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Abstract
Many applications in data analysis study whether two categorical variables are inde-
pendent using a function of the entries of their contingency table. Often, the categories
of the variables, associated with the rows and columns of the table, are grouped, yield-
ing a less granular representation of the categorical variables. The purpose of this is
to attain reasonable sample sizes in the cells of the table and, more importantly, to
incorporate expert knowledge on the allowable groupings. However, it is known that
the conclusions on independence depend, in general, on the chosen granularity, as in
the Simpson paradox. In this paper we propose a methodology to, for a given contin-
gency table and a fixed granularity, find a clustered table with the highest χ2 statistic.
Repeating this procedure for different values of the granularity, we can either identify
an extreme grouping, namely the largest granularity for which the statistical depen-
dence is still detected, or conclude that it does not exist and that the two variables are
dependent regardless of the size of the clustered table. For this problem, we propose
an assignment mathematical formulation and a set partitioning one. Our approach is
flexible enough to include constraints on the desirable structure of the clusters, such as
must-link or cannot-link constraints on the categories that can, or cannot, be merged
together, and ensure reasonable sample sizes in the cells of the clustered table from
which trustful statistical conclusions can be derived. We illustrate the usefulness of
our methodology using a dataset of a medical study.
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1 Introduction

Data science comprises a plethora of methods and strategies to extract useful knowl-
edge from raw data. Among other disciplines, such as statistics, computer science or
information technology, mathematical optimization plays a crucial role across its tasks
(Bottou et al. 2018; Gambella et al. 2021; Olafsson et al. 2008). Much effort has gone
into incorporating recent developments in optimization theory and software to tackle
data science problems more effectively, such as in regression and classification (Bert-
simas and King 2016; Bertsimas and Shioda 2007; Blanquero et al. 2020; Carrizosa
and Romero Morales 2013; Carrizosa et al. 2021; Toriello and Vielma 2012), clus-
tering strategies (Benati and García 2014; Carrizosa et al. 2013; Hansen and Jaumard
1997; Hochbaum and Liu 2018; Park et al. 2000; Sağlam et al. 2006), correspondence
analysis (van de Velden et al. 2020), dimensionality reduction methods (Carrizosa
and Guerrero 2014; Carrizosa et al. 2020; Cunningham and Ghahramani 2015), deep
learning (Anderson et al. 2020; Fischetti and Jo 2018) or data visualization (Carrizosa
et al. 2017a, 2018a, b, 2019).

There are still many data science problems which do not take advantage of such
advancements and ad-hoc strategies are still used, such as, the analysis of the indepen-
dence of two categorical variables through a function of the entries of their contingency
table. LetU and V be two categorical variables, which take on a finite number of val-
ues, u1, . . . , ur and v1, . . . , vc, respectively. Given a set of n entities for which these
variables have been observed, a first summary of their distribution is provided by
their contingency table, in which the frequency of the event (ui , v j ), oi j , is collected
for i = 1, . . . , r and j = 1, . . . , c. Table 1 contains an example of a contingency
table in which n = 98 observations (lowest right corner) are cross-classified accord-
ing to variable U , which has categories u1 and u2 and variable V , which has three
categories (v1, v2 and v3). Whereas the inner rectangle in the table contains the joint
frequencies oi j , the last row (resp. column) contains the marginal frequencies o. j of
V , j = 1, . . . , c (resp. oi . of U , i = 1, . . . , r ).

When the data is cross-classified as in Table 1, the statistical (in)dependence of two
categorical variables is usually investigated using the classical χ2 measure (Pearson
1900;Mirkin 2001), althoughdifferent approaches exist in the literature (Goodman and

Table 1 Example of a
contingency table

v1 v2 v3

u1 7 8 9 24

u2 8 43 23 74

15 51 32 98
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Kruskal 1979; Joe 1989). The χ2 coefficient is an estimate of the deviation between
the empirical probability distribution of the variables U and V and the probability
distribution that we would have if the two variables were statistically independent,
and it is given by

χ2 =
r∑

i=1

c∑

j=1

(oi j − ei j )2

ei j
, (1)

where ei j = oi .o. j

n
. Theminimumvalue ofχ2 in (1) is 0,which occurs if and only if the

variablesU and V are statistically independent. Therefore, the larger χ2, the stronger
the evidence against independence. The χ2 statistic in (1) approximates a Chi-squared
distribution with (r−1)×(c−1) degrees of freedom. In Table 1, one gets χ2 = 6.355,
which provides evidence against the statistical independence of the two variables
involved (p−value= 0.04,which tests the null hypothesis of statistical independence)
for a 5% significance level. These inferential properties can be derived as long as
the observed joint frequencies oi j are large enough for all i = 1, . . . , r and j =
1, . . . , c. To ensure this, the categories of the variables, associated with the rows and
columns of the table, are often grouped, yielding a less granular representation of the
categorical variables. Clustering categories in rows and/or columns of a contingency
table is also desirable to enhance interpretability and transparency (Baesens et al.
2003; Carrizosa et al. 2017b, 2022; Goodman and Flaxman 2017; Ustun and Rudin
2016), by easing the presentation of the table as well as the conclusions of the analysis
from a statistical perspective. Furthermore, constrained clustering allows the analyst
to incorporate knowledge about the problem under study and support meaningful
decision making (Abin 2019; Śmieja and Wiercioch 2017).

However, it is known that the conclusions on independence depend, in general,
on the granularity chosen for each of the categorical variables. For instance, let us
consider that variable V in the example above is encoded as v′

1 = v1 & v3 and
v′
2 = v2. Thus, observations in v1 and v2 are now grouped together, yielding the
contingency table in Table 2, for which χ2 = 3.519. Thus, the clustered table has
c′ = 2 columns instead of the c = 3 in the initial table and is the one yielding
the largest χ2 among all the tables of that granularity, namely with two columns
and two rows. In this case, there is not a significant evidence at a 5% significance
level to reject the statistical independence assumption between the variables U and
V (p−value= 0.06). Therefore, the Simpson’s paradox (Blyth 1972) arises in this
example since the less granular representation of the categorical variables in Table 2
supports a conclusion, namely statistical independence, different from that suggested

Table 2 Contingency table
resulting from grouping together
the categories v1 and v3,

yielding category v′
1, in Table 1

v′
1 v′

2

u1 16 8 24

u2 31 43 74

47 51 98
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by the variables before the grouping of categories, namely statistical dependence in
Table 1 (Shmueli and Yahav 2017; Tsumoto 2009). Thus, we have identified a so-
called extreme grouping, namely Table 1 has the largest granularity of the variablesU
and V for which statistical dependence between them is found.

In this paper we propose a mathematical optimization model to cluster the
rows/columns of a contingency table so that the χ2 statistic is maximized for a fixed
granularity of the variables. Solving this problem for different sizes allows us to
either identify extreme groupings or conclude that they do not exist. Our approach
is flexible enough to include constraints on the desirable structure of the clusters,
such as must-link or cannot-link constraints on the categories that can, or cannot, be
merged together, and ensure reasonable sample sizes in the cells of the clustered table
from which trustful statistical conclusions can be derived. This constrained clustering
approach allows us to incorporate background knowledge to support the analysis and
extract meaningful conclusions (Abin 2019; Śmieja and Wiercioch 2017).

