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ABSTRACT 

The finite element method has been widely used to solve different problems in the field 

of fracture mechanics. In the last two decades, new methods have been developed to 

improve the accuracy of the solution in 2D linear elastic fracture mechanics problems, 

such as the extended finite element method (XFEM) or the phantom node method (PNM). 

The goal of this work is to quantify the differences between some numerical approaches: 

standard finite element method (FEM), mechanical property degradation, interelemental 

crack method with multi-point constraints, XFEM and PNM. We explain the different 

techniques analysed together with their advantages and disadvantages. We compare these 

numerical techniques to model fracture using problems of reference with known solution, 

evaluating their behaviour in terms of convergence with respect to the element size and 

accuracy of the stress intensity factor (SIF), stresses ahead the crack tip and crack 

propagation prediction. Some of the new techniques have shown a better accuracy in SIF 

calculation or stress fields ahead the crack tip and other lead to high errors in local results 

estimations. However, all methods reviewed here can predict crack propagation for the 

problems of reference of this work, showing good accuracy in crack orientation 

prediction. 
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1. Introduction 

From the 50s to the present day, the finite element method (FEM) has been widely 

used to solve different problems in engineering. As forefather of FEM, works by Turner 

et al. (Turner et al. 1956) and Argyris et al. (Argyris and Kelsey 1954) must be mentioned. 

The name of finite element method was coined by Clough in 1960 (Clough 1960) and 

since then, a huge number of contributions have been proposed, making the method 

accurate and efficient. 

The FEM has been also applied to the field of computational fracture mechanics, 

solving different crack geometries and boundary conditions. The results obtained by FEM 

allow to predict crack-tip stress and strain fields, relevant fracture mechanics parameters 

such as the stress intensity factors (SIFs) and the critical energy release rate (G) and also 

crack propagation paths. This is why it has been used in a large number of works to assess 

the lifetime of a component which is crucial in current damage tolerance design 

approaches. On the other hand, it is well known that modelling the crack propagation 

process is a cumbersome task. Cracks usually deviate as they grow, requiring the 

modification of the mesh topology during its simulation in FEM. To ease the process of 

crack growth modelling, numerical techniques such as the extended finite element method 

(XFEM) (Moës et al. 1999) or the phantom node method (PNM) (Hansbo and Hansbo 

2004) have been developed during the last two decades. These methods can model crack 

propagation without remeshing, which is a remarkable advantage when using the FE 

method. 



3 
 

The computation of characterizing LEFM parameters, such as SIFs and G, has been 

thoroughly treated in the literature. From the 70’s, there are numerous studies dealing 

with the calculation of K and G using FEM. The works of Rice and Tracey (Rice and 

Tracey 1973), Gallagher (Gallagher-1978), Owen and Fawkes (Owen and Fawkes 1983), 

to name a few, provide a thorough description of several extraction techniques. Other 

works provide a comparison of different calculation methods of K and G regarding local 

and global approaches (Banks-Sills and Sherman 1986, Banks-Sills 1991, Banks-Sills 

and Sherman 1992). For example, Bittencourt et al. (Bittencourt et al. 1992) compares 

techniques to calculate mixed-mode SIFs, such as the displacement correlation method, 

the J-integral and the modified crack-closure integral. 

More recently, Qian et al. (Qian et al. 2016) analysed 2D and 3D models to calculate 

KI in compact tension specimens, curved crack problems and a cracked reactor pressure 

vessel using XFEM and FEM. They also used different numerical field variable and 

energy release methods to calculate SIFs, comparing their capabilities (Qian et al. 2016). 

They claim that XFEM has advantages when modelling multiple cracks but it still 

presents some difficulties for 3D crack problems regarding oscillations of the solution, so 

they recommend its use when no other methods are feasible. Thus, their best results with 

3D geometries are obtained by means of standard FEM with a refined mesh and domain 

integrals. 

There are many other recent works regarding the analysis of crack initiation and 

propagation on fracture dynamics. For example, Song et al. (Song et al. 2008), studied 

the performance of XFEM, element deletion and interelemental crack method for 

dynamic fracture propagation. Agwai et al. (Agwai et al. 2010) compared XFEM, 

cohesive zone models (CZM) and the peridynamic theory to predict dynamic fracture 

against experimental observations. An excellent review of finite element techniques for 
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crack analysis in LEFM can be found in the book by Kuna (Kuna-2013). Other recent 

approaches have led to the phase-field method (Fracncfort and Marigo 1998, Bourdin et 

al. 2000), alleviating some problems related to complex crack topologies that are found 

in XFEM and, at the same time, predicting crack initiation. The formulation of the phase-

field method introduces a smooth transition between the damaged and undamaged 

domains and involves a diffuse crack description using a phase indicator. These strategies 

will not be considered in this work. A comparison of phase-field and fracture mechanics 

stress fields can be found in (Staroselsky et al. 2019). 

All the methods used in computational fracture mechanics have their own advantages 

and disadvantages. After a conscientious search in the literature, we only found one work 

explicitly dealing with a comparison of different computational approaches to model 

fracture (Ingraffea 2004). Ingraffea (Ingraffea 2004) makes a thorough review and 

classification of computational fracture mechanics approaches for representation of 

cracking processes, depending on how the crack is introduced within the numerical 

approach. It consists on a conceptual explanation of each method, together with a 

literature review about early usages of each computational fracture mechanics method. 

Although it clearly highlights conceptual pros and cons of each procedure, there is a lack 

of a quantitative comparison of the performance of each method, which we intend to 

address in the present work. In particular, we focus on crack tip stress field reproduction 

and SIF estimation when using finite elements, under the assumption of linear elastic 

fracture mechanics (LEFM). Other enhancements, such as the use of quarter-point 

isoparametric singular elements or the use of hybrid elements, are not considered in this 

work. A review on the performance of singular FE elements can be found in (Banks-Sills 

1991). In addition, crack propagation models need to consider complex scenarios such as 

crack branching and coalescence. Intricate crack patterns can be found in brittle fracture 
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of rocks or problems under highly non-proportional fatigue loading (Qian and Wang 1996 

and Bobet and Einstein 1998). Some of the crack propagation techniques (e.g. smeared 

crack approaches or phase-field models) exhibit advantages in the implementation, 

although other methods such as X-FEM require a more in-depth formulation 

modification. However, we consider these scenarios out of the scope of this study. 

