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olynomial. Some instances of the DVZ connection are shown to give new one-parameter families of
rthogonal polynomials on the real line.
c 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
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eywords: Orthogonal polynomials; Szegő connection; Jacobi matrices; CMV matrices; Verblunsky coefficients

1. Introduction

Any sequence pn of orthonormal polynomials with respect to a non-trivial measure on the
eal line (OPRL) is characterized by a Jacobi matrix,

J =

⎛⎜⎜⎜⎝
b0 a0
a0 b1 a1

a1 b2 a2
. . .

. . .
. . .

⎞⎟⎟⎟⎠ , bn ∈ R, an > 0, (1)

ncoding the corresponding three term recurrence relation,

J p(x) = xp(x), p = (p0, p1, p2, . . . )t .

ere and in what follows the superscript t denotes the transpose. Without loss of generality,
e assume that the measure is a probability one – so, it assigns measure 1 to the whole real

ine – and the OPRL pn are chosen with positive leading coefficients by setting p0 = 1.
When the measure is supported on the unit circle

T = {z ∈ C : |z| = 1},

nother kind of recurrence relation characterizes the corresponding sequences of orthogonal
olynomials (OPUC). In the case of monic OPUC φn , it has the form [11,12,16,17]

φn+1(z) = zφn(z)− αnφ
∗

n (z), αn ∈ C, |αn| < 1, (2)

here φ∗n (z) = znφn(1/z) is known as the reversed polynomial of φn and the parameters αn are
alled Verblunsky coefficients. Introducing the complementary parameters ρn =

√
1− |αn|

2,
the orthonormal OPUC ϕn with positive leading coefficients become

ϕn(z) = κnφn(z) = κn(−αn−1 + · · · + zn), κn = (ρ0ρ1 · · · ρn−1)−1.

more natural set of funtions is constituted by the orthonormal Laurent polynomials on the
nit circle (OLPUC), given by

χ2k(z) = z−kϕ∗2k(z) = zkϕ2k(1/z) = κ2k(−α2k−1zk
+ · · · + z−k),

χ2k+1(z) = z−kϕ2k+1(z) = κ2k+1(zk+1
+ · · · + (−α2k)z−k).

(3)

hey provide a simple matrix representation of the recurrence relation (see [3,16,18]), which
eads as

Cχ (z) = zχ (z), χ = (χ , χ , χ , . . . )t ,
0 1 2

2
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n terms of the so called CMV matrix C – the unitary analogue of a Jacobi matrix [14,16] –,
five-diagonal unitary matrix which factorizes as C =ML, with

L =

⎛⎜⎜⎜⎝
Θ0

Θ2
Θ4

. . .

⎞⎟⎟⎟⎠ , M =

⎛⎜⎜⎜⎝
1

Θ1
Θ3

. . .

⎞⎟⎟⎟⎠ , Θn =

(
αn ρn

ρn −αn

)
.

(4)

e refer to this as the Θ-factorization of a CMV matrix, while χn is usually called the CMV
asis. Analogously to the case of the real line, we will assume that χ0 = ϕ0 = 1 by normalizing

the measure to be a probability one on the unit circle.
There is another natural choice for the OLPUC, namely, the alternate CMV basis,

χn∗(z) = χn(1/z). (5)

he corresponding matrix representation is the alternate CMV matrix C t
= LM [3,16,18].

oth CMV basis, χn and χn∗, will play a key role in the connection between OPUC and OPRL
eveloped in this work.

Since this paper revolves around a new connection between OPUC and OPRL, it is worth
ommenting on known ones. The paradigm of such connections, due to Szegő [11,16,17], starts
ith a measure µ on T which is symmetric under conjugation, which means that the Verblunsky

oefficients are real or, in other words, the related OPUC ϕn have real coefficients. The measure
induced on [−2, 2] by the mapping z ↦→ x = z + z−1 is called its Szegő projection, which

e denote by σ = Sz(µ). The related OPRL are given by [16,17]

pn(x) = z−n ϕ2n(z)+ ϕ∗2n(z)
√

2(1− α2n−1)
, x = z + z−1. (6)

ere and in what follows we use the convention α−1 = −1.
A more recent OPUC-OPRL connection goes back to works of Delsarte and Genin in the

ramework of the split Levinson algorithm [6–8]. They realized that the polynomials

p̂n(x) = (z1/2)−n ϕn(z)+ ϕ∗n (z)
√

2(1− αn−1)
, x = z1/2

+ z−1/2, (7)

onstitute an OPRL sequence with respect to an even measure – i.e. invariant under the
eflection x ↦→ −x in the variable – on [−2, 2]. We will refer to this as the DG connection
etween OPUC and OPRL.

Although the relations between the measures and orthogonal polynomials are simple for
he above two connections, the situation is somewhat different regarding the CMV and Jacobi
atrices: for both connections, the relations expressing the Jacobi parameters in terms of the
erblunsky coefficients are non-trivial to invert [6,16,17]. This changes completely with the
ew connection (see Proposition 4.1), directly defined by a very simple relation between CMV
nd Jacobi matrices (see [9] and Section 2). We refer to this by the surname initials of its
iscoverers, Derevyagin, Vinet and Zhedanov: the DVZ connection.

DVZ has other properties which distinguish it from Szegő and DG. First, for each OPUC
nstance with real coefficients, instead of a single OPRL sequence, it gives a family of OPRL
epending on an arbitrary real parameter λ. Besides, up to λ = ±1, the DVZ measure on the
eal line is supported on two disjoint symmetric intervals, although it is not even, in contrast to
he DG measure on [−2, 2]. The price to pay for these differences is a slightly more involved
3
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elation between the OPUC and OPRL linked by DVZ, which includes a less trivial relation
etween the unit circle and real line variables than for Szegő and DG.

The rest of the paper is devoted to the DVZ connection, which is detailed in the following
way: Section 2 describes two especially simple cases of the DVZ connection, corresponding to
λ = ±1. The aim is to introduce a new eigenproblem translation of DVZ in the easiest possible
setting. Section 3 reconciles this new approach with the original one in [9], in which the basic
DVZ connection for λ = 1 arises as a composition of DG and a Christoffel transformation on
the real line [1,19], i.e. the multiplication of a measure on the real line by a real polynomial.
The main results of the paper are in Section 4 where, extending the previous eigenmachinery
to the general DVZ connection given by an arbitrary λ ∈ R, we obtain explicit expressions for
the corresponding measures and orthogonal polynomials on the real line in terms of the unit
circle counterparts. This is shown to provide new examples of one-parameter OPRL families
in Section 5.

2. A new approach to the basic DVZ connection

Derevyagin, Vinet and Zhedanov established in [9] a new connection between OPUC and
OPRL, closely related to the DG connection. The starting point for this was the Θ-factorization
C =ML of a CMV matrix, given by the tridiagonal matrices L and M introduced in (4). If
the Verblunsky coefficients are real, a Jacobi matrix K can be built up out of the symmetric
unitary factors L and M,

K = L+M =

⎛⎜⎜⎜⎜⎜⎝
α0 + 1 ρ0

ρ0 α1 − α0 ρ1
ρ1 α2 − α1 ρ2

ρ2 α3 − α2 ρ3
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎠ . (8)

In [9], Derevyagin, Vinet and Zhedanov identified the measure and OPRL related to K in terms
of the measure and OPUC associated with C. Such an identification appeared surprisingly when
combining the DG connection with a Christoffel transformation on the real line. This defines
what we will call the basic DVZ connection (a more general one will come later on), which
maps OPUC with real coefficients into OPRL with respect to a measure supported on [−2, 2].
We will refer to K as the basic DVZ transform of C.