The problem of clustering the categories of a contingency table to find extreme
groupings for a fixed granularity has not been studied as such in the literature. There
are however related approaches that involve distributional assumptions or use ad-
hoc heuristic procedures that are not flexible enough to include constraints on the
clusters. Indeed, Greenacre (1988) proposed a greedy procedure, based on hierarchi-
cal clustering, which uses a χ2 related distance function between row (resp. column)
vectors. However, this approach does not guarantee that clustered tables with the high-
est dependence for a fixed granularity are necessarily found because only a reduced
family of allowable groupings, namely a hierarchical structure, are considered. The
classical k-means clustering algorithm has been also adapted to the particular case of
contingency tables (Govaert 1995; Govaert and Nadif 2007) as well as geometrical
approaches, such as the maximum-tangent-plane (Bock 2003), have been developed.
Ciampi et al. (2005) propose using the coordinates obtainedwith correspondence anal-
ysis to find a clustering and Álvarez de Toledo et al. (2018) use a similarity measure
between the categories to obtain a partition. In order to find homogeneous clusters in
document-term matrices, Ailem et al. (2016) propose maximizing a graph modularity
criterion and Labiod and Nadif (2011) a community detection one. Whereas these
approaches are based on the optimization of a measure of association, some proba-
bilistic approaches have been also studied. In this case, it is assumed that each element
of the contingency table is generated according to a probability model, which is tried
to be recovered from the data. In this context, Ailem et al. (2017a, b); Riverain and
Nadif (2022) propose latent block models to identify a diagonal structure of homoge-
neous blocks in document-term matrices. Proceeding this way, blocks of zeroes are
identified and clustered together, thus yielding joint frequencies in the clustered table
which are (close to) zero. A unified framework about the optimization of measures
of association and probabilistic approaches is studied by Govaert and Nadif (2010).
The aforementioned approaches are unable to deal with the analysis of dependence
between variables in sparse tables, namely tables for which some of the observed
joint frequencies are equal or close to zero and thus statistical conclusions cannot
be inferred. It is well known that the common practice of adding constants to small
joint frequencies can disturb the possible statistical dependence structure underlying
in a sparse table (Agresti and Yang 1987). If some categories were properly clustered
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together, this sparsity problem would be removed without damaging the underlying
possible relationship between the variables. However, the existing methods cannot
incorporate the corresponding constraints to ensure that this removal of sparsity is
achieved.

The idea of clustering categories in contingency tables has been also applied to the
discretization of continuous variables involved in supervised learning algorithms. To
guide the search of the partition, a criterionwhich assesses the relationship between the
intervals inwhich the continuous variable is split and the target values to be predicted is
optimized. For instance, Kerber (1992) uses theχ2 distance between adjacent intervals
to merge them if they are similar enough according to a given threshold. Boulle (2004)
proposes a greedy approach and uses the p−value associated to the χ2 statistic of
the clustered table to select the discretization. However, these methods fail when
constraints have to be imposed to the discretization being sought, such as that each
interval in the partition has to have a large enough number of observations or there are
rules that have to be accomplished (e.g. minimum or maximum length of the intervals
which form the discretization).

In this paper, we propose an assignment and a set partitioning mathematical
optimization formulations to cluster rows and/or columns of contingency tables max-
imizing the χ2 statistic in (1), as a measure of the strength of the dependence, for a
fixed size of the clustered table. Solving this model for different sizes, we can decide
whether the statistical dependence can be preserved with the chosen granularity of the
variables. If this is the case, we reduce the size of the parameter and solve the maxi-
mization problem again. We do this until we find the extreme groupings, or conclude
that they do not exist, namely for any size of the reduced table the dependence of
the variables can be preserved. Our model can easily be enriched with constraints to
incorporate user knowledge on the allowable groups of categories, or to successfully
handle sparse tables. With the proposed formulations, even contingency tables as the
ones in the numerical section can be tackled using off-the-shelf optimization solvers.

The remainder of the paper is structured as follows. Section 2 states the mathemat-
ical optimization model to cluster categories in a contingency table maximizing the
χ2 statistic and imposing structural properties in the clusters. An assignment and a
set partitioning formulations for such model are presented in Sect. 3. Finally, Sect. 4
illustrates our methodology and Sect. 5 concludes the paper with some remarks and
future research.

2 Problem definition

This section is devoted to presenting a mathematical optimization model to cluster the
rows and/or columns of a given contingency table which maximizes the χ2 statistic
in (1) for a fixed granularity of the categorical variables whereas requirements on the
clusters, that is conditions about allowable groups of categories or thresholds over the
sample sizes in the cells of the clustered table, are also imposed.

Let T0 be a contingency table representing the counts of outcomes of two categorical
variables U and V , which both take a finite set of values (categories), u1, . . . , ur and
v1, . . . , vc, respectively. Recall that given a sample of n entities, oi j denotes the joint
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observed frequency of the pair (ui , v j ), oi . the marginal frequency of ui and o. j the
marginal frequency of v j , for i = 1, . . . , r and j = 1, . . . , c. In order to measure the
strength of the association between the variablesU and V , the χ2 statistic as stated in
(1) is used. Let χ2(T0) be the value of (1) for data in table T0.

Given the contingency table T0, a clustered table T is obtained from it by merging
the rows and/or columns of T0 into a new set of categories (clusters). In other words,
a set of k (k ≤ c) clusters of columns of T0, {ṽ1, . . . , ṽk}, is a partition of the set
{v1, . . . , vc} into k groups such that, for l, l ′ = 1, . . . , k:

• ṽl ⊆ {v1, . . . , vc},
•

⋃k

l=1
ṽl = {v1, . . . , vc},

• ṽl ∩ ṽl ′ = ∅, l �= l ′.
Similarly, row clusters can be also defined as ũ1, . . . , ũs (s ≤ r ). The clustered con-
tingency table T from T0 has a less granular representation of its categorical variables
U and V and has as joint frequencies õml , which are obtained from the sum of the
corresponding joint frequencies in T0, namely õml =

∑
i : ui∈ũm
j : v j∈ṽl

oi j . In other words,

a clustered table T accumulates the corresponding frequencies in T0. Let χ2(T ) be
the value of (1) in table T .

Clustering the rows and/or columns of a contingency table reduces the value of the
χ2 statistic, that is χ2(T ) ≤ χ2(T0) (see Govaert and Nadif (2018) for a detailed
proof). Therefore, to see whether we can preserve the dependence structure between
the variables U and V when their categories are clustered, we seek, for a fixed size,
the clustered table T which maximizes χ2(T ). Repeating this procedure for different
values of the granularity, we can either identify an extreme grouping or conclude that
it does not exist, namely the two variables are dependent regardless of the size of the
clustered table. Indeed, in the event of obtaining a clustered table T so that statistical
dependence is assumed and its clustered table exhibits independence, then we say that
T is an extreme grouping.

