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Abstract

For a univariate distribution, its M -quantiles are obtained as solutions to asymmet-

ric minimization problems dealing with the distance of a random variable to a fixed

point. The asymmetry refers to the different weights for the values of the random vari-

able at either side of the fixed point. We focus on M -quantiles whose associated losses

are given in terms of a power. In this setting, the classical quantiles are obtained for

the first power, while the expectiles correspond to quadratic losses. The M -quantiles

considered here are computed over distorted distributions, which allows to tune the

weight awarded to the more central or peripheral parts of the distribution. These

distorted M -quantiles are used in the multivariate setting to introduce novel families

of central regions and their associated depth functions, which are further extended to

the multiple output regression setting in the form of conditional regression regions and

conditional depths.

Keywords: Bivariate depth algorithm; Data depth; Distortion function; Conditional re-

gression region; M -quantiles.

1 Introduction

In multivariate statistics, the degree of centrality of a point x with respect to a multivariate

probability distribution or data sample is known as the depth of x. Since the seminal intro-

duction of the halfspace regions (sets of points whose halfspace depth is, at least, some given

value) by Tukey (1975) in the context of graphical representations of bivariate datasets, a

large number of notions of depth have been proposed and studied in the statistical literature.

We highlight here the simplicial depth introduced by Liu (1990) proving some properties that

have become standard requirements for subsequent depth proposals, the first formal study
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of the halfspace depth by Rousseeuw and Ruts (1999), and the introduction of the zonoid

depth by Koshevoy and Mosler (1997). See also Cascos (2010), Liu et al. (1999), Zuo and

Serfling (2000a,b) for some systematic reviews of depth functions, central or depth regions,

and their properties.

There has been recent interest in the use of expectiles (and more generally M -quantiles)

in the construction of central regions and depth functions, see Cascos and Ochoa (2021),

Daouia and Paindaveine (2019). These expectiles, first introduced by Newey and Powell

(1987) in the context of linear regression, are the solution to an asymmetrically weighted least

squares minimization problem. Likewise, the M -quantiles constitute a natural generalization

of the expectiles and the standard quantiles that keep the asymmetric weights, but whose

loss function is not necessarily quadratic or an absolute value, see Breckling and Chambers

(1988).

As it will be shown, the M -quantiles of a distribution can be tuned, in particular robusti-

fied, by introducing a distortion function which adjusts the weights awarded to the values in

the support of the distribution in terms of the quantile they correspond to. The so-called dis-

tortedM -quantiles turn out to be the solution to an equation involving Choquet expectations

with respect to a (distorted) non-additive probability. Throughout this manuscript, specific

distortions that downweight (or upweight) the outermost observations from a dataset are

considered. Based on them, distorted M -quantile regions and their associated depth func-

tions, generalizing those in Cascos and Ochoa (2021), Daouia and Paindaveine (2019), are

obtained.

In the last part of the manuscript, we follow Daouia and Paindaveine (2019), Hallin et

al. (2010, 2015), Merlo et al. (2022), to present the notion of distorted M -quantile condi-

tional regression region in the context of multiple output linear regression. The single out-

put (distorted) M -quantile regression resembles the classical quantile regression introduced

by Koenker and Basset (1978), see also Koenker (2005), while its extension to multi-output

models is based on univariate projections of the response variable. In this setting, we also

consider a notion of conditional data depth for the output of a regression model given the

regressors.

The M -quantile conditional regression regions are intended to serve as a descriptive tool

when analyzing the dependent variables given specific values of the predictors. Through

some examples with both real and simulated datasets, we illustrate the robustness of the

distorted M -quantile regression models against the presence of extreme points, as well as

that of the corresponding regions and depth when using appropriate distortion functions.

This manuscript is organized as follows: Section 2 contains a summary of the preliminary

concepts, where the notions of non-additive probabilities and Choquet expectations are used

to introduce the concept of M -quantiles with power loss function. In Section 3 some relevant

properties of the distorted M -quantiles, including an inversion formula and brief discussion

of the sample distorted expectiles, are presented. Section 4 is devoted to the notion of
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distorted M -quantile depth, which is obtained in terms of the distorted M -quantile regions.

In Section 5, we use a projection-based M -quantile regression technique for multi-output

models from which we obtain the M -quantile conditional regression regions. Finally, a list of

concluding remarks and future work is displayed in Section 6. Appendix A is placed at the

end of the manuscript describing an algorithm to compute the bivariate M -quantile depth.

2 Preliminaries

2.1 M-quantiles with power loss function

Consider a general nonatomic probability space (Ω,F , P ) and a random variable X with

finite moment of order r ≥ 1 defined on it. For any 0 < α < 1, the power M-quantile of X

of order r and level α is the solution to the minimization problem

q(r)α (X) = argmin
θ∈R

E[α(X − θ)r+ + (1− α)(X − θ)r−], (1)

where x+ = max{x, 0} and x− = (−x)+ for any x ∈ R.
The M -quantiles with power loss function defined in (1) satisfy appealing properties like

translation equivariance, positive homogeneity, and being uniquely defined for r > 1, see

Bellini et al. (2014) for the proofs and further details.

Notice that when r = 1, we obtain the classical quantiles for which the uniqueness is only

achieved if X has a continuous distribution with strictly increasing cdf, while for r = 2, we

obtain the expectiles, which we denote by eα(X) = q
(2)
α (X).

In order to relax the notation, hereafter we omit the order of the M -quantile (unless there

is some need to emphasize it) and write qα(X) for the M -quantile of X of order r, q
(r)
α (X).

Observe that the loss function in (1) is ρ(x, θ) = α(x − θ)r+ + (1 − α)(x − θ)r−, and the

asymmetric weights for the losses to the left and right of θ are respectively 1 − α and α.