Since L2
=M2

= I is the semi-infinite identity matrix for αn ∈ R and |αn| < 1, the Jacobi
matrix (8) satisfies

K2
− 2I = C + C†.

where † denotes the adjoint of a matrix. This identity encodes the relation between the basic
DVZ connection and the Szegő projection – whose Jacobi matrix is hidden in C+C† [13,16] –,
and suggests also a link with symmetrization processes on [−2, 2] – addressed by the mapping
x ↦→ x2

− 2 (see Section 3), which is represented by the operation K2
− 2I on the Jacobi

matrix K–. Actually, we will show that the basic DVZ connection follows by a concatenation
of a symmetrization process [15] and a Christoffel transformation [2,5,10] on the unit circle,
followed by the Szegő projection. Equivalently, we can implement first the Szegő mapping, and
then perform the real line version of the symmetrization (see Section 3) and Christoffel [1,19].

In this section we will present the basic DVZ connection in a more natural and concise way,

directly looking for the relation between the OLPUC related to C and the OPRL associated

4



M.J. Cantero, F. Marcellán, L. Moral et al. Journal of Approximation Theory 266 (2021) 105579

w
c
o

B
e

T

w
i

b

W

c
b

ith the basic DVZ transform K, and then using this to uncover the relation between the
orresponding orthogonal polynomials and orthogonality measures. The interpretation in terms
f symmetrizations, Szegő and Christoffel will follow as a byproduct of these results.

The OPRL qn corresponding to the Jacobi matrix K are the solutions of the formal
eigenvalue equation

Kq(x) = xq(x), q = (q0, q1, q2, . . . )t , q0 = 1.

We will identify these OPRL by using some relations, often not fully exploited, between the
CMV basis χn related to C, the alternate CMV basis χn∗ given by (5), and the factors L, M [3],

Lχ (z) = zχ∗(z), Mχ∗(z) = χ (z),

{
χ = (χ0, χ1, χ2, . . . )t ,

χ∗ = (χ0∗, χ1∗, χ2∗, . . . )t .

earing in mind that L and M are involutions for αn ∈ (−1, 1), the above relations can be
quivalently written as

Lχ∗(z) = z−1χ (z), Mχ (z) = χ∗(z).

herefore,

Kχ (z) = (z + 1)χ∗(z), Kχ∗(z) = (z−1
+ 1)χ (z),

hich show that, for each fixed z ∈ C∗ = C \ {0}, the linear subspace span{χ(z), χ∗(z)} is
nvariant for K. This implies that K has formal eigenvectors u(z)χ(z)+ v(z)χ∗(z) given by the

eigenvalue equation(
0 z−1

+ 1
z + 1 0

)(
u(z)
v(z)

)
= x

(
u(z)
v(z)

)
.

The eigenvalues x are the solutions of

x2
= (z + 1)(z−1

+ 1),

thus we can write

x = z1/2
+ z−1/2

for a choice of the square root z1/2 (here and in what follows we understand that zn/2
= (z1/2)n ,

n ∈ Z, for that choice of the square root). The corresponding eigenvectors of K are spanned
y

X (z) = χ (z)+
z + 1

x
χ∗(z) = χ (z)+ z1/2χ∗(z). (9)

e conclude that the OPRL qn are given by

qn(x) =
Xn(z)
X0(z)

=
χn(z)+ z1/2χn∗(z)

1+ z1/2 = z−n/2 ϕ∗n (z)+ z1/2ϕn(z)
1+ z1/2 ,

x = z1/2
+ z−1/2,

(10)

where we have used (3). This coincides with the expression given in [9].
The orthogonality measure ν on the real line for qn follows from that one µ on the unit circle

for χn . To obtain this relation, let us parametrize the unit circle as T = {eiθ
: θ ∈ [0, 2π )} and

onsider µ as a measure on [0, 2π ], where the mass at 1 ∈ T, if any, is distributed equally

etween θ = 0 and θ = 2π so that µ remains symmetric under the transformation θ ↦→ 2π−θ ,

5
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hich represents the conjugation of eiθ . Then, the restriction of x = z1/2
+ z−1/2 to the unit

ircle leads to the map

x(θ ) = 2 cos
θ

2
, θ ∈ [0, 2π ], (11)

hich is a one-to-one transformation between [0, 2π ] and [−2, 2] with inverse

θ (x) = 2 arccos
x
2
, x ∈ [−2, 2]. (12)

he symmetric extension of µ to [0, 2π ] is crucial to identify the orthogonality measure of qn ,
and guarantees that the relation x(2π−θ ) = −x(θ ) makes sense for any angle θ in the interval
[0, 2π ] where µ is supported.

The orthogonality measure of qn(x) = Xn(z)/X0(z) arises from the observation that the
omponents Xn of the formal eigenvector (9) are orthogonal with respect to µ. Indeed,∫ 2π

0
X (eiθ )X (eiθ )† dµ(θ) =

∫ 2π

0
(χ (eiθ )χ (eiθ )† + χ∗(eiθ )χ∗(eiθ )†) dµ(θ )

+

∫ 2π

0
(eiθ/2χ∗(eiθ )χ (eiθ )† + e−iθ/2χ (eiθ )χ∗(eiθ )†) dµ(θ ).

ue to the orthonormality of χn and χn∗ with respect to µ, the first term on the right hand side
s 2I. On the other hand, taking into account that the OLPUC have real coefficients due to the
ymmetry of the measure under conjugation, the second term vanishes because its integrand
imply changes sign under the transformation θ ↦→ 2π − θ which leaves the measure µ

nvariant. Therefore,∫ 2

−2
q(x)q(x)†

⏐⏐X0(eiθ (x))
⏐⏐2 dµ(θ (x)) =

∫ 2π

0
X (eiθ )X (eiθ )† dµ(θ) = 2I,

hich proves that the orthogonality measure of qn is

dν(x) =
1
2

⏐⏐1+ eiθ (x)/2
⏐⏐2 dµ(θ (x)) =

1
2

(2+ x) dµ(θ (x)), x ∈ [−2, 2], (13)

result also present in [9].
Since θ (−x) = 2π − θ (x), the symmetry of µ under θ ↦→ 2π − θ makes dµ(θ (x))

ymmetric under x ↦→ −x . However, the orthogonality measure ν does not preserve finally
his symmetry due to the additional factor

⏐⏐X0(eiθ(x)/2)
⏐⏐2 = 2+ x that comes from the relation

ν(x) = 1
2

⏐⏐X0(eiθ (x)/2)
⏐⏐2 dµ(θ(x)).

The above discussion may be extended to the tridiagonal matrix

K− = L−M =

⎛⎜⎜⎜⎜⎜⎝
α0 − 1 ρ0

ρ0 −α1 − α0 −ρ1
− ρ1 α2 + α1 ρ2

ρ2 −α2 − α3 −ρ3
. . . . . .