In this work, different fracture mechanic problems are compared through numerical 

models in which the material decohesion and loss of stiffness resulting from fracture 

process are modelled. As mentioned above, a crack can be simulated through explicit 

approaches (either with cracks along element faces, extended finite element method or 

phantom node method) or smeared approaches (modelling the discontinuity by means of 

a mechanical property degradation). These numerical techniques and their abbreviations 

used henceforth are: standard FEM (STD-FEM), mechanical property degradation 

(MPD), interelemental crack method with multi-point constraints (ICM-MPC), extended 

finite element method (XFEM) and phantom node method (PNM). Therefore, one of the 

goals of this work is to quantify the differences between the classical approaches (STD-

FEM, MPD and ICM-MPC) and the more recent ones (XFEM and PNM). To achieve this 

objective, 2D problems with known analytical solution are analysed in this work to 

validate and compare the numerical methods. The problems are the infinite array of 

collinear cracks (see e.g. (Kanninen and Popelar 1985)) and the Westergaard’s crack 

problem (see e.g. (Gdoutos 1993)). Furthermore, an experimental fracture test reported in 

the literature will be numerically assessed in order to compare the predicted crack paths 

calculated by the approaches reviewed in this work with the experimental crack path. 
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2. Methods 

2.1. Numerical modelling techniques under study 

The different techniques under study are summarized in Table 1, together with their 

main features, advantages and disadvantages. Fig. 1 shows a sketch visualizing the 

essential features of these methods that will be explained in the following sections. 

Table 1. Numerical techniques to model fracture analysed in this work and their main features. 

Numerical 

technique 

Explicit/implicit 

crack 

representation 

 Main advantages Main disadvantages 

STD-FEM Explicit -Simplicity when the 
crack path is known ‘a 
priori’. 

-Crack on element faces, 
mesh dependency 
-Need for mesh 
modification when crack 
propagation is modelled 

MPD Implicit -Simplicity when crack 
propagation process is 
modelled (no need for 
remeshing). 
 

-Mesh dependency 
-Artificial softening may 
cause negative 
eigenvalues 
-Stress locking 
-Change of the initial 
problem properties 

ICM-MPC Explicit -Simplicity when the 
crack path is known ‘a 
priori’. 

-Need of MPC equations 
in crack tips and nodes 
around 
-Need of mesh 
modification when crack 
propagation process is 
modelled 

XFEM Explicit -No need of remeshing 
-Crack tip functions 

-Need of additional DOFs 
- Need of enriched 
elements and problems 
with transition elements 

PNM Explicit -No need of remeshing 
-No need of additional 
DOFs 

-No crack tip functions 
(non-asymptotic stress 
field in crack tip) 
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Fig. 1 Schemes of the different numerical modelling techniques analysed in fracture problems. a) Standard FEM 
(STD-FEM); b) Mechanical property degradation of the elements (MPD); c) Interelemental crack method with MPC 

(ICM-MPC); d) Extended finite element method (XFEM); e) Phantom node method (PNM). 

 

2.1.1. Standard FEM (STD-FEM) 

In this method, cracks are geometrically modelled as topological discontinuities, 

i.e. cracks are introduced explicitly during the discretization of the domain, matching the 

faces of the elements with the crack faces. If the crack path is known ‘a priori’, a fatigue 

or quasi-static crack propagation can be modelled by the separation of the element faces 

as the crack grows. This separation is modelled through the deactivation of the 

connectivity at these nodes, as shown in the scheme of Fig. 1a. 

This technique was the first used in fracture modelling by Clough (Clough 1962), 

investigating the effects on the stresses in a concrete dam due to an internal vertical crack. 

When the crack path is unknown ‘a priori’, remeshing techniques are necessary to model 

the crack propagation. Saouma and Ingraffea (Saouma and Ingraffea 1981) proposed an 

automatic remeshing technique coupled with this method. 
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Under the assumption of small scale yielding (SSY), the stresses can be 

considered proportional to the inverse square root of the distance to the crack tip. The 

singular behaviour at the crack tip can be reproduced in STD-FEM through the use of 

quarter point elements (QPE). The QPE were introduced by Henshell and Shaw in 1975 

(Henshell and Shaw 1975). They are quadratic elements in which the midside node is 

relocated to the L/4-position measured from the crack tip, being L the element side. It is 

well known that introducing QPEs around the crack tip node improves the accuracy of 

the FE approximation.  

 

2.1.2. Mechanical property degradation (MPD)  

In this method, the crack discontinuity is represented in a diffuse, smeared way  

(i.e. implicitly) in contrast to methods where crack face location is explicitly defined.  The 

stresses are almost zero in all the elements intersected by the crack by means of the 

degradation of the mechanical properties, which is similar to element deletion (the scheme 

of the technique is shown in Fig. 1b). The method simulates the progressive loss of 

stiffness due to the propagation and coalescence of microcracks, microvoids, and similar 

defects, see e.g. (Jirásek 2011). This technique was apparently first used by (Rashid 1968) 

to represent a crack in reinforced concrete. In our work, the smeared crack approach has 

been implemented by reducing the Young’s modulus of the elements to 0.1% of the initial 

value. Thus, in this work the region of the elements has not been removed, such as in 

other works (Song et al. 2008). The principal disadvantage of the method is that the 

smeared crack approach affects to the whole damaged element, thus the crack is not 

explicitly defined and the method is mesh-dependent. It becomes necessary to define such 

a refined mesh that allows the proper representation of the crack. In addition, this implies 



9 
 

that the precision of the crack tip in a 2D problem depends on the element size used in 

the model. 