Differentiating ρ with respect to θ, we obtain the first order condition equation that renders

the M -quantile of order r > 1 as the unique solution to the equation

αE(X − θ)r−1
+ = (1− α)E(X − θ)r−1

− , (2)

which only requires E|X|r−1 to be finite. Equation (2) can be also used for r = 1 with the

agreement that 00 = 0, and loosing the uniqueness in the solution, in order to compute the

standard quantiles.
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2.2 Non-additive probabilities

A non-additive probability over the reference measurable space (Ω,F) is any normalized and

monotone function from the σ-algebra F . That is, a function T : F → R such that T (∅) = 0,

T (Ω) = 1, and T (B) ≤ T (C) if B ⊆ C, see Denneberg (1994), Molchanov (2017). The dual

to T is the non-additive probability T̃ (B) = 1− T (Bc), where Bc is the complement of B.

Consider a measurable mapping X from (Ω,F) into R+ equipped with the Borel σ-

algebra. The asymmetric Choquet expectation of X with respect to T is

CETX =

∫ ∞

0

T (X ≥ x) dx, (3)

where the term in the right appears in the form of a Riemann integral. It is known that the

asymmmetric Choquet expectation with respect to a non-additive probability is a positive

homogeneous (CET [λX] = λCETX if λ > 0), monotone (CETX ≤ CETY if X ≤ Y ), and

translation equivariant (CET [b+X] = b+ CETX if b ∈ R with X ≥ max{0,−b}) operator,
see Denneberg (1994, Prop. 5.1).

Any general F -measurable function X : Ω → R can be written as X = X+ −X− and its

symmetric Choquet expectation is CETX = CETX+ −CET̃X−. Since we have restricted the

asymmetric Choquet expectation to mappings into R+ and both Choquet expectations match

on those nonnegative mappings, we can use the same notation for them. The symmetric Cho-

quet expectation is positive homogeneous, monotone, and symmetric (CET [−X] = −CETX).

For nonnegative mappings, X ≥ 0, this symmetry results into the asymmetry-type relation

CET [−X] = −CET̃X.

2.3 Distortion functions

A distortion function is any non-decreasing function g : [0, 1] → [0, 1] such that g(0) = 0

and g(1) = 1. When a distortion function g acts over a probability measure P , we get

what is known as a distorted probability, which is defined as the non-additive probability

P ∗(B) = g(P (B)) for B ∈ F . Correspondingly, when a distortion function g acts on a

cumulative distribution function (cdf) F , it transforms F into the new cdf g(F ). The dual

distortion function of g is g̃(x) = 1−g(1−x) and it acts on P transforming it on the dual to

P ∗. Finally, we say that a distortion function is symmetric when g̃ = g, and in such a case

the distorted probability also matches its dual. For further details, see Denneberg (1994,

Chapter 2).

Particular instances of symmetric distortion functions are the identity function, whose
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associated (distorted) probability is P itself, the trim distortion of parameter 0 ≤ β < 1

gβ(x) =


0 if 0 ≤ x ≤ β/2
x−β/2
1−β

if β/2 < x < 1− β/2

1 if 1− β/2 ≤ x ≤ 1

,

and the sigmoid distortion of parameter δ > 0 defined as

hδ(x) =
1

1 + (1−x
x
)δ

if 0 < x ≤ 1 and hδ(0) = 0 .

It is immediate that h1 is the identity function, while if 0 < δ < 1 (respectively δ > 1) hδ(x)

has only one inflection point at x = 1/2 and it is concave (resp. convex) on (0, 1/2) and

convex (resp. concave) on (1/2, 1).

Notice that hδ, with δ > 1, penalises the lower and upper tails of a given cdf, while gβ
directly discards the outermost β/2 fraction of points in each tail of the distribution.

3 Distorted M-quantiles and expectiles

Imitating the definition of classicalM -quantiles, the distorted M-quantile of X of order r ≥ 1

and level 0 < α < 1 with distortion function g is defined as a minimizer of αCEP ∗(X−θ)r++

(1− α)CEP̃ ∗(X − θ)r−, that is, as the solution θ ∈ R to the equation

αCEP ∗(X − θ)r−1
+ = (1− α)CEP̃ ∗(X − θ)r−1

− . (4)

If r > 1, it can be deduced from its alternative representation as the standard M -quantile

of some other random variable in Theorem 3.1, that the solution is unique. In the special

case that r = 1, we take the largest solution to equation (4) in order to fit our purpose of

inserting the halfspace regions inside the M -quantile framework.

As for standard M -quantiles, we also omit the order, r, in the notation, and the distorted

M -quantile of X of level α (with distortion function g) is denoted as q∗α(X) in what follows,

while the distorted M -quantile associated with the dual distortion function, g̃ is denoted as

q̃∗α(X). Observe that for symmetric distortion functions, such as the trim or the sigmoid ones,

both Choquet expectations in (4) are taken with respect to the same distorted probability

P ∗.

The following result, which is derived using the inverse transform method and the prop-

erties of the Choquet expectation, enlightens about the nature and properties of distorted

M -quantiles.
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Theorem 3.1. Given two random variables X, Y , two real numbers r ≥ 1, 0 < α < 1, and a

distortion function g such that CEP ∗Xr−1
+ ,CEP̃ ∗X

r−1
− ,CEP ∗Y r−1

+ ,CEP̃ ∗Y
r−1
− are finite, then

1. The distorted M-quantile of X of order r and level α is the M-quantile of order r and

level α of a random variable Z (on the same probabiltiy space) whose cdf is g̃(FX), that

is,

q∗α(X) = qα(Z) with FZ = g̃(FX).

2. Monotonicity on the level. If 0 < α ≤ β < 1, then q∗α(X) ≤ q∗β(X).

3. Upper and lower M-quantiles. q∗α(−X) = −q̃∗1−α(X) and if g is symmetric, q∗α(−X) =

−q∗1−α(X).

4. Translation equivariance. q∗α(b+X) = b+ q∗α(X) for b ∈ R.

5. Positive homogeneity. q∗α(λX) = λq∗α(X) if λ ≥ 0.

6. Monotonicity. If X ≤ Y , then q∗α(X) ≤ q∗α(Y ).

Proof. In order to prove 1., let Z be a random variable defined on the same probability space

of X and whose cdf is FZ = g̃(FX). Due to the relation g̃(x) = 1 − g(1 − x) for all x, the

right term of equation (4) can be written in terms of Z as

CEP ∗(X − θ)r−1
+ =

∫ ∞

0

g
(
P
(
(X − θ)r−1

+ ≥ x
))

dx

=

∫ ∞

0

g
(
1− FX(x

1/(r−1) + θ)
)
dx

=

∫ ∞

0

1− FZ(x
1/(r−1) + θ) dx

= E(Z − θ)r−1
+ ,

where the last expression appears in terms of an expectation with respect to the probability

in the considered probability space, P .

