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ABSTRACT
Data can be assumed to be continuous functions defined on an
infinite-dimensional space for many phenomena. However, the
infinite-dimensional datamightbedrivenbya small numberof latent
variables. Hence, factormodels are relevant for functional data. In this
paper, we study functional factor models for time-dependent func-
tional data. We propose nonparametric estimators under stationary
and nonstationary processes. We obtain estimators that consider
the time-dependence property. Specifically, we use the information
contained in the covariances at different lags. We show that the
proposed estimators are consistent. Through Monte Carlo simula-
tions, we find that our methodology outperforms estimators based
on functional principal components. We also apply our methodol-
ogy to monthly yield curves. In general, the suitable integration of
time-dependent information improves the estimation of the latent
factors.
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1. Introduction

Functional data analysis (FDA) has attracted interest in recent years in different areas in
statistics, where data can be collected almost continuously, e.g. in finance, economics,
climatology, medicine, and engineering. FDA is a new methodology and an interesting
approach to deal with large-scale, high-dimensional and high-frequency data. Unlike the
multivariate approach, which depends on the points at which data are taken, FDA can
extract additional information about the continuous underlying stochastic process since
each curve is treated as a unit (Ramsay and Silverman 2005). In many real applications,
functional data, {Xn(s); s ∈ D, n ∈ Z}, are time-dependent, e.g. yield curves (Diebold and
Li 2006), mortality curves (Hyndman and Ullah 2007), electricity consumption curves
(Liebl 2013), and intraday price curves (Kokoszka, Miao, and Zhang 2015). When the
functional data are time-dependent, they are called functional time series (see Horváth
andKokoszka 2012, for a survey on functional time series). Away to construct a functional
time series is to partition a continuous-time stochastic process {Yt , t ∈ R} into consecutive
segments of length δ, that is, {Xn(s) = Ys1{s ∈ [nδ, (n + 1)δ)}, n ∈ Z}, where δ depends
on the dataset application (daily, monthly, annual, etc.). Some functional time series are
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naturally modelled by using factor models, e.g. yield curves (Diebold and Li 2006), elec-
tricity consumption curves (Liebl 2013), and intraday price curves (Kokoszka et al. 2015).
In this paper, we consider factor models for functional time series. We propose a new
methodology to obtain an estimator of the functional dynamic factor (FDF) model.

Factor models represent a large number of dependent variables from a dataset in terms
of a small number of latent variables. When the data are time-dependent, attention is
focussed on dynamic factor models. A dynamic factor model can explain a large fraction
of the variance in many macroeconomic series (Giannone, Reichlin, and Sala 2005), and
it is also consistent with broad applications to various phenomena; see Stock and Wat-
son (1988), Bai and Ng (2002), Bai (2003), Diebold and Li (2006), Friguet, Kloareg, and
Causeur (2009), Härdle and Trück (2010) and Desai and Storey (2012). Dynamic factor
models have been studied for multivariate time series in both stationary and nonstation-
ary cases. Bai and Ng (2002), Bai (2003), Forni, Hallin, Lippi, and Reichlin (2005), and
Lam, Yao, and Bathia (2011) considered the stationary case. Stock andWatson (1988) stud-
ied factors in a cointegrated time series, Gonzalo and Granger (1995) proposed a method
to estimate the factors in a cointegrated time series, Bai and Ng (2004) studied the factor
structure of large dimensional panels in nonstationarity data, and Peña and Poncela (2006)
presented a procedure to obtain dynamic factor models for a vector of time series. Here,
we also study both cases of functional time series, stationary and nonstationary.

Specifically, we assumed that the functional time series {Xn} is driven by K latent fac-
tor loadings curves {F1(s), . . . , FK(s)} and K latent factor time series {βn,k}, i.e. Xn(s) =∑K

k=1 βn,kFk(s) + εn(s). This FDF model was studied previously by other authors. Hays,
Shen, and Huang (2012) assumed that {Xn(s); s ∈ D}, withD ⊂ R, is observed in a sample
of discrete points, s ∈ {s1, . . . , sm}, and that the factors, {βn,k}, follow an AR(p) model. In
that paper, the factor loading Fk(sj) and the components of the AR(p) model are estimated
jointly via maximum likelihood and using the EM algorithm. However, the EM algorithm
becomes increasingly complicated when the sample size grows or when the number of
point observations of each curve grows. Here, we assume that Xn is given in functional
form instead of discrete observations of each, and we propose a nonparametric estimator
for the latent variables {βn,k} and Fk. Liebl (2013) used the FDF model to forecast elec-
tricity spot prices, where the factor loading curves, Fk, are defined as eigenfunctions of
the covariance operator ofXn, and the factor process {βn,k} is defined as the corresponding
score. One disadvantage is that functional principal component analysis (PCA) operates in
a static way. That is, if the functional data {Xn} are time-dependent, then the dynamics are
not accurately represented by the principal components, as noted in Hörmann, Kidziński,
and Hallin (2015). In Jungbacker, Koopman, and van der Wel (2014), the factor loading
curves Fk are proposed as cubic splines and rely on hypothesis tests to select the number
of knots and their locations. This is inefficient when the sample size increases. Kokoszka
et al. (2015) assumed that the factor loading curves are known and depend on time. Then,
they propose the use of least square estimators to obtain the factors.

In this paper, we propose a nonparametric estimator of the FDF model, considering
time-dependent functional data that are either stationary or nonstationary. The factor pro-
cesses {βn,k} are assumed to be scalar processes, and they described the dynamics of the
data (by dynamics, we mean the dependence structure over time). The factor loadings
{F1, . . . , FK} are assumed to be continuous functions. The subspace generated by the pro-
posed estimators for the factor loading curves represents the dynamics of the functional
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time series. Thus, our interest is in estimating the trajectory of the factor processes without
assuming any model in such a way that each trajectory accurately represents the depen-
dency over time. To take into account the temporal dependency, we consider a specific
long-run covariance operator.

The remainder of our paper is organised as follows: In Section 2, we introduce mathe-
matical concepts for functional time series. In Section 3, we describe the methodology to
obtain the estimators in both cases: stationary and nonstationary models. Additionally, we
present algorithms and examples to illustrate the methodology. In Section 4, we study the
properties and consistency of the proposed estimators. In Section 5, we evaluate the per-
formance of the proposed estimators under different simulation settings, comparing our
results with functional PCA estimators. In Section 6, we apply ourmethodology to the yield
curves. Finally, Section 7 presents a discussion. The proofs are provided in the Appendix.

