure 14: Relationship between θm and t/b.

The behavior of the angle θm is explored for the RHS cases as well, and a

similar behavior of the one shown in Fig. 14 is found. It is observed once again

that thicker shapes tend to increase θm significantly. However, this increase

depends also on the ratio b/a as narrow beams tend to increase θm even more,445

as shown in Fig. 15. This behavior can also be explained. For larger a lengths, or

wider RHS, the shape becomes thinner in the horizontal direction (perpendicular

to the bending plane) and, similarly to ae in Fig. 13, the shape becomes more

susceptible collapse, as hinge lines form rapidly with ease.
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Figure 15: Surface of the relationship between θm and ratios t/b and b/a obtained through a

thin-plate spline interpolation.

4.1.3. Effective flow stress factor ce450

In contrast to ae, ce and t/b do not seem to have a clear relationship. How-

ever, many simulations show that 0 ≤ ce ≤ 0.5 (Fig. 16), meaning that the

effective flow stress lies between 0.5(σY + σB) and σB , which seems to agree

with previous authors such as Kim and Reid [8], and Abramowicz et al. [34].

There are some points with very high values of ce, meaning that there is a low455

value of σ0e. This behavior can be explained by showing a second relationship,

between ce, t/b and b/ls (see Fig. 17). It can be seen that the three apparent

outliers with ce near 1 are also those with a high ratio b/ls, which translates

into shorter test specimen and in turn some indentation. When using short

specimens b/ls > 0.125 (or ls/b < 8) there is a significant amount of indentation460

in the test specimen [12].

When including the ratio b/a in the comparison (for RHS), more insight into

the factor ce can be extracted, as shown in Fig. 18. In general, thin and wide

shapes tend to have a slightly higher value of ce, however, this value lies in the

0.4 to 0.6 range. This result, as the one for SHS, agrees with the assumptions465

by previous authors who make fixed approximations for the nominal flow stress.

For narrow and thicker shapes, ce tends to be also slightly larger, meaning that
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Figure 16: Relationship between ce and t/b.

Figure 17: Relationship between ce and t/b and b/ls using a thin-plate spline interpolation.

the flow stress is actually lowered. An explanation for this behavior is proposed

as the cross section under the force applicator tends to be crushed, and the

failure mode is actually collapse and indentation (recall Fig. 3). This means470

that points near the cross section actually require less load to reach the flow

stress, since they are already deformed due to the indentation.

4.2. Verification of the parameters with test sizes

All parameters ae, ce and θm are calculated using the curve and surface

fits shown above and used to obtain the corresponding M − θ curves, which

are then compared to numerical simulations. The accuracy of the prediction

of the original model is computed as well to determine which model is better

at predicting the collapse behavior for thin and medium-thin-walled shapes.
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Figure 18: Surface of the relationship between ce and ratios t/b and b/a obtained through a

thin-plate spline interpolation.

The accuracy is measured using an error percentage, with the numerical model

results as reference, as indicated in Eq. 11 and 12.

Error =
|Mnumerical −Mproposed|

Mnumerical
× 100% (11)

Error =
|Mnumerical −Moriginal|

Mnumerical
× 100% (12)

4.2.1. Square hollow shapes

The comparison M − θ curves for SHS using the approximations for ae, ce,475

and θm are shown in Fig. 19. The obtained curves show that for most cases

the error for the proposed analytical model is kept at less than 5% most of the

time, with few exceptions in points where the error grows as large as 10%. In

contrast, the error for the Kecman original model can be as large as 20% and

in some cases up to 30%; with both errors tending to decrease for large values480

of θ. In most cases, the largest error occurs at θm for the original model which

shows a poor prediction for Mm. Factor ae and θm seem to almost completely

overcome this problem, for the proposed model. Factor ce apparently reduces

the error for θ > θm. There is also apparently an extremely large error for

θ = 0. This apparent large error occurs mainly because the original model does485
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not predict the elastic behavior. For all SHS examined, the proposed model with

modifications can estimate the numerical prediction with better accuracy than

the original theory. This improvement is more noticeable with the relatively

thicker shapes SHS40x40x3 and SHS45x45x3, which confirms the capacity of

the proposed model to predict the maximum moment and collapse behavior for490

“medium-thin-walled” shapes.
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Figure 19: Comparison between the M − θ curves for the various SHS tested.