Since we can do a similar transformation with the left term of equation (4), the distorted

M -quantile of X of level α matches the undistorted M -quantile of Z of level α.

Statement 2. is immediate after 1. and the monotonicity of theM -quantiles in α, see (Bellini

et al., 2014, Prop. 5)

To prove 3., just observe that CEP ∗(−X − θ)r−1
+ = CEP ∗(X − (−θ))r−1

− and similarly

CEP̃ ∗(−X − θ)r−1
− = CEP̃ ∗(X − (−θ))r−1

+ , so the weights and distorted probabilities are

interchanged between the terms of equation (4) .
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Following 1., let b ∈ R, then

CEP ∗(X + b− θ)r−1
+ =

∫ ∞

0

g
(
P
(
(X − (θ + b))r−1

+ ≥ x
))

dx

=

∫ ∞

0

g
(
1− FX(x

1/(r−1) + (θ − b))
)
dx

=

∫ ∞

0

1− FZ(x
1/(r−1) + (θ − b)) dx

= E(Z + b− θ)r−1
+ .

Similarly, we have that CEP̃ ∗(X + b − θ)r−1
− = EP (Z + b − θ)r−1

− , so we conclude that

q∗α(X + b) = qα(Z + b). Since qα(Z + b) = qα(Z) + b and q∗α(X) = qα(Z) hold, then 4. is

proved.

It also holds CEP ∗(λX − θ)r−1
+ = EP (λZ − θ)r−1

+ and analogously CEP̃ ∗(λX − θ)r−1
− =

EP (λZ − θ)r−1
− , which proves that q∗α(λX) = qα(λZ), and since the undistorted M -quantile

satisfies qα(λZ) = λqα(Z) then 5. is proved.

If X ≤ Y then (X − θ)r−1
+ ≤ (Y − θ)r−1

+ hence {(X − θ)r−1
+ ≥ x} ⊆ {(Z − θ)r−1

+ ≥ x} and

since g is a non-decreasing function, we have

CEP ∗(X − θ)r−1
+ =

∫ ∞

0

g
(
P
(
(X − θ)r−1

+ ≥ x
))

dx

≤
∫ ∞

0

g
(
P
(
(Y − θ)r−1

+ ≥ x
))

dx

= CEP ∗(Y − θ)r−1
+ ,

and in the same way that CEP̃ ∗(X − θ)r−1
− ≤ CEP̃ ∗(Y − θ)r−1

− , hence q∗α(X) ≤ q∗α(Y ).

Remark 3.2. The distorted M -quantiles of order r = 2 (distorted expectiles) are denoted by

e∗. The most central distorted expectile (obtained at level α = 1/2) of random variable X

is the symmetric Choquet expectation of X with respect to P ∗ = g(P ), that is, e∗1/2(X) =

CEP ∗X, which is the mean of a random variable whose cdf is g̃(FX).

The inverse distorted M -quantile of x ∈ R with respect to a random variable X is the

level α for which x matches the distorted M -quantile of X, x = q∗α(X). It is computed

solving (4) on α and yields

q∗−1
X (x) =

(
1 +

CEP ∗(X − x)r−1
+

CEP̃ ∗(X − x)r−1
−

)−1

. (5)

We use the symbol e∗−1
X (x) to indicate the inverse distorted expectile function, corresponding

to (5) for r = 2.
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3.1 Sample distorted M-quantiles

Let x(1) ≤ x(2) ≤ · · · ≤ x(n) be an ordered sample of real numbers. Let g be a distortion

function, and for i = 1, . . . , n define the weights

wi = g̃

(
i

n

)
− g̃

(
i− 1

n

)
= g

(
1− (i− 1)

n

)
− g

(
1− i

n

)
,

hence, it is immediate that wi ≥ 0 for all i and
∑

iwi = 1.

For 0 < α < 1, as in (4), the sample distorted M-quantile, denoted q∗n,α(x(1), . . . , x(n)) or

simply q∗n,α when there is no possible confusion with the sample, can be computed as the

solution to the equation

α
∑

x(i)≥q∗n,α

wi(x(i) − q∗n,α)
r−1 = (1− α)

∑
x(i)<q∗n,α

wi(q
∗
n,α − x(i))

r−1 . (6)

Notice from (6) that the corresponding sample inverse distorted M -quantile is

q∗−1
n (x) =

1 +

∑
x(i)>x

wi(x(i) − x)r−1

∑
x(i)<x

wi(x− x(i))
r−1


−1

. (7)

Alike the sample expectile, the sample distorted expectile (r = 2), denoted by e∗n,α can

be calculated from (6) by means of iterated re-weighting, while its inverse follows (7) and is

denoted by e∗−1
n,α .

4 Distorted M-quantile central regions and depth

4.1 Distorted M-quantile central regions

A central region associated with a random vector contains valuable information about the

location, scatter, and dependency structure among the components in its location, size, and

shape. Based on the (univariate) distorted M -quantiles, we build the distorted M -quantile

central regions in terms of an intersection of halfspaces.

Consider a d-dimensional random vector X such that CEP ∗∥X∥r−1 and CEP̃ ∗∥X∥r−1

are finite for some r ≥ 1 and 0 < α ≤ 1. The distorted M-quantile region of order r and

level α is defined as

Q∗
α(X) =

⋂
u∈Sd−1

{x ∈ Rd : ⟨x,u⟩ ≤ q∗1−α(⟨X,u⟩)} , (8)
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where Sd−1 is the unit sphere in Rd and ⟨·, ·⟩ is the standard inner product in Rd.

Notice that in the univariate case (d = 1), the region is the closed interval

Q∗
α(X) = [−q∗1−α(−X), q∗1−α(X)] = [q̃∗α(X), q∗1−α(X)].