⎞⎟⎟⎟⎟⎟⎠ , (14)
. . .

6
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hich is the conjugated of a Jacobi matrix by a diagonal sign matrix,

ΠK−Π =

⎛⎜⎝
α0−1 ρ0
ρ0 −α1−α0 ρ1

ρ1 α2+α1 ρ2
ρ2 −α3−α2 ρ3

...
...

...

⎞⎟⎠ ,

Π =

⎛⎜⎜⎜⎜⎜⎝
1

1
−1

−1
1

1
−1

−1
...

⎞⎟⎟⎟⎟⎟⎠
(15)

herefore, the formal eigenvalue equation

K−q−(x) = xq−(x), q− = (q−0 , q−1 , q−2 , . . . )t , q−0 = 1,

efines a sequence q−n of OPRL whose leading coefficients have a sign given by the corre-
ponding diagonal coefficient of Π .

A direct translation of the previous reasoning to this case shows that K− has formal
igenvectors

χ (z)+ i z1/2χ∗(z)

ith eigenvalue

x = −i(z1/2
− z−1/2),

o that

q−n (x) =
χn(z)+ i z1/2χn∗(z)

1+ i z1/2 = z−n/2 ϕ∗n (z)+ i z1/2ϕn(z)
1+ i z1/2 ,

x = −i(z1/2
− z−1/2).

As for the orthogonality measure ν− of q−n , in this case a convenient parametrization of the
nit circle is T = {eiθ

: θ ∈ (−π, π]}. Accordingly, we consider the measure µ of χn as a
easure on [−π, π], with any possible mass at −1 ∈ T distributed equally between θ = −π

and θ = π to preserve the symmetry of µ under the transformation θ ↦→ −θ representing the
conjugation of eiθ . Then, on the unit circle, x = −i(z1/2

+ z−1/2) becomes

x(θ ) = 2 sin
θ

2
, θ ∈ [−π, π], (16)

hich maps [−π, π] one-to-one onto [−2, 2], and has the inverse

θ (x) = 2 arcsin
x
2
, x ∈ [−2, 2]. (17)

he same kind of argument as in the previous case proves that

dν−(x) =
1
2

⏐⏐1+ ieiθ (x)/2
⏐⏐2 dµ(θ (x)) =

1
2

(2− x) dµ(θ (x)), x ∈ [−2, 2].

earing in mind that θ (−x) = −θ(−x), the measure ν− fails to be symmetric with respect to
x ↦→ −x only due to the factor 2− x .

The next section will present a closer look at the relations between the basic DVZ connection
nd the well known Szegő projection between the unit circle and the real line. This will make
ymmetrization processes and Christoffel transformations to enter into the game.
7
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. DVZ, Christoffel, Szegő and symmetrizations

Originally, in [9], the basic DVZ connection arises as a combination of well known
ransformations which surprisingly links the OPUC related to a CMV matrix C = ML and

the OPRL associated to the Jacobi matrix K = L+M. We will see that such an interpretation
follows directly from our more direct approach. For this purpose, let us rewrite the DVZ relation
(10) between OPUC and OPRL as

qn(x) = z−n ϕ∗n (z2)+ zϕn(z2)
1+ z

, x = z + z−1.

his relation suggests introducing the symmetrized OPUC [15],

ϕ̂n(z) =

{
ϕk(z2), n = 2k,

zϕk(z2), n = 2k + 1,
(18)

haracterized by the Verblunsky coefficients α̂2k = 0 and α̂2k+1 = αk . They are orthonormal
ith respect to a measure which is invariant for the mapping θ ↦→ θ + π – i.e., symmetric
nder the change of sign of eiθ –, namely,

dµ̂(θ) =
1
2

(dµ(2θ )+ dµ(2θ − 2π )) ,

where µ is the measure on [0, 2π ] which makes ϕn orthonormal, so that dµ(2θ ) and dµ(2θ −

2π ) are supported on [0, π] and [π, 2π ] respectively.
Since dµ(θ ) = 2dµ̂(θ/2), we can express the OPRL (10) and the measure (13) for the basic

VZ transform as

qn(x) = z−n ϕ̂∗2n+1(z)+ ϕ̂2n+1(z)
1+ z

, x = z + z−1,

dν(x) = (2+ x) dµ̂(arccos(x/2)), x ∈ [−2, 2].
(19)

iven a measure µ on T which is symmetric under conjugation, its Szegő projection is the
easure σ = Sz(µ) induced on [−2, 2] by the mapping z ↦→ x = z + z−1, which is explicitly

iven by dσ (x) = 2dµ(arccos(x/2)). The above expression for the measure ν shows that
he basic DVZ connection is a combination of three transformations: symmetrization µ ↦→ µ̂,
zegő projection µ̂ ↦→ σ̂ = Sz(µ̂) and the Christoffel transformation dσ̂ (x) ↦→ 1

2 (2+x) dσ̂ (x).
Let us have a closer look at the effect of these transformations on the orthogonal polyno-

mials. The OPRL associated with the Szegő projection σ = Sz(µ) have the form [16,17]

pn(x) = z−n ϕ2n(z)+ ϕ∗2n(z)
√

2(1− α2n−1)
, x = z + z−1. (20)

n the other hand, due to the symmetry eiθ
↦→ −eiθ of µ̂, its Szegő projection σ̂ = Sz(µ̂)

ecomes an even measure, i.e. symmetric under x ↦→ −x , thus its OPRL have the form
4, Chapter I]

p̂2n(x) = Pn(x2), p̂2n+1(x) = x P̃n(x2),

ith Pn and P̃n polynomials with orthonormality measures dm(x) and x dm(x) supported on
+. Bearing in mind (18), an expression similar to (20) for the OPRL p̂n related to the Szegő
rojection σ̂ = Sz(µ̂) shows that

p̂n(x) = z−n ϕn(z2)+ ϕ∗n (z2)
√ , x = z + z−1,
2(1− αn−1)
8
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hich coincides with (7) once we substitute z by z1/2. This shows that the DG connection
follows just by combining the symmetrization and the Szegő projection, thus the DG measure
on [−2, 2] is given by dσ̂ (x) = 2dµ̂(arccos(x/2)) = dµ(2 arccos(x/2)). Besides,

p̂2n(x) = p̂2n(z + z−1) = pn(z2
+ z−2) = pn(x2

− 2). (21)

herefore, Pn(x) = pn(x − 2), dm(x) = dσ (x − 2) and P̃n(x) = p̃n(x − 2), where p̃n are
rthonormal with respect to dσ̃ (x) = (x + 2) dσ (x). Hence,

p̂2n+1(x) = x p̃n(x2
− 2), (22)

o that

p̃n(z2
+ z−2) =

1
x

p̂2n+1(x) = z−(2n+1) ϕ̂4n+2(z)+ ϕ̂∗4n+2(z)√
2(1− α̂4n+1)(z + z−1)

.

ombining this with (18) we find that

p̃n(x) = z−n ϕ2n+1(z)+ ϕ∗2n+1(z)
√

2(1− α2n)(1+ z)
, x = z + z−1. (23)

earing in mind that α̂2n = 0, this identifies qn , as it is given in (19), with the OPRL related
o the measure 1

2 (x + 2) dσ̂ (x), in agreement with the previous interpretation of DVZ as a
omposition of the symmetrization, Szegő and Christoffel transformations.