Another important comparison is the energy absorbed by each approach,

which can be calculated by the area under each one of the aforementioned

curves. The energy absorbed or work results for each case is detailed in Table
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7 along with its error with respect to the numerical simulation result. These495

results seem to also indicate that the proposed corrections are able to reproduce

the results obtained by numerical simulations with a better accuracy than the

original model. The largest error in Table 7 for the proposed approach reaches

3.98%, whereas the highest error for the original model reaches 20.57%, which

corresponds to shape with highest t/b ratio. On the other hand, the shape where500

the original model has the lowest error is also the one with the lowest ratio t/b.

This further confirms that the introduced parameters are useful in predicting

not only the maximum load, but the energy absorbed as well.

Table 7: Comparison between the energy absorbed (area under the curve) calculated by each

method for the SHS.

Size Numerical Theoretical Theoretical Error Error

simulation (proposed) (original) (proposed) (original)

30x30x1.5 356.66 J 351.34 J 322.75 J 1.49% 9.50%

35x35x2 717.41 J 705.635 J 624.26 J 1.64% 12.98%

40x40x3 1671.06 J 1691.01 J 1327.34 J 1.19% 20.57%

45x45x2 959.36 J 921.19 J 907.08 J 3.98% 5.44%

45x45x3 1946.45 J 1966.68 J 1638.32 J 1.04% 15.83%

4.2.2. Rectangular hollow shapes

A similar analysis is performed for the RHS using the corresponding surface505

fits and is shown in Fig. 20. The approximation for RHS seems to generate

larger errors than the SHS, reaching 10% and, in one case, up to 30 % for the

proposed model, and around 30% for the original model. The cases that display

larger errors seem to be those where the maximum moment or Mm occurs at a

“plateau” and tends to overestimate θm, meaning that the proposed modifica-510

tion still has some trouble at predicting where this load occurs. Furthermore,

the error seems to oscillate in some scenarios. This oscillation occurs because ce

is obtained by matching the energy absorbed (area under the curve) using the
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numerical model after the maximum load is reached, thus it tries to compensate

the areas under the curve.515
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Figure 20: Comparison between the M − θ curves for the various RHS tested.

It is important to notice that for shapes with low ratios of t/b (thin-walls)

and low ratios of b/a (wide), both predictions of the maximum moment (pro-

posed model with modifications and Kecman’s) provide almost the same value

of Mm. However, the proposed model shows better performance at predicting520

the maximum moment in all cases. The original model also shows deficiencies
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when making predictions for narrow shapes. For instance, two positions for the

same shape RHS30x50x2 and RHS50x30x2 are tested. In both cases, the pre-

diction by the proposed model offers a better approximation of the numerical

curve but the error for the original model significantly grows when this shape is525

switched from RHS30x50x2 to RHS50x30x2. This last comparison is important,

since it gives insight into the importance of a ratio of thickness and width t/a.

However, even when this parameter is not directly investigated, its influence is

indirectly included and taken into account in the surface fits for RHS.

530

Similarly as with the SHS, the area under each curve of each RHS verification

case is calculated and shown in Table 8. In general, the proposed model seems

to predict thee area under the curve better than the original model; however,

there are some cases with apparent exceptions. The first apparent exception

is the case where the original model predicts the area under the curve with535

less error than the proposed model, precisely RHS 30x50x2. It is worth noting

that the difference between errors is almost negligible (2.89% to 1.65%) and the

proposed model has a better prediction for the maximum moment. The second

exception occurs with RHS 40x60x4, where both errors are larger than 10%.

This large error is due to an overestimation of θm for these dimensions, most540

likely due to Mm occurring at a “plateau”, and not at an exact point.

