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Abstract

M. Derevyagin, L. Viret and A. Zhedanov introduced in Derevyagin et al. (2012) a new connection
between orthogonal polynomials on the unit circle and the real line. It maps any real CMV matrix into a
Jacobi one depending on a real parameter A. In Derevyagin et al. (2012) the authors prove that this map
yields a natural link between the Jacobi polynomials on the unit circle and the little and big —1 Jacobi
polynomials on the real line. They also provide explicit expressions for the measure and orthogonal
polynomials associated with the Jacobi matrix in terms of those mlated to the CMV matrix, but only
for the value A = 1 which simplifies the connection —basic DVZ connection—. However, similar explicit
expressions for an arbitrary value of L —(gemeral) DVZ connection— are missing in Derevyagin et al.
(2012). This is the main problem overcome in this paper.

This work introduces a new approach to the DVZ connection which formulates it as a two-dimensional
eigenproblem by using known properties of CMV matrices. This allows us to go further than Derevyagin
et al. (2012), providing explicit relations between the measures and orthogonal polynomials for the
general DVZ connection. It turns out that this connection maps a measure on the unit circle into a
rational perturbation of an even measure supported on two symmetric intervals of the real line, which
reduce to a single interval for the basic DVZ connection, while the perturbation becomes a degree one
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polynomial. Some instances of the DVZ connection are shown to give new one-parameter families of
orthogonal polynomials on the real line.

(© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Any sequence p, of orthonormal polynomials with respect to a non-trivial measure on the
real line (OPRL) is characterized by a Jacobi matrix,

by ap
apg b a;
J = a b . b,eR,  a, >0, (1)

encoding the corresponding three term recurrence relation,

T p(x) = xp(x), p = (po, p1, P2, ...

Here and in what follows the superscript ¢ denotes the transpose. Without loss of generality,

we assume that the measure is a probability one — so, it assigns measure 1 to the whole real

line — and the OPRL p,, are chosen with positive leading coefficients by setting py = 1.
When the measure is supported on the unit circle

T={zeC:|z| =1},

another kind of recurrence relation characterizes the corresponding sequences of orthogonal
polynomials (OPUC). In the case of monic OPUC ¢, it has the form [11,12,16,17]

Dn41(2) = 2¢a(2) — U9, (2), a, € C, ln| < 1, @)

where ¢7(z) = z"¢,(1/z) is known as the reversed polynomial of ¢, and the parameters «,, are
called Verblunsky coefficients. Introducing the complementary parameters p, = v/ 1 — |o,|,
the orthonormal OPUC ¢, with positive leading coefficients become

©n(2) = KnPu(2) = kn(—0p—1 + -+ - +2"), Kn = (P0P1 "+ Put1) "

A more natural set of funtions is constituted by the orthonormal Laurent polynomials on the
unit circle (OLPUC), given by

X2 (2) = 2703, (2) = 2o (1/2) = k(—ag 125 + - +275),
X241@) = 2 o1 (@) = kg1 T 4+ (—aaz ).

3

They provide a simple matrix representation of the recurrence relation (see [3,16,18]), which
reads as

Cx(2) = zx(2), x = (X0 X1, x2, -
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in terms of the so called CMV matrix C — the unitary analogue of a Jacobi matrix [14,16] —,
a five-diagonal unitary matrix which factorizes as C = ML, with

6 1

“

We refer to this as the ©-factorization of a CMV matrix, while yx, is usually called the CMV
basis. Analogously to the case of the real line, we will assume that o = @9 = 1 by normalizing
the measure to be a probability one on the unit circle.

There is another natural choice for the OLPUC, namely, the alternate CMV basis,

The corresponding matrix representation is the alternate CMV matrix C' = LM [3,16,18].
Both CMYV basis, x, and x,., will play a key role in the connection between OPUC and OPRL
developed in this work.

Since this paper revolves around a new connection between OPUC and OPRL, it is worth
commenting on known ones. The paradigm of such connections, due to Szegd [11,16,17], starts
with a measure ¢ on T which is symmetric under conjugation, which means that the Verblunsky
coefficients are real or, in other words, the related OPUC ¢, have real coefficients. The measure
o induced on [—2, 2] by the mapping z — x = z + z ! is called its Szeg6 projection, which
we denote by o = Sz(u). The related OPRL are given by [16,17]

_n92(2) + ¢5,(2)
V20 =0z-1)’
Here and in what follows we use the convention «_; = —1.

A more recent OPUC-OPRL connection goes back to works of Delsarte and Genin in the
framework of the split Levinson algorithm [6—8]. They realized that the polynomials

n 9n(2) + ¢,(2)

2(1 - Olnfl) ’
constitute an OPRL sequence with respect to an even measure — i.e. invariant under the
reflection x — —x in the variable — on [—2, 2]. We will refer to this as the DG connection
between OPUC and OPRL.

Although the relations between the measures and orthogonal polynomials are simple for
the above two connections, the situation is somewhat different regarding the CMV and Jacobi
matrices: for both connections, the relations expressing the Jacobi parameters in terms of the
Verblunsky coefficients are non-trivial to invert [6,16,17]. This changes completely with the
new connection (see Proposition 4.1), directly defined by a very simple relation between CMV
and Jacobi matrices (see [9] and Section 2). We refer to this by the surname initials of its
discoverers, Derevyagin, Vinet and Zhedanov: the DVZ connection.

DVZ has other properties which distinguish it from Szegé and DG. First, for each OPUC
instance with real coefficients, instead of a single OPRL sequence, it gives a family of OPRL
depending on an arbitrary real parameter A. Besides, up to A = %1, the DVZ measure on the
real line is supported on two disjoint symmetric intervals, although it is not even, in contrast to
the DG measure on [—2, 2]. The price to pay for these differences is a slightly more involved

Pn(x) =2 x=z4+z L (6)

Pux) = (") x =" 4712 (7

3
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relation between the OPUC and OPRL linked by DVZ, which includes a less trivial relation
between the unit circle and real line variables than for Szeg6 and DG.