If the distortion function g is the identity function, the (non distorted)M -quantile regions

obtained were already studied in Daouia and Paindaveine (2019), while if further r = 2, the

expectile regions were the specific focus of Cascos and Ochoa (2021).

From its construction and Theorem 3.1, it is clear that the distorted M -quantile regions

satisfy the properties that are stated below.

Proposition 4.1. Let X be a d-dimensional random vector, fix 0 < α ≤ 1, and r ≥ 1 such

that CEP ∗∥X∥r−1 and CEP̃ ∗∥X∥r−1 are finite, then

1. Compactness and convexity. Q∗
α(X) is a compact and convex subset of Rd.

2. Nesting. The lower the level, the wider the region: Q∗
α(X) ⊆ Q∗

β(X) if 0 < β ≤ α ≤ 1.

3. Affine equivariance. Q∗
α(AX+b) = AQ∗

α(X)+b for any nonsingular matrix A ∈ Rd×d

and b ∈ Rd.

4. Contains the centermost point. If the distribution of X is centrally symmetric about

y0, that is, P (y0 − X ∈ H) = P (X − y0 ∈ H) for every halfspace H ⊆ Rd, then

y0 ∈ Q∗
α(X) whenever Q∗

α(X) is nonvoid.

Proof. Notice that the compactness and the convexity of these regions is due to way that

they are obtained as intersection of closed halfspaces, the nesting is immediate after the

monotonicity of the M -quantiles in α, whereas the affine equivariance is a direct consequence

of the translation equivariance and positive homogeneity of distorted M -quantiles, presented

in Theorem 3.1.

We will only show here that for centrally symmetric distributions, every nonvoid distorted

M -quantile central region contains the point of symmetry. Denote the point of symmetry

by y0 and observe that the central region Q∗
α(X) introduced in (8) can be rewritten as

y0+Q∗
α(X−y0) =

⋂
u∈Sd−1

{y0+x ∈ Rd : −q∗1−α(⟨y0−X,u⟩) ≤ ⟨x,u⟩ ≤ q∗1−α(⟨X−y0,u⟩)}.

After (Zuo and Serfling, 2000c, Lem. 2.1), the distribution of X is centrally symmetric

about y0 if and only if for every u ∈ Sd−1, the random variables ⟨X−y0,u⟩ and ⟨y0−X,u⟩
share the same distribution, so their distorted M -quantiles must be identical. Consequently,

either q∗1−α(⟨X −y0,u⟩) ≥ 0 for all u ∈ Sd−1 and then y0 ∈ Q∗
α(X), or alternatively Q∗

α(X)

is void.
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4.2 Distorted M-quantile sample regions

Given a sample {x1,x2, . . . ,xn} ⊂ Rd and a unitary vector u ∈ Sd−1, let πu be the permuta-

tion of {1, 2, . . . , n} such that ⟨xπu(1),u⟩ ≤ . . . ≤ ⟨xπu(n),u⟩, then for 0 < α ≤ 1, the sample

distorted M -quantile region is either void or, for sufficiently small α, yields the polyhedral

set:

Q∗
n,α =

⋂
u∈Sd−1

{x ∈ Rd : ⟨x,u⟩ ≤ q∗n,1−α(⟨xπu(1),u⟩, . . . , ⟨xπu(n),u⟩)} .

In Figure 1 we illustrate the robustness to outliers of the distorted M -quantile regions

with the trim distortion function in comparison with the undistorted ones. This illustration

includes the expectile regions and the halfspace ones.

For this example we have simulated 190 observations of a bivariate normal random vec-

tor with mean vector (10, 20)⊤ and covariance matrix

(
5 4

4 4

)
and 10 further observations

of a bivariate normal random vector with mean (16, 16)⊤ and identity covariance matrix.

Specifically, Figure 1 presents, on the left, several distorted M -quantile regions (contours

of the halfspace regions, r = 1, at the top, of the M -quantile regions for r = 1.5 in the

second row, of the expectile regions, r = 2, in the third row, and contours of the M -quantile

regions for r = 3 at the bottom) with a trim distortion level β = 0.1 and, on the right,

the corresponding (undistorted) M -quantile regions. The depth levels considered are 0.005,

0.02, 0.05, 0.1, 0.2, 0.3, and 0.4.

Observe that the outermost halfspace regions (top right) are highly affected in the pres-

ence of outliers, while their trimmed counterparts (top left) barely change in shape with

respect to the inner regions. These inner regions are almost identical on both sides. The

situation with the remaining outer M -quantile regions is almost the same, but changes

substantially with the inner regions. The greater the level r is, the more the M -quantile

inner regions are also affected by the outliers. This situation is corrected in the distorted

M -quantile regions.

4.3 Distorted M-quantile data depth function

Once we have introduced theM -quantile regions, it is possible to construct the corresponding

distorted M-quantile depth for any fixed order r ≥ 1 in a natural way. The depth of each

point y ∈ Rd is the maximum level α such that it belongs to the region Q∗
α(X), that is,

QD∗(y;X) = sup{0 < α ≤ 1 : y ∈ Q∗
α(X)}. (9)

The so-defined distorted M -quantile depth satisfies the usual properties of a depth func-

tion.
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Figure 1: M -quantile regions including halfspace and expectile ones with 10% of trimming
and undistorted.
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Proposition 4.2. Let X be a d-dimensional random vector and fix r ≥ 1 such that CEP ∗∥X∥r−1

and CEP̃ ∗∥X∥r−1 are finite, then

1. Affine invariance. The depth of a point y ∈ Rd is independent of the underlying coor-

dinate system, that is, for any nonsingular matrix A ∈ Rd×d and b ∈ Rd

QD∗(Ay + b;AX + b) = QD∗(y;X).

2. Upper semicontinuity. QD∗( · ;X) is an upper semicontinuous function.

3. Maximality at center. If the distribution of X is centrally symmetric about y0, then

QD∗( · ;X) attains its maximum value at y0.

4. Decreasing on rays. If y0 ∈ Rd is the deepest point and y ∈ Rd, then for 0 ≤ λ ≤ 1 it

holds

QD∗(y;X) ≤ QD∗(λy + (1− λ)y0;X).