In order to obtain new categories in table T , namely the clusters, which are mean-
ingful for the analyst, being able to incorporate prior knowledge about the groups of
categories which are allowed or not to be merged would be helpful. In other words, not
every possible combination of categories is allowed. Besides easing the interpretabil-
ity, clustering can be used to deal with sparsity issues in the entries of T0 looking for
aggregations of columns and/or rows which accumulate at least a certain number of
observations. Let T (T0) be the set of all possible contingency tables resulting from
allowable groups of rows and columns of T0.

The problem of Clustering a Contingency Table (CCT) described above is stated
as the following combinatorial optimization problem:

max
T

χ2(T ) (CCT)

s.t. T ∈ T (T0).

(CCT) seeks the table T ∈ T (T0) that maximizes the strength of the association
between the variables in the clustered table T measured through the χ2 statistic in (1),
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and satisfies the structure imposed on the clusters through the definition of the feasible
set T (T0). (CCT) is a combinatorial problem for which an assignment (0–1 nonlinear)
formulation is proposed in the next section. Other formulations are also possible, such
as a set partitioning one, which is stated in Sect. 3.3.

3 An assignment formulation and its set partitioning counterpart

This section is devoted to developing a mathematical optimization formulation for the
(CCT) model stated in Sect. 2. An assignment formulation is proposed in Sect. 3.1,
in which the decisions to be made are whether a column of the observed contingency
table T0 is assigned to a cluster of categories in the clustered table T or not, yielding
a 0− 1 nonlinear optimization model. Section 3.2 is devoted to formally model some
structures which could be demanded to the clustered table T to, for instance, get
meaningful clusters by incorporating expert knowledge on the allowable groupings or
reduce sparsity. Recall that these conditions naturally arise from the problem under
study. Finally, a set partitioning formulation is proposed in Sect. 3.3.

Clustering a contingency table T0 can be done either row-wise (only the rows
are clustered while the initial columns in T0 are maintained), column-wise (only the
columns are clusteredwhile the initial rows in T0 aremaintained), or in both directions,
this is, column and rows are both clustered into new categories. Whereas our approach
is valid for any of these three options, the assignment formulation for (CCT) and its
extensions are fully developed column-wise for the sake of clarity.

3.1 The assignment formulation for (CCT) with k clusters

Recall that {v1, . . . , vc} is the set of categories (columns) of variable V in the observed
contingency table T0. The categories in T0 are aimed to be clustered into k new cat-
egories, named as ṽ1, . . . , ṽk , k ≤ c in such a way that the categories in T form a
partition of the ones in T0 and the χ2 statistic of the clustered table, that is χ2(T ), is
maximized.

Let y jl for all j ∈ {1, . . . , c} and l ∈ {1, . . . , k} be a binary decision variable
defined as

y jl =
⎧
⎨

⎩

1 if the j-th category in T0(v j ), is assigned to the l-th category (ṽl), in T ,

0 otherwise.

Letχ2
(

{y jl} j∈{1,...,c}
l∈{1,...,k}

)
be theχ2 statistic for the clustered table T , which is defined

by the y-variables and (1) as:
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χ2
(

{y jl} j∈{1,...,c}
l∈{1,...,k}

)
=

k∑

l=1

r∑

i=1

(∑c

j=1
(oi j − ei j )y jl

)2

∑c

j=1
ei j y jl

The problem of clustering the columns of a contingency table T0 into k clusters
maximizing the χ2 statistic is stated as a 0–1 nonlinear optimization model, which
consists of the maximization of a convex function subject to linear constraints, as
follows:

max χ2
(

{y jl} j∈{1,...,c}
l∈{1,...,k}

)
(2)

s.t.
k∑

l=1

y jl = 1, j = 1, . . . , c, (3)

c∑

j=1

y jl ≥ 1, l = 1, . . . , k, (4)

y jl ∈ {0, 1} j = 1, . . . , c, l = 1, . . . , k. (5)

Constraint (3) ensures that each category in T0 goes to just one of the new categories
(clusters) in T and constraint (4) imposes that each cluster has at least one category.
Finally, constraint (5) defines the binary nature of y-variables. Note that problem
(2)–(5) can be enriched with constraints to break the symmetry associated with the
clusters.

3.2 Modelling some clustering structures

The assignment formulation in (2)–(5) provides a flexible framework to incorporate
additional requirements on the clusters in table T in a straightforward manner, namely
as additional linear constraints. We describe in what follows some of the most natural
cases, although more complex structures, such as the constrained discretization of
continuous variables for supervised learning algorithms, can also be modeled using
the y-variables in the assignment formulation stated above.

• Non-sparsity constraints: In contingency tables analysis usually happens that
some of the observed joint frequencies are equal or close to zero, and thus statistical
conclusions cannot be inferred from the distribution of the χ2 statistic. In order to
be able to apply statistical inference theory, sparsity problems in the observed table
T0 might be mitigated by clustering some of its columns by imposing a threshold
over the number of observations in each row of the new column (cluster). In other
words, the user might require that in each row of the columns in the new table T
there are at least β observations. A common value for β is 5. Such condition can

123



Onmathematical optimization for clustering categories…

be added as a constraint to problem (2)–(5) as follows:

c∑

j=1

oi j y jl ≥ β, i = 1, . . . , r , l = 1, . . . , k. (6)

• Cannot-link constraints: A cannot-link constraint is used to specify that two or
more specified categories in T0 cannot be associated with the same cluster in T .
In its simplest case, namely two categories v j and v j ′ in T0 cannot be grouped
together in T , the cannot-link constraint is modeled as

y jl + y j ′l ≤ 1, l = 1, . . . , k. (7)

Condition (7) can be easily generalized to accommodate groups of categories in
T0 which cannot belong to the same cluster.

A complementary set of conditions to cannot-link ones are the so-called must-link
constraints, which are used to specify that two or more specified categories in T0
must be assigned to the same cluster in T . Although these kind of conditions could
be also easily modeled in a similar fashion, they can be imposed in a preprocessing
step.