The rest of the paper is devoted to the DVZ connection, which is detailed in the following
way: Section 2 describes two especially simple cases of the DVZ connection, corresponding to
A = %1. The aim is to introduce a new eigenproblem translation of DVZ in the easiest possible
setting. Section 3 reconciles this new approach with the original one in [9], in which the basic
DVZ connection for A = 1 arises as a composition of DG and a Christoffel transformation on
the real line [1,19], i.e. the multiplication of a measure on the real line by a real polynomial.
The main results of the paper are in Section 4 where, extending the previous eigenmachinery
to the general DVZ connection given by an arbitrary A € R, we obtain explicit expressions for
the corresponding measures and orthogonal polynomials on the real line in terms of the unit
circle counterparts. This is shown to provide new examples of one-parameter OPRL families
in Section 5.

2. A new approach to the basic DVZ connection

Derevyagin, Vinet and Zhedanov established in [9] a new connection between OPUC and
OPRL, closely related to the DG connection. The starting point for this was the ©-factorization
C = ML of a CMV matrix, given by the tridiagonal matrices £ and M introduced in (4). If
the Verblunsky coefficients are real, a Jacobi matrix K can be built up out of the symmetric
unitary factors £ and M,

o+ 1 00
Lo o] — 0 L1

’C=£+M: P1 0y — ) 02 . (8)
P az—ar 3

In [9], Derevyagin, Vinet and Zhedanov identified the measure and OPRL related to K in terms
of the measure and OPUC associated with C. Such an identification appeared surprisingly when
combining the DG connection with a Christoffel transformation on the real line. This defines
what we will call the basic DVZ connection (a more general one will come later on), which
maps OPUC with real coefficients into OPRL with respect to a measure supported on [—2, 2].
We will refer to K as the basic DVZ transform of C.

Since £? = M? = [ is the semi-infinite identity matrix for «, € R and |, | < 1, the Jacobi
matrix (8) satisfies

K:—21=C+C'.

where | denotes the adjoint of a matrix. This identity encodes the relation between the basic
DVZ connection and the Szeg& projection — whose Jacobi matrix is hidden in C+CT [13,16] —,
and suggests also a link with symmetrization processes on [—2, 2] — addressed by the mapping
x — x> — 2 (see Section 3), which is represented by the operation K> — 2/ on the Jacobi
matrix K—. Actually, we will show that the basic DVZ connection follows by a concatenation
of a symmetrization process [15] and a Christoffel transformation [2,5,10] on the unit circle,
followed by the Szegd projection. Equivalently, we can implement first the Szegé mapping, and
then perform the real line version of the symmetrization (see Section 3) and Christoffel [1,19].

In this section we will present the basic DVZ connection in a more natural and concise way,
directly looking for the relation between the OLPUC related to C and the OPRL associated

4
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with the basic DVZ transform /C, and then using this to uncover the relation between the
corresponding orthogonal polynomials and orthogonality measures. The interpretation in terms
of symmetrizations, Szegé and Christoffel will follow as a byproduct of these results.

The OPRL ¢, corresponding to the Jacobi matrix /C are the solutions of the formal
eigenvalue equation

Kq(x) = xq(x), q=0(q0.91.92,...), go=1.

We will identify these OPRL by using some relations, often not fully exploited, between the
CMYV basis g, related to C, the alternate CMV basis y,. given by (5), and the factors £, M [3],

Lx(z) = z2x+(2), Mx(2) = x(2), {X = (X0, X1> X2>---)',

X = (X0%> Xlas X250 - - )

Bearing in mind that £ and M are involutions for o, € (—1, 1), the above relations can be
equivalently written as

Lx(2) =2""x(). My (@) = x:(2).
Therefore,
Kx() = (z + Dx.(2), Kxs(z) = "+ Dx(2),

which show that, for each fixed z € C* = C \ {0}, the linear subspace span{x(z), x«(z)} is
invariant for /C. This implies that /C has formal eigenvectors u(z)x (z) + v(z) x«(z) given by the
eigenvalue equation

(30 7)) -+ ()
z+1 0 v(2) v(z) /)’
The eigenvalues x are the solutions of
=+ D+ 1),
thus we can write
x =7z +771?

for a choice of the square root z'/2 (here and in what follows we understand that 7"/ = (z'/?)",
n € Z, for that choice of the square root). The corresponding eigenvectors of K are spanned
by

1
X(@) = (@) + %x*(o = X + 2 1(2). ©)

We conclude that the OPRL ¢, are given by

X0@) _ 0@ 2 x0el@) o 2@ 200 2)
Xo(2) 142172 I+z2 (10)
X = Z1/2 + Z—I/Z’

Qn(x) =

where we have used (3). This coincides with the expression given in [9].

The orthogonality measure v on the real line for g, follows from that one p on the unit circle
for x,. To obtain this relation, let us parametrize the unit circle as T = {e'’ : 6 € [0, 27)} and
consider © as a measure on [0, 2], where the mass at 1 € T, if any, is distributed equally
between 6 = 0 and 6 = 2x so that u remains symmetric under the transformation 6 +— 2w —6,

5
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which represents the conjugation of e’?. Then, the restriction of x = z'/2 4+ z7!/2 to the unit
circle leads to the map

0
x(0) = 2cos 3 0 € [0, 2], (11)
which is a one-to-one transformation between [0, 27r] and [—2, 2] with inverse
0(x) = 2 arccos % xe[=2,2] (12)

The symmetric extension of u to [0, 277] is crucial to identify the orthogonality measure of g,,,
and guarantees that the relation x(2wr —6) = —x(6) makes sense for any angle 6 in the interval
[0, 2] where u is supported.