Beyond these cons, the simple implementation of this approach makes it suitable 

to be applied to geometrically complicated problems in 3D with a high number of DOF, 

where the accuracy of the local results is not so relevant and a fast solution is required, 

see e.g. the application to the fracture simulation of a human femoral neck (Marco et al. 

2018b).  

In our work we intend to reproduce fracture conditions, which is equivalent to a 

total loss of stiffness through crack faces. Therefore, an abrupt reduction of stiffness 

approximately reproduces this condition. The authors have performed an analysis on a 

pure mode I problem, comparing the strain field for the component in the direction normal 

to the crack plane 22. The solutions are compared for an explicit representation of a crack 

(STD-FEM technique) and the MPD technique with elements of reduced stiffness. Fig. 2 

shows that the strain field distribution is, in general, very similar for both techniques, 

even for a not very refined mesh. 

 

Fig. 2 Comparison of the strain component normal to the crack plane obtained using an explicit crack model (STA-
FEM technique) and a reduced stiffness approach (MPD method) for the elements intersected by the crack. 
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2.1.3. Interelemental crack method with MPC (ICM-MPC)  

In this technique the crack is modelled by the separation of the elements that 

contain the crack, by means of subdividing the elements intersected by the crack and 

releasing the connectivity of the elements on both sides of the fracture. The scheme of the 

technique is shown in Fig. 1c, where the connectivity of blue nodes has been unlinked to 

simulate the crack opening. A master node (red node in Fig. 1c) is necessary to enforce a 

crack tip location. Multipoint constraints (MPC) are defined to interpolate the 

displacements of the crack tip node between the displacements of the adjacent nodes 

(green nodes in Fig. 1c). One of the disadvantages of this technique is that the crack tip 

is always at an element side, unless the crack tip element is subdivided into triangular 

elements. Here, the approach proposed by Xu and Needleman (Xu and Needleman 1994) 

is considered, so that all elements are separated from the beginning of the simulation. 

This technique reproduces a realistic discontinuity and an explicit representation of the 

crack. 

The analysis of the same problem in pure mode I is shown in Fig. 3, comparing 

the strain component normal to the crack plane obtained through standard FE (STD-FEM) 

and the ICM-MPC technique, yielding a similar strain field distribution.   
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Fig. 3 Comparison of the strain component normal to the crack plane obtained using an explicit crack model (STA-
FEM technique) and the ICM-MPC method. 

 

2.1.4. Extended finite element method (XFEM)     

The XFEM method (Moës et al. 1999) enables the introduction of crack surfaces 

that are independent of the mesh geometry (they do not need to conform to element sides). 

Therefore, the mesh topology and the connectivity can be maintained throughout the 

crack propagation process without remeshing. Although XFEM is nowadays available in 

some commercial FE software, such as Abaqus/Standard (Hibbitt et al. 2004), in this work 

the implementation developed by Giner et al. (Giner et al. 2009) will be used. A user 

element with multiple DOF per node is programmed in Abaqus using a user element 

subroutine (UEL) to enable the incorporation of extended finite elements capabilities. The 

method implies DOF enrichment of the nodes belonging to the elements intersected by 

the crack. Fig. 1d shows a scheme of the method, where different kind of enrichments are 

described, depending on the relative position of the crack nodes. Elements intersected by 

the crack are modified by a Heaviside enrichment that introduces the discontinuity across 

the crack faces (H(x) = ±1). In addition, crack tip nodes have a special enrichment that 

reproduces the asymptotic behaviour of LEFM. In this work, a topological enrichment 

has been used for crack tip enrichment (Giner et al. 2009), i.e. only a single layer of nodes 
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surrounding the crack tip are enriched. Nodes with eight additional DOFs are enriched in 

the two Cartesian directions with four crack-tip functions Fα(x) (Belytschko and Black 

1999): 

[𝐹𝛼(𝑟, 𝜃), 𝛼 = 1 − 4] = [√𝑟 sin
𝜃

2
, √𝑟 cos

𝜃

2
, √𝑟 sin

𝜃

2
sin 𝜃 , √𝑟 cos

𝜃

2
sin 𝜃], (1) 

 

where r, θ are local polar co-ordinates defined at the crack tip. The displacement 

approximation for crack modelling in the extended finite element method takes the form 

(Moës et al. 1999)  

𝑢xfem(x) = ∑ N𝑖(x)u𝑖

𝑖∈𝑔

+ ∑ N𝑖(x)[𝐻(x) − 𝐻(x𝑖)]a𝑖

𝑖∈ℎ

+ ∑ [N𝑖(x) ∑[𝐹𝛼(x) − 𝐹𝛼(x𝑖)]b𝑖𝛼

4

𝛼=1

]

𝑖∈𝑘

 (2) 

 

where Ni(x) is the nodal shape function and ui is the standard DOF of node i (ui represents 

the physical nodal displacement for non-enriched nodes only). g is the set of all nodes in 

the model, h is the set of nodes of elements intersected by the crack (except the crack tip 

element) and k contains the nodes enriched with crack-tip functions Fα (x). The extra 

DOFs introduced in the approximation are ai and biα. 

 The intersected elements have discontinuous displacement fields and therefore, 

these elements must be subdivided into subdomains in order to carry out the numerical 

integration in the area of the element. The element is subdivided into two quadrilateral 

subdomains when it is intersected by the crack at opposite faces, or subdivided into 

triangular subdomains when contiguous faces are intersected. This subdomain division is 

detailed in (Moës et al. 1999). 

The analysis of the same problem is shown in Fig. 4, comparing the strain 

component normal to the crack plane obtained through an explicit crack representation 
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(STD-FEM technique) and the XFEM technique, obtaining a similar strain field 

distribution.  