2. Preliminaries

To describe our methodology, we first introduce some concepts for functional time series.
LetH = L2(D)be the separable realHilbert space of square integrable functions defined on
compact subsetD ⊂ R, with inner product 〈f , g〉 = ∫

D f (x)g(x) dx, and the corresponding
norm denoted by ‖ · ‖H. A functional random variable is defined as a random variable in
H, i.e. X : (�,F ,P) → H. Let LpH = {X : � → H : E(‖X‖p) < ∞} be the set of random
variables inH with finite moments of order p. The expected value of X ∈ L1H is defined as
a unique element ofH, denoted by μ, such that E〈X, y〉 = 〈μ, y〉, for all y ∈ H. In the rest
of the paper, we write E(X) instead of μ to refer to the expected value of X.

A functional time series is a sequence of functional random variables {Xn,−∞ < n <

∞} in H. The covariance operator at lag h of {Xn} ∈ L2H is defined by �Xn,Xn+h(z) =
E[〈Xn − E(Xn), z〉{Xn+h − E(Xn+h)}] for all z ∈ H. This covariance operator can be writ-
ten as �Xn,Xn+h(z)(s) = ∫

γn,n+h(t, s)z(t) dt, where γn,n+h(t, s) = Cov(Xn(t),Xn+h(s)) is
called the kernel of �Xn,Xn+h . A functional time series {Xn} ∈ L2H is said to be station-
ary if (i) E(Xn) = E(X0) and (ii) �Xn+h,Xm+h = �Xn,Xm for all n, m, and h. In this case,
we use the notation �h instead of �Xn,Xn+h . If {Xn} is a stationary functional time series
with E(Xn) = 0 and �h = 0 for all h 	= 0, then it is called functional white noise and strong
functional white noise if it is a sequence of i.i.d. functional random variables. In the rest of
the paper, we refer to strong functional white noise as an i.i.d. sequence in L2H. The reader
can consult (Bosq 2000; Horváth and Kokoszka 2012) for more details on functional time
series.

Let {Xn, n ∈ Z} be a stationary functional time series, and the long-run covariance
operator � of Xn is defined as

�(z)(s) =
∫
D
c(t, s)z(t) dt, z ∈ H (1)

where the corresponding kernel is c(t, s) = ∑∞
j=−∞ γj(t, s), and γj(t, s) = Cov(X0(t),

Xj(s)). We should note that the assumption of stationarity on {Xn} does not guarantee
the existence of �. For that, we need an additional weak dependence condition stated in
Section 4.
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Let BH = {A : H → H;A is continuous and linear} be the set of all continuous linear
operators fromH toH, with an operator norm denoted by ‖ · ‖BH . Let A ∈ BH; an eigen-
function v of A is defined as a nonzero element ofH such that A(v) = αv, where α 	= 0 is
a scalar number and is the associated eigenvalue.

Let {εn} be an i.i.d. sequence in L2H, and let {An} ∈ BH. A functional linear process
{Yn, n ∈ Z} with innovations {εn} is defined as

Yn(s) =
∞∑
j=0

Aj(εn−j)(s), s ∈ D.

If the functional linear process {Yn} is stationary, and if its covariance long-run covariance
operator exists, then this long-run covariance operator can be written as (see Appendix)

� = A�ε0A
∗, (2)

where �ε0 is the covariance operator of ε0, A = ∑∞
j=0 Aj and A∗ is the adjoint operator

of A.
Now, we introduce the functional I(1) process. We use the approach proposed by

Beare, Seo, and Seo (2017), where the notion of cointegration for multivariate time
series is extended to an inifinite-dimensional space. Let {Xn} ∈ L2H be a functional time
series such that the first difference 	Xn = Xn − Xn−1 admits the representation 	Xn =∑∞

j=0 
j(εn−j), where {εn} is an i.i.d. sequence in L2H, and coefficient operators satisfy-
ing

∑∞
j=0 j‖
j‖BH < ∞. Then, Xn can be written as Xn = X0 + 
(

∑n
j=1 εj) + ηn, where


 = ∑∞
j=0 
j, and {ηn} is a stationary functional time series. The functional time series

{Xn} is called an I(1) functional process if and only if the long-run covariance operator of
{	Xn} is different from zero.

3. Methodology

In this paper, we assume that the functional time series {Xn} are given in the functional
form. In a real application, functional data are observed on a grid of points, and thus, the
continuous curve should be estimated (see Ramsay and Silverman 2005, chap. 3–7).

3.1. Model setting

Assume that we observe N functional data {X1, . . . ,XN}. We assume that the functional
data follow the model

Xn(s) = Yn(s) + εn(s),

Yn(s) =
K∑

k=1

βn,kFk(s) (3)

where Fk, k = 1, . . . ,K, are factor loading curves, {βn,k} are scalar factor time series, K
is the number of factors, and {εn} is a sequence of centred, independent and identically
distributed innovations in L2H with covariance operator �ε . We refer to model (3) as the
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functional dynamic factor model or FDFmodel. The factors {βn,k} are assumed to be time-
dependent, and then {Xn} is time-dependent. TheK factor processes drive the dynamics of
the functional data {Xn}. Factors and factor loadings are latent functions and latent random
variables, respectively.

For model identifiability, we assume orthonormality of the factor loading curves, that
is, ∫

D
Fi(s)Fj(s) ds = 1(j = i), (4)

for i, j = 1, . . . ,K, where 1(j = i) takes the value 1 if i = j and zero otherwise. In some
scenarios, the factor processes {βn,k} can be known, and then, condition (4) can be omitted
(Kokoszka, Miao, Reimherr, and Taoufik 2018).

Since factors and factor loadings are unobserved, Fk and {βn,k} are not uniquely deter-
mined in model (3), even with the constraint (4). However, the linear space HF :=
span{F1, . . . , FK} generated by the factor loadings, called the factor loading space, is
uniquely defined. Thus, any orthonormal rotation of the orthonormal basis system
{F1, . . . , FK} can be a solution to model (3) as well. Therefore, our goal is to estimateHF .
To do so, we assume the following conditions.

Assumption 3.1: The functional white noise {εn} is uncorrelated with the functional
process {Yn}, that is, �Yn,εn+h = 0, h ∈ Z.

Assumption 3.2: There exists i, j ∈ {1, . . . ,K} such that Cov(βn,i,βn,+h,j) 	= 0, for some
h>0.