The orthogonality measure of ¢,(x) = X,(z)/Xo(z) arises from the observation that the
components X, of the formal eigenvector (9) are orthogonal with respect to w. Indeed,

27 2
/0 X)X () du©) = i @' + xule)xu(e®)N) du(6)

2
+ [ @) + ey ) e d ().
0

Due to the orthonormality of x, and x,. with respect to u, the first term on the right hand side
is 2I. On the other hand, taking into account that the OLPUC have real coefficients due to the
symmetry of the measure under conjugation, the second term vanishes because its integrand
simply changes sign under the transformation 6 +— 2w — 6 which leaves the measure p
invariant. Therefore,

2 2
i0(x)y|2 i i
/ g()g ()" [Xo(e )| dpu((x) = f X)X (") du(®) = 21,
2 0
which proves that the orthogonality measure of g, is

_ 1 i0)/2|2 _1 _
dv(x) = 3 ‘1 +e | du(x)) = 2(2—|—x)du(6’(x)), x e[-2,2], (13)

a result also present in [9].

Since 0(—x) = 2m — O(x), the symmetry of u under 6 +— 27w — 6 makes du(f(x))
symmetric under x — —x. However, the orthogonalit%/ measure v does not preserve finally
this symmetry due to the additional factor |Xo(e'”*/?)|” = 2 + x that comes from the relation
dv(x) = § [Xo(e®)|* du®(x)).

The above discussion may be extended to the tridiagonal matrix

ag— 1 £0
00 —] — o —P1
K.=£-M= -t P2 , (14)
02 —— o3 —p3
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which is the conjugated of a Jacobi matrix by a diagonal sign matrix,

ap—1  po
po —ai—og Pl

oK_IT = P1 ay+ag %)

p2  —a3z—ay  p3 ’

1 (15)

Therefore, the formal eigenvalue equation
K-q~(x) = xq~(x), qa = 4r:9, )" 9 =1,

defines a sequence g, of OPRL whose leading coefficients have a sign given by the corre-
sponding diagonal coefficient of I1.

A direct translation of the previous reasoning to this case shows that K_ has formal
eigenvectors

x(@) +iz' " xu(2)
with eigenvalue
X = _i(Zl/Z _ Z*l/Z)7
so that
~(x) = Xn(2) + iz x(2) 2 Oa@) + iz'20,(2)
n 14712 1+iz2
X = _i(Zl/Z _ Z—I/Z).

As for the orthogonality measure v_ of g, , in this case a convenient parametrization of the
unit circle is T = {¢? : € (—m, w]}. Accordingly, we consider the measure 1 of x, as a

measure on [—, ], with any possible mass at —1 € T distributed equally between 6 = —x
and 6 = m to preserve the symmetry of u under the transformation 6 — —60 representing the
conjugation of ¢!, Then, on the unit circle, x = —i(z!/> 4+ z7'/?) becomes
0
x(0) = 2sin 3 0 el[—m, n], (16)

which maps [—m, ] one-to-one onto [—2, 2], and has the inverse

0(x) = 2 arcsin % xe[-2,2]. (17)
The same kind of argument as in the previous case proves that

dv_(x) = % 1+ ieie(")/z}zdu(é(x)) = %(2 —x)du0(x)), x e [-2,2]

Bearing in mind that 8(—x) = —6(—x), the measure v_ fails to be symmetric with respect to
x +— —x only due to the factor 2 — x.

The next section will present a closer look at the relations between the basic DVZ connection
and the well known Szegé projection between the unit circle and the real line. This will make
symmetrization processes and Christoffel transformations to enter into the game.

7
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3. DVZ, Christoffel, Szegé and symmetrizations

Originally, in [9], the basic DVZ connection arises as a combination of well known
transformations which surprisingly links the OPUC related to a CMV matrix C = ML and
the OPRL associated to the Jacobi matrix K = £+ M. We will see that such an interpretation
follows directly from our more direct approach. For this purpose, let us rewrite the DVZ relation
(10) between OPUC and OPRL as

Cn 95 @) + 2a(2P)
l+z
This relation suggests introducing the symmetrized OPUC [15],

R o(zh), n =2k,
(Pn(Z) = 2
20(z%), n=2k+1,

1

qn(x) =2z , x=z4+z .

(18)

characterized by the Verblunsky coefficients &; = 0 and &1 = ay. They are orthonormal
with respect to a measure which is invariant for the mapping 6 +— 6 4+ 7 — i.e., symmetric
under the change of sign of ¢/’ —, namely,

1
du®) = 5 (dpn20) +duQ8 —2m)) .

where w is the measure on [0, 27r] which makes ¢, orthonormal, so that d(20) and du (26 —
2m) are supported on [0, 7] and [r, 2] respectively.

Since du(9) = 2d1(6/2), we can express the OPRL (10) and the measure (13) for the basic
DVZ transform as

n @;,1+1(Z) + @2n11(2)

1+z
dv(x) = (2 + x)di(arccos(x/2)), x €[-2,2].

Given a measure w on T which is symmetric under conjugation, its Szegd projection is the
measure o = Sz(u) induced on [—2, 2] by the mapping z > x = z + z~!, which is explicitly
given by do(x) = 2dp(arccos(x/2)). The above expression for the measure v shows that
the basic DVZ connection is a combination of three transformations: symmetrization u +— fi,
Szeg6 projection i — & = Sz(j1) and the Christoffel transformation dé (x) +—> %(2 +x)do(x).
Let us have a closer look at the effect of these transformations on the orthogonal polyno-
mials. The OPRL associated with the Szeg6 projection o = Sz(u) have the form [16,17]

_n¥2(2) + 93,(2)
V20T =az-1)’
On the other hand, due to the symmetry ¢'? > —e'® of ji, its Szegd projection 6 = Sz({i)

becomes an even measure, i.e. symmetric under x +— —x, thus its OPRL have the form
[4, Chapter I]

o) = Pu(xD),  paapi(x) = x Pu(x?),

with P, and P, polynomials with orthonormality measures dm(x) and x dm(x) supported on
R, . Bearing in mind (18), an expression similar to (20) for the OPRL p,, related to the Szegd
projection & = Sz(j1) shows that