4.2.3. Comparison with experimental results

Another important observation can be made when comparing the experi-

mental test results with those from the proposed model. Four sets of results are

compared against the experimental curves in Fig. 21: 1) the proposed model545

with the actual mechanical properties and real θm (extracted from tensile tests

in Fig. 8), 2) the proposed model with the nominal mechanical properties (from

Table 6), 3) the original Kecman model calculated using the nominal mechan-

ical properties, and 4) the original Kecman model using the actual mechanical

properties. The goal of this comparison is to verify the capabilities of the pro-550

posed model to predict the actual M − θ curves based on the nominal mechan-
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Table 8: Comparison between the energy absorbed (area under the curve) calculated by each

method for the RHS.

Size Numerical Theoretical Theoretical Error Error

simulation (proposed) (original) (proposed) (original)

30x50x2 603.29 J 585.81 J 613.23 J 2.89% 1.65%

40x20x2 829.68 J 862.05 J 498.52 J 3.90% 39.9%

40x27x1.5 471.48 J 472.64 J 427.50 0.24% 9.32%

40x60x4 2701.53 J 3022.72 J 2329.42 J 11.89% 13.77%

50x30x2 1024.15 J 1059.39 J 872.18 J 3.44% 14.84%

50x70x2 1004.79 J 1024.39 J 1168.79 J 1.95% 16.32%

50x100x4 3794.85 J 4049.37 J 4055.56 J 6.70% 6.87%

ical properties, as well as to check its accuracy when using the experimental

data. The most evident improvement of the proposed model when compared to

the Kecman model is, once again, the prediction of Mm, even when using the

nominal mechanical properties. This prediction is further improved when the555

experimental data is used. It should be noted, that this improvement is more

noticeable with thicker shapes (SHS25x25x2 and SHS50x50x4). It should also

be noted that for the thinner shapes such as (SHS 50x50x2 and RHS30x80x1.5),

all predictions seem to agree, which means that the proposed model also works

with thin-walled shapes. However, the model apparently still lacks the ability560

to adequately determine θm with nominal material data. The authors theorize

that the origin of this difference comes from the strain at which the ultimate

stress occurs in the material model (probably due to loss of ductility in during

forming), which directly affects how “soon” the maximum moment occurs. The

material model used for simulations and posterior calculations does not take565

into account the loss of ductility from manufacturing, which cannot be known

without a tensile test. However, in the early stages of design, having a better

prediction with nominal data is of great importance.
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Figure 21: Comparison between the experimental and proposed theoretical models, using the

nominal properties for S275.

5. Conclusions

A modified approach to calculate the maximum moment and collapse behav-570

ior, for steel SHS and RHS is proposed. The proposed modification is mostly

based on Kecman’s theory and serves to includes the so-called “medium-thin-

walled” shapes, commercially available by steel distributors, and widely used in
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many industries, such as the automotive industry when constructing bus struc-

tures. The bending collapse behavior of the thinner shapes can be described575

by Kecman’s original theory with acceptable accuracy. However, the behavior

of thicker or “medium-thin-walled” shapes is better described when including

the proposed modifications. The thickness is found not to be the issue, but the

thickness relative to the height of the hollow shape, or thickness-to-height ratio

t/b. The influence of the width ratio b/a is also explored as well for RHS. It is580

found that larger values of b/a, or narrower shapes, tend to increase the load

required for bending collapse. Also, the thicker and narrower a hollow profile

is, the larger θm grows. This last observation is of major importance, since

many of the previous works consider that, the behavior previous to the collapse,

along with θm, is negligible, which is not true for the sizes evaluated in this study.585

The reasons for which the original Kecman theory fails to identify the max-

imum load and collapse behavior in “medium-thin-walled” hollow shapes has

also been explored. The main reason is that apparently, due to the larger rel-

ative thickness t/b, not all points in the through-the-thickness direction of the590

cross section suffer yielding at the same time, and a larger load is required to

completely form the corresponding hinge lines. This fact has three major impli-

cations: (1) First, the maximum bending moment is significantly increased. (2)

Since the rest of the beam is still deforming until the real maximum bending

moment is reached, θm also increases, meaning that the behavior previous to595

the collapse, namely the elastic-plastic stage (see Fig. 4), is no longer negligible.