Assumptions 3.1 is the usual conditions assumed for the FDF model. Assumption 3.2
requires time-dependent functional data {Xn} and ensures ĤF not being an empty set. To
motivate our methodology, let us assume that the functional data {Xn} are stationary and
followmodel (3) (we will use similar ideas for the nonstationary case in Section 3.3). Thus,
under Assumption 3.1, the covariance operator of Xn satisfies

�h =
K∑
i,j

Cov(βn,i,βn+h,j)Fi ⊗ Fj + 1(h = 0)�ε , h ∈ Z,

where ⊗ denotes the tensor product. Therefore, �h(v) = 0 for any v ∈ H⊥
F , with

h 	= 0. Moreover, if ker(�0) = {z ∈ H : �0(z) = 0} = {0} and �−1
0 is invertible, then

ker(�h�
−1
0 ) = {range(�∗

h)}⊥ = H⊥
F . Hence,HF is the orthogonal complement of the lin-

ear space spanned by the eigenfunctions of �h�
−1
0 (or �h) corresponding to the zero

eigenvalues, with h 	= 0. Thus, ourmethodology uses the operator�h�
−1
0 , andwe consider

the summation over all possible lags h 	= 0, that is,

� :=
∑

h∈Z,h	=0

�h�
−1
0 = (� − �0)�

−1
0 , (5)

where � is the long-run covariance of Xn defined in (1). We notice that, under Assump-
tion 3.2, range(�) 	= ∅.
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Weobserve that�(v) = 0 for any v ∈ H⊥
F as well. Consequently, we propose to estimate

the spaceHF using the eigenfunctions of the operator � corresponding to nonzero eigen-
values. Additionally, these eigenfunctions are defined as estimators of the factor loadings
Fk, k = 1, . . . ,K.

In general, �−1
0 is unbounded (Bosq 2000; Martínez-Hernández, Genton, and

González-Farías 2019). The method typically employed to address this problem is to
truncate the spectral representation of �0 and then compute the inverse from this rep-
resentation. We adopt this method, and we describe it in Section 3.2.

Remark 3.1: The consideration of the term �−1
0 in (5) is equivalent to assuming that the

data have identity as the covariance operator. The latter case requires transforming the data
Xn to �

−1/2
0 (Xn). Thus, �h�

−1
0 is the covariance operator at lag h of the transformed data.

3.2. Estimation for stationary FDFmodel

Without loss of generality, we assume that E(Xn) = 0. To estimate HF , we compute the
eigenfunctions of �̂, where �̂ is the estimator of �. To obtain �̂, we use a smooth
periodogram-type estimator (Rice and Shang 2017). Let γ̂h(t, s) be the kernel estimator
of �h defined as

γ̂h(t, s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
N

N−h∑
i=1

Xi(t)Xi+h(s), h ≥ 0

1
N

N∑
i=1−h

Xi(t)Xi+h(s), h < 0

Now, we define ĉ(t, s) − γ̂0(t, s) as

ĉb,−0(t, s) =
∑

|h|≤b, h	=0

χ

(
h
b

)
γ̂h(t, s),

where χ is a continuous, symmetric weight function and satisfies χ(0) = 1, χ(u) = 0 if
|u| > c for some c>0. In this paper, we use χ(h/b) = 1 − |h|/b, where b is a bandwidth
parameter. To obtain a consistent estimator, the bandwidthmust satisfy b = b(N) → ∞ as
N → ∞ and b(N)/N = o(1) (Horváth, Kokoszka, andReeder 2013).However, in practice,
the selection of b should be done carefully, since this can affect the performance of the esti-
mator in finite samples. Here, we select b similarly as described in Rice and Shang (2017),
that is,minimising themean-squared errorE‖̂cb − c‖2, where ‖ · ‖ denotes the usual norm
in L2([0, 1]2). We use the notation ĉ−0(t, s) to denote ĉb,−0(t, s) with the optimal value of
the bandwidth b.

Then, the estimator of the operator � − �0 is defined by �̂ − �0(z)(s) = ∫
ĉ−0(t, s)z(t)

dt, z ∈ H. To obtain a bounded estimator of �−1
0 , we only consider the first p eigenfunc-

tions corresponding to the largest eigenvalues of�0. Thus, the inverse �̂−1
0 is approximated

by �̂−1
0 = ∑p

j=1 λ̂−1
j v̂j ⊗ v̂j, where v̂j, j = 1, . . . , p, are such that �̂0(vj) = λ̂ĵvj. We select

the parameter p = p(N) using the scree plot.
Finally, we obtain an estimator of � as �̂ = �̂ − �0�̂

−1
0 , and consecutively, we esti-

mate the eigenfunctions {̂ζ1, . . . , ζ̂k0} of �̂ corresponding to the first k0 largest nonzero
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eigenvalues {̂α1, α̂2, . . . , α̂k0}, with k0 a positive number. That is, for each i = 1, . . . , k0, ζ̂i
satisfies

�̂ζ̂i = α̂îζi.

Asmentioned above, we have thatK is the number of nonzero eigenvalues of�. In practice,
the number of eigenfunctions of �̂ with nonzero eigenvalues is not exactly K, since the
zero-eigenvalues of �̂ are unlikely to be zero exactly. Here, we estimate the number of
factors similarly as in Lam and Yao (2012), using a ratio-based estimator. Explicitly, we
define K̂ as

K̂ = arg min
1≤i≤k0

α̂i+1/α̂i, (6)

where k0 should be large enough that K < k0. Although we do not study the theoretical
properties of K̂, thorough empirical investigations suggest it works well in practice.

Once we have estimated the eigenfunctions of � and the number of factors, we define
ĤF = span{̂ζ1, . . . , ζ̂K̂}, and F̂i = ζ̂i, i = 1, . . . , K̂. The estimated trajectories of the factor
processes are obtained as

{β̂n,k}Nn=1 = {〈Xn, F̂k〉}Nn=1, k = 1, . . . , K̂.

Algorithm 1 presents a summary of the steps to obtain the estimators of model (3) under
the stationary assumption.

Algorithm 1 Estimators for stationary FDF model
1: Fix k0 with k0 large enough.
2: Compute the estimator �̂.
3: Compute the eigenfunctions ζ̂1, . . . , ζ̂k0 of �̂, corresponding to the first k0 largest

eigenvalues.
4: Obtain K̂ as in (6).
5: For k = 1, . . . , K̂, estimate the factor loadings and the trajectories of the factors as

follows: F̂k = ζ̂k, and {β̂n,k, n ≥ 1} = {〈Xn, ζ̂k〉, n ≥ 1}.

Example 3.1: We simulate {Xn} from an FDFmodel withK = 2 and sample sizeN = 200.
The factors are AR(1) processes with coefficients a1,1 = 0.6 and a2,1 = −0.6. The factor
loadings are defined by F1(s) = sin(2πs) and F2(s) = cos(2πs) with s ∈ [0, 1]. Figure 1
shows the estimators obtained from Algorithm 1. The left panel shows the factor loadings
and their corresponding estimators, while the centre and right panels show the estimated
trajectory for the factors.We observe that F̂i is close to the original factor loadings and that
the estimated trajectories of the factor processes successfully approximately the original
factor processes. Thus, the proposed estimators have good performance in this example. A
more exhaustive simulation study is performed in Section 5.