Using the following notation,

C z ↦→z2
−−−→ Ĉ Symmetrization process between CMV matrices,

C Sz
−−→ J Szegő projection between CMV and Jacobi matrices,

J ℘
−→ K Christoffel transformation between Jacobi matrices which

multiplies the measure by the polynomial ℘,

C DG
−−−→ J DG connection between CMV and Jacobi matrices,

C DVZ
−−−→ K Basic DVZ connection between CMV and Jacobi matrices,

he above results are summarized in the commutative diagram below.

C̃

Sz
↓↓

C2+z+z−1
←← z ↦→z2

→→

Sz
↓↓

DVZ

→→

DG

↘↘

Ĉ
1
2 (2+z+z−1)

→→

Sz
↓↓

D̂

Sz
↓↓

J̃ J2+x←← x ↦→x2
−2 →→ Ĵ

1
2 (2+x)

→→ K = L+M.

The above diagram has more than the three alluded transformations whose combination gives
he basic DVZ connection. Let us comment on them. First, every Christoffel transformation
σ (x) ↦→ ℘(x) dσ (x) between measures on [−2, 2] is lifted to a similar one dµ(θ) ↦→

℘(eiθ
+ e−iθ ) dµ(θ ) between the measures on T from which they come as Szegő projections.

This explains the CMV matrix D̂ in the right upper corner: its measure 1
2 |z + 1|2dµ̂(z) is the

hristoffel transform on the unit circle (see [2,5,10] for this notion) whose Szegő projection is
he measure ν of the basic DVZ transform K.

Also, the Szegő projection of the symmetrization process on T yields a transformation which
aps any measure σ on [−2, 2] into an even measure σ̂ on the same interval. Since z ↦→ z2
9
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eads as x ↦→ x2
− 2 if x = z + z−1, we conclude that

dσ̂ (x) =
1
2

(dσ (ξ (x))+ dσ (ξ (−x))), ξ (x) = x2
− 2,

where ξ stands for the one-to-one mapping between [0, 2] and [−2, 2] induced by x ↦→ x2
−2,

so that dσ (ξ (x)) is a measure on [0, 2], while dσ (ξ (−x)) is a measure on [−2, 0]. Nevertheless,
(21) and (22) show that the OPRL p̂n related to σ̂ are not built only out of the OPRL pn for σ ,
ut the OPRL p̃n of its Christoffel transform dσ̃ (x) = (2+x) dσ (x) are also required. Actually,
he relations (21) and (22) between pn , p̃n and p̂n imply that the corresponding Jacobi matrices,

, J̃ and Ĵ , are linked by

Ĵ 2
− 2I = J ⊕ J̃ ,

here J and J̃ act on even and odd indices respectively. We express this diagrammatically
s

J̃ 2+x
←−−− J x ↦→x2

−2
HHHHHH⇒ Ĵ

he double line in the right arrow indicating that both, J and J̃ , are involved in the construction
f Ĵ .

The rest of the diagram, i.e. the connection between the CMV matrices C and C̃ in the left
pper corner, is just the result of lifting to T the Christoffel transformation relating J and J̃ .

. The general DVZ connection

In this section we intend to extend the basic DVZ connection to arbitrary real linear
ombinations of the factors L, M of a CMV matrix C = ML, i.e. a linear pencil which
e denote by

Kλ0,λ1 = λ0L+ λ1M =

⎛⎜⎜⎜⎝
λ0α0+λ1 λ0ρ0

λ0ρ0 −λ0α0+λ1α1 λ1ρ1

λ1ρ1 λ0α2−λ1α1 λ0ρ2

λ0ρ2 −λ0α2+λ1α3 λ1ρ3

...
...

...

⎞⎟⎟⎟⎠ ,

λk ∈ R \ {0}, k = 0, 1.

λ0,λ1 is a Jacobi matrix when λk > 0, otherwise it is related to a true Jacobi matrix Jλ0,λ1 by
onjugation with a diagonal sign matrix,

Jλ0,λ1 = Πε0,ε1Kλ0,λ1Πε0,ε1 =

⎛⎜⎜⎜⎜⎝
λ0α0+λ1 |λ0|ρ0

|λ0|ρ0 −λ0α0+λ1α1 |λ1|ρ1

|λ1|ρ1 λ0α2−λ1α1 |λ0|ρ2

|λ0|ρ2 −λ0α2+λ1α3 |λ1|ρ3

...
...

...

⎞⎟⎟⎟⎟⎠ ,

Πλ0,λ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ε0

ε0ε1
ε1

1
ε0

ε0ε1
ε1

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, εk = sgn(λk), k = 0, 1.
..

10
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s in the case of the basic DVZ connection, our aim is to find explicit relations between the
easures and orthogonal polynomials associated with C and Jλ0,λ1 .
Prior to the discussion of these relations we will clarify the OPRL targets of this con-

ection with OPUC. In other words, which Jacobi matrices may be expressed as Jλ0,λ1 =

λ0,λ1 ((αn)n≥0) for some sequence (αn)n≥0 of real Verblunsky coefficients? This question is
nswered by the following proposition.

roposition 4.1. A Jacobi matrix J given by (1) has the form Jλ0,λ1 ((αn)n≥0) for some
k ∈ R \ {0} and a sequence (αn)n≥0 in (−1, 1) iff the complex numbers zn =

∑n
j=0 b j + ian

atisfy the following conditions for n ≥ 0:

(i) All the points zn with even index n lie in a single circle C0 centered at a point in R \ {0}.
(ii) All the points zn with odd index n lie in the circle C1 with the same center as C0 and

passing through the origin.

f this is the case, λ1 is the common center of C0 and C1, |λ0| is the radius of C0 and, for any
ign of λ0,

αn =
1

λϵ(n)

⎛⎝ n∑
j=0

b j − λ1

⎞⎠ , ϵ(n) = n mod 2, n ≥ 0, (24)

o that the mapping (λ0, λ1, (αn)n≥0) ↦→ Jλ0,λ1 ((αn)n≥0) is one-to-one up to the identity

Jλ0,λ1 ((αn)n≥0) = J−λ0,λ1 (((−1)n+1αn)n≥0). (25)

Proof. The equality J = Jλ0,λ1 ((αn)n≥0) is equivalent to the conditions
n∑

j=0

b j − λ1 = λϵ(n)αn, an = |λϵ(n)|ρn, n ≥ 0. (26)

From these conditions we find (24) and⎛⎝ n∑
j=0

b j − λ1

⎞⎠2

+ a2
n = λ2

ϵ(n), n ≥ 0, (27)

which proves (i), (ii), as well as the relations between λk and the circles Ck . The equality (25)
follows directly from the explicit form of Jλ0,λ1 ((αn)n≥0).