• Relational constraints: There might be structural conditions among categories
which are more complex than the ones given by cannot or must-link constraints.
That is the case of, for instance, the existence of a partial order relation≺ between
the categories implying that, if two categories belong to one cluster then all the
categories in-between must belong to the same cluster too. In its simplest case,
namely two categories v j and v j ′ in T0 such that v j precedes v j ′ in the partial
order, the so-called relational constraint is modeled as

y jl + y j ′l ≤ y j ′′l + 1, for v j ≺ v′′
j ≺ v′

j and l = 1, . . . , k. (8)

• Demand / capacity constraints:Wemay also require that each column l (clusters)
in T contains at least al categories of T0 and/or no more than bl , thus establishing
demand and/or capacity constraints, respectively, for l = 1, . . . , k. Such conditions
can be added as constraints to problem (2)–(5) as follows:

al ≤
c∑

j=1

y jl ≤ bl , l = 1, . . . , k. (9)

• ‘et al.’ clustering: Given a contingency table T0 with c columns, the analyst might
be interested in obtaining a clustered table T with k columns in which k − 1 of its
categories are exactly k − 1 of the categories in T0 and the k-th category is made
up of the aggregation of the remaining c−k+1 categories in T0, that is the ‘et al.’
category. This structure is a particular case of (CCT) with k clusters, in which k−1
clusters are singletons and the k-th category in the new table comprises c− (k−1)
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categories. In order to get such structure in T , constraint (4) in the formulation
(2)–(5) for (CCT) must be replaced by

c∑

j=1

y jl = 1, l = 1, . . . , k − 1, (4a)

c∑

j=1

y jk = c − k + 1. (4b)

Nevertheless, the number of variables and constraints in the optimization problem
defined by (2), (3), (4a), (4b) and (5) can be significantly reduced if the following
variables are considered instead:

y j =
⎧
⎨

⎩

1 if the j-th category in T0(v j ) is in T as a singleton,

0 otherwise.

Using this new definition of y-variables, the χ2 statistic in (1) is rewritten as

χ2({y j } j∈{1,...,c}) =
r∑

i=1

⎧
⎪⎨

⎪⎩

c∑

j=1

(oi j − ei j )2

ei j
y j +

(∑c

j=1
(oi j − ei j )(1 − y j )

)2

∑c

j=1
ei j (1 − y j )

⎫
⎪⎬

⎪⎭
.

Therefore, the 0–1 nonlinear formulation for the (CCT) problem with the ‘et al.’
structure (2), (3), (4a), (4b) and (5) is rewritten as

max χ2({y j } j∈{1,...,c}) (10)

s.t.
c∑

j=1

(1 − y j ) = c − k + 1, (11)

y j ∈ {0, 1} j = 1, . . . , c. (12)

Constraints (11) and (12) control the number of categories in table T0 which
compose the ‘et al.’ category in table T and the binary nature of the y-variables,
respectively.

3.3 A set partitioning formulation for (CCT)

In this section, an alternative formulation is proposed for (CCT), which assumes that
there is a list of permissible aggregations of columns in T0 that can be used to build the
clustered table T . Given such a list, a set partitioning formulation is proposed whose
benefits with respect to an assignment one are twofold: first, its continuous relaxation
is, in general, tighter (Freling et al. 2003), and second, the so-obtained formulation
becomes 0–1 linear.
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In order to state a set partitioning formulation for (CCT), let {S1, . . . , SK } be a
family of K subsets of the categories in T0 given by {v1, . . . , vc}. These subsets
represent the list of allowable aggregations of columns in T0, that is the list of clusters
which can be used to build the columns in the clustered table T . Let A be a c× K 0–1
matrix with entries a jp for all j ∈ {1, . . . , c} and p ∈ {1, . . . , K } defined by

a jp =
⎧
⎨

⎩

1 if v j ∈ Sp,

0 otherwise,

and let xp for all p ∈ {1, . . . , K } be a binary decision variable defined by

xp =
⎧
⎨

⎩

1 if Sp is a column of the clustered table T ,

0 otherwise.

Let χ2({xp}p∈{1,...,K }) be the χ2 statistic for the clustered table stated as

χ2({xp}p∈{1,...,K }) =
r∑

i=1

K∑

p=1

(∑c

j=1
(oi j − ei j )a jp

)2

∑c

j=1
ei j a jp

x p.

Then, the set partitioning formulation for problem (CCT) is stated as:

max χ2({xp}p∈{1,...,K }) (13)

s.t.
K∑

p=1

a jpxp = 1, j = 1, . . . , c (14)

xp ∈ {0, 1} k = 1, . . . , K . (15)

Whereas (14) ensures that each column of T0 belongs to just one cluster in T , constraint
(15) imposes the binary nature of the x-variables. We point out that (13)–(15) is a 0–1
linear optimization problem, which can easily accommodate the structures discussed
in Sect. 3.2. For instance, the relational condition requiring that if columns v j and v j ′
in T0 belong to the same cluster in table T then column v j ′′ belongs also to that cluster
is defined through one of the S-sets as {v j , v j ′ , v j ′′ }.

4 Illustrative examples

In order to illustrate the methodology proposed in this paper, a contingency table T0
obtained from a medical study by Kandoth et al. (2013) is considered. This table
comprises information about n = 9786 biological samples and its joint frequencies
correspond to the number cross-classified cases of the categorical variables cancer
type (U ), which has r = 11 categories, and significantly mutated gene (V ), which has
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c = 127 categories. The set of genes are divided into 20 groups, which are defined
according to biological features. This contingency table can be obtained from the
supplementary material in Kandoth et al. (2013) and it is also included in Tables 8
and 9 in the Appendix. In Table 3 we show, for each of the groups g = 1, . . . , 20: its
description according to Kandoth et al. (2013), a color to represent it in the upcoming
results, the number of genes (categories) in each group (Sg), and the percentage of
cells the contingency table within each group which are sparse (that is, for each i =
1, . . . , 11 the cardinality of {oi j : oi j < 5, j = 1, . . . ,Sg} divided by Sg times 100).
We point out the noticeable amount of joint frequencies which are below the usual
threshold of 5, being the level of sparsity greater than 49% within all the groups. For
the interpretation of references to color in Table 3, the reader is referred to the web
version of this article.

Table 3 Main features of the contingency table from Kandoth et al. (2013) used to illustrate our approach

Group (g) Description Color Size (Sg) Sparsity (%)

1 Transcription factor/regulator 21 75.3

2 Histone modifier 13 49.0

3 Genome integrity 13 51.7

4 RTK signalling 9 58.6

5 Cell cycle 7 74.0

6 MAPK signalling 7 64.9

7 PI(3)K signalling 6 57.6

8 TGF-β signalling 5 80.0

9 Wnt/β-catenin signalling 5 70.9

10 Histone 3 97.0

11 Proteolysis 3 69.7

12 Splicing 3 78.8

13 HIPPO signalling 2 81.8

14 DNA methylation 2 59.1

15 Metabolism 2 86.4

16 NFE2L 2 68.2

17 Protein phosphatase 2 72.7

18 Ribosome 2 86.4

19 TOR signalling 2 63.6

20 Other 18 64.1
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Table 4 Assignment of genes in T0 to clusters in T solving model (2)–(6) (Part I)

χ2

Cluster 1 Cluster 2 Cluster 3 Cluster 4
(p−value)

3402.28

(< 0.000)