 

Fig. 4 Comparison of the strain component normal to the crack plane obtained using an explicit crack model (STA-
FEM technique) and a XFEM model. 

 

2.1.5. Phantom node method (PNM)     

The PNM was firstly proposed by Hansbo (Hansbo and Hansbo 2004) and it is 

based on nodes duplication (named phantom nodes) overlapping real nodes in the 

numerical model. Thus, the enrichment of the FE model with additional DOF as in XFEM 

is not necessary. The PNM treats discontinuities explicitly, similarly to XFEM, with 

straight internal crack segments. When a crack propagates through an element, this 

element is subdivided into subdomains in order to perform the numerical integration, 

which can be the same as used in the XFEM. A scheme of several elements intersected 

by a crack with the PNM topology is shown in Fig. 1e. 

In Fig. 1e, the original nodes are represented by circular markers and the phantom 

nodes by square markers. By using phantom nodes on real nodes, elements can be 

separated, simulating crack opening, although only one of the subdomains of each of the 

duplicated elements is integrated and taken into account in the model. At the crack tip 
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element, only connectivity of the nodes of the side that contains the crack tip keeps active 

(nodes 3 and 4 in Fig. 1e). Therefore, the nodes of the crack tip element are only partially 

duplicated, and the crack tip will always be at the element side that connects the two non-

duplicated nodes (these nodes are not phantom nodes).  

The implementation of the PNM has been carried out through a user element 

(UEL) subroutine in the finite element commercial code Abaqus/Standard. This method 

was validated and explained in detail in (Marco et al. 2018a).  

The analysis of the same reference problem is shown in Fig. 5, where the strain 

component normal to the crack plane is represented, comparing a standard FE solution 

and the PNM technique, leading to similar strain distributions. 

 

Fig. 5 Comparison of the strain component normal to the crack plane obtained using an explicit crack model (STA-
FEM technique) and a PNM model. 

 

2.1.6. Relative errors respect to the analytical solution in mode I problem  

In this section we show the contour error maps of equivalent strains for each 

technique for a mode I problem. The equivalent strain and the relative error are computed 

as follows: 
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𝜀eq =
2

3
√

3(𝜖𝑥𝑥
2 + 𝜖𝑦𝑦

2 )

2
+

3(𝛾𝑥𝑦
2 )

4
 (3.1) 

where: 

𝜖𝑥𝑥 =
2

3
𝜀𝑥𝑥 −

1

3
𝜀𝑦𝑦 (3.2) 

𝜖𝑦𝑦 = −
1

3
𝜀𝑥𝑥 +

2

3
𝜀𝑦𝑦 (3.3) 

𝛾𝑥𝑦 = 2𝜀𝑥𝑦 (3.4) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
|𝜀𝑒𝑥𝑎𝑐𝑡 − 𝜀𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|

|𝜀𝑒𝑥𝑎𝑐𝑡|
· 100% (4) 

 

Fig. 6 shows the relative error (Eq. 4) between analytical results and each 

numerical technique. As shown in Figs. 2 to 5, the strain field far and ahead the crack tip 

is similar for each technique, showing a typical strain field in fracture problems under 

mode I conditions. 
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Fig. 6 Comparison between FE models and analytical solutions for a mode I problem. Relative error in equivalent 
strain.  

Fig. 6 shows how XFEM technique is the most accurate solution to this example 

problem due to the incorporation of crack enrichment functions. In addition, the standard 

solution STD-FEM and the PNM show a very similar error distribution, since their 

formulation is essentially equivalent, as the PNM simply includes the crack discontinuity 

with no crack tip enrichment, as explained above. Finally, the MPD presents large errors 

near the crack faces due to the abrupt discretization of the crack in this zone. 

2.2. Application to reference problems with known solution 

Two different analytical problems with known analytical solution from LEFM have 

been used to compare the capabilities of each numerical modelling technique. The SIFs 

and the stresses ahead the crack tip will be compared with the analytical solution. The 

SIFs are calculated through the J-integral (in pure mode I) or through the interaction 

integral (in plane mixed mode behaviour). A sketch of the problems and their respective 

numerical models is shown in Fig. 7. In this figure, the shaded area represents the domain 

of the numerical model. Firstly, an infinite array of collinear cracks under tension in pure 

mode I is modelled. In addition, a finite element mesh sensitivity analysis has been carried 
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out to analyse the influence of the element size around the crack tip on the solution. 

Secondly, the Westergaard’s crack problem under mixed mode loading is assessed.  

  

Fig. 7 Problems analysed in this work. a) Infinite array of collinear cracks in tension; b) σ22 contour plot for an 
infinite array of collinear cracks with ICM-MPC method; c) Westergaard’s crack problem; d) von Mises contour plot 

in Westergaard’s crack problem with ICM-MPC method 

 

2.2.1. Infinite array of collinear cracks in tension 

The exact value of KI for this problem is given by the expression (Kanninen and 

Popelar 1985): 

𝐾I = √
2𝑏

𝜋𝑎
𝑡𝑎𝑛 (

𝜋𝑎

2𝑏
) 𝜎√𝜋𝑎 (5) 
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where the different variables are defined in the sketch of Fig. 7a. In this problem we 

consider a=1 and b=2a, therefore, the model dimensions are 12a in y-axis and 2a in x-

axis. σ value is defined as σ=1/2 (units of pressure), in order to yield KI = 1. The Young’s 

modulus is E=104 (units of pressure) and the Poisson’s ratio is ν=0.33. Plane stress 

conditions are considered, using quadrilateral finite elements with full integration (code 

CPS4 in Abaqus). Boundary conditions simulate the periodic symmetry problem so that 

lateral nodes are constrained in the X-direction, being thus able to model an infinite array 

with a finite domain. The SIF is calculated using the J-integral, applied to a domain 

surrounding the crack tip.  