3.3. Estimation for the nonstationary FDFmodel

In real data applications, the factor processes can be nonstationary. Here, we assume that
at least one of the factor processes {βn,k}, k = 1, . . . ,K, is an I(1) scalar process. Let
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Figure 1. Estimators of F1(s) and F2(s) for the stationary FDF model with K = 2 and the estimated
trajectories for the factor time series {βn,1} and {βn,2}. The sample size is N = 200.

r ∈ {1, . . . ,K} be the number of factor processes that are I(1) processes. We consider two
cases: (i) all factor processes are I(1) processes, i.e. r = K, and (ii) there are r I(1) factor
processes, with r<K, and the remaining K−r factor processes are stationary processes.
Thus, the factor loading space can be written asHF = HS

F ⊕ HN
F , whereHS

F is the linear
space generated by the stationary factor processes and HN

F is the linear space generated
by the nonstationary factor processes. We have that if z ∈ HS

F , then the scalar time series
{〈Xn, z〉}n is stationary, and if z ∈ HN

F , the scalar time series {〈Xn, z〉}n is nonstationary.
Case (ii) is related to the concept of cointegrating in a Hilbert space (Beare et al. 2017).
Here, we describe estimators forHS

F andHN
F .

Let�	X be the operator defined in (5) for the functional process	Xn. In the following,
we describe the two cases for the factor processes.

Case (i): In this case, HF = HN
F , and 	Xn is a stationary FDF model. We estimate the

spaceHN
F as the linear space generated by the eigenfunctions of the operator �	X , where

�	X is estimated as described in Section 3.2 using {	Xn, n ≥ 1} instead of {Xn, n ≥ 1}.
The number of factors is estimated as in (6) with the corresponding eigenvalues of �̂	X .
Finally, we define F̂k = ξ̂k, k = 1, . . . , K̂, where ξ̂k are the eigenfunctions of �̂	X . This
approach guarantees that {β̂n,k, n ≥ 0} = {〈Xn, ξ̂k〉, n ≥ 0} is an I(1) process for k =
1, . . . , K̂ (Proposition 4.3).

Case (ii): We have thatHF = HS
F ⊕ HN

F withHS
F 	= ∅. First, we estimate the spaceHN

F ;
then, we subtract the estimated space ĤN

F from the entire space H. Then, we estimate
HS

F . We propose to estimate HN
F as the linear space generated by the eigenfunctions of

�	X , and then we define F̂k = ξ̂k, where ξ̂k is the eigenfunction of �̂	X , for k = 1, . . . , r̂.
Here, we obtain r̂ using criteria (6), with α̂′

i s being eigenvalues of �̂	X . Then, we obtain
the estimated trajectories of the factor processes as {β̂n,k, n ≥ 0} = {〈Xn, ξ̂k〉, n ≥ 0}, for
k = 1, . . . , r̂. Given {̂F1, . . . , F̂̂r}, we estimate HS

F as follows. We define a new functional
time series as

Zn(s) = Xn(s) −
r̂∑

k=1

β̂n,kF̂k(s). (7)

Let �Z be the corresponding operator defined in (5) for the functional process {Zn}.
The functional process {Zn} should be a stationary functional process. Thus, we estimate
HS

F similarly as in Section 3.2, with K̂ − r as in (6) using the corresponding eigenvalues
of �̂Z . Let {υ̂1, . . . , υ̂K̂−r} be the eigenfunctions of �̂Z corresponding to the ith largest
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eigenvalues. Then, we define F̂̂r+1 = υ̂1, . . . , F̂K̂ = υ̂K̂−r, with K̂ = r̂ + K̂ − r, as the esti-
mators of the factor loadings corresponding to the stationary dynamic and {β̂n,k, n ≥ 0} =
{〈Xn, υ̂k−r〉, n ≥ 0}, for k = r + 1, . . . ,K, as the estimated trajectories of the I(0) factor
processes.

In real applications, we do not knowwhether r<K or r = K. To overcome this problem,
we propose to apply a test for independence for the functional process {Zn, n ≥ 1}, such as a
test proposed in Horváth, Hušková, and Rice (2013). If the independency hypothesis is not
rejected, then we conclude that r = K. Otherwise, r<K, and we can proceed to estimate
the corresponding stationary loading spaceHS

F .
In Algorithm 2, we present a summary of the steps to obtain the estimators of model (3)

with r nonstationary factor processes and K−r stationary factor processes.

Algorithm 2 Estimators for nonstationary FDF model
1: Apply Algorithm 1 by considering �	X , and define r̂ = K̂	X , where K̂	X is the

number of factors estimated with eigenvalues of �̂	X .
2: Save the estimated loading factors and factor processes, {̂Fk} and {β̂n,k}, k = 1, . . . , r̂.
3: Obtain the functional process {Zn} as defined in (7).
4: Apply a test of independence for the functional process {Zn}.
5: If the test of the independency hypothesis is not rejected, then stop.
6: Else: Compute �̂Z the estimator of the operator �Z corresponding to the functional

process (7).
7: Apply Algorithm (1) to �̂Z , and define K̂ − r = K̂Z , where K̂Z is the number of factors

estimated with eigenvalues of �̂Z .
8: Finally, obtain the complete estimators of loading factors and factor processes,

{̂F1, . . . , F̂̂r, F̂̂r+1, . . . , F̂K̂} and {β̂n,1, . . . , β̂n,̂r, β̂n,̂r+1, . . . , β̂n,K̂}, where K̂ = r̂ + K̂ − r.

Example 3.2: We simulate {Xn} from the FDF model with K = 2, r = 1, and sam-
ple size N = 200, where F1(s) = sin(2πs), F2(s) = cos(2πs), 	βn,1 = 0.7	βn−1,1 + un,1,
and βn,2 = 0.7βn−1,2 + un,2, with s ∈ [0, 1]. Figure 2 shows the estimators obtained from
Algorithm 2. The left panel shows the factor loadings and their corresponding estimators,
while the centre and the right panels show the trajectory estimated for the factors. Similar
to Example 3.1, we observe that the proposed estimators have good performance in this
nonstationary example. A more exhaustive simulation study is performed in Section 5.

Remark 3.2: As we mentioned before, the estimators of the FDF model are not unique,
but the subspace HF generated by the factor loadings is unique. Here, we defined F̂k as
the eigenfunctions of the corresponding long-run covariance operator. However, users can
choose an appropriate orthonormal rotation to obtain factors that allow a meaningful-
interpretation. For example, one possible rotation is the well-known VARIMAX rotation.