2 3

4 5 6 7 9

10 11 13 14 16

17 18 19 21 22

23 24 27 28 30

31 32 33 34 35

36 37 38 39 40

42 43 45 46 47

48 50 51 52 53

54 55 56 57 58

59 60 61 62 63

64 65 66 67 69

70 71 72 73 74

75 76 77 78 79

80 81 82 83 84

85 86 87 88 89

90 91 92 93 95

96 97 102 103 104

106 107 108 109 110

111 112 113 114 115

116 117 119 120 121

122 123 124 125 126

1 8 12 15 20

25 26 29 41 44

49 68 94 98 99

100 101 105 118 127

6768.98

(< 0.000)

2 3 4 5

6 7 9 10 11

13 14 15 16 17

18 19 21 22 23

24 27 28 30 31

32 33 34 35 36

37 38 39 40 42

43 44 45 46 47

48 50 51 52 53

54 55 56 57 58

59 60 61 62 63

64 65 66 67 69

70 71 72 73 74

75 76 77 78 79

80 81 82 83 84

85 86 87 88 89

90 91 92 93 95

96 97 102 103 104

106 107 108 109 110

111 112 113 114 115

116 117 119 120 121

122 123 124 125 126

8 12

20 49 68 94 98

100 101 105 118 127

1

25 26 29 41 99

8532.66

(< 0.000)

3 4 6 7 9

10 13 15 17 18

19 22 23 27 28

30 33 34 35 36

37 38 39 40 42

43 44 45 46 47

48 50 51 52 53

55 56 57 58 59

60 62 63 64 65

67 70 74 75 77

78 79 80 81 82

84 85 87 88 90

91 95 97 102 108

109 110 111 112 113

114 115 117 119 120

121 122 123 124 125

2 5 11 14

16 21 24 31 32

54 61 66 69 71

72 73 76 83 86

89 92 93 96 103

104 106 107 116 126

8 12

20 49 68 94 98

99 100 101 105 118

1

25 26 29 41 127

123



E. Carrizosa et al.

Table 5 Assignment of genes in T0 to clusters in T solving model (2)–(6) (Part II)

χ2

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10
(p−value)

10278.21

(< 0.000)

3 4 6 7 9

10 13 15 19 22

23 27 28 30 33

34 35 36 37 38

39 40 42 43 44

45 46 47 48 50

51 52 53 55 56

57 58 59 60 62

63 65 67 70 74

75 78 79 81 84

85 87 88 90 91

97 102 103 107 108

109 110 111 112 113

114 115 117 119 120

121 122 123 124 125

2 5

11 14 16 21 24

31 32 54 61 66

69 71 72 73 76

83 86 89 92 93

96 104 106 116 126

8

12 20 49 94 98

99 100 101 105 118

17 18 64

68 77 80 82 95

1

25 26 29 41 127

11483.64

(< 0.000)

3 4 6 7

9 13 15 22 23

27 28 30 33 34

35 36 37 38 39

40 42 44 45 47

50 51 52 53 55

56 57 58 59 62

63 65 67 70 74

75 78 79 81 84

85 87 88 90 91

97 102 103 108 109

110 111 112 113 114

115 117 119 120 121

122 123 124 125 126

5 11 21 24

31 32 43 48 54

61 72 73 83 86

89 92 104 106 107

2 10 14 16

19 46 60 66 69

71 76 93 96 116

8

12 20 49 94 98

99 100 101 105 118

17 18 64

68 77 80 82 95

1

25 26 29 41 127

12446.15

(< 0.000)

3 4 6

7 9 13 15 22

23 27 28 30 33

34 36 37 38 39

40 44 45 46 47

48 50 51 52 53

56 57 58 62 65

67 70 74 75 78

79 84 85 88 91

93 97 102 103 107

108 109 110 111 112

113 114 115 117 119

120 121 123 124 125

5 11 21 24

31 32 43 54 61

72 73 83 86 89

90 92 104 106 126

2 8 10

14 16 19 60 66

69 71 76 96 116

12 20 49 94 98

99 100 101 105 118

17 18 64 68

77 80 81 82 95

35 42

55 59 63 87 122

1

25 26 29 41 127

13064.41

(< 0.000)

3 6 7 9

13 22 28 34 36

37 38 39 40 44

45 46 48 50 51

52 53 58 65 67

70 74 75 79 84

85 88 91 107 108

109 110 112 115 117

119 120 121 124 125

5 11 21 24 31

32 43 54 61 72

73 83 86 89 90

92 104 106 114 126

4

23 27 30 33 47

56 57 62 78 97

102 103 111 113 123

2 10 14 15

16 19 60 66 69

71 76 93 96 116

8

12 20 49 94 98

99 100 101 105 118

17 18 64 68

77 80 81 82 95

35 42

55 59 63 87 122

1

25 26 29 41 127

13552.2

(< 0.000)

3 7 9 13

22 28 36 37 38

39 40 44 45 46

50 51 52 53 58

65 67 70 74 75

79 85 88 91 108

109 110 112 115 117

119 120 121 124 125

5 6 11 21 24

31 32 43 54 61

83 84 86 89 90

92 104 106 114 126

4

23 27 30 33 47

56 57 62 78 97

102 103 111 113 123

2 10 14 15

16 19 60 66 69

71 76 93 96 116

8

12 20 49 94 98

99 100 101 105 118

17 18 64 68

77 80 81 82 95

35

42 55 59 87 122

1

25 26 29 41 127

34

48 63 72 73 107

13902.5

(< 0.000)

6 7 9

13 22 31 33 36

38 39 43 44 46

55 70 78 79 81

84 85 90 93 103

108 112 114 115 117

121 122 123 125 126

5

11 21 24 32 34

54 61 72 73 83

86 89 92 104 106

3 28 50 51

53 67 74 75 88

91 109 110 119 124

2 10 14

15 16 19 60 66

69 71 76 96 116

4 23

27 30 47 56 57

62 97 102 111 113

8

12 20 49 94 98

99 100 101 105 118

37 40 45 48 52

58 63 65 107 120

17 18 64

68 77 80 82 95

1

25 26 29 41 127 35 42 59 87

In what follows, we present results obtained from clustering the contingency table
of Kandoth et al. (2013) using two different clustering structures. The optimization
models involved in the experiments have been solved using Bonmin (Bonami and Lee
2017) under Pyomo. Bonmin is an open-source numerical optimization procedure for
solving general Mixed Integer Nonlinear Programs by means of Branch-and-Bound
and Branch-and-Cut algorithms, thus avoiding an explicit complete enumeration of
all the feasible solutions of the models stated in Sect. 3. In order to avoid being stuck
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Table 6 Assignment of genes in T0 to clusters in T solving model (2)–(7) (Part I)

χ2

Cluster 1 Cluster 2 Cluster 3 Cluster 4
(p−value)

1185.51

(< 0.000)

1 2

3 4 5 6 7

8 9 10 11 12

13 14 15 16 17

18 19 20 21 40

43 44 46 48 49

50 51 52 53 54

55 56 60 61 64

65 66 67 68 69

70 71 72 73 76

77 79 80 81 82

83 84 86 90 92

93 94 95 96 98

99 100 101 105 106

107 118 122 126 127

22 23 24 25 26

27 28 29 30 31

32 33 34 35 36

37 38 39 41 42

45 47 57 58 59

62 63 74 75 78

85 87 88 89 91

97 102 103 104 108

109 110 111 112 113

114 115 116 117 119

120 121 123 124 125

3230.99

(< 0.000)