L 0n(@) + @i |

9 - + B b
V20 =) T

) x=z+27},

qn(x) =12z (19)

pu(x) =1z x=z+z " (20)

6

ﬁn(x) =2

8
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which coincides with (7) once we substitute z by z'/2. This shows that the DG connection
follows just by combining the symmetrization and the Szeg6 projection, thus the DG measure
on [—2, 2] is given by d6 (x) = 2di(arccos(x/2)) = du(2 arccos(x/2)). Besides,

P2u(x) = pan(z +271) = pu(@® +27%) = paa® = 2). @n

Therefore, P,(x) = p,(x — 2), dm(x) = do(x — 2) and f’n(x) = pu(x — 2), where p, are
orthonormal with respect to do(x) = (x + 2) do(x). Hence,

P (x) = x pu(x* —2), (22)
so that
—@2n+1) ¢4n+2(Z) + @Z,1+2(Z)

1
~ 2 72 A
(" +z277) = - pawni(x) =z = .
x V21 — Qpp)z + 271
Combining this with (18) we find that

_aPm+1(2) + 93,,,(2)
V20T =) +2)

Bearing in mind that &, = 0, this identifies g,, as it is given in (19), with the OPRL related
to the measure %(x + 2)dao(x), in agreement with the previous interpretation of DVZ as a
composition of the symmetrization, Szegé and Christoffel transformations.

Using the following notation,

Pa(x) =z x=z+z" (23)

o~

c =5 ¢ Symmetrization process between CMV matrices,
S P . .
Ry Szegd projection between CMV and Jacobi matrices,

T LNy Christoffel transformation between Jacobi matrices which
multiplies the measure by the polynomial g,

DG . . .
C — J DG connection between CMV and Jacobi matrices,

DVZ . . . .
C —— K Basic DVZ connection between CMV and Jacobi matrices,

the above results are summarized in the commutative diagram below.

c 24z+z77! c 772 5 L@+z+z7h )
v A
\k‘ 2+x l/ x> x2-2 i %(2+x) \L
J J———=J K=L+M.

The above diagram has more than the three alluded transformations whose combination gives
the basic DVZ connection. Let us comment on them. First, every Christoffel transformation
do(x) — gp(x)do(x) between measures on [—2,2] is lifted to a similar one du(f) +—
0 + e %) du(6) between the measures on T from which they come as Szegd projections.
This explains the CMV matrix D in the right upper corner: its measure %lz + 1%dju(z) is the
Christoffel transform on the unit circle (see [2,5,10] for this notion) whose Szegd projection is
the measure v of the basic DVZ transform /C.

Also, the Szeg6 projection of the symmetrization process on T yields a transformation which
maps any measure o on [—2, 2] into an even measure 6 on the same interval. Since z > 72

9
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1

reads as x > x> — 2 if x = z 4+ z~!, we conclude that

1
d6(x) = S(do () +doE(—x). £ = x* =2

where & stands for the one-to-one mapping between [0, 2] and [—2, 2] induced by x x2=2,
so that do (£(x)) is a measure on [0, 2], while do (§(—x)) is a measure on [—2, 0]. Nevertheless,
(21) and (22) show that the OPRL p, related to ¢ are not built only out of the OPRL p,, for o,
but the OPRL p,, of its Christoffel transform d&(x) (2+x)do(x) are also required. Actually,
the relations (21) and (22) between p,, p, and D imply that the corresponding Jacobi matrices,
J, j and J are linked by

P-2a=7eJ,

where 7 and J act on even and odd indices respectively. We express this diagrammatically
as

F g2 7
the Qouble line in the right arrow indicating that both, 7 and ff , are involved in the construction
of 7.
The rest of the diagram, i.e. the connection between the CMV matrices C and C in the 1e~ft
upper corner, is just the result of lifting to T the Christoffel transformation relating 7 and 7.

4. The general DVZ connection

In this section we intend to extend the basic DVZ connection to arbitrary real linear
combinations of the factors £, M of a CMV matrix C = ML, i.e. a linear pencil which
we denote by

oot 000
Appo  —ArooptAiog A1p1
A1p1 Aoy —Ajoy rop2
’C)»()q)\l =ML+ I M= ,

rop2  —hoaatriaz Arp3

A € R\ {0}, k=0,1.

Ko, 1s @ Jacobi matrix when A, > 0, otherwise it is related to a true Jacobi matrix [, , by
conjugation with a diagonal sign matrix,

hooptAi [%0leo
[oleo  —hoxotAiiar  IAilp;
_ [A1lp1 Aoy —Ao) [Ao0lp2
\7)»0,)\1 - 80 €] ,C)‘O A He() & —
[20lp2 —ipaz+Aiiaz  [Aplp3
1
£0
£0€1
£
1
H)\.O,)\.l = e ’ & = Sgn()"k)a k= 07 1.
£0€1
3

10
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As in the case of the basic DVZ connection, our aim is to find explicit relations between the
measures and orthogonal polynomials associated with C and 7}, », -

Prior to the discussion of these relations we will clarify the OPRL targets of this con-
nection with OPUC. In other words, which Jacobi matrices may be expressed as Jy,., =
Toony ((tn)n=0) for some sequence (o,),=0 of real Verblunsky coefficients? This question is
answered by the following proposition.

Proposition 4.1. A Jacobi matrix J given by (1) has the form Jy,., ((0ty)nz0) for some
A € R\ {0} and a sequence (oty)n>0 in (—1, 1) iff the complex numbers z, = Z?:o bj +ia,
satisfy the following conditions for n > 0:

(i) All the points z,, with even index n lie in a single circle Cy centered at a point in R\ {0}.
(ii) All the points z, with odd index n lie in the circle C; with the same center as Cy and
passing through the origin.