The dynamicmodelling for the FDFmodel is attained bymodelling the factor processes
{β̂n,k} and using the relationship X̂n(s) = ∑K̂

k=1 β̂n,kF̂k(s).
In general, the operator � defined in (5) represents the loading space and the dynamic

of the functional time series. Moreover, if the functional time series is an I(1) functional
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Figure 2. Estimators of F1(s) and F2(s) for the nonstationary FDFmodel and the estimated trajectory for
the factor time series {βn,1} and {βn,2}. In this example, K = 2, r = 1, and the sample size is N = 200.

process, then the operator � classifies the space of common trends and the cointegrating
space.We conclude that the dynamics of the FDFmodel over time are accurately described
by using the space generated by this operator.

4. Estimation properties

In this section, we study the properties of the estimators described in Section 3. For this,
we assume that Xn has a functional linear representation in L2H. Without loss of generality,
we assume that the curves are defined on the unit interval D = [0, 1] and E(Xn) = 0.

Assumption 4.1: The functional time series {Xn} has a linear representation Xn =∑∞
j=0 �j(εn), with �j ∈ BH, and

∑∞
m=1

∑∞
j=m ‖�j‖ < ∞.

Assumption 4.2:
∫

E{X2
0}(s) ds < ∞ and limm→∞ m(E[

∫ {Xn(s) − Xn,m(s)}2 ds])1/2 =
0, whereXn,m = ∑m−1

j=0 �j(εn) + ∑∞
j=m �j(ε

(m)
n ), and for eachm, {ε(m)

k } is an independent
copy of {εk}.

Assumption 4.1 does not impose any restrictions on the model (3). For example, if
the factors processes are (scalar) linear processes, βn,k = ∑∞

j=0 θj,kun−j,k with {un} an
i.i.d. sequence, then Xn(s) = ∑K

k=1
∑∞

j=0 θj,kun−j,kFk(s) + εn(s). This latter expression
can be rewritten as Xn(s) = ∑∞

j=0 �j(εn)(s), with εn := ∑K
k=1 un,kFk + εn(s) and �j :=∑K

k=1 θj,kFk ⊗ Fk. In this case, the condition
∑∞

m=1
∑∞

j=m ‖�j‖ < ∞ is equivalent to∑∞
j=0 j|θj,k| < ∞. This latter condition is a common assumption on scalar time series in

order to obtain basic results.

Proposition 4.1: Let {Xn, n ∈ Z} be a functional time series following model (3), and let
�̂ be the estimator of � described in Section 3, with kernels ĝ(s, t) and g(s, t), respectively.

Under Assumptions 3.1, 3.2, 4.1, and 4.2,
∫∫ {̂g(s, t) − g(s, t)}2 ds dt P→ 0, as N → ∞ and

p → ∞.

Proof: See Appendix. �

Assumption 4.1 implies that {Xn} is a stationary functional time series. Thus, Proposi-
tion 4.1 corresponds to the stationary case of model (3).
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Aswe noted above, the factors {βn,k} and factor loadings Fk are not uniquely determined
in the FDFmodel.However, the factor loading space is uniquely determined.Weonly study
the theoretical properties of the factor loading space under the assumption thatK is known.
Here, we say that a subspaceHn converges to a subspaceH0 if ‖�n − �0‖ → 0, where�n
and �0 are the orthonormal projectors onHn andH0, respectively, and ‖ · ‖ an operator
norm. We use the notationHn → H0 to indicate this convergence of a subspace.

Corollary 4.2: Let {Xn, n ∈ Z} be a functional time series following model (3) with K
known. Suppose that �0 is invertible. Then, under Assumptions 3.1, 3.2, 4.1 and 4.2,

ĤF
P→ HF .

To study the nonstationary case, we assume that 	Xn admits a functional linear
representation as well.

Assumption 4.3: The functional time series {Xn, n ∈ Z} ∈ L2H is an I(1) functional
process so that {	Xn, n ≥ 1} is a stationary process and admits the representation

	Xn =
∞∑
j=0


j(εn−j), n ≥ 1, (8)

with 
j ∈ BH, 
j0 	= 0 for some j0 > 0, and the covariance operator of ε0, �ε0 , is posi-
tive definite. Furthermore, Assumptions 4.1 and 4.2 are satisfied on the functional process
{	Xn, n ≥ 1}.

Assumption 4.3 does not impose any restrictions on the model (3). If any factor pro-
cess {βn,k, ∈ Z} is an I(1) process, then the functional time series that follows model (3)
can always be written as (8), with 
j compact and self-adjoint operators. The condition

j0 	= 0 for some j0 > 0 guarantees that	Xn is not a functional white noise. Consequently,
Xn admits a solution of the form Xn = X0 + 
(

∑n
i=1 εn) + νn, where νn is a stationary

functional time series, {εn} is an i.i.d. sequence, and 
 = ∑
j≥0 
j.

From Proposition 4.1, we have that �̂	X is a consistent estimator of �	X .

Proposition 4.3: Let {Xn, n ∈ Z} be a nonstationary functional time series such that it fol-
lows model (3). Then, under Assumptions 3.1 and 4.3 we have that HN

F = {ker(�	X)}⊥,
andHS

F = ker(�	X).

Proof: See Appendix. �

Proposition 4.3 shows that the I(1) dynamics of the factors are recovered in the subspace
generated by nonzero elements of Im�	X .

Corollary 4.4: Let�0 be invertible, andK and r known. If the assumptions in Proposition 4.3

hold, then ĤS
F

P→ HS
F and ĤN

F
P→ HN

F .

Corollary 4.5: Let {β̂n,k} be the estimated trajectory obtained from Algorithm 2 with r and
K known. Then, if the assumptions in Proposition 4.3 hold, we have that, for k = 1, . . . , r,
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{β̂n,k, n ∈ Z} is an I(1) process, and if r<K, for k = r + 1, . . . ,K, {β̂n,k, n ∈ Z} is an I(0)
process.

Corollaries 4.4 and 4.5 show that the loading space is consistently estimated for both
stationary and nonstationary components.

5. Simulation study

We study the performance of our proposed estimators for the FDF model. We com-
pare our results with estimators obtained from functional PCA. To obtain the functional
PCA estimators, we replace F̂k with F̂PCAk = ς̂k in Algorithm 1, where ς̂k denotes the kth
eigenfunction of �̂0 corresponding to the kth largest eigenvalue (Liebl 2013). Similarly, in
Algorithm 2, we consider the covariance operators at lag zero of {	Xn} and {Zn} instead
of �̂	X and �̂Z . The PCA estimators are known to perform well when observations are
uncorrelated.