1 2 3

4 5 6 7 8

9 10 11 12 13

14 15 16 17 18

19 20 21 37 40

41 43 44 46 48

49 50 51 52 53

54 55 56 58 60

61 64 65 66 67

68 69 70 71 72

73 76 83 85 86

92 93 96 104 106

107 108 116 125 126

22 23 24 25 26

27 28 29 30 31

32 33 34 35 36

38 39 42 45 47

57 59 62 74 75

77 78 79 80 81

82 84 87 88 89

90 91 95 97 102

103 109 110 111 112

113 114 115 117 119

120 121 122 123 124

63 94 98 99

100 101 105 118 127

4380.75

(< 0.000)

1 2

3 4 5 6 7

8 9 10 11 12

13 14 15 16 17

18 19 20 21 36

40 43 46 48 49

50 51 52 53 54

55 56 58 60 61

64 65 66 67 68

69 70 71 72 73

76 77 79 80 81

82 83 84 86 90

92 93 95 96 104

106 107 116 122 126

22

23 24 25 26 27

28 29 30 31 32

33 34 37 38 39

41 44 45 47 57

62 74 75 85 88

89 91 97 102 103

108 109 110 111 112

113 114 115 117 119

120 121 123 124 125

63 94 98 99

100 101 105 118 127 35 42 59 78 87
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Table 7 Assignment of genes in T0 to clusters in T solving model (2)–(7) (Part II)

χ2

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10
(p−value)

5370.6

(< 0.000)

22 23 24 25

26 27 28 29 30

31 32 33 34 36

37 38 39 40 41

44 45 47 57 62

74 75 88 91 97

102 108 109 110 111

112 113 114 115 117

119 120 121 123 124

1 2

3 4 5 6 7

8 9 10 11 12

13 14 15 16 17

18 19 20 21 60

71 76 85 93 96

103 107 116 125 126

35 42

46 48 49 50 51

52 53 54 55 56

58 59 64 65 66

67 68 69 70 77

78 79 80 81 82

84 87 90 95 122

43 61 72 73 83

86 89 92 104 106

63 94 98 99

100 101 105 118 127

6520.47

(< 0.000)

1 2 3

4 5 6 7 8

9 10 11 12 13

14 15 16 17 18

19 20 21 36 40

44 46 48 49 50

51 52 53 54 55

56 58 60 64 65

66 67 68 69 70

71 76 79 81 84

85 90 93 96 103

107 116 122 125 126

22

23 24 25 26 27

28 29 30 31 32

33 34 37 38 39

41 45 47 57 62

74 75 88 91 97

102 108 109 110 111

112 113 114 115 117

119 120 121 123 124

43 61 72 73 83

86 89 92 104 106

63 94 98

99 100 101 118 127 77 80 82 95 105 35 42 59 78 87

7144.85

(< 0.000)

1

2 3 4 5 6

7 8 9 10 11

12 13 14 15 16

17 18 19 20 21

36 40 44 48 49

50 51 52 53 54

55 56 58 64 65

66 67 68 69 70

79 81 84 90 93

107 108 122 125 126

22 23

24 25 26 27 28

29 30 31 32 33

34 37 38 39 41

45 47 57 62 74

75 85 88 91 97

102 103 109 110 111

112 113 114 115 117

119 120 121 123 124

43 61 72 73 83

86 89 92 104 106

63 94 98

99 100 101 118 127

46

60 71 76 96 116 77 80 82 95 105 35 42 59 78 87

7583.56

(< 0.000)

22

23 24 25 26 27

28 29 30 31 32

33 34 38 39 45

47 57 62 74 75

85 89 91 97 102

103 109 110 111 112

113 114 115 117 119

120 121 123 124 125

36 37

40 48 49 50 51

52 53 54 55 56

58 64 65 66 67

68 69 70 79 81

84 88 90 107 122

1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 41 108 126

43 61 72 73

83 86 92 104 106

44 98 99

100 101 105 118 127

46 60

71 76 93 96 116

63

77 80 82 94 95 35 42 59 78 87

8011.38

(< 0.000)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 41 79 108 126

22 23

24 25 26 27 28

29 30 31 32 33

34 36 38 45 47

62 85 93 103 125

37 40

48 49 50 51 52

53 54 55 56 58

64 65 66 67 68

69 70 105 107 120

39 57 74 75 88

91 97 102 109 110

111 112 113 114 115

117 119 121 123 124

43 61 72 73 83

86 89 92 104 106

46 77 80 81

82 84 90 95 122

63 94 98

99 100 101 118 127

44

60 71 76 96 116 35 42 59 78 87

8111.06

(< 0.000)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 41 85 108 126

38 39

45 57 78 89 90

93 97 102 103 104

111 112 113 114 115

117 120 121 122 123

37

48 49 50 51 52

53 54 55 56 58

64 65 66 67 68

69 70 79 81 107

22

23 24 25 26 27

28 29 30 31 32

33 34 36 47 62

74 75 88 91

109 110 119 124 127

44 94 98

99 100 101 105 118

43 61 72

73 83 86 92 106

46 77

80 82 84 95 125

40

60 71 76 96 116 35 42 59 63 87

at local optima, each problem has been solved 10 times with a time limit of one hour
in a PC Intel® CoreTM i7-7700, 16GB of RAM.

As abovementioned, the contingency table T0 in Kandoth et al. (2013) is highly
sparse. It is well known that in such case the asymptotic distribution of the χ2 statistic
fails and thus statistical conclusions about the statistical dependence between U and
V cannot be inferred (Agresti and Yang 1987). In order to overcome such limitation,
a less granular representation of the genes can be considered so that the columns of
table T0 (genes) are clustered into broader categories (groups of genes) in such a way
that the aggregated joint frequencies are larger than a threshold, and thus an eventual
statistical dependence between U and V in the original table T0 could be revealed.
To do so, the optimization model defined by (2)–(6) is solved for β = 5. Tables 4
and 5 contain the assignment of the genes in T0 to the clusters (new categories made
up of groups of genes) in T for the number of clusters k varying from 2 to 10. Thus,
a initial table T0 with r = 11 and c = 127 is reduced to tables T of r = 11 and
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c = k, for k = 2, . . . , 10. First column of Tables 4 and 5 contains the values of
the χ2 statistic in T (and the associated p−value in parentheses). We point out that
statistical dependence betweenU and V is detected when the granularity of V is fixed
to k = 2, . . . , 10 and a significance level of α = 5%. Thus, we can conclude that,
under the aforementioned conditions, there does not exist a extreme grouping since
the null hypothesis of statistical independence is rejected for all k ≥ 2.