Suppose now that (i) and (ii) are true, which means that (27) holds for some λk ∈ R \ {0},
where the sign of λ0 may be arbitrarily chosen. Introducing ρn = an/|λϵ(n)| and defining αn by
(24), the relation (27) becomes α2

n+ρ2
n = 1. We conclude that (αn)n≥0 is a sequence in (−1, 1)

such that ρn =
√

1− a2
n and (26) is satisfied, i.e. J = Jλ0,λ1 ((αn)n≥0). Regarding this equality,

ccording to this discussion, the only freedom in λk and αn is the choice of the sign of λ0,
whose alteration only changes the sign of the parameters αn with even index n. This proves
that the map (λ0, λ1, (αn)n≥0) ↦→ Jλ0,λ1 ((αn)n≥0) fails to be one-to-one only due to (25). □

The previous proposition states that the Jacobi matrices arising from the present general
version of DVZ are generated by selecting a couple of concentric circles –C0 and C1– with
center on R \ {0}, one of them –C1– passing through the origin. The choice of a sequence
zn ∈ Cϵ(n) with positive imaginary part determines the corresponding Jacobi parameters
n = Imzn and bn = Re(zn − zn−1).

11
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Due to the freedom in the sign of λ0, we can suppose without loss of generality that λ0 > 0.
lso, rewriting

Jλ0,λ1 = λ0Jλ, Jλ = J1,λ, λ = λ1/λ0 ∈ R \ {0},

e find that the OPRL p(λ0,λ1)
n and the measure νλ0,λ1 related to Jλ0,λ1 follow by a simple

ilation of the OPRL p(λ)
n and the measure νλ associated with Jλ,

p(λ0,λ1)
n (x) = p(λ)

n (x/λ0), dνλ0,λ1 (x) = dνλ(x/λ0).

his shows that one of the degrees of freedom encoded in the pair (λ0, λ1) may be considered
rivial. Thus, without loss of generality, we may consider a single degree of freedom by setting
or instance λ0 = 1, what we will do in what follows. Nevertheless, Proposition 4.1 worth
o be written for an arbitrary value of λ0 because this allows us to identify a wider class of
acobi matrices which could be benefited from the DVZ connection. Such a class corresponds
o considering circles C0 with arbitrary radii in the discussion of the previous paragraph. Once
Jacobi matrix J lies in this class, one can relate it with a canonical one Jλ – corresponding

o a circle C0 with radius 1 – by setting Jλ = λ−1
0 J , with λ0 the radius of the circle C0

ssociated to J .
Regarding the canonical Jacobi matrix Jλ, we know that

Jλ =

{
Kλ, λ > 0,

ΠKλΠ , λ < 0,
Kλ = K1,λ = L+ λM,

here Π is the diagonal sign matrix given in (15). Thus, the OPRL sequence p(λ)
=

p(λ)
0 , p(λ)

0 , . . . )t given by Jλ p(λ)(x) = xp(λ)(x), p(λ)
0 = 1, is related by p(λ)

= Π q (λ) with
he solutions of

Kλq (λ)(x) = xq (λ)(x), q (λ)
= (q (λ)

0 , q (λ)
1 , . . . )t , q (λ)

0 = 1. (28)

ence, the polynomials q (λ)
n and p(λ)

n differ in at most a sign, so q (λ) is also an OPRL sequence
ith respect to the measure νλ. Due to these reasons, in what follows we will consider only

inear combinations of CMV factors with the form Kλ for an arbitrary λ ∈ R \ {0}, referring to
he solutions q (λ)

n of (28) as the corresponding OPRL. We will refer to the problem of finding the
elations between the orthogonal polynomials and measures related to a CMV matrix C =ML
nd the tridiagonal matrix Kλ = L + λM as the (general) DVZ connection between OPUC
nd OPRL.

This general version of DVZ was already considered in [9]. Nevertheless, unlike the case of
he basic DVZ connection, [9] does not provide any closed formula for the relations between
he orthogonal polynomials and measures associated with a CMV matrix C = ML and its
general) DVZ transform,

Kλ = L+ λM =

⎛⎜⎜⎜⎜⎜⎝
α0 + λ ρ0

ρ0 λα1 − α0 λρ1
λρ1 α2 − λα1 ρ2

ρ2 λα3 − α2 λρ3
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎠ . (29)

his will change with the present approach, whose simplicity leads to completely explicit
xpressions for such general DVZ relations between orthogonal polynomials and measures.
12
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.1. OPRL for the general DVZ connection

We are looking for the solutions of the formal eigenvalue equation

Kλq (λ)(x) = xq (λ)(x), q (λ)
= (q (λ)

0 , q (λ)
1 , q (λ)

2 , . . . )t , q (λ)
0 = 1, (30)

hich yield an OPRL sequence q (λ)
n with positive leading coefficients for λ > 0, and having a

ign given by the diagonal entries of Π in (15) if λ < 0. The same method used previously for
= ±1 provides the relation between the OPRL q (λ)

n and the OLPUC χn of C for any value
f λ ∈ R \ {0}. Since

Kλχ (z) = (z + λ)χ∗(z), Kλχ∗(z) = (z−1
+ λ)χ(z),

λ has formal eigenvectors u(z)χ (z)+ v(z)χ∗(z) determined by(
0 z−1

+ λ

z + λ 0

)(
u(z)
v(z)

)
= x

(
u(z)
v(z)

)
.

he eigenvalues x are the solutions of

x2
= (z + λ)(z−1

+ λ) = 1+ λ2
+ λ(z + z−1), (31)

he corresponding eigenvectors being spanned by

X (z) = χ (z)+
z + λ

x
χ∗(z). (32)

his suggests the identification

q (λ)
n (x) =

Xn(z)
X0(z)

=
xχn(z)+ (z + λ)χn∗(z)

x + z + λ
, z = z(x), (33)

here z = z(x) is a complex mapping satisfying (31). The validity of this result only needs to
heck that the above expression yields a well defined function of x because then (30) follows
rom the eigenvector property of X (z). However, (31) determines x as function of z only up to
sign which could depend arbitrarily on z. Also, although z ↦→ 1+λ2

+λ(z+z−1) maps C\{0}
nto C, there are in general two values of z giving the same value of x2 which are inverse of
ach other. Therefore, all that can be said is that (31) establishes a one-to-one correspondence
etween subsets {z, z−1

} ⊂ C \ {0} and subsets {x,−x} ⊂ C. As a consequence, there are
nfinitely many functions z = z(x) well defined on the whole complex plane and satisfying
31), so that (33) becomes a true function of x when substituting z by z(x). The fact that,
or any of these choices, q (λ)

n (x) satisfies (30), not only identifies these functions as the OPRL
elated to Kλ, but consequently shows that q (λ)

n (x) do not depend on the particular choice of
z(x). This reflects the invariance of (33) under the mapping z ↦→ z−1, which follows from
31) and the fact that such a mapping exchanges χn and χn∗. Another proof of this result is
iven by the following theorem, which is of practical interest since it provides an alternative
xpression of q (λ)

n (x) which turns out to be more useful to identify its dependence on x in
articular situations.

heorem 4.2. Let χn be the OLPUC of a real CMV matrix with Θ-factorization C =ML.
hen, the function q (λ)

n (x) given in (33) does not depend on the map z = z(x) satisfying (31),
nd is a real polynomial of degree n with the form