5.1. Simulation setting

We simulate {Xn(s); s ∈ [0, 1], n = 1 . . . ,N} from the FDF model with four different
models defined as follows:

(1) Model 1: K = 1, F1(s) = sin(2πs), and βn,1 = 0.7βn−1 + un,1.
(2) Model 2: K = 2, F1(s) = sin(2πs), F2(s) = cos(2πs), βn,1 = 0.8βn−1,1 + un,1, and

βn,2 = −0.5βn−1,2 + un,2.
(3) Model 3: K = 1, r = K, F1(s) = sin(2πs), and 	βn,1 = 0.5βn−1,1 + un,1.
(4) Model 4: K = 2, r = 1, F1(s) = sin(2πs), F2(s) = cos(2πs), 	βn,1 = 0.7βn−1,1 +

un,1, and βn,2 = 0.5βn−1,2 + un,2.

The processes {un,i} are scalar white noises. In all cases, the functional white noise εn(s)
in model (3) is simulated as εn(s) = Wn(s), where Wn(s) is a Brownian motion in [0, 1].
Models (1) and (2) represent stationary FDF models, while Models (3) and (4) represent
nonstationary FDF models.

We evaluate the performance by computing the Integrated Squared Error (ISE) value
defined as:

ISEF =
∫ 1

0

{
F(s) − F̂(s)

}2 ds.
We consider sample sizes N = 200, 300, 500, and 1000. We simulate 1000 replications for
each model. For each replication, we estimate the factor loadings and factor processes.
Then, we compute the error value ISEF , both for our proposed estimators and for PCA
estimators.

Additionally, we report the estimated factor number K̂ for each simulation using (6).

5.2. Simulation results

We denote by FDF the simulation results when considering our nonparametric estimators.
First, we describe the results for ISEF values. In doing so, we assume that the true number
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Figure 3. Boxplots of ISEF values for each simulation. In all cases, our proposed estimators (in red) out-
perform the PCA estimators. Although for F2 in Model (2), the PCA estimator performs as well as our
estimator.

of factors is known. Figure 3 shows boxplots of the results. Each plot presents the ISEF
values for a specific Fi with different sample sizes. For Models (1) and (3), we have only
one loading factor, and for Models (2) and (4), we have two loading factors, F1 and F2.

ForModel (1) (Figure 3 top left), we observe that our proposed estimator is highly accu-
rate and presents lower error values than the PCA estimator. These error values decrease
when the sample size increases. ForModel (2), we observe that for the first loading factor F1
(Figure 3 top centre), the results are similar to the results ofModel (1). Ourmethod outper-
forms the PCA estimator. For F2 (Figure 3 top right), we see that the PCAmethod performs
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Figure 4. Values and proportions of the number of factors estimated for sample sizeN = 300, and 1000
replications. The ratio method provides a good estimator for K.

as well as our method. Thus, we conclude that, in general, our method outperforms the
PCA estimator for the stationary Models (1) and (2).

Now, we analyse the nonstationary models (Models (3) and (4)). We observe that in all
cases, our method has the lowest error values. The ISEF values for our method remain as
accurate as in the stationary cases. However, the ISEF values for the PCA method become
significantly larger. We conclude that our proposed method performs well in all simulated
cases and outperforms the PCA method.

Finally, we show the results corresponding to the estimation of the number of factors.
For each replication, we estimate the number of factors using (6). We only present the
results from sample size N = 300, since the results from the sample sizes N = 200, 500,
and 1000 are similar. Figure 4 shows the estimated values K̂ over the 1000 replications.
Each bar uses colours to represent the proportion of replications.

For Model (1), we observe that with the ratio method, we obtain K̂ = 1 for all replica-
tions. For this Model (1), we conclude that the ratio method correctly estimates the value
of K. For Model (2), K̂ takes values in {1, 2, 3, 5}, resulting in K̂ = 2 and K̂ = 3 with a
large proportion. For Model (3), the ratio method successfully estimates the value of K.
ForModel (4), we need to estimate r andK−r, where r is the number of nonstationary fac-
tor processes andK−r is the number of stationary factor processes. In this case, we observe
that the ratio method provides the correct values of r and K−r.

In general, the ratiomethod correctly estimates the number of factorswith the exception
of Model (2).

We conclude that our proposed methodology performs well and is superior to the PCA
method under time dependence.

6. Data application

We fit the FDF model with our proposed nonparametric estimators to analyse the Federal
Reserve interest rates. Then, we study the estimated factor loadings and the trajectories of
the factor processes.
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Figure 5. Right: Monthly curves of yield data from June 1982 to May 2012. Left: six consecutive yield
curves from the dataset (solid curves) and the corresponding five yield curves obtained from the FDF
model with the estimators (dashed curves), that is, X̂n(s) = ∑3

k=1 F̂k(s)β̂n,k .

6.1. Yield curve

The interest rate data from the Federal Reserve are available in the R package YieldCurve.
The dataset represents monthly yield data from June 1982 to May 2012 at different matu-
rities: 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years and 10 years (see
Figure 5). Yield curves are important in economics and finance and can help to determine
the current and future position of the economy. TheNelson-Siegel parametrization is com-
monly used to describe yield curves (see Nelson and Siegel 1987; Diebold and Li 2006;
Koopman, Mallee, and der Wel 2010). Our proposal is a nonparametric estimator and
can be considered as alternative modelling to the Nelson-Siegel modelling. To justify the
functional approach, we assume that the dataset is continuous on maturities. That is, a
curve Xn(s) represents interest rates in month n with time to maturity s. To estimate the
continuous curves, we fit 15 cubic B-spline basis functions for each monthly observa-
tion, i.e. Xn(s) = ∑15

r=1 br,nφr(s), where {φ1, . . . ,φ15} is the B-spline basis function, with
n = 1, . . . , 366.

Yield curves were analysed with a nonparametric approach and with a functional
approach. Hays et al. (2012) used a functional approach combined with an EM algorithm
to jointly estimate the factor loading curves and the factors. Their approach is difficult
to apply if more data are observed at different maturities and almost impossible to apply
if the functional data are observed in a dense set. In contrast, our estimators are easy to
implement and can be applied to either dense or sparse observations and for stationary
and nonstationary functional time series.

We are interested in studying the factor loading curves and the factor processes that
drive the interest rates at different maturities by taking into account the dependence struc-
ture of the functional time series. To infer the stationarity of the functional time series,
we apply a test proposed by Horváth, Kokoszka, and Rice (2014). The p-value of the
test, with 15 basis functions, is equal to 0.001, and the smaller the p-value, the more evi-
dence there is against stationarity. Therefore, we follow Algorithm 1 with three factors,
and r = 1.