The genes in T0 are split into 20 groups defined through biological features. A
plausible requirement could be that the genes of some groups in T0 must belong to
the same clusters in T to avoid having genes of the same groups spread out across
different clusters as in Tables 4 and 5. These must-link conditions can be imposed in a
preprocessing step. In this case, we impose that genes in Groups 1, 2, 4 and 6, respec-
tively, must belong to the same cluster. In addition, our preprocessing incorporates
the requirement that Groups 4 and 6 belong to the same cluster. Conversely, some
groups might be required to belong to different clusters. This structure is illustrated
by imposing constraint (7) for j ∈ Group 1 and j ′ ∈ Group 2. Tables 6 and 7 contain
the assignment of the genes in T0 to the clusters (new categories) in T for the number
of clusters k varying from 2 to 10. As before, the first column of such tables contains
the values of the χ2 statistic in the clustered table T (and the associated p−value in
parentheses). In this case, statistical dependence between U and V is also detected
when the granularity of V is fixed to k = 2, . . . , 10, a significance level of α = 5%
is considered as well as the group structures in the clustering process. Thus, we can
conclude that, under the aforementioned conditions, there does not exist a extreme
grouping since the null hypothesis of statistical independence is rejected for all k ≥ 2.

The contingency tables obtained form the clusterings shown in Tables 4, 5, 6 and
7 are depicted in the Supplementary Material. We refer the reader to the web version
of this article for the interpretation of references to colors in Tables 4-7.

5 Conclusions

In this paper we have addressed the problem of clustering categories in contingency
tables maximizing the χ2 statistic (Mirkin 2001; Pearson 1900). Solving this clus-
tering problem for different sizes, namely different granularities of the categorical
variables under study, allows us to identify extreme groupings or, in other words, the
way categories can be clustered into larger ones so that the dependence of the vari-
ables is no longer detected if the granularity of the variables is reduced. To do so,
a combinatorial mathematical optimization model has been stated, which allows to
accommodate structural properties of the clusters in the clustered table which natu-
rally arise in the context of the dataset under study. An assignment formulation has
been proposed for such model, namely (CCT), yielding a 0–1 nonlinear optimization
problem. Requirements on the clusters, such as non-sparsity conditions, relational and
cannot link constraints, have been stated as linear constraints. In addition, a set parti-
tioning reformulation of (CCT) is also proposed. Our methodology is illustrated using
a dataset in a medical study, which naturally demands the use of the tools proposed
in this paper to handle the study of statistical dependence between its variables under
structural conditions on the clusters.
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The problem studied in this paper can be extended in a few directions. First,
other criteria different from χ2 could be considered to measure statistical dependence
(Goodman and Kruskal 1979; Joe 1989). Second, exploring different criteria to group
the categories in contingency tables different from statistical dependence, and which
are defined through appropriate combinatorial optimization models, could be also
explored as an extension to this paper. Some interesting examples could be to explore
patterns in the observed joint frequencies to group the categories in a contingency
table, or to identify those patterns in the coordinates given by Correspondence Anal-
ysis (Ciampi et al. 2005; Pledger and Arnold 2014; van de Velden et al. 2020). Third,
tighter formulations for (CCT) could be explored, in combination with metaheuris-
tic approaches such as the Variable Neighborhood Search (Mladenović and Hansen
1997) or the Large Neighborhood Search (Pisinger and Ropke 2010), to address larger
tables. Finally, extensions of the proposed methodology for dealing with multi-way
tables require further research (Agresti and Gottard 2007).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11634-022-00508-4.
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Appendix

Tables 8 and 9 contain the transposed contingency table T0 used in the illustrations
of our methodology in Sect. 4 (genes in the rows and cancer types in the columns).
This table is obtained from the supplementary material in Kandoth et al. (2013).
First column identifies the groups of genes, which are also colored in different ways,
whereas second and third contain a numerical and alphanumerical identifier for the
genes, respectively. The remaining 11 columns include the joint frequencies of the
variables genes and cancer type.
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Table 8 Transposed contingency table T0 used in Sect. 4 (Part I) (Kandoth et al. 2013)

BLCA BRCA COAD/ GBM HNSC KIRC AML LUAD LUSC OV UCEC
READ

Group 1

1 VHL 0 0 0 0 0 218 0 0 1 0 2
2 GATA3 8 81 2 0 6 0 0 6 5 1 1
3 TSHZ3 2 5 6 2 4 5 1 34 11 3 9
4 EP300 17 6 4 1 24 6 0 2 8 1 12
5 CTCF 2 18 3 0 10 2 1 3 0 1 38
6 TAF1 2 8 3 4 7 5 0 9 12 5 20
7 TSHZ2 4 7 6 7 4 3 0 15 6 3 4
8 RUNX1 1 25 2 0 2 0 18 1 0 0 3
9 MECOM 5 4 2 4 5 4 0 8 8 2 7
10 TBX3 3 18 2 0 2 0 0 10 5 3 3
11 SIN3A 1 4 1 2 2 2 0 4 5 2 12
12 WT1 0 1 2 2 0 3 12 8 4 0 1
13 EIF4A2 2 4 5 0 0 3 0 4 2 2 3
14 FOXA1 4 13 0 3 2 0 0 1 1 0 0
15 PHF6 3 3 0 1 1 2 6 2 2 1 3
16 CBFB 1 16 0 0 0 1 2 1 1 0 1
17 SOX9 0 1 8 3 2 3 0 3 1 0 1
18 ELF3 8 1 7 0 1 0 0 1 0 1 1
19 VEZF1 2 7 0 2 2 0 0 2 3 0 0
20 CEBPA 0 0 0 0 0 1 13 0 1 0 0
21 FOXA2 1 0 1 0 0 0 0 0 0 2 11

Group 2

22 MLL3 24 49 5 9 22 15 1 42 27 6 12
23 MLL2 25 12 3 5 54 13 1 20 35 2 19
24 ARID1A 27 15 11 2 9 12 1 14 11 3 69
25 PBRM1 6 3 0 2 7 137 0 4 6 1 6
26 SETD2 6 9 5 5 7 48 1 18 5 6 6
27 NSD1 6 2 1 1 32 4 0 7 9 2 13
28 SETBP1 2 3 3 4 9 6 2 29 9 0 5
29 KDM5C 1 4 1 2 3 27 0 11 5 6 5
30 KDM6A 26 8 0 3 8 4 3 2 7 0 2
31 MLL4 7 5 4 6 8 4 0 4 7 1 19
32 ARID5B 3 3 0 1 10 3 0 5 3 2 22
33 ASXL1 3 3 3 0 9 4 5 3 9 0 2
34 EZH2 1 1 0 3 1 3 3 5 4 0 4