A sensitivity analysis has been carried out in order to study the convergence of the 

results as we refine the mesh and to stablish a proper mesh size to compare the different 

techniques to model fracture. Four meshes have been used for each technique, with 

element sizes equal to: a/2, a/4, a/8 and a/16. We define the proper element size as the 

one that leads to a variation of less than 2% on the relative error in KI calculation when 

successive meshes are analysed. In this problem, this condition is reached for an element 

size equal to a/8. The final mesh used in this problem is shown in Fig. 7b.  

2.2.2. Westergaard’s crack problem 

Westergaards’s crack problem has been used to compare the accuracy of the 

different methods under mixed mode loading. The analysed problem is an infinite plate 

with a crack of finite length. This problem has also been used to validate different 

numerical approaches, such as XFEM (Giner et al. 2009) or PNM (Marco et al. 2018a). 

The crack length is 2a, and the domain is biaxially loaded with remote uniform tractions. 

Antisymmetry conditions are applied along y-axis. Exact solutions for the SIFs in this 

problem are: 
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𝐾I,ex = 𝜎√𝜋𝑎  (6) 

 

and 

𝐾II,ex = 𝜏√𝜋𝑎. (7) 

 

Non-uniform tractions must be applied to the finite boundaries of the numerical 

model in order to reproduce the behaviour of an infinite plate with remote uniform 

tractions. To do so, we use the explicit expressions for the stress field in terms of spatial 

coordinates analytically derived in (Giner et al. 2005). Then, it is possible to compute 

equivalent nodal forces for the finite portion of the domain. For biaxial loading with 

remote uniform traction σ, the stress field at a point (x,y) associated with mode I loading 

is: 

𝜎xx
I =

𝜎

√|𝑡|
[(𝑥 cos

𝛷

2
− 𝑦 sin

𝛷

2
) + 𝑦

𝑎2

|𝑡|2
(𝑚 sin

𝛷

2
− 𝑛 cos

𝛷

2
)] (8a) 

𝜎yy
I =

𝜎

√|𝑡|
[(𝑥 cos

𝛷

2
− 𝑦 sin

𝛷

2
) − 𝑦

𝑎2

|𝑡|2
(𝑚 sin

𝛷

2
− 𝑛 cos

𝛷

2
)] (8b) 

𝜎xy
I = 𝑦

𝑎2𝜎

|𝑡|2√|𝑡|
(𝑚 cos

𝛷

2
+ 𝑛 sin

𝛷

2
) (8c) 

For remote uniform traction τ (mode II), the stress field at points (x,y) belonging 

to the half plane x≥0 are given by: 

𝜎xx
II =

𝜏

√|𝑡|
[2 (𝑦 cos

𝛷

2
+ 𝑥 sin

𝛷

2
) − 𝑦

𝑎2

|𝑡|2
(𝑚 cos

𝛷

2
+ 𝑛 sin

𝛷

2
)] (9a) 

𝜎yy
II = 𝑦

𝑎2𝜏

|𝑡|2√|𝑡|
(𝑚 cos

𝛷

2
+ 𝑛 sin

𝛷

2
) (9b) 
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𝜎xy
II =

𝜏

√|𝑡|
[(𝑥 cos

𝛷

2
− 𝑦 sin

𝛷

2
) + 𝑦

𝑎2

|𝑡|2
(𝑚 sin

𝛷

2
− 𝑛 cos

𝛷

2
)] (9c) 

 

where m, n, |t| and Φ are real-valued functions of x and y coordinates, defined as 

𝑚 = Re𝑡 = 𝑥2 − 𝑦2 − 𝑎2 (10) 

𝑛 = Im𝑡 = 2𝑥𝑦 (11) 

|𝑡| = |𝑚 + i𝑛| = √𝑚2 + 𝑛2 (12) 

𝛷 = arg𝑡̅ = arg (𝑚 − i𝑛)        with  𝛷 ∈ [-π, π] (13) 

  

In this problem, crack length is a=1 and the finite domain dimensions are b=2a, c=a. 

Nodal equivalent forces applied to the model are those that yield KI,ex = KII,ex = 1, so that 

𝜎 = 𝜏 = 1/√𝜋𝑎 . The Young’s modulus is E=104 (units of pressure), the Poisson’s ratio 

is ν=0.33 and plane stress conditions are assumed. 

The expressions above let us to calculate the exact value of the stress components 

ahead the crack tip. Therefore, the stress components σxx, σyy and σxy estimated 

numerically will be compared to their exact values for different directions ahead the crack 

tip (𝛷  = 0º, 45º and 90º).   

A mesh sensitivity analysis has also been performed for the Westergaard’s crack 

problem, using element sizes equal to: a/4, a/8, a/16 and a/32. KI and KII calculation has 

been used to set an appropriate element size. We have considered a sufficiently refined 

mesh when the relative error between subsequent element sizes is about 2%. As a result, 

the element size that satisfies this condition is a/32. This final mesh is shown in Fig. 7d. 
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2.3. Crack propagation for fracture tests 

Two crack propagation evolutions of tests have been numerically modelled in 

order to compare the predicted crack path of each technique. The problem schemes are 

shown in Fig. 8, with dimensions given in mm. The first problem (Fig. 8a) was studied 

initially by Bittencourt et al. in (Bittencourt et al. 1996) and has been used in several 

works to validate crack propagation models with new simulation strategies (Bittencourt 

et al. 1996) or new mesh methodologies (Ooi et al. 2015). Fig. 8a shows a sketch of the 

problem with the specimen dimensions. The second problem (Fig. 8b) was developed 

specifically for this work, to validate the conclusions obtained from this section. 

The first problem (Fig. 8a) consists of a cracked beam subjected to three-point 

bending test. The beam has three holes arranged vertically that have an influence on the 

trajectory of the initial crack, marked in red in Fig 8a. The load is P = 4.5 kN and the 

beam is made of polymethylacrylate with the following mechanical properties: E = 29·103 

MPa and ν = 0.3. A plane strain formulation and a linear elastic material behaviour are 

assumed. 