If this is the case, L\ is the common center of Cy and Cy, | | is the radius of Cy and, for any
sign of Ao,

l n
a”:X() ij—kl , em)=n mod 2, n =0, (24)
€n j=0

so that the mapping (Ao, A1, (0t;)n>0) > Jig.r, ((@n)n=0) is one-to-one up to the identity

Tt (@n)n=0) = Tig o (1" ot)z0). (25)
Proof. The equality J = Jj,.x, ((@x)n=0) is equivalent to the conditions
ij A= )\e(n)anv a, = |)‘e(n)|;0nv n>0. (26)
=0
From these conditions we find (24) and
2
dobi—n| +ai=2%,,. n=0 (27)
j=0

which proves (i), (ii), as well as the relations between A; and the circles Cy. The equality (25)
follows directly from the explicit form of 7, x,((ety)n=0)-

Suppose now that (i) and (ii) are true, which means that (27) holds for some A; € R\ {0},
where the sign of Ap may be arbitrarily chosen. Introducing p, = a,/|A¢n)| and defining o, by
(24), the relation (27) becomes aﬁ + p,% = 1. We conclude that («,),>0 is a sequence in (—1, 1)
such that p, = /1 — a2 and (26) is satisfied, i.e. J = Tror ((@n)n=0). Regarding this equality,
according to this discussion, the only freedom in A; and «, is the choice of the sign of Ag,
whose alteration only changes the sign of the parameters ¢, with even index n. This proves
that the map (Ao, A1, (00n)n=0) = Jig.a, ((@n)n=0) fails to be one-to-one only due to (25). [

The previous proposition states that the Jacobi matrices arising from the present general
version of DVZ are generated by selecting a couple of concentric circles —Cy and C,— with
center on R \ {0}, one of them —C;— passing through the origin. The choice of a sequence
Zn € C¢p) with positive imaginary part determines the corresponding Jacobi parameters
a, = Imz, and b, = Re(z, — z,_1).

11
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Due to the freedom in the sign of Ay, we can suppose without loss of generality that Ay > O.
Also, rewriting

Tiory = 20T, T = T A= x1/ho € R\ {0},

we find that the OPRL p**" and the measure v, ,, related to J;,.,, follow by a simple
dilation of the OPRL p{* and the measure v; associated with 7;,

pLOM@) = p(x/ho), d39,3, (%) = d;.(x/R0).

This shows that one of the degrees of freedom encoded in the pair (Ao, A1) may be considered
trivial. Thus, without loss of generality, we may consider a single degree of freedom by setting
for instance Ay = 1, what we will do in what follows. Nevertheless, Proposition 4.1 worth
to be written for an arbitrary value of Ay because this allows us to identify a wider class of
Jacobi matrices which could be benefited from the DVZ connection. Such a class corresponds
to considering circles Cy with arbitrary radii in the discussion of the previous paragraph. Once
a Jacobi matrix 7 lies in this class, one can relate it with a canonical one J, — corresponding
to a circle Cy with radius 1 — by setting J, = A, 17, with Ao the radius of the circle Cy
associated to J.
Regarding the canonical Jacobi matrix [J,, we know that

K)w A > O,
jAZ IC)\ZICL)‘ZE'F)\.M,
K, 1, x <o,

where II is the diagonal sign matrix given in (15). Thus, the OPRL sequence p®* =
(P, pP, .. ) given by JpP(x) = xpP(x), pi’ = 1, is related by p® = [1¢q™ with

the solutions of
Kig®(x) = xg®(x), 9" = (a5 a1, g =1. (28)

Hence, the polynomials ¢{* and p differ in at most a sign, so ¢ is also an OPRL sequence
with respect to the measure v,. Due to these reasons, in what follows we will consider only
linear combinations of CMV factors with the form /C, for an arbitrary A € R\ {0}, referring to
the solutions g'* of (28) as the corresponding OPRL. We will refer to the problem of finding the
relations between the orthogonal polynomials and measures related to a CMV matrix C = ML
and the tridiagonal matrix X, = £ + AM as the (general) DVZ connection between OPUC
and OPRL.

This general version of DVZ was already considered in [9]. Nevertheless, unlike the case of
the basic DVZ connection, [9] does not provide any closed formula for the relations between
the orthogonal polynomials and measures associated with a CMV matrix C = ML and its
(general) DVZ transform,

ap + A 00
£0 A — o Ap1

Ky =L+ M = Api oy — Aoy 2 . (29)
o) Az —on  Ap3

This will change with the present approach, whose simplicity leads to completely explicit
expressions for such general DVZ relations between orthogonal polynomials and measures.

12
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4.1. OPRL for the general DVZ connection

We are looking for the solutions of the formal eigenvalue equation
Kig™® (x) = xg®(x), 9" = a1 a. .., 5’ =1, (30)

which yield an OPRL sequence ¢'* with positive leading coefficients for A > 0, and having a
sign given by the diagonal entries of I7 in (15) if A < 0. The same method used previously for
L = =£1 provides the relation between the OPRL ¢'* and the OLPUC y, of C for any value
of A € R\ {0}. Since

Kox(2) = (2 + M)x(2), Kox(2) = "+ Mx(2),

K, has formal eigenvectors u(z)x(z) + v(z)x«(z) determined by

0 7'+ (u@) _ L (4@
Z+A 0 v)) T \v@)°
The eigenvalues x are the solutions of

=+ ) =1+ A2+ A+, 31)

the corresponding eigenvectors being spanned by

A
X() = x(2) + %x*@. (32)

This suggests the identification

Xn(2)  xXn(2) + (24 2) Xns(2)
Xo(z) X+z4+4
where z = z(x) is a complex mapping satisfying (31). The validity of this result only needs to
check that the above expression yields a well defined function of x because then (30) follows
from the eigenvector property of X(z). However, (31) determines x as function of z only up to
a sign which could depend arbitrarily on z. Also, although z — 1+A%+A(z+z~") maps C\ {0}
onto C, there are in general two values of z giving the same value of x> which are inverse of
each other. Therefore, all that can be said is that (31) establishes a one-to-one correspondence
between subsets {z,z7'} € C\ {0} and subsets {x, —x} C C. As a consequence, there are
infinitely many functions z = z(x) well defined on the whole complex plane and satisfying
(31), so that (33) becomes a true function of x when substituting z by z(x). The fact that,
for any of these choices, q,(,’\)(x) satisfies (30), not only identifies these functions as the OPRL
related to C;, but consequently shows that ¢*)(x) do not depend on the particular choice of
z(x). This reflects the invariance of (33) under the mapping z — z~', which follows from
(31) and the fact that such a mapping exchanges yx, and y,.. Another proof of this result is
given by the following theorem, which is of practical interest since it provides an alternative
expression of ¢{*(x) which turns out to be more useful to identify its dependence on x in
particular situations.