(λ) ˜ −1 2 −1
qn (x) = Qn(tλ(x))+ (x − λ)Qn(tλ(x)), tλ(x) = λ x − (λ+ λ ),

13
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here Qn and Q̃n are real polynomials independent of λ with degree

deg Qn =
n
2 , even n,

deg Qn ≤
n−1

2 odd n,
deg Q̃n =

[ n−1
2

]
,

uch that

Qn(z+z−1) =
1

z − z−1

⏐⏐⏐⏐ z z−1

χn(z) χn∗(z)

⏐⏐⏐⏐ , Q̃n(z+z−1) =
1

z − z−1

⏐⏐⏐⏐χn(z) χn∗(z)
1 1

⏐⏐⏐⏐ .
If χn(z) =

∑
j c(n)

j z j , then

Qn(t) =
∑
j≥0

(c(n)
− j − c(n)

j+2)U j (t), Q̃n(t) =
∑
j≥0

(c(n)
j+1 − c(n)

− j−1)U j (t),

where Un stand for the second kind Chebyshev polynomials on [−2, 2], determined by the
recurrence relation

U−1(t) = 0, U0(t) = 1, Un(t) = tUn−1(t)−Un−2(t) if n ≥ 1. (34)

The polynomials q (λ)
n (x) satisfy (30), i.e. they are the OPRL related to the tridiagonal matrix

Kλ = L+ λM.

Proof. Given any map z = z(x) satisfying (31), from (33) we find that

q (λ)
n (x) =

(xχn(z)+ (z + λ)χn∗(z))(x − z − λ)
x2 − (z + λ)2

=
x2χn(z)− x(z + λ)χn(z)+ x(z + λ)χn∗(z)− (z + λ)2χn∗(z)

(z + λ)(z−1 − z)

=
(z + λ)χn∗(z)− (z−1

+ λ)χn(z)+ xχn(z)− xχn∗(z)
z − z−1

=
1

z − z−1

(⏐⏐⏐⏐ z z−1

χn(z) χn∗(z)

⏐⏐⏐⏐+ (x − λ)
⏐⏐⏐⏐χn(z) χn∗(z)

1 1

⏐⏐⏐⏐) .

Since the columns of the above determinants are related by the substar operation, they must
be real linear combinations of z j

− z− j . Bearing in mind that

U j (z + z−1) =
z j+1
− z− j−1

z − z−1 , (35)

e conclude that both determinants, when divided by z− z−1, become real linear combinations
f U j (z+z−1), which thus have the form Qn(z+z−1) and Q̃n(z+z−1) for some real polynomials

Qn and Q̃n . The relations (3) lead to

deg Q2k = k, deg Q2k+1 ≤ k,

deg Q̃2k = k − 1, deg Q̃2k+1 = k.

his implies that deg q (λ)
n = n because z + z−1

= λ−1x2
− (λ+ λ−1) due to (31).

Introducing the full expansion χn(z) =
∑

j c(n)
j z j into the determinants defining Qn and Q̃n

e obtain

Qn(t) = −
∑

j

c(n)
j U j−2(t), Q̃n(t) =

∑
j

c(n)
j U j−1(t),

here we assume (35) extended to every j ∈ Z. The relations given in the theorem follow by

oticing that U− j = −U j−2.

14
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Finally, the relation q (λ)(x) = X (z)/X0(z) shows that it is a formal eigenvector of Kλ with
eigenvalue x and such that q (λ)

0 = 1, i.e. it satisfies (30). □

4.2. Orthogonality measure for the general DVZ connection

To obtain the orthogonality measure νλ of the OPRL q (λ)
n we will introduce the measures µ+

nd µ− induced by µ on the upper and lower arcs of the unit circle, T+ = {eiθ
: θ ∈ [0, π]}

nd T− = {eiθ
: θ ∈ [−π, 0]}, with any eventual mass point of µ at ±1 equally distributed

etween µ+ and µ−. Then, we can rewrite any integral with respect to µ as∫
T

f (z) dµ(z) =
∫
T+

f (z) dµ+(z)+
∫
T−

f (z) dµ−(z).

esides, the symmetry of µ under conjugation means that dµ+(z) = dµ−(z−1), so that∫
T

f (z) dµ(z) =
∫
T+

( f (z)+ f (z−1)) dµ+(z).

The orthogonality measure νλ will arise from the orthogonality of the components of the
igenvector (32) with respect to µ, a result given in the next proposition. To make it more
recise and prove this orthogonality we define the following map on T

x(eiθ ) =
√

1+ λ2 + 2λ cos θ, (36)

hich satisfies (31) and x(z−1) = x(z). When restricted to T±, (36) provides a homeomorphism
etween T± and the interval [|1− |λ||, 1 + |λ|], with an inverse mapping given by z(x) =
±iθ (x), where

θ (x) = arccos
tλ(x)

2
, tλ(x) = λ−1x2

− (λ+ λ−1). (37)

ow we can formulate the precise meaning of the orthogonality property for the eigenvector
32).

roposition 4.3. Let χn be the OLPUC associated with a measure µ on T symmetric under
onjugation. Consider the measures µ± induced by µ on the upper and lower arcs T±, with
ny mass point of µ at ±1 equally distributed between µ±. Then, if x(z) is given by (36) for

z ∈ T and I is the semi-infinite identity matrix, the following matrix equality holds,∫
T+

X+(z)X+(z)† dµ+(z)+
∫
T−

X−(z)X−(z)† dµ−(z) = 2I,

X±(z) = χ (z)±
z + λ

x(z)
χ∗(z).

roof. Since x(z) satisfies (31), the above sum of integrals can be rewritten as∫
T

(χ(z)χ (z)† + χ∗(z)χ∗(z)†) dµ(z)

+

∫
T+

(
z + λ

x(z)
χ∗(z)χ(z)† +

z−1
+ λ

x(z)
χ (z)χ∗(z)†

)
dµ+(z)

−

∫ (
z + λ

χ∗(z)χ(z)† +
z−1
+ λ

χ (z)χ∗(z)†
)

dµ−(z).

T− x(z) x(z)

15
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he OLPUC χn have real coefficients due to the symmetry of µ under conjugation. As a
consequence, the integrands of the last two summands are invariant under conjugation of z.
Since this operation exchanges µ− and µ+, the last two terms cancel each other. On the other
hand, the orthogonality of χn and χn∗ with respect to µ implies that the first integral is 2I . □

The orthogonality measure of q (λ)
n arises as a consequence of the previous result. Except for

he cases λ = ±1, it is a measure supported on two disjoint symmetric intervals.

heorem 4.4. If µ is a measure on T which is symmetric under conjugation, then the OPRL
(λ)
n (x) of the corresponding general DVZ transform Kλ are orthonormal with respect to the
easure

dνλ(x) =
(x + λ)2

− 1
2λx

(dµ+(eiθ+(x))+ dµ−(e−iθ−(x))), x ∈ Eλ = E+λ ∪ E−λ ,

E+λ = [|1− |λ||, 1+ |λ|], E−λ = −E+λ ,

where θ±(x) is the homeomorphism between E±λ and [0, π] given by the restriction of θ (x)
in (37) to E±λ , and µ± is the measure induced by µ on T± with the mass points of µ at ±1
equally distributed between µ±.