In the second problem (Fig. 8b) an aluminium alloy specimen was axially tested 

until fracture. The material is the aluminium alloy 7075, with E=71.7·103 MPa and ν = 

0.3. The stress applied for the numerical models is P=100 MPa. Plane strain formulation 

and linear elastic material have been also considered in this problem. 

The application of explicit crack modelling techniques in crack propagation 

problems requires the use of crack tracking algorithms without exception (Jäger et al. 

2008). Several strategies can be used for crack tracking: fixed tracking (Jäger et al. 2008), 

local tracking (Areias and Belytschko 2005), non-local tracking (Moës et al. 2002) and 

global tracking (Oliver et al. 2002).  In our implementations, crack modelling techniques 



22 
 

are coupled with level sets based on signed-distance functions to the crack face and crack 

tip (Stolarska et al. 2001, Duflot 2007) in order to perform the crack tracking. For all the 

crack modelling techniques, the crack path is defined by linear segments. In each crack 

propagation, level set functions are calculated in order to perform the node enrichment in 

X-FEM, the node duplication in PNM or the mechanical property degradation of elements 

intersected by the crack path in the MPD. 

Crack propagations in the numerical models have been performed considering 

crack increments of about Δa = 0.25 mm each. Increments are slightly different for each 

method, since some of them only simulate the crack advance along the entire element. 

Specifically, only XFEM and STD-FEM combined with remeshing are capable to model 

crack tips inside of an element. The crack orientation for each crack growth increment 

has been predicted according to maximum tangential stress (MTS) criterion (Eq. 14): 

𝜃 = arccos (
3𝐾II

2 + √𝐾I
4 + 8𝐾I

2𝐾II
2

𝐾I
2 + 9𝐾II

2 ) (14)    

 



23 
 

 

Fig. 8 Crack propagation problems. a) A cracked beam with three holes. The red solid line represents the initial crack. 
The red dashed line is the experimental path obtained by Bittencourt et al. (Bittencourt et al. 1996); b) Experimental 

test developed for this work. The red dashed line is the experimental fracture path. 

The experimental fracture paths have been digitalized to determine its coordinates and 

compared with the crack paths predicted through the numerical techniques analysed in 

this work. Only STD-FEM technique has not been used in this section, since propagation 

along crack faces of a given mesh cannot suitably reproduce the crack path and it would 

need of remeshing. Both problems have been modelled using structured and unstructured 

meshes in order to analyse the influence of the mesh discretization on the predicted crack 

paths. 
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3. Results and discussion  

3.1. Convergence analysis for an infinite array of collinear cracks 

Fig. 9 shows the relative error in KI calculation for different element sizes for each 

technique analysed in this work. In this section we represent the error with logarithmic 

axes (Fig. 9a) and also linear vertical axis (Fig. 9b). This is due to the relative errors of 

MPD technique, which are negative in contrast to the other techniques.  

 

Fig. 9 Convergence analysis for an infinite array of collinear cracks. a) Relative error in KI (in %) with logarithmic 
axes; b) Relative error in KI (in %) with linear vertical axis. 

 

With the exception of MPD, all techniques show a clear convergence with mesh 

refinement (see Fig. 9a). STD-FEM, ICM-MPC and PNM present very similar error 

values between them, following an analogous trend. MPD shows the largest relative error 

and the values are negative for all meshes (i.e., MPD overestimates KI), in contrast to the 

other techniques. Despite this fact, MPD shows a relatively good behaviour in this 

problem. Regarding XFEM, it shows the least relative error in KI for each element size 

(see Fig. 9a) due to the incorporation of the crack tip enrichment functions in the solution 

space, and hence it is better suited to the reproduction of the singular behaviour. We have 
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also included the analysis of XFEM without no tip enrichment. This is achieved by simply 

constraining the extra degrees of freedom for the crack tip elements in our in-house 

implementation. As a result, it is worth mentioning that the error increases to the level of 

the rest of methods presented in Fig. 9a when no crack tip enrichment is included. 

3.2. KI for an infinite array of collinear cracks 

Values of KI have been computed for each modelling technique and compared with 

the exact value obtained through Eq. 5. The estimations and relative errors with respect 

to the analytical solution are shown in Table 2.   

 

Table 2. Relative errors in KI with different numerical techniques for an infinite array of collinear cracks. Exact 
solution obtained from Eq. 5: KI = 1.0 Pa·m1/2 

Technique KI (Pa·m1/2) Relative error (%) 

STD-FEM 0.986 1.4 

MPD 1.019 1.9 

ICM-MPC 0.984 1.6 

XFEM 0.996 0.4 

XFEM (with no crack tip enrichment) 0.984 1.6 

PNM 0.983 1.7 

 

Results presented in Table 2 show that all modelling techniques lead to relative errors 

less than 2% for the estimation of KI. As expected, due to the smeared crack approach, 

MPD technique shows the highest relative error in KI calculation. Therefore, if high 

accuracy is required, the MPD technique should be avoided. On the other hand, its 

simplicity regarding implementation makes it suitable to be used in geometrically 
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complicated problems, with a high number of DOFs or to model diffuse damage, 

representing the initiation of micro cracks prior to complete fracture.  

STD-FEM, ICM-MPC, PNM show a fairly good accuracy in KI estimation. ICM-

MPC and PNM have similar errors, since both techniques are based on element 

subdivision. In the ICM-MPC technique the element is explicitly subdivided, while in 

PNM the element subdivision is carried out through integration of the corresponding areas 

of the elements. In the standard FE (STD-FEM) crack faces are modelled explicitly, 

yielding an error slightly less than for ICM-MPC and PNM.  