Figure 6 shows the results. In the first row, we plot the estimator of factor loading
curves, F̂1, F̂2, and F̂3, and in the second row, we plot the trajectories of the factor pro-
cesses estimated, {β̂n,k, 1 ≤ n ≤ 366}. Since the factor loading curves are time-invariant,
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Figure 6. Estimator of factor loading curves, F̂1, F̂2, and F̂3, and the corresponding trajectories of the
factor processes estimated, {β̂n,k , 1 ≤ n ≤ 366}.

they represent the common properties of the yield curves, while the factor processes rep-
resent the dynamics over time. Our estimators agree with the level, slope and curvature
functions of theNelson-Siegel parameterisation described byDiebold and Li (2006), which
is interesting since we do not assume any specificmodel (see Appendix for a plot of Nelson-
Siegel curves). Therefore, the first factor loading curve F1 is the level, and it is associated
with the long-term factor; these dynamics are described by {βn,1}. The factor loading F2 is
the slope, and it is associated with the short-term factor that is represented by the process
{βn,2}. Finally, the factor loading F3 is the curvature that corresponds to the medium-term
factor, and the factor {βn,3} describes such dynamics.

Figure 5 (right) shows six consecutive yield curves from the dataset with the corre-
sponding six yield curves obtained from the FDF model with the estimators, that is,
X̂n(s) = ∑3

k=1 F̂k(s)β̂n,k. These six curves correspond to the months of October, Novem-
ber, December, January, February, and March of 1990 and 1991, respectively. We observe
that the yield curves seem to be accurately represented by the FDF model.

7. Discussion

We propose new nonparametric estimators of the functional dynamic factor model, taking
into account the time dependence of the functional data. We use the long-run covari-
ance operator to define a subspace of the continuous functions where the dynamics of the
functional data are properly described by the factor processes. We have showed that the
proposed estimators of the factor loading curves represent a subspace where factor pro-
cesses describe the dependence of the functional time series, under both the stationarity
and nonstationarity assumptions. We compared our proposed estimators with eigenfunc-
tions of the covariance operator. From the simulation study, we conclude that our proposed
estimators have better performance than PCA-based estimators.
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From a mathematical point of view, factor loading curves can be considered part of
basis functions for the Hilbert space. In principle, factor loading curves could be, for
example, eigenfunctions, but eigenvalues do not take into account the time-dependent
structure and therefore do not represent the dynamics over time. The ideas developed here
can be extended to multivariate functional time series for studying the common factors
among the different functional time series and the factors of each functional time series
that are not shared. The extended model might be relevant in many applications, such as
multi-economy yield curves.

Acknowledgments

The authors are grateful to the editor and the referees for their thoughtful and constructive
comments and suggestions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was partially supported by (1) CONACYT, Mexico, scholarship as visiting research
student, and (2) CONACYT, Mexico, CB-2015-01-252996.

ORCID

Israel Martínez-Hernández http://orcid.org/0000-0002-4122-2529
Jesús Gonzalo http://orcid.org/0000-0002-4309-5025

References

Bai, J. (2003), ‘Inferential Theory for Factor Models of Large Dimensions’, Econometrica, 71,
135–171.

Bai, J., and Ng, S. (2002), ‘Determining the Number of Factors in Approximate Factor Models’,
Econometrica, 70, 191–221.

Bai, J., and Ng, S. (2004), ‘A PANIC Attack on Unit Roots and Cointegration’, Econometrica, 72,
1127–1177.

Beare, B.K., Seo, J., and Seo, W. -K. (2017), ‘Cointegrated Linear Processes in Hilbert Space’, Journal
of Time Series Analysis, 38, 1010–1027.

Bosq, D. (2000), Linear Processes in Function Spaces: Theory and Applications, volume 149 of Lecture
Notes in Statistics, New York: Springer-Verlag.

Desai, K.H., and Storey, J.D. (2012), ‘Cross-dimensional Inference of Dependent High-dimensional
Data’, Journal of the American Statistical Association, 107, 135–151.

Diebold, F.X., and Li, C. (2006), ‘Forecasting the Term Structure of Government Bond Yields’,
Journal of Econometrics, 130, 337–364.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005), ‘The Generalized Dynamic Factor Model:
One-sided Estimation and Forecasting’, Journal of the American Statistical Association, 100,
830–840.

Friguet, C., Kloareg, M., and Causeur, D. (2009), ‘A Factor Model Approach to Multiple Testing
Under Dependence’, Journal of the American Statistical Association, 104, 1406–1415.

Giannone, D., Reichlin, L., and Sala, L. (2005), ‘Monetary Policy in Real Time’, In NBER Macroeco-
nomics Annual 2004, Volume 19, Cambridge, MA: MIT Press, pp. 161–224.



18 I. MARTÍNEZ-HERNÁNDEZ ET AL.

Gonzalo, J., and Granger, C. (1995), ‘Estimation of Common Long-memory Components in Coin-
tegrated Systems’, Journal of Business & Economic Statistics, 13, 27–35.

Härdle, W.K., and Trück, S. (2010), ‘The Dynamics of Hourly Electricity Prices’, SFB 649 Discussion
Paper 2010-013.

Hays, S., Shen, H., and Huang, J.Z. (2012), ‘Functional Dynamic Factor Models with Application to
Yield Curve Forecasting’, The Annals of Applied Statistics, 6, 870–894.

Hörmann, S., Kidziński, L. u., and Hallin, M. (2015), ‘Dynamic Functional Principal Components’,
Journal of the Royal Statistical Society: Series B Statistical Methodology, 77, 319–348.

Horváth, L., Hušková, M., and Rice, G. (2013), ‘Test of Independence for Functional Data’, Journal
of Multivariate Analysis, 117, 100–119.

Horváth, L., and Kokoszka, P. (2012), Inference for Functional Data with Applications, Springer Series
in Statistics, New York: Springer.

Horváth, L., Kokoszka, P., and Reeder, R. (2013), ‘Estimation of the Mean of Functional Time
Series and a Two-sample Problem’, Journal of the Royal Statistical Society: Series B Statistical
Methodology, 75, 103–122.

Horváth, L., Kokoszka, P., and Rice, G. (2014), ‘Testing Stationarity of Functional Time Series’,
Journal of Econometrics, 179, 66–82.

Hyndman, R.J., and Ullah, M.S. (2007), ‘Robust Forecasting of Mortality and Fertility Rates: a
Functional Data Approach’, Computational Statistics & Data Analysis, 51, 4942–4956.

Jungbacker, B., Koopman, S.J., and van der Wel, M. (2014), ‘Smooth Dynamic Factor Analysis with
Application to theUSTermStructure of Interest Rates’, Journal of Applied Econometrics, 29, 65–90.

Kokoszka, P., Miao, H., Reimherr, M., and Taoufik, B. (2018), ‘Dynamic Functional Regression with
Application to the Cross-section of Returns’, Journal of Financial Econometrics, 16, 461–485.

Kokoszka, P., Miao, H., and Zhang, X. (2015), ‘Functional Dynamic Factor Model for Intraday Price
Curves’, Journal of Financial Econometrics, 13, 456–477.