Proof. With the notation of Proposition 4.3, we have

X±(e±iθ(x)) = q (λ)
n (±x) X±0 (e±iθ (x)).

Therefore, using the homeomorphisms z = e±iθ+(x) between E+λ and T±, the result of such a
proposition may be rewritten as∫

E+λ

q (λ)
n (x) q (λ)

n (x)† |X+0 (eiθ (x))|
2

dµ+(eiθ+(x))

+

∫
E+λ

q (λ)
n (−x)q (λ)

n (−x)† |X−0 (e−iθ (x))|
2

dµ−(e−iθ+(x)) = 2I.
(38)

Besides,

|X±0 (e±iθ (x))|
2
=

⏐⏐⏐⏐1± e±iθ (x)
+ λ

x

⏐⏐⏐⏐2 = (1±
z + λ

x

)(
1±

z−1
+ λ

x

)
, z = e±iθ (x).

Bearing in mind that z = z(x) satisfies (31), we find that

|X±0 (eiθ (x))|
2
= 2±

z + z−1
+ 2λ

x
= 2±

x2
− 1+ λ2

λx
= ±

(x ± λ)2
− 1

λx
.

he theorem follows by inserting this equality into (38) and performing in the second integral
of (38) the change of variables x ↦→ −x , taking into account that it maps E+λ into E−λ and
θ−(x) = θ+(−x). □

We should highlight that, in the expression for νλ given by the previous theorem,
dµ+(eiθ+(x)) is a measure on E+λ while dµ−(e−iθ−(x)) is a measure on E−λ , so that the sum
of both is even, i.e. symmetric under the reflection x ↦→ −x . Nevertheless, the measure νλ is
not even due to the additional factor

(x + λ)2
− 1

λx
, (39)

hich, by the way, is non-negative on E .
λ

16
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Bearing in mind that dµ+(z) = dµ−(z−1), we can also express the measure νλ using only
the measure µ+ on the upper arc T+, i.e.

dνλ(x) =
(x + λ)2

− 1
2λx

(dµ+(eiθ+(x))+ dµ+(eiθ−(x))), x ∈ Eλ. (40)

ince θ±(x) = θ (x) for x ∈ E±λ , it is tempting to rewrite the above as

dνλ(x) =
(x + λ)2

− 1
2λx

dµ+(eiθ (x)), x ∈ Eλ. (41)

owever, (37) is not one-to-one between Eλ and T+ because θ (−x) = θ (x), thus (41) should
be considered simply as a symbolic representation of (40).

The results of Section 2 which express ν±1 directly in terms of µ may be recovered from
Theorem 4.4. When λ = ±1 the factor (39) becomes 2 ± x , the pair of intervals constituting
Eλ reduce to the single interval [−2, 2], and θ (x) = arccos(±x2/2∓ 1) so that

2 cos
θ (x)

2
=

√
2(1+ cos θ (x)) = |x |, λ = 1,

2 sin
θ (x)

2
=

√
2(1− cos θ (x)) = |x |, λ = −1.

Then, θ (x) makes sense as a one-to-one map between [−2, 2] and [0, 2π ] (λ = 1) or [−π, π]
(λ = −1) just by redefining

θ (x) ↦→ 2π − θ(x), x ∈ [−2, 0), λ = 1,

θ(x) ↦→ −θ(x), x ∈ [−2, 0), λ = −1,

which yields the transformations (12) and (17) for λ = 1 and λ = −1 respectively.
A representation of νλ directly in terms of µ is also possible for λ ̸= ±1. One can think on

rewriting the expression given in Theorem 4.4 as

dνλ(x) =
(x + λ)2

− 1
2λx

dµ(z(x)), x ∈ Eλ, (42)

ith

z(x) =

{
eiθ (x), x ∈ E+λ ,

e−iθ(x), x ∈ E−λ .

lthough z(x) fails to be one-to-one between Eλ and T because the four edges of Eλ are
apped into ±1, this difficulty is overcome due to the factor (x + λ)2

− 1 which cancels
ny possible mass point at the two edges ±1 − λ, making unnecessary to cover them with
he mapping z(x). Therefore, (42) makes perfect sense considering z(x) as a one-to-one map
etween Eλ \ {1− λ,−1− λ} and T.

The connection between νλ and µ can be made more explicit for the absolutely continuous
nd pure point components. Let us denote by δ(x−x0) the Dirac delta at x0, i.e. the probability
easure with support {x0}. Suppose that a measure µ on T has the form

dµ(eiθ ) = w(θ ) dθ +
∑

k

mk (δ(θ − θk)+ δ(θ + θk)), θk ∈ [0, π],

here w(−θ ) = w(θ ) and the mass points appear in symmetric pairs due to the invariance of
under conjugation. The above expression assumes for η = 0, π the artificial splitting of any
ass point m δ(θ − η) as (m/2)(δ(θ − η)+ δ(θ + η)), something which allows us to identify

dµ±(eiθ ) = w(θ ) dθ +
∑

mk δ(θ ∓ θk).

k

17
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hen, according to Theorem 4.4,

dνλ(x) =
(x + λ)2

− 1
2λx

(
w(θ (x))

⏐⏐⏐⏐dθ

dx

⏐⏐⏐⏐ dx +
∑

k

mk (δ(x − xk)+ δ(x + xk))

)
,

where xk = x(θk) =
√

1+ λ2 + 2λ cos θk .
It only remains to obtain the Jacobian of the transformation θ (x) given in (37), which is⏐⏐⏐⏐dθ

dx

⏐⏐⏐⏐ = ⏐⏐⏐⏐ x
λ sin θ (x)

⏐⏐⏐⏐ .
n the other hand,

sin2 θ (x) = 1−
t2
λ (x)
4
=

((1+ λ)2
− x2)(x2

− (1− λ)2)
4λ2

=
((x + λ)2

− 1)(1− (x − λ)2)
4λ2 .

herefore,⏐⏐⏐⏐dθ

dx

⏐⏐⏐⏐ = 2|x |√
((x + λ)2 − 1)(1− (x − λ)2)

.

Finally, we conclude that

dνλ(x) =
1
|λ|

√
(x + λ)2 − 1
1− (x − λ)2 w(θ (x)) dx

+

∑
k

mk

2λxk

[
((xk + λ)2

− 1) δ(x − xk)+ (1− (xk − λ)2) δ(x + xk)
]
.

(43)

he explicitness of this expression for νλ makes it of particular interest for the analysis of
pecific examples.

Among the possible mass points of µ, those located at ±1 deserve special attention since
they are the only ones which are artificially split to obtain νλ. If µ has a mass m at ±1, then
± have a mass m/2 at the same point which, according to the previous results, leads to the

ollowing masses for νλ at the edges of Eλ:

µ({1}) = m ⇒

{
νλ({1+ λ}) = m,

νλ({−1− λ}) = 0, λ ̸= −1,

µ({−1}) = m ⇒

{
νλ({1− λ}) = 0, λ ̸= 1,

νλ({λ− 1}) = m.

(44)

In agreement with our previous observation, the edges ±1 − λ ∈ Eλ are free of mass points
for the measure νλ whenever λ ̸= ±1. In the case λ = ±1, the only point of E±1 = [−2, 2]

hich cannot support a mass point of ν±1 is ∓2.