5. Vanishing at infinity. The depth of a point y goes to zero as ∥y∥ → ∞.

It is not hard to realize that these properties follow from the ones of the distorted M -

quantile regions. Notice further that, unlike for the (undistorted) expectile depth, the max-

imum value of the distorted expectile depth of a given distribution is not necessarily 1/2,

while, in the univariate setting, the distorted M -quantile depth renders

QD∗(y;X) = min{1− q∗−1
X (y), 1− q∗−1

−X (−y)}.

The result below gives us a useful expression to compute the multivariate distorted M -

quantile depth of a given point.

Theorem 4.3. The distorted M-quantile depth of a point y ∈ Rd with respect to the distri-

bution of the d-dimensional random vector X satisfies:

QD∗(y;X) =

(
1 + sup

u∈Sd−1

CEP̃ ∗⟨X − y,u⟩r−1
−

CEP ∗⟨X − y,u⟩r−1
+

)−1

.

12



Proof. Just notice that

QD∗(y;X) = sup {0 < α ≤ 1 : y ∈ Q∗
α(X)}

= sup
{
0 < α ≤ 1 : ⟨y,u⟩ ≤ q∗1−α(⟨X,u⟩) for all u ∈ Sd−1

}
= sup

{
0 < α ≤ 1 : q∗−1

⟨X,u⟩(⟨y,u⟩) ≤ 1− α for all u ∈ Sd−1
}

= inf
u∈Sd−1

(
1− q∗−1

⟨X,u⟩(⟨y,u⟩)
)

=

(
1 + sup

u∈Sd−1

CEP̃ ∗⟨X − y,u⟩r−1
−

CEP ∗⟨X − y,u⟩r−1
+

)−1

because of (5).

The special case of Theorem 4.3 for r = 2 is used in Appendix A to build an algorithm

for the exact computation of the bivariate distorted expectile depth.

Observe that if the distortion function g is symmetric then the distorted M -quantile

depth yields the very appealing expression

QD∗(y;X) = inf
u∈Sd−1

CEP ∗⟨X − y,u⟩r−1
+

CEP ∗ |⟨X − y,u⟩|r−1
.

4.4 Multivariate ranks based on the distorted M-quantile depth

Following the ideas summarized in Cascos (2010) and given a multivariate dataset, we can

assess ranks to the points in it in terms of their distorted M -quantile depths with respect

to the dataset. After computing the depth of every point, rank 1 is assessed to the k points

with the lowest depth, rank k + 1 to the points with the second lowest depth, and so on,

until the highest rank is assessed to the deepest point of the dataset. By means of this rank,

we have a notion of ordering in Rd which could be used in further statistical analysis, see for

example Liu and Singh (1992).

In Figure 2 we have plotted 39 points simulated from a bivariate normal distribution

centered at the origin of coordinates (0, 0)⊤ with covariance matrix

(
1 0.9

0.9 1

)
along with

an extreme outlier at (7,−7)⊤ and ranked them by means of several distorted M -quantile

depth functions: the halfspace one (top left), the expectile (top right), the distorted expectile

with the trim distortion function g0.1 (10% of trimming) and the sigmoid distortion with

parameter δ = 3. Notice that for the expectile depth, the highest ranks are awarded to the

points closest to the outlier, among those that were simulated with regard to the normal

distribution with mean at the origin of coordinates. When some observations are trimmed,

the highest rank moves toward the origin of coordinates, but some inner points also assume

rank 1. Finally, when the sigmoid distortion function is used, the points with the highest
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ranks are close to the origin of coordinates while all points inside the interior of the convex

hull of the data cloud assume a rank greater than 1.
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Figure 2: Depth-based ranks for a bivariate normal sample with an outlier with various
distorted M -quantile depths.

The halfspace depth was calculated using the R package ddalpha by Pokotylo et al.

(2019).

5 Distorted M-quantile depth and regression models

Assume that the response of a linear regression model is given in terms of a d-dimensional

random vector Y , while there are p regressors forming a p-dimensional random vector X.
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If x ∈ Rp, we use the notation x̊ to represent the element in Rp+1 whose first component is

1, and the remaining components are equal to those of x. For each observation i = 1, . . . , n,

we can write the multivariate regression model as

Yi = ΘX̊i + ϵi ,

where Θ is a (p + 1) × d matrix with each row formed by the regression coefficients of the

multiple linear regression model that fits each of the components of random vector Y , and

ϵi is the (vector) error term associated with the i-th observation.

Instead of estimating matrix Θ, we will focus on studying the conditional central regions

of Y for any level α and given the value assumed by the explanatory vector X.

5.1 Distorted M-quantile regression hyperplanes for a univariate

response

By analogy with (1), for a univariate response Y and a p-dimensional vector of regressors

X, the distorted M-quantile regression hyperplane of order r ≥ 1 and level 0 < α ≤ 1 is

defined through the vector of coefficients θ = (θ0, . . . , θp) ∈ Rp+1 minimizing the expression

q∗
α(Y |X) = arg min

θ∈Rp+1

[
αCEP ∗

[
Y − ⟨X̊,θ⟩

]r
+
+ (1− α)CEP̃ ∗

[
Y − ⟨X̊,θ⟩

]r
−

]
(10)

and results to be H∗
α(Y |X) = {(x, y) ∈ Rp+1 : ⟨q∗

α(Y |X), x̊⟩ = y}. When the distortion

function is g(x) = x, we denote the solution as qα(Y |X) and the M -quantile regression

hyperplane of order r ≥ 1 as Hα(Y |X), while notations q̃∗
α(Y |X) and H̃∗

α(Y |X) correspond

to the coefficients and hyperplane obtained for the dual distortion function.

The coefficients of the distorted M -quantile regression hyperplanes fulfill properties sim-

ilar to those presented in Theorem 3.1 for the distorted M -quantiles.

Proposition 5.1. For a response random variable Y , r ≥ 1, 0 < α ≤ 1, and a p-variate

vector of regressors X, it holds

1. Upper and lower M-quantiles. q∗
α(−Y |X) = −q̃∗

1−α(Y |X) and if the distortion g is

symmetric, q∗
α(−Y |X) = −q∗

1−α(Y |X).