gP(x) = .z =z(x), (33)

Theorem 4.2. Let x, be the OLPUC of a real CMV matrix with ©-factorization C = MUL.
Then, the function g (x) given in (33) does not depend on the map z = z(x) satisfying (31),
and is a real polynomial of degree n with the form
7)) = QB () + (x = M0u(B(x), B =2 =+,
13
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where Q, and én are real polynomials independent of ) with degree

deg 0, =%, evenn, ~ .
2—1 deg @, = [Tl] )
deg Qn =< = odd n,
such that
—1y _ Z Z -1y _ Xxn(2) Xn+(2)
Qulztz) = z—z71 | xa(2) Xnx(2D)|’ Quletz) = z—z7! 1 1 .

If xa(@=3_; C;")zj, then
Q1) = (" = OU;®).  Oue) =) (), = DU,
j=0 Jj=0

where U, stand for the second kind Chebyshev polynomials on [—2, 2], determined by the
recurrence relation

U_.(t) =0, Uo(r) =1, Un(t) = tUp—1(t) — Up—2(t) if n > 1. (34)
The polynomials gV (x) satisfy (30), i.e. they are the OPRL related to the tridiagonal matrix
Ky =L+ M.

Proof. Given any map z = z(x) satisfying (31), from (33) we find that
(xn(2) + @+ V)X —2 = 4)

Oy —
g, (x) = 1)
X2 () — 22+ V) Xa(2) + X2+ W) pne(@) — @ 4 1) Kai(2)
- (z+ME 1 —2)

(2 + M) xnx(2) — @1+ W xn(2) + X X0(2) — X xu(2)
1

Z—7
_ 1 z 7! _ Xn(2) Xn+(2) )
N Z— Z_l < Xn(z) Xn*(Z) + (x )\) 1 1 :

Since the columns of the above determinants are related by the substar operation, they must
be real linear combinations of z/ — z7/. Bearing in mind that

_ It — it

Uij(z+z =" (35)

z—z71!

we conclude that both determinants, when divided by z — g’l, become real linear combinations
of Uj(z+z~"), which thus have the form Q,(z+z~") and Q,(z+z~") for some real polynomials
0, and Q,. The relations (3) lead to

deg O =k, deg Oot1 <k,

deg Qo =k — 1, deg Qxy1 = k.
This implies that deg g¥ = n because z +z7! = A7'x? — (A +17!) due to (31).

Introducing the full expansion x,(z) = ) j CE»")Z/' into the determinants defining Q,, and Q,

we obtain

0.1y ==Y c"U0),  Ou) =Y U0,
J J
where we assume (35) extended to every j € Z. The relations given in the theorem follow by
noticing that U_; = —U;_,.
14
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Finally, the relation ¢ (x) = X(z)/ Xo(z) shows that it is a formal eigenvector of C; with
eigenvalue x and such that q((,x) =1, i.e. it satisfies (30). U

4.2. Orthogonality measure for the general DVZ connection

To obtain the orthogonality measure v; of the OPRL ¢*) we will introduce the measures 1.
and w_ induced by u on the upper and lower arcs of the unit circle, T, = {¢! : 6 € [0, 7]}
and T_ = {¢/? : § € [, 0]}, with any eventual mass point of 4 at +1 equally distributed
between @y and w_. Then, we can rewrite any integral with respect to p as

/Tf(Z)dM(Z) = . f@)dui(2) +/1r f@)dp—(2).
Besides, the symmetry of ;1 under conjugation means that du, (z) = du_(z~"), so that
fo(z)du(z) =) (f@+ fE ) dus ).

The orthogonality measure v, will arise from the orthogonality of the components of the
eigenvector (32) with respect to w, a result given in the next proposition. To make it more
precise and prove this orthogonality we define the following map on T

x(e'%) = /14 A2 42X cosb, (36)

which satisfies (31) and x(z ') = x(z). When restricted to T, (36) provides a homeomorphism
between Ty and the interval [|1 — [A|[, 1 + |A|], with an inverse mapping given by z(x) =
et where

6(x) = arccos “(Qx), L) =22 — 0+ 7. (37)

Now we can formulate the precise meaning of the orthogonality property for the eigenvector
(32).

Proposition 4.3. Let x, be the OLPUC associated with a measure | on T symmetric under
conjugation. Consider the measures (L1 induced by w on the upper and lower arcs T, with
any mass point of u at =1 equally distributed between . Then, if x(2) is given by (36) for
z € T and I is the semi-infinite identity matrix, the following matrix equality holds,

/ XT@X (@) dps(2) + f X" @)X @ du_(z) =21,
T+

A
X*@) = 0@ £ ().
x(2)

Proof. Since x(z) satisfies (31), the above sum of integrals can be rewritten as

/ K@X@ + 1@ du2)
T

A Ly
+/ <Z+ xe@x @t + x(z)x*(z)T)dM(z)
T, ) x(z)

x(z
A 14
- f (” @x @ + x(z)x*(z)T)du—(z)-
T_ \ x(2) x(2)

15
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The OLPUC g, have real coefficients due to the symmetry of p under conjugation. As a
consequence, the integrands of the last two summands are invariant under conjugation of z.
Since this operation exchanges ©_ and p, the last two terms cancel each other. On the other
hand, the orthogonality of y, and x,. with respect to p implies that the first integral is 27. [

The orthogonality measure of g*) arises as a consequence of the previous result. Except for
the cases A = +£1, it is a measure supported on two disjoint symmetric intervals.