(3) Hinge lines can no longer be clearly defined (recall Fig. 5), and thus the

kinematic incompatibilities in the original model, found by some authors such

as Kim and Reid [8], may play a larger role. The limitation of the original model

is addressed by including two parameters ae, ce, which are used to determine an600

effective yield stress σY e, and effective flow stress σ0e, respectively; as well as a

prediction for the angle θm. All three parameters are dependent on the ratios

t/b and b/a. In general, the parameters seem to provide better predictions for

the SHS than for the RHS. However, this may be due to the fact that there are
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relatively less sampling points for RHS. Even considering this limitation, the605

inclusion of parameters ae, ce and θm seems to significantly improve, in most

cases, the predictions for both SHS and RHS. This improvement is far more

noticeable in the prediction for Mm through ae, which indicates than an alter-

native for factor ce would be useful.

610

An important remark is that the proposed model can offer improvements in

the approximation of a real M−θ curve. The results obtained with the nominal

material data could be considered as a “fast” approximation of the actual curve,

as it does not require experimental data fed. In Fig. 21, it can be seen that the

results offered by the proposed model, even when using the nominal data, are615

improved when compared to the original model. The proposed model can fur-

ther improve its prediction if the experimental data is provided. The proposed

model can be thus considered an adequate adaptation of Kecman’s model for

medium-thin-walled shapes.

620

This study also serves the purpose to continue the research into thin-walled

structures used mainly in various industry, especially as it provides the means

to predict the maximum load and energy absorption characteristics of SHS and

RHS. In turn, this research can help with better design choices in early design

stages; since the calculation times are in the order of seconds and offer better625

approximations than Kecman’s model with nominal material data, whereas the

time needed for the numerical simulations or experimental tests is in the order

of hours. Better design choices early can result in lighter and safer structures.
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Appendix

Calculation of the maximum bending stress

The maximum bending stress is determined by first calculating the critical

stress σcr as follows:

σcr =
π2E

12(1− ν2)

(
5.23 + 0.16

a

b

)(a
t

)2
(13)

The maximum bending moment is then determined, depending on the relation-

ship between the critical stress with the effective yield strength. The equations640

below are taken from [3] and [8]. However, in the work of [8], it is stated that

the condition of σcr ≥ 3σY e is actually σcr ≥ 2σY e.

• If σcr ≤ σY e

Mm = σY etb
2

(
2a+ b+ a?(3a/b+ 2)

3(a+ b)

)
(14)

• else if σcr ≥ 3σY e

Mm = σY et
(
a(b− t) + 0.5(b− 2t)2

)
(15)

• else σY e < σcr < 3σY e

Mp = σY et
(
a(b− t) + 0.5(b− 2t)2

)
(16)

M ′p = σY etb(a+ b/3) (17)

Mm = M ′p + (Mp −M ′p)
σcr − σY e

2σY e
(18)
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Energy terms corresponding to Kecman’s collapse theory

The basic energy absorbed by hinge lines according to Kecman [4], and based

on Fig. 1 is determined by multiplying the bending moment per unit length,

the length of the hinge line, and the angle between the surfaces adjacent to the

hinge line in question. Eight work terms are defined:

W1 = WEF +WGH = 2mpa

[
π/2− ρ− arcsin

(
1− b

h
sin ρ

)]
(19)

W2 = WBC = mpa

[
π − 2 arcsin

(
1− b

h
sin ρ

)]
(20)

W3 = WAB +WCJ = 2mp

(
b sin2 ρ− h sin ρ+

√
b sin ρ (2h− b sin ρ) cos ρ

)
×
(
π − ρ− arcsin

(
1− b

h
sin ρ

))
(21)

W4 = WBG +WBE +WCH +WCF = 4mphπ/2 (22)

W5 = WGK +WEL +WHN +WFM =

4mpb arctan

 zA√
(h− xA”)

2
+ (yA”− yB)

2

 (23)

W6 = WGA +WAE +WCH +WCF = 4mp
h

r
zA (24)

W7 = WKA +WLA +WNJ +WMJ =
8

3
mp

zA
r

√
h2 + y2b + z2A (25)

W8 = WKN +WLM +WKL +WMN = 2mp

(
aρ+ 2h arctan

(
zA
yA

))
(26)
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