 Finally, XFEM shows the highest accuracy in this problem, with a relative error equal 

to 0.4% with respect to the analytical solution. This is because of the crack-tip functions 

implemented in enriched elements surrounding the crack tip, which allow reproducing 

the singularity in terms of the asymptotic behaviour in the crack tip vicinity. When crack 

tip functions are not included in the approximation space, the results are similar to STD-

FEM, ICM-MPC or PNM. 

3.3. Convergence analysis for Westergaard’s crack problem 

Fig. 10 shows the relative error in KI (Fig 10a and 10b) and KII (Fig. 10c and 10 d) 

calculation for all the techniques analysed in this work using different element sizes. The 

error is both represented with logarithmic scale (Fig. 10a and 10c) and linear scale for the 

vertical axis (Fig. 10b and 10d). This is caused by the negative and positive relative errors 

of the MPD technique, unlike the other methods. Again, we also include the XFEM 

technique without crack tip enrichment. 
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Fig. 10 Convergence analysis for Westergaard’s crack problem. a) Relative error in KI (in %) with logarithmic axes; 
b) Relative error in KI (in %) with linear vertical axis; c) Relative error in KII (in %) with logarithmic axes; b) 

Relative error in KII (in %) with linear vertical axis; 

 

All techniques have shown a clear convergence with mesh refinement except MPD, which 

changes from negative to positive errors when decreasing the mesh size. STD-FEM, ICM-

MPC and PNM present very similar error values between them, with approximately the 

same convergence rate. Again, XFEM shows the smallest relative error in KI and KII for 

each element size due to the crack tip enrichment functions.  

3.4. KI, KII for Westergaard’s crack problem 

In this section the different numerical techniques have been applied to solve the 

Westergaard’s crack problem. Values of the SIFs KI and KII in plane mixed mode have 

been estimated using each technique and compared with the exact values obtained 
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through Eqs. 6 and 7. Relative errors with respect to the exact solution are shown in Table 

3. Since this is a mixed mode problem, the propagation angle is not zero and the relative 

error in the propagation angle is also shown in Table 3. The value of reference is given 

by the MTS criterion, Eq. 14, after substituting the exact SIFs (θex,MTS = 53.13º). 

Table 3. Relative errors in KI, KII and propagation angle for the Westergaard's problem solved with each numerical 
technique. Exact values obtained from Eqs. 6 and 7: KI = KII = 1.0 MPa·m1/2, θex,MTS = 53.13º. 

Technique 
KI 

(Pa·m1/2) 

KI relative 

error (%) 

KII 

(Pa·m1/2) 

KII relative 

error (%) 

Relative 

error in 

propagation 

angle (%) 

STD-FEM 0.979 2.10 0.991 0.90 -0.35 

MPD 0.978 2.19 1.038 -3.84 -1.68 

ICM-MPC 0.972 2.84 0.995 0.48 -0.68 

XFEM 0.996 0.40 0.998 0.19 -0.06 

XFEM (with 

no crack tip 

enrichment) 

0.974 2.58 0.994 0.63 -0.56 

PNM 0.981 1.94 0.991 0.94 -0.29 

 

Results in Table 3 are in line with those obtained for an infinite array of collinear 

cracks. There are differences between the MPD technique and the rest of the methods: 

the MPD technique yields a larger error than the rest of the techniques in KII, and it is 

higher than the one obtained for KI, contrary to the other methods. STD-FEM, ICM-MPC, 

XFEM and PNM present always relative errors less than 3%, thus providing good 

accuracy in the SIFs calculation under mixed mode. XFEM provides again the best 
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accuracy in the SIFs calculation due to the crack tip enrichment functions. The 

deactivation of the crack tip functions in XFEM leads to results very similar to the ones 

given by STD-FEM or ICM-MPC. 

We note in passing the differences found between the relative errors in KI and KII 

regardless the technique used. For all methods except MPD, the relative error in KI is 

greater than in KII, being even more than twice for STD-FEM, ICM-MPC, XFEM and 

PNM. These variations in the error in KI and KII were also observed by Giner et al. (Giner 

et al. 2009) and deserve further study.  

Regarding the angle estimation, it is very interesting to note that the relative errors 

are minimal, because the angle estimation depends on the ratio KII/KI and the errors in KI 

and KII tend to compensate. For the predicted angle, all techniques show a relative error 

less than 1%, except for the MPD technique, which presents a greater error, about 3%. 

Note that even MPD yields an acceptable error, especially taking into account the 

simplicity of the method, due to the mentioned error compensation between KI and KII. 

 

3.5. Stresses ahead the crack tip (σxx, σyy and τxy) 

The stresses σxx, σyy and τxy ahead the crack tip for each modelling technique have 

been analysed for the Westergaard’s problem, since the exact analytical stress field is 

available (Eqs. 8 and 9). Stresses have been plotted for different angles ahead the crack 

tip (𝛷  = 0º, 45º and 90º), although in this section only values for 𝛷  = 0º are shown in 

Fig. 11, where d is the distance to the crack tip. Values of stresses are normalized with 

respect to the applied remote stress. Results for 𝛷 = 45º and 90º are plotted in Fig. 13. In 

addition, colour error maps are shown for each technique in Fig. 12. In these figures, the 

von Mises stress is compared with the analytical solution.  
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Fig. 11 Comparison of stress components for Westergaard's crack problem ahead the crack tip with different 
techniques for Φ = 0º. a) σxx; b) σyy; c) τxx. 

 

 

Fig. 12 Contour map of relative errors in von Mises stress respect the analytical solution in Westergaard’s crack 
problem. White dashed line shows the location of the crack.  
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Results show a good accuracy in stresses ahead the crack tip for methods based 

on an explicit crack representation, especially at a distance greater than 10% of the half 

crack size a. As expected, MPD technique is less accurate, especially for the xy stress 

component.  

 The singular asymptotic behaviour for σyy and Φ = 0º is well reproduced with all 

the methods. For this stress component, numerical methods show a good accuracy even 

for distances very close to the crack tip.  