Group 3

35 TP53 49 251 113 82 210 9 15 118 138 299 64
36 ATM 11 16 11 4 8 12 0 18 7 4 15
37 ATRX 8 9 2 16 13 8 0 14 10 2 7
38 BRCA2 6 13 3 4 11 8 0 13 10 10 10
39 ATR 4 6 4 4 16 5 0 13 7 2 16
40 STAG2 10 7 2 12 2 7 6 6 6 3 9
41 BAP1 4 2 0 2 3 42 0 3 1 2 5
42 BRCA1 4 12 0 3 8 4 0 8 9 11 2
43 SMC1A 3 6 3 5 3 2 7 3 1 4 10
44 SMC3 1 3 0 4 5 5 7 6 4 1 1
45 CHEK2 2 3 0 5 7 3 0 2 2 1 3
46 RAD21 2 4 2 1 3 0 5 6 2 1 2
47 ERCC2 12 1 1 0 1 1 0 3 0 1 1

Group 4

48 EGFR 1 5 3 77 14 7 2 26 5 6 3
49 FLT3 2 3 0 5 2 2 53 9 7 3 2
50 EPHA3 1 4 6 3 11 2 1 20 11 3 5
51 ERBB4 2 6 7 1 13 6 0 17 9 0 6
52 PDGFRA 6 3 2 11 3 6 1 15 7 3 3
53 EPHB6 3 3 0 4 4 5 0 22 6 1 4
54 FGFR2 2 7 0 1 2 1 0 7 4 0 24
55 KIT 1 4 2 3 3 3 8 4 6 6 5
56 FGFR3 8 1 1 4 5 6 0 1 4 1 1

Group 5

57 CDKN2A 4 0 1 2 64 4 0 15 26 0 1
58 RB1 14 14 1 24 9 1 0 12 12 6 9
59 CDK12 4 7 3 1 5 6 0 7 1 9 5
60 CDKN1B 2 7 2 1 2 0 0 4 0 1 2
61 CCND1 2 1 0 0 1 0 0 2 1 0 12
62 CDKN1A 12 0 0 1 0 1 0 1 2 1 0
63 CDKN2C 0 0 0 3 0 1 0 0 1 2 0
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Table 9 Transposed contingency table T0 used in Sect. 4 (Part II) (Kandoth et al. 2013)

BLCA BRCA COAD/ GBM HNSC KIRC AML LUAD LUSC OV UCEC
READ

Group 6

64 KRAS 0 6 87 2 1 1 8 60 2 2 46
65 NF1 7 19 2 32 8 7 2 27 18 12 8
66 MAP3K1 3 55 0 6 3 5 0 4 3 1 8
67 BRAF 2 3 7 6 3 1 0 15 8 2 2
68 NRAS 2 1 17 1 0 0 15 4 1 2 6
69 MAP2K4 0 31 5 0 1 0 0 3 1 1 3
70 MAPK8IP1 2 2 4 2 2 2 0 4 2 1 1

Group 7

71 PIK3CA 17 256 34 32 62 12 0 10 26 2 120
72 PTEN 3 29 2 89 4 18 0 5 14 2 146
73 PIK3R1 1 19 4 33 5 2 0 3 1 1 71
74 TLR4 2 9 0 1 6 2 1 26 10 3 1
75 PIK3CG 2 3 1 7 8 3 0 12 13 3 3
76 AKT1 0 19 0 1 2 2 0 0 1 0 3

Group 8

77 SMAD4 2 3 19 1 6 2 0 7 5 0 0
78 TGFBR2 3 3 5 2 9 1 0 2 3 3 3
79 ACVR1B 0 5 7 0 4 4 0 5 2 1 4
80 SMAD2 1 4 11 0 3 2 0 2 2 0 3
81 ACVR2A 1 4 5 0 2 1 0 2 2 0 1

Group 9

82 APC 4 4 158 1 12 6 0 21 7 7 13
83 CTNNB1 2 1 9 1 2 1 0 8 3 2 65
84 AXIN2 3 1 7 1 5 1 0 2 1 1 6
85 TBL1XR1 2 8 0 0 3 3 0 5 2 1 3
86 SOX17 0 0 1 1 1 0 0 1 0 0 7

Group 10

87 HIST1H1C 1 3 2 2 4 1 0 1 1 4 0
88 H3F3C 0 0 0 2 2 0 0 4 2 0 2
89 HIST1H2BD 1 0 0 0 4 0 0 0 2 1 6

Group 11

90 FBXW7 9 6 22 1 15 1 0 3 9 3 27
91 KEAP1 3 1 0 0 12 2 0 39 21 1 3
92 SPOP 1 1 0 0 3 0 0 1 1 1 15

Group 12

93 SF3B1 9 14 2 2 2 4 1 5 4 0 5
94 U2AF1 1 2 1 0 4 0 8 6 0 0 2
95 PCBP1 1 0 5 0 0 1 0 1 0 0 2

Group 13
96 CDH1 5 53 1 1 4 2 0 3 3 1 7
97 AJUBA 2 1 0 1 18 2 0 2 0 0 0

Group 14
98 DNMT3A 0 4 2 0 5 5 51 9 7 3 3
99 TET2 3 3 0 2 1 8 17 7 4 0 5

Group 15
100 IDH1 3 2 0 15 1 2 19 2 2 0 2
101 IDH2 0 0 3 0 0 0 20 1 0 0 1

Group 16
102 NFE2L2 9 1 0 0 16 5 0 5 26 0 12
103 NFE2L3 3 6 0 1 4 1 0 0 4 1 4

Group 17
104 PPP2R1A 1 1 3 0 4 5 0 3 8 4 20
105 PTPN11 0 1 2 5 1 1 9 6 3 1 2

Group 18
106 RPL22 0 0 0 1 2 2 0 1 0 0 25
107 RPL5 0 3 0 8 0 6 0 1 2 0 2

Group 19
108 MTOR 2 11 7 4 4 25 0 17 8 6 12
109 STK11 0 2 0 0 1 1 0 20 3 0 1

Group 20

110 NAV3 5 11 4 3 22 6 0 49 33 4 12
111 NOTCH1 5 3 0 0 58 4 1 7 14 2 4
112 LRRK2 5 5 5 3 15 6 0 15 20 9 8
113 MALAT1 15 8 0 0 19 8 0 22 10 3 0
114 ARHGAP35 5 7 1 2 11 5 1 9 10 5 23
115 POLQ 7 6 1 3 13 5 0 13 16 3 9
116 NCOR1 8 30 1 2 10 3 0 6 6 1 3
117 USP9X 3 9 0 2 13 4 1 12 8 1 15
118 NPM1 0 0 0 1 1 0 54 2 0 0 1
119 HGF 1 4 0 1 8 1 0 24 10 2 3
120 EPPK1 2 2 0 8 8 3 0 7 7 1 7
121 AR 1 5 4 0 7 2 0 4 6 1 8
122 LIFR 1 6 10 0 8 2 0 2 3 2 4
123 PRX 5 4 1 2 5 5 1 1 2 1 3
124 CRIPAK 2 2 0 1 3 2 0 12 0 0 1
125 EGR3 1 2 0 1 0 1 0 1 2 0 1
126 B4GALT3 0 1 1 0 0 1 0 0 2 0 2
127 MIR142 0 1 0 0 0 0 4 0 0 0 0
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