2. Translation equivariance. q∗
α(b+ Y |X) = (b, 0, . . . , 0) + q∗

α(Y |X) for any b ∈ R.

3. Positive homogeneity. q∗
α(λY |X) = λq∗

α(Y |X) if λ ≥ 0.

In terms of the M -quantile regression hyperplane, 1. means that H∗
α(−Y |X) is identical

to H̃∗
1−α(Y |X) except for a change of sign in the last coordinate; 2. states that the only
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coefficient affected by a translation in Y is the one corresponding to the offset of the hy-

perplane, θ0, so H∗
α(b + Y |X) matches H∗

α(Y |X) with a translation of b units in the last

coordinate; finally 3. states that when the response is rescaled then H∗
α(λY |X) matches

H∗
α(Y |X) except for the fact that the last coordinate is multiplied by λ.

Due to the similarities in the way q∗α(Y ) and q∗
α(Y |X) are defined, the proof of Proposi-

tion 5.1 is similar to the proof of Theorem 3.1.

5.2 Distorted M-quantile regression regions and conditional dis-

torted M-quantile regions

We use the name regression regions to refer to sets in the (p+d)-dimensional space containing

the observations of both, the explanatory and response variables, while under conditional

regions given some specific value of the explanatory variables, we refer to sets in the d-

dimensional space of the response variables.

5.2.1 Univariate response

The distorted M-quantile regression region of level α in a simple linear regression model

is the set of points in Rp+1 comprised between the regression hyperplanes H∗
1−α(Y |X) and

H̃∗
α(Y |X) whenever H∗

1−α(Y |X) lies above H̃∗
α(Y |X) on the last coordinate (the one associ-

ated with the response variable). Since −q∗
1−α(−Y |X) = q̃∗

α(Y |X), see Proposition 5.1, we

can write it as

Q∗
α(Y |X) =

{
(x, y) ∈ Rp+1 : ⟨−q∗

1−α(−Y |X), x̊⟩ ≤ y ≤ ⟨q∗
1−α(Y |X), x̊⟩

}
,

and recall that if g is symmetric, −q∗
1−α(−Y |X) = q∗

α(Y |X).

The conditional distorted M-quantile region when X = x0 is the interval given by the

projection on the last coordinate of the intersection of Q∗
α(Y |X) with the affine line consti-

tuted by all points whose first p coordinates are identical to x0. We can indistinctively write

this region using set or interval notation,

Q∗
α(Y |X = x0) = {y ∈ R : (x0, y) ∈ Q∗

α(Y |X)}
=
[
⟨−q∗

1−α(−Y |X), x̊0⟩, ⟨q∗
1−α(Y |X), x̊0⟩

]
,

and it is void for some values of α and x0. If g is symmetric, the interval adopts the form[
⟨q∗

α(Y |X), x̊0⟩, ⟨q∗
1−α(Y |X), x̊0⟩

]
.

After Proposition 5.1, it is immediate that the univariate conditional distortedM -quantile

regions are affine equivariant, since Q∗
α(b+ aY |X = x0) = b+ aQ∗

α(Y |X = x0) for a, b ∈ R.

16



5.2.2 General (multivariate) response

If the response Y is a d-dimensional random vector, we define the distorted M-quantile re-

gression regions in terms of intersections of halfspaces. Specifically, all univariate projections

of the response are obtained after multiplication times every element in the unit sphere Sd−1.

The regression hyperplane of all the projections of the response are obtained, and finally the

regression regions are produced as intersections of halfspaces whose boundaries are precisely

the regression hyperplanes,

Q∗
α(Y |X) =

⋂
u∈Sd−1

{
(x,y) ∈ Rp+d : ⟨y,u⟩ ≤ ⟨q∗

1−α(⟨Y ,u⟩|X), x̊⟩
}
.

The distorted M-quantile conditional region of level α and given that the regressors

assume value x0 ∈ Rp is the subset of Rd obtained as the projection on the last d coordi-

nates of the intersection of the distorted M -quantile regression region Q∗
α(Y |X) with the

d-dimensional affine space constituted by all points whose first p coordinates are identical to

x0,

Q∗
α(Y |X = x0) ={y ∈ Rd : (x0,y) ∈ Q∗

α(Y |X)}

=
⋂

u∈Sd−1

{
y ∈ Rd : ⟨y,u⟩ ≤ ⟨q∗

1−α(⟨Y ,u⟩|X), x̊0⟩
}
.

Despite the fact that distorted M -quantile conditional regions might be void for certain

values of α and x0, they still satisfy some of the usual properties of the classical central

regions:

1. Compactness and convexity. Q∗
α(Y |X = x0) is a compact and convex set in Rd.

2. Affine invariance. Q∗
α(AY + b|X = x0) = AQ∗

α(Y |X = x0) + b for any nonsingular

matrix A ∈ Rd×d and vector b ∈ Rd.

It is immediate that these properties are derived from the ones of the M -quantile regres-

sion hyperplanes. Observe that, among the properties of the conditional regions, there is not

a nesting one. The reason is that the regression hyperplanes at different levels might well

intersect and consequently one regression or conditional region of some given level might

contain some points that do not lie inside the corresponding region of a lower level.

5.3 Conditional distorted M-quantile depth

Once the conditional regions have been defined, the conditional distorted M-quantile depth

of a point y ∈ Rd given that the regressors assume value x0 ∈ Rp is obtained, as usual, by

QD∗(y;Y |X = x0) = sup{0 < α ≤ 1 : y ∈ Q∗
α(Y |X = x0)}.
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Notice that this depth can also be defined in terms of the distorted M -quantile regression

regions as the supremum of all levels α such that (x0,y) ∈ Q∗
α(Y |X).

Intuitively, the so-defined conditional distortedM -quantile regression depth satisfies some

of the usual properties of a depth function:

1. Affine invariance. The conditional depth of a point y ∈ Rd is independent of the

underlying coordinate system in the space of the response variables, that is, for any

nonsingular matrix A ∈ Rd×d and b ∈ Rd, it holds QD∗(Ay + b;AY + b|X = x0) =

QD∗(y;Y |X = x0).