Theorem 4.4. If 1 is a measure on T which is symmetric under conjugation, then the OPRL
gM(x) of the corresponding general DVZ transform K, are orthonormal with respect to the
measure

x+12—1

dv,(x) = o (dus(@™®) +dp_(e7-My), x€E,=E UE,

Ef=[1— Al 1+ Al E; =—E;,

where 04(x) is the homeomorphism between Ef and [0, ] given by the restriction of 6(x)
in (37) to Eki and p+ is the measure induced by p on Ty with the mass points of u at £1
equally distributed between 1.

Proof. With the notation of Proposition 4.3, we have
Xi(eiie(x)) — q()»)(:tx) X(:)t(eﬁ:ig(x))
i .

Therefore, using the homeomorphisms z = T+ between E;’ and T, the result of such a
proposition may be rewritten as

IONG 104 (x
[ @ el Xg @O dpsie )
K 2 (38)
" / 4P (=0)gP (=) 1Xg () dp_ (e 0) =21,
E+

A
: 724 [
=(ht )Oi ) 7 = T,
X X

Bearing in mind that z = z(x) satisfies (31), we find that

: 421 To1+A2 + A1) -1
XEEO) —p g PFE T T gy L
X Ax Ax
The theorem follows by inserting this equality into (38) and performing in the second integral

of (38) the change of variables x > —x, taking into account that it maps E; into E; and
0_(x) =0,(—x). O

Besides,

eii@(x) + A

|X:E (W) = '1 +

We should highlight that, in the expression for v, given by the previous theorem,
dui(e+™)) is a measure on E;" while du_(e~*-™) is a measure on E; , so that the sum
of both is even, i.e. symmetric under the reflection x — —x. Nevertheless, the measure v, is
not even due to the additional factor

x+1>-1
AX ’
which, by the way, is non-negative on Ej.

(39)

16
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Bearing in mind that du(z) = du_(z~'), we can also express the measure v; using only
the measure . on the upper arc T, i.e.

A2 —1 , ,
an = T G @) b du @), x e B, (40)
X
Since 64(x) = 6(x) for x € EZ, it is tempting to rewrite the above as
A2 —1 .
dvy = ST vy s e B (41)
2Ax

However, (37) is not one-to-one between E, and T, because 8(—x) = 0(x), thus (41) should
be considered simply as a symbolic representation of (40).

The results of Section 2 which express vy, directly in terms of p may be recovered from
Theorem 4.4. When A = %1 the factor (39) becomes 2 =+ x, the pair of intervals constituting
E, reduce to the single interval [—2, 2], and 0(x) = arccos(+x? /2 F 1) so that

ZCOS@=\/2(1+COSQ()C))=|X|, A=1,
. 0(x)
ZSIHT=\/2(1—COSO(X))=|X|, A =—1.

Then, 6(x) makes sense as a one-to-one map between [—2, 2] and [0, 2] (A = 1) or [—m, 7]
(A = —1) just by redefining

0(x) > 27 — O(x), x € [=2,0), A =1,
0(x) > —0(x), x € [=2,0), A=—1,

which yields the transformations (12) and (17) for A = 1 and A = —1 respectively.
A representation of v, directly in terms of p is also possible for A # =£1. One can think on
rewriting the expression given in Theorem 4.4 as
2
dv,(x) = M du(z(x)), x € E,, (42)
21 x
with
00, X € E; ,

7(x) =
e x e E; .

Although z(x) fails to be one-to-one between E, and T because the four edges of E, are
mapped into 1, this difficulty is overcome due to the factor (x 4+ A)> — 1 which cancels
any possible mass point at the two edges 1 — A, making unnecessary to cover them with
the mapping z(x). Therefore, (42) makes perfect sense considering z(x) as a one-to-one map
between E; \ {l —A,—1 — A} and T.

The connection between v, and p can be made more explicit for the absolutely continuous
and pure point components. Let us denote by 8(x — x) the Dirac delta at x, i.e. the probability
measure with support {xo}. Suppose that a measure ; on T has the form

du(e”) = w®)do + Y mi (80 —6) + 80 +6), 6, €0, 7],
k

where w(—0) = w(f) and the mass points appear in symmetric pairs due to the invariance of
w1 under conjugation. The above expression assumes for n = 0, & the artificial splitting of any
mass point m §(0 — n) as (m/2)(6(0 — n) + 8§(6 + n)), something which allows us to identify

dp(e”) = w®)do + > " my 80 F 0,).
k
17
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Then, according to Theorem 4.4,

x+1)2—-1

d = 0 a9 d I’} )
vi() = T | “”‘E‘ x+;mk<<x—xk>+ x4+ ],

where x; = x(6) = /1 4+ A2 + 2 cos 6.

It only remains to obtain the Jacobian of the transformation 6(x) given in (37), which is
deo by
dx | |Asinf(x)
On the other hand,

() _ @+ M =) = (1 =17

2
sin“f(x)=1— 7 2
(e + A= DA = (x = 1))
o 42 '
Therefore,
do 2|x|
dx| " Jx+02 =D —(x =22

Finally, we conclude that

1 a1
dv;\(x) = m m U)(G(X)) dx (43)

+ ; z'f—ik [(Cr+ A2 = D8 — x) + (1 — (i — VD) 8(x + x0)] .

The explicitness of this expression for v, makes it of particular interest for the analysis of
specific examples.

Among the possible mass points of u, those located at +1 deserve special attention since
they are the only ones which are artificially split to obtain v,. If i has a mass m at %1, then
w+ have a mass m/2 at the same point which, according to the previous results, leads to the
following masses for v, at the edges of E;:

v ({1 + A} =m,
n({=1-ah =0, 1# -1,
n({l=2) =0, r#I1,
(A = 1) =m.

pdih=m = {
(44)
=1 =m = {

In agreement with our previous observation, the edges £1 — A € E, are free of mass points
for the measure v, whenever A # =£1. In the case A = %1, the only point of Ey; = [—2, 2]
which cannot support a mass point of vy is F2.