For the σxx component, the ICM-MPC technique yields the best asymptotic 

behaviour. STD-FEM shows also good accuracy for distances close to the crack tip, even 

better than XFEM, despite crack tip asymptotic functions of the method. Predictions for 

τxy present similar error between the different techniques. The MPD shows the highest 

error, probably due to significant variations in the first elements ahead the crack tip due 

to the smeared crack representation. 

Error maps (Fig. 12) reinforce the conclusions obtained from the stress 

components analysis. MPD technique is the less accurate method with large errors 

surrounding the crack tip and XFEM shows the lowest relative error in the area around 

the crack tip due to the crack tip enrichment functions. 

Results along radiuses 𝛷 = 45º, 90º are shown in Fig. 13 and follow similar trends 

as for the case 𝛷  = 0º. In general, the predictions are reasonably good and tend to give 

better results for cases where stress intensity is higher, e.g. xy for the case 𝛷 = 45º. Again, 

the MPD technique is the least accurate.  
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Fig. 13 Comparison of σxx, σyy,xy ahead the crack tip for Westergaard's crack problem with different techniques. Φ = 
45º, 90º 

 

3.6. Crack propagation in real experiments 

Fig. 14 shows the structured and unstructured meshes and the numerical crack paths 

predicted by each numerical technique. The numerical path predictions are compared to 

the one obtained experimentally reported in (Bittencourt et al. 1996). As mentioned 

previously, the STD-FEM technique is not used in this section, since it would involve 

continuous remeshing at each crack increment. 
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Fig. 14 Crack path numerical predictions for a fracture test reported in (Bittencourt et al. 1996) and comparison with 
the experimental crack path. a) Structured mesh used in the model; b) Results obtained with the structured mesh; c) 

Unstructured mesh used in the model; d) Results obtained with the unstructured mesh. 

Numerical predictions are in good agreement with the experimental path (Bittencourt 

et al. 1996) for all techniques, since crack orientation using the MTS criterion depends 

on the ratio KII/KI and the errors in KI and KII tend to compensate for each method. XFEM 

shows the best accuracy, with a path prediction very similar to the experimental crack 

path. The rest of techniques MPD, ICM-MPC and PNM show in general good accuracy, 

and the path prediction can be regarded as sufficiently good for practical purposes, even 

for the least accurate method MPD. 
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Fig. 15 shows the structured and unstructured meshes and the numerical predictions 

for an experimental problem developed by the authors. Again, ICM-MPC, PNM and 

XFEM show in general good accuracy in crack path prediction, even for unstructured 

meshes. In this problem, MPD shows larger differences between its crack path prediction 

and the experimental one, although the first increments are realistic.  

 

Fig. 15 Crack path numerical predictions for a fracture test developed for this work and comparison with the 
experimental crack path. a) Structured mesh used in the model; b) Results obtained with the structured mesh; c) 

Unstructured mesh used in the model; d) Results obtained with the unstructured mesh 
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 The use of unstructured meshes affects mainly to the MPD technique. In the 

problem of Fig. 14, the MPD approach is the only one that slightly varies the trajectory 

of the path when an unstructured mesh is used. However, crack path predictions by the 

rest of techniques are not significantly influenced by the mesh pattern. Similarly, in Fig. 

15 the trajectory is slightly influenced by the unstructured mesh, increasing its error 

respect experimental results. It is important to remark that a small element size is used in 

these crack propagation problems, providing good crack path predictions with all the 

techniques with the exception of the MPD approach.  

4. Conclusions 

In this work, a comparison between different numerical crack modelling techniques 

has been performed, analysing their behaviour for two bidimensional problems of the 

LEFM with known solution. Pros and cons of each technique as well as their main 

features have been reviewed in the document. Problems have been modelled using the 

commercial code Abaqus and user’s subrourtines, assessing the performance of these 

techniques in terms of mesh sensitivity, SIF calculation, stresses ahead the crack tip and 

crack path prediction.  

The convergence of the solution when the element size is reduced has been analysed 

for a pure mode I problem, leading to good convergences for all techniques. The XFEM 

method has proven to be the most accurate, because of the crack tip enrichment functions 

of its formulation. 

The convergence of the methods under mixed mode loading has been analysed using 

the Westergaard's crack problem, leading to similar results to those obtained for pure 

mode I. For this problem, relative errors in the computation of KI and KII are slightly high 

for some of the methods, especially the MPD technique. However, these errors are less 
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evident in terms of the crack propagation angle. This is due to the angle dependence on 

the ratio KII/KI, with errors in KI and KII that tend to compensate for each method. 

The in-plane components of stresses ahead the crack tip have been compared with 

analytical solutions for three different angular directions (radiuses from the crack tip). In 

addition, error maps have been included for von Mises stress, comparing the methods 

presented in this work with analytical results. In general, most methods show results 

similar to the analytical solution of reference. The XFEM yields the best results thanks to 

the enrichment functions, being MPD the least accurate.  

Despite the very different approaches and formulations of each method, all of them 

can predict crack propagation paths with a reasonable accuracy for practical purposes. 

This has been verified comparing the predicted paths with an experimental path reported 

in the literature and an experiment developed in our laboratory for this work. Indeed, even 

the least accurate method MPD leads to reasonable good crack path estimations for the 

first of the problems because the ratio KII/KI used for computing the orientation angle is 

still preserved. The use of structured and unstructured meshes has been checked, 

concluding that if a small enough element size is used the crack path is not affected by 

this fact, except for the MPD technique. 

Therefore, simple techniques such as MPD can be used to estimate crack propagation 

paths in complex geometries, branching or coalescence, since its implementation is direct 

and does not need remeshing, nodal enrichment or topological variations. However, when 

accurate values of SIFs or local stresses are sought, XFEM is especially useful thanks to 

the enrichment functions of its formulation, which allow to reproduce the asymptotic 

LEFM fields close to the crack tip. 
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