. Examples

In this section we will apply the general DVZ connection to some well known families of
PUC – whose details can be found for instance in [16, Sect. 1.6] –, which will provide new

xplicit examples of OPRL. Theorem 4.2 yields a representation of these OPRL in terms of
the Chebyshev polynomials U on [−2, 2] (see (34)) evaluated on the function t (x) defined
n λ

18
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n (37). For convenience, in what follows we will use the abbreviation Ûn = Un(tλ(x)), which
s a λ-dependent polynomial of degree 2n in x .

5.1. Bernstein-Szegő polynomials

As an introductory example, we will analyze the general DVZ connection when the OPUC
are the degree one real Bernstein–Szegő polynomials, i.e. those defined by the Verblunsky
coefficients

αn = α δn,0, α ∈ (−1, 1).

The associated OPUC,

ϕn(z) = ρ−1(z − α)zn−1, ρ =
√

1− α2,

are orthonormal with respect to the measure

dµ(eiθ ) =
ρ2

|1− αeiθ |
2

dθ

2π
, θ ∈ (−π, π].

his measure also makes orthonormal the corresponding OLPUC which, in view of (3), have
he form

χ2k(z) = ρ−1(1− αz)z−k, χ2k+1(z) = ρ−1(z − α)zk .

n this case, the general DVZ connection leads to a Jacobi matrix with parameters

an =

⎧⎪⎪⎨⎪⎪⎩
ρ, n = 0,

1, even n ̸= 0,

λ, odd n,

bn =

⎧⎪⎪⎨⎪⎪⎩
α + λ, n = 0,

−α, n = 1,

0, n ≥ 2.

sing the results of Theorem 4.2 we can express the related OPRL as

q (λ)
2k (x) = ρ−1

[
Ûk − (x − λ+ α)Ûk−1 + α(x − λ)Ûk−2

]
,

q (λ)
2k+1(x) = ρ−1

[
(x − λ)Ûk − (α(x − λ)+ 1)Ûk−1 + αÛk−2

]
.

n the other hand, if θ = θ (x) is given by (37), then

|1− αeiθ
|
2
=
|(1+ αλ)(λ+ α)− αx2

|

|λ|
,

hus, according to (43), the orthogonality measure of q (λ)
n reads as

dνλ(x) =
1

2π

√
(x + λ)2 − 1
1− (x − λ)2

ρ2

|(1+ αλ)(λ+ α)− αx2|
dx, x ∈ Eλ.

.2. Lebesgue measure with a mass point

Let us consider now the probability measure obtained by inserting a mass point at z = 1
nto the Lebesgue measure on the unit circle, i.e.

dµ(eiθ ) = (1− m)
dθ
+ m δ(θ ), θ ∈ (−π, π], m ∈ (0, 1).
2π
19
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he related OPUC are known to be

ϕn(z) = κn

(
zn
− αn−1

∑n−1
j=0 z j

)
, αn =

1
n + m−1 ,

the parameters αn being the Verblunsky coefficients, so that

ρn =

√
1− α2

n =
αn

√
αn−1αn+1

, κn =

n−1∏
j=0

ρ−1
k =

√
α−1αn

α0αn−1
=

√
αn

(1− m)αn−1
.

sing (3) we find the following expressions for the related OLPUC,

χn(z) =

⎧⎨⎩κn

(
z−k
− αn−1

∑k
j=−k+1 z j

)
, n = 2k,

κn

(
zk+1
− αn−1

∑k
j=−k z j

)
, n = 2k + 1.

The DVZ transform is the Jacobi matrix Kλ in (29) built out of the above coefficients αn , while
Theorem 4.2 provides the corresponding OPRL q (λ)

n ,

q (λ)
n (x) =

⎧⎨⎩κn

[
Ûk −

αn−1
αn

(x − λ+ αn)Ûk−1

]
, n = 2k,

κn

[
(x − λ− αn−1)Ûk −

αn−1
αn

Ûk−1

]
, n = 2k + 1.

o get these expressions we have taken into account that 1 + αn−1 = αn−1/αn . The measure
λ which makes q (λ)

n orthonormal follows from (43) and (44), which lead to

dνλ(x) =
1− m
2π |λ|

√
(x + λ)2 − 1
1− (x − λ)2 dx + m δ(x − 1− λ), x ∈ Eλ.

.3. Second kind polynomials of the previous example

The alluded second kind polynomials are those with Verblunsky coefficients

αn = −
1

n + m−1 , m ∈ (0, 1).

herefore, ρn and κn are the same as in the previous example, while the Carathéodory function
F of the orthogonality measure is the inverse of that one for the preceding example, i.e.

F(z) =
1− z

1− (1− 2m)z
.

ince F has no singularities on T, the related measure is absolutely continuous and is given
y

dµ(eiθ ) = Re F(eiθ )
dθ

2π
=

(1− m)(1− cos θ )
(1− 2m)(1− cos θ )+ 2m2

dθ

2π
, θ ∈ (−π, π].

s for the corresponding OPUC, we find that

ϕn(z) = κn

(
zn
− αn−1

∑n−1
j=0(1+ 2 jm)z j

)
,

ecause φn = κ−1
n ϕn solves the recurrence relation (2) for the monic OPUC, as can be proved

y induction. Using (3) we obtain the corresponding OLPUC,

χn(z) =

⎧⎨⎩κn

(
z−k
− αn−1

∑k
j=−k+1(1+ 2(k − j)m)z j

)
, n = 2k,

κn

(
zk+1
− αn−1

∑k (1+ 2(k + j)m)z j
)

, n = 2k + 1.
j=−k
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The above results seem to be new for m ̸= 1/2, adding an item to the list of OPUC examples
given in [16, Sect. 1.6], where this case is discussed only for m = 1/2. Furthermore, via DVZ
connection, they provide a new OPRL family with Jacobi matrix Kλ as in (29), which differs
from that one arising in Section 5.2 only in the main diagonal (up to the first one, the diagonal
oefficients of Kλ are the opposite of those in the analogous matrix for Section 5.2). According
o Theorem 4.2 and using that 1 + αn−1 = αn−1/αn−2, we find that the corresponding OPRL

are

q (λ)
n (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

κn
[

Ûk −
αn−1
αn−2

(x − λ− m αn−2
α2n−2

)Ûk−1

+4mαn−1(x − λ− 1)
∑k−2

j=0( j + 1)Û j
]
,

n = 2k,

κn
[

(x − λ− αn−1)Ûk

−
αn−1
αn−2

(1+ 2m(1+ (n − 1)(x − λ))αn−2)Ûk−1

−4mαn−1(x − λ− 1)
∑k−2

j=0( j + 1)Û j
]
,

n = 2k + 1.

he relation (43) implies that they are orthonormal with respect to the measure

dνλ(x) =
1

2π |λ|

√
(x + λ)2 − 1
1− (x − λ)2

(1− m)|x2
− (1+ λ)2

|

(1− 2m)|x2 − (1+ λ)2| + 4m2|λ|
dx, x ∈ Eλ,

s follows by noticing that, for θ = θ (x) as in (37),

1− cos θ =
|x2
− (1+ λ)2

|

2|λ|
.
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