5. Examples

In this section we will apply the general DVZ connection to some well known families of
OPUC - whose details can be found for instance in [16, Sect. 1.6] —, which will provide new
explicit examples of OPRL. Theorem 4.2 yields a representation of these OPRL in terms of
the Chebyshev polynomials U, on [—2, 2] (see (34)) evaluated on the function £, (x) defined

18
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in (37). For convenience, in what follows we will use the abbreviation l},, = U,(t,.(x)), which
is a A-dependent polynomial of degree 2n in x.

5.1. Bernstein-Szegd polynomials

As an introductory example, we will analyze the general DVZ connection when the OPUC
are the degree one real Bernstein—Szeg6 polynomials, i.e. those defined by the Verblunsky
coefficients

oy = by, ae(—1,1).
The associated OPUC,
(@) =p 'z — )", p=v1-a2

are orthonormal with respect to the measure
o> do

du(e"’) = —— —,
11— aei®|* 27

0e(—m,m].

This measure also makes orthonormal the corresponding OLPUC which, in view of (3), have
the form

xu(@) = p (1 —az)z ™, xu41(2) = p~ 'z — @)~

In this case, the general DVZ connection leads to a Jacobi matrix with parameters

p, n=0, a+A, n=0,
a, =11, evenn #0, b, = { —a, n=1,
A, oddn, 0, n=>2.

Using the results of Theorem 4.2 we can express the related OPRL as
g =p7! [0/( — (= A+ )y +alx — )»)Uk—z] ,
450 = p7! [ = M0k = (@ = 2) + D01 +ali ).

On the other hand, if # = 6(x) is given by (37), then

w2 10+ ar)+a) —ax?|
ae'’|T = ]

thus, according to (43), the orthogonality measure of g* reads as

1 A2 —1 2
dvy(x) = — x+ p dx, x € Ej,.
27\ 1 —(x —A)? |(1 +ar)(A + o) — ax?|

5.2. Lebesgue measure with a mass point

11—

’

Let us consider now the probability measure obtained by inserting a mass point at 7 = 1
into the Lebesgue measure on the unit circle, i.e.

due®y =1 —m) ;l—i +m8(0), 0 e (—m, ], m € (0, 1).

19
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The related OPUC are known to be
. 1
—1
(Pn(Z) =Ky (Zn — Op—1 Z?:O Zj) s oy = m’
the parameters «,, being the Verblunsky coefficients, so that

n—1
73 -1 a_ 10y, 273
" Op 10,41 ]1:!) k Qoln—1 (1 - m)anfl
Using (3) we find the following expressions for the related OLPUC,
Kn (Z_k — Op— Z];'=7k+1 Zj) . n =2k,

G (7 e T d), n=2k

The DVZ transform is the Jacobi matrix C; in (29) built out of the above coefficients «,,, while
Theorem 4.2 provides the corresponding OPRL ¢,

xn(2) =

6| Ok = =t —at a)lin ], n=2%,
g,7(0) =

Kn [()C —A— anfl)ljk - a;;‘ kaljl , h= 2k + 1.

To get these expressions we have taken into account that 1 + o,—; = o,—/«,. The measure
v;, which makes ¢* orthonormal follows from (43) and (44), which lead to

l—m [(x+A)?—1
d = d S(x —1—=2), E;.
v (x) 2V T = = )2 x +mé(x ) x ek,

5.3. Second kind polynomials of the previous example

The alluded second kind polynomials are those with Verblunsky coefficients
1
n4m U
Therefore, p, and «,, are the same as in the previous example, while the Carathéodory function

F of the orthogonality measure is the inverse of that one for the preceding example, i.e.

m € (0, 1).

o, =

FQ) = -z
DETT0 Zamz
Since F has no singularities on T, the related measure is absolutely continuous and is given
by

du(e®) = Re F(¢'*) 21—9 __ (d-m=cosh) db 0 € (7.

7 (1—=2m)(1 —cos@)+2m? 27’
As for the corresponding OPUC, we find that
@n(2) = Kn (z" — a1 Y1+ 2jm)zf) ,

because ¢, =k, lgon solves the recurrence relation (2) for the monic OPUC, as can be proved
by induction. Using (3) we obtain the corresponding OLPUC,

K (z—k — o Y (20— j)m)z.f) . on =2k,

o (1 — e Th_ (1 +26k+ pmdd), =2k + 1,
20

Xn(z) =
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The above results seem to be new for m 7# 1/2, adding an item to the list of OPUC examples
given in [16, Sect. 1.6], where this case is discussed only for m = 1/2. Furthermore, via DVZ
connection, they provide a new OPRL family with Jacobi matrix /C; as in (29), which differs
from that one arising in Section 5.2 only in the main diagonal (up to the first one, the diagonal
coefficients of /C; are the opposite of those in the analogous matrix for Section 5.2). According
to Theorem 4.2 and using that 1 + «,—1 = o,—1/0¢,—2, we find that the corresponding OPRL
are

Ky [ 0k - Z%(.x — )\. — m;;nizz)(}k_l

Hman i (x = &= 1) 2550 + DU; .

g\ (x) = ko [ (6 =2 — 1)U

—L=L(0 4 2m(1 + (0 = D& = Mg DUkt n=2k+ 1.
—4may, 1 (x = % = D 325750 + DU ],

The relation (43) implies that they are orthonormal with respect to the measure

() 1 (x+21)2—1 (1 —m)|x? — (1 + 1)?| 4 cE
V(x) = X, X s
* 20V 1= (x = M2 (1 = 2m)[x2 — (1 + A)2| + 4m2|x| *

as follows by noticing that, for 8 = 6(x) as in (37),
Ix2 — (1 + 1)
2|2

n =2k,

1 —cosb =
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