2. Upper semicontinuity. The function QD∗( · ;Y |X = x0) is upper semicontinuous.

3. Vanishing at infinity. The depth of a point y goes to zero as ∥y∥ → ∞.

5.4 Sample distorted M-quantile regression regions and depth

Consider a sample of n joint observations of a d-dimensional response variable yi and a

p-dimensional predictor xi for 1 ≤ i ≤ n, let u ∈ Sd−1 be any unit vector and denote by

πu : {1, . . . , n} → {1, . . . , n} the permutation that sorts the sample points in such a way

that the univariate projections of the response variables are ordered in an increasing manner,

⟨yπu(1)
,u⟩ ≤ · · · ≤ ⟨yπu(n)

,u⟩. Given 0 < α ≤ 1, the sample distortedM -quantile hyperplane

of order r in direction u is determined by the coefficients θ = (θ0, . . . , θp) that minimize the

expression

arg min
θ∈Rp+1

α
n∑

i=1

wi

[
⟨yπu(i)

,u⟩ − ⟨x̊πu(i)
,θ⟩
]r
+
+ (1− α)

n∑
i=1

wi

[
⟨yπu(i)

,u⟩ − ⟨x̊πu(i)
,θ⟩
]r
−
,

(11)

which are denoted by q∗
n,α(u). As usual, wi = g̃ (i/n) − g̃ ((i− 1)/n) = g (1− (i− 1)/n) −

g (1− i/n) for all i.

The sample conditional (distorted)M -quantile region at level α given x0 ∈ Rp is obtained

as

Q∗
n,α(x0) =

⋂
u∈Sd−1

{
y ∈ Rd : ⟨y,u⟩ ≤ ⟨q∗

n,1−α(u), x̊0⟩
}
,

while the depth of y ∈ Rd given x0 is

QD∗
n(y |x0) = sup{0 < α ≤ 1 : y ∈ Q∗

n,α(x̊0)} .

We elude the regression regions in this empirical section, since their basic goal is to serve

in the construction of the conditional regions, but they can be simply introduced in the same

manner of their population counterparts.
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In Figure 3 we have represented the average of the educational index (Y1), the life ex-

pectancy (Y2) and the income index (X) as defined in http://hdr.undp.org/en/data. This

database contains information about human development from countries all over the world

with records ranging between 1990 and 2019. The conditional regression regions were built

given the 0.05, 0.5, and 0.95 quantiles of X by consideringM -quantile regression models with

several power loss functions, including r = 1 (halfspace depth regions) and r = 2 (expectile

regions). The levels α are taken as 10 equispaced values in interval [0, 0.45]. Notice that some

of those regions happen to be void. The identity distortion function (undistorted regions)

has been used to obtain the charts on the left, while the charts on the right were built using

g0.1 as distortion function (10% of trimming). At first sight, all the charts suggest that high

values of indexes Y1 and Y2 are associated with high values of the income index X, which

is more evident for the 0.05 and 0.95 quantiles of X. Notice that the conditional regions

capture the variability of the data. Interestingly, it seems that the higher the value of the

regressor, the lower the variability of the conditional distribution of the response variables,

which is particularly evident when considering the trimming level of 10%.

6 Conclusions

After a short introduction to the notion of distorted M -quantiles with power loss functions,

emphasizing the distorted expectiles, some novel notions of central regions and data depth

are proposed. Both, the distortedM -quantile depth and regions, meet the classical properties

expected from any depth function and central regions, that is, the distortedM -quantile depth

function is affine invariant, attains a unique maximum value at the center of the distribution

(whenever such a center exists), decreases through rays from the deepest point, and vanishes

at infinity, whereas their associated regions form a family of compact, convex and nested

sets which are equivariant under affine transformations. The sample distorted M -quantile

depth and regions were introduced and some algorithm is provided for their computation in

the bivariate case.

The distorted M -quantile conditional regression regions, obtained through a multiple

output M -quantile regression model, seem to capture relevant information of the joint dis-

tribution of the explained variables conditioned to a given value of the regressors. Henceforth,

we consider that the conditional regression regions, together with their associated regression

depth, could be useful as a multivariate data analysis tool. In the future, we plan to design

specific algorithms for the computation of these regression depths.
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Figure 3: Halfspace and M -quantile conditional regions for various power loss functions.
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A Bivariate distorted expectile depth routine

The computation of the exact (undistorted) bivariate expectile depth of a point can be done

by means of an algorithm with time complexity O(n log n), where n is the sample size,

see Cascos and Ochoa (2021). Similarly to the algorithms for the bivariate halfspace and

simplicial depths in Rousseeuw and Ruts (1996), such routine moves along the rays with

origin in the point whose depth is computed and passing through the points in the dataset,

and its time complexity is determined by the one of the algorithm that sorts the angles

formed by such rays and some fixed reference ray.

The computation of the distorted expectile depth is slightly more complicated due to

the (possibly) different weights awarded to each data point by the distortion function for

each univariate projection. Assume that we want to compute the depth of the origin of

coordinates 0 ∈ R2, or alternatively subtract the point whose depth is to be computed from

each of the points in the sample to reach that situation. Since all possible orderings of the

univariate projections of the sample points must be considered, we use a circular sequence

algorithm, which serves quite efficiently for this task.

In first place, the angles formed by each of the
(
n
2

)
straight lines containing each pair of

points from the sample with coordinate axis X are computed as well the angles formed by

the coordinate axis and the rays from the origin of coordinates passing through the points

in the dataset, and they are sorted, which limits the time complexity to O(n2 log n). Then

these angles are used to obtain all possible sortings in terms of a univariate projection and

the sign of the projection itself. These type of algorithms are commonly used to compute the

extreme points of a bivariate central region, see Ruts and Rousseeuw (1996) for the halfspace

regions, Dyckerhoff (2000) for the zonoid regions, Cascos (2007) for the expected convex

hull regions, or Cascos and Ochoa (2021) for the expectile regions. Nevertheless it has also

been used in the computation of some notions of depth, like the bivariate projection depth

in Zuo and Lai (2011).

A.1 Preliminaries

Consider a sample x1, . . . ,xn ∈ Rd, a distortion function g, and r = 2. After Theorem 4.3,

the sample distorted expectile depth of the origin of coordinates with respect to the previous

sample is

QD∗
n(0) =

(
1 + sup

u∈Sd−1

∑
wi⟨xπu(i),u⟩−∑
wi⟨xπu(i),u⟩+

)−1

. (12)
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In the bidimensional setting, d = 2, we can write the unit vector u ∈ S1 as u = (cos γ, sin γ)

for some γ ∈ [0, 2π). Consider the two points

xw
u+

=
∑

⟨xπu(i),u⟩>0

wixπu(i) and xw
u− =

∑
⟨xπu(i),u⟩<0

−wixπu(i) , (13)

which correspond to the weighted sums of the sample points ordered according to their

univariate projections times u, in first place in the halfspace with inner normal vector u and

then in the halfspace with inner normal vector −u.

Write now the former points as their norms times a unit vector, which in terms of angles

ϕ+ and ϕ− correspond to xw
u+

= ∥xw
u+

∥(cosϕ+, sinϕ+) and xw
u− = ∥xw

u−∥(cosϕ−, sinϕ−),

then (12) renders:

QD∗
n(0) =

(
1 + sup

0≤γ<2π

∥xw
u−∥

∥xw
u+

∥
cos(γ − ϕ−)

cos(γ − ϕ+)

)−1

. (14)

Observe next that xw
u− and xw

u+
for u = (cos γ, sin γ) depend on γ, but are constant over

each subinterval of [0, 2π) at which the sign of each ⟨xi,u⟩ remains unchanged and also the

permutation πu remains fixed. The second part of the function to be maximized is

f(γ) =
cos(γ − ϕ−)

cos(γ − ϕ+)
,

whose monotonicity depends only on the sign of the sine of ϕ− − ϕ+, since the derivative of

f is

f ′(γ) =
sin(ϕ− − ϕ+)

cos2(γ − ϕ+)
.

This means that the maximum at each subinterval will be attained for γ lying at one of its

endpoints.

Finally, the proposed algorithm will consider the partition of [0, 2π) with breaking points

at the angles for which either ⟨xi,u⟩ = 0 for some i = 1, . . . , n or ⟨xi,u⟩ = ⟨xj,u⟩ for some

i ̸= j.

A.2 The routine

The source code for the bivariate distorted expectile depth computation in R is available on

the GitHub repository https://github.com/icascos/expdepth as function distexpdepth.

The input consist in a matrix X of size n × 2 with all data points in general position

(no more than two points in the same straight line) and a distortion function g, while the

output is the distorted expectile depth of the origin of coordinates.
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Set w[i] = g̃ (i/n)− g̃ ((i− 1)/n);
Create matrix ANG with 3 columns and n+

(
n
2

)
rows;

for i = 1 to n do
Call angle to angle in (−π, π] between X-axis and vector from origin to X[i, ];
Set row i of matrix ANG as (i, i,angle);
Set label[i] as +1 if angle in interval [−π

2 ,
π
2 ] and −1 otherwise;

end
for i = 1 to n− 1 do

for j = i+ 1 to n do
Call angle to angle in (−π, π] between X-axis and vector from X[i, ] to X[j, ];
Set next row of matrix ANG as (i, j,angle);

end

end
Subtract π to angles (matrix ANG col. 3) in (π/2, π] and add π to angles in (−π,−π/2);
Sort rows of matrix ANG with respect to increasing angles (col. 3);
(*) Append n+

(
n
2

)
rows to matrix ANG identical to ANG except for col. 3 at which π

is added to each angle;
Set Ratio = 0 and as in (13) for u = (1, 0), sort the data points in terms of its first
coordinates, SUM+ is the weighted sum of points in X labeled as +1 with weights w[i]
depending on the sorting, and SUM− is the corresponding weighted sum for points
labeled as −1;

Set Ratio = max
{
Ratio,− ⟨SUM−,(cos(ANG[i,3]+π/2),sin(ANG[i,3]+π/2)⟩

⟨SUM+,(cos(ANG[i,3]+π/2),sin(ANG[i,3]+π/2)⟩

}
;

for i = 1 to 2n+ 2
(
n
2

)
do

if ANG[i, 1] = ANG[i, 2] (angle defined by one data point) then
Update SUM+ adding weighted coordinates of the data point if labeled as −1 and
subtracting weighted coordinates of the data point if labeled as +1;

Update SUM− adding weighted coordinates of the data point if labeled as +1 and
subtracting weighted coordinates of the data point if labeled as −1;

end
if ANG[i, 1] ̸= ANG[i, 2] (angle defined by two data points) then

if point X[i, ] labeled as +1 then
Update SUM+ interchanging the weights of points ANG[i, 1] and ANG[i, 2];

end
if point X[i, ] labeled as −1 then

Update SUM+ interchanging the weights of points ANG[i, 1] and ANG[i, 2];
end

end

Set Ratio = max
{
Ratio,− ⟨SUM−,(cos(ANG[i,3]+π/2),sin(ANG[i,3]+π/2)⟩

⟨SUM+,(cos(ANG[i,3]+π/2),sin(ANG[i,3]+π/2)⟩

}
;

end

Return the distorted expectile depth as: (1 +Ratio)−1, see (14).

Algorithm 1: Bivariate distorted expectile depth
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Remark A.1. Since there are n points, n +
(
n
2

)
angles must be considered, hence comput-

ing and ordering the angles of each pair of points can be done with an algorithm of time

complexity O(n2 log n). The main loop is run precisely 2n + 2
(
n
2

)
times, but the number of

operations at each iteration does not depend on the sample size n, since only one point is

being added, subtracted or reweighted.

Remark A.2. If the distortion function is symmetric, g = g̃, it is possible to skip step (*) as

long as every time we update Ratio, we also compare with the inverse of the quotient of the

projections of the weighted sums of the data points at each of the two halfplanes.
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