Koopman, S.J., Mallee, M.I.P., and der Wel, M.V. (2010), ‘Analyzing the Term Structure of Interest
RatesUsing theDynamicNelson-SiegelModelwithTime-varying Parameters’, Journal of Business
& Economic Statistics, 28, 329–343.

Lam, C., and Yao, Q. (2012), ‘Factor Modeling for High-dimensional Time Series: Inference for the
Number of Factors’, The Annals of Statistics, 40, 694–726.

Lam, C., Yao, Q., and Bathia, N. (2011), ‘Estimation of Latent Factors for High-dimensional Time
Series’, Biometrika, 98, 901–918.

Liebl, D. (2013), ‘Modeling and Forecasting Electricity Spot Prices: a Functional Data Perspective’,
The Annals of Applied Statistics, 7, 1562–1592.

Martínez-Hernández, I., Genton, M.G., and González-Farías, G. (2019), ‘Robust Depth-based Esti-
mation of the Functional Autoregressive Model’, Computational Statistics & Data Analysis, 131,
66–79.

Nelson, C., and Siegel, A.F. (1987), ‘ParsimoniousModeling of Yield Curves’,The Journal of Business,
60, 473–89.

Peña, D., and Poncela, P. (2006), ‘Nonstationary Dynamic Factor Analysis’, Journal of Statistical
Planning and Inference, 136, 1237–1257.

Ramsay, J.O., and Silverman, B.W. (2005), Functional Data Analysis (2nd ed.), Springer Series in
Statistics, New York: Springer.

Rice, G., and Shang, H.L. (2017), ‘A Plug-in Bandwidth Selection Procedure for Long-run Covari-
ance Estimation with Stationary Functional Time Series’, Journal of Time Series Analysis, 38,
591–609.

Stock, J., and Watson, M. (1988), ‘Testing for Common Trends’, Journal of the American Statistical
Association, 83, 1097–1107.



JOURNAL OF NONPARAMETRIC STATISTICS 19

Appendices

Appendix 1. Proofs

Derivation of equation (2): LetYn(s) = ∑∞
j=0 Aj(εn−j)(s) be a stationary functional linear process,

with
∑∞

j=0 ‖Aj‖ < ∞. LetA = ∑∞
j=0 Aj. First, we observe that for all z ∈ H, the covariance operator

at lag h holds

〈�h(z), z〉 = E(〈Y0, z〉〈Yh, z〉) =
∞∑
i=0

∞∑
j=0

E{〈Ai(ε−i), z〉〈Aj(εh−j), z〉}

=
∞∑
i=0

∞∑
j=0

E{〈ε−i,A∗
i (z)〉〈εh−j,A∗

j (z)〉}.

We note that E{〈ε−i,A∗
i (z)〉〈εh−j,A∗

j (z)〉} = 〈�ε−i ,εh−jA
∗
i (z),A

∗
j (z)〉. Since {εn} are i.i.d., we have

that �εi,εj = 0 if i 	= j. Thus, 〈�ε−i,εh−j(A
∗
i (z)),A

∗
j (z)〉 = 〈�ε0(A∗

i (z)),A
∗
i+h(z)〉 = 〈Ai+h�ε0A∗

i (z),
(z)〉. Substituting this into the above expression, we have

�h =
∞∑
i=0

Ai+h�ε0A
∗
i .

Now, we compute the long-run covariance operator �. For all z ∈ H, we have

〈�(z), z〉 =
∞∑

h=−∞
〈�h(z), z〉 =

∞∑
h=−∞

∞∑
i=0

〈Ai+h�ε0A
∗
i (z), z〉

=
∞∑
i=0

〈
�ε0A

∗
i (z),

∞∑
h=−∞

A∗
i+h(z)

〉
,

sinceAj = 0 for all j< 0, and changing the variable h to k = h+ i, we obtain that
∑∞

h=−∞ A∗
i+h(z) =∑∞

k=0 A
∗
k(z). That is, 〈�(z), z〉 = 〈�ε0A∗(z),A∗(z)〉 = 〈A�ε0A∗(z), z〉. This implies that the long-

run covariance operator is � = A�ε0A∗. �

All operators involved in the proof are integral operators, i.e. each operator is represented by
a kernel function in L2([0, 1] × [0, 1]). Thus, the operator norm is defined as the usual norm in
L2([0, 1] × [0, 1]), e.g. ‖�‖2 = ∫∫

c2−0(s, t) ds dt.

Proof of Proposition 4.1: Let us first observe that under Assumptions 4.1 and 4.2, the estimator �̂

is a consistent estimator of�. Explicitly, we have that
∫∫ {̂c(s, t) − c(s, t)}2 ds dt P→ 0. This is because

with Assumptions 4.1 and 4.2 the functional time series {Xn} is an L2m-approximable (and hence
sttaionary). The reader is referred to Horváth et al. (2013) for the details of this proof.

Similarly, we have that
∫∫

[γ̂0(s, t) − E{X1(s)X1(t)}]2 ds dt P→ 0. That is, ‖�̂0 − �0‖ P→ 0. Thus,∫∫
{̂c−0(s, t) − c−0(s, t)}2 ds dt =

∫∫
{̂c(s, t) − γ̂0(s, t) − c(s, t) + γ̂0(s, t)}2 ds dt

≤ 2
∫∫

{̂c(s, t) − c(s, t)}2 ds dt + 2
∫∫

{γ̂0(s, t) − γ0(s, t)}2 ds dt

= oP(1) + oP(1).

Therefore, ‖�̂ − �0 − (� − �0)‖ P→ 0.
We now turn to the �−1

0 operator. We observe that �−1
0 is an integral operator with kernel

k̂−1(s, t) = ∑p
j=1 λ̂−1

j v̂j(s)̂vj(t).



20 I. MARTÍNEZ-HERNÁNDEZ ET AL.

For g, f ∈ L2([0, 1] × [0, 1]), we use the notation (gf )(s, t) := g(s, t)f (s, t). Then, we observe that∫∫
{(̂c−0̂k−1)(s, t) − (c−0k−1)(s, t)}2 ds dt

=
∫∫ [{(̂c−0 − c0)̂k−1}(s, t) + {c−0(̂k−1 − k−1)}(s, t)]2 ds dt,

with k−1(s, t) being the kernel with the true values λj and vj. Thus,∫∫
{(̂c−0̂k−1)(s, t) − (c−0k−1)(s, t)}2 ds dt ≤ 2

∫∫
{(̂c−0 − c0)2(̂k−1)2}(s, t) ds dt

+ 2
∫∫

{c2−0(̂k
−1 − k−1)2}(s, t) ds dt.

The first component on the right-hand side of the above inequality is bounded by
∫∫

(̂c−0 −
c0)2(s, t) ds dt

∫∫
(̂k−1)2(s, t) ds dt. If �0 is invertible or ifH is finite dimensional, then we have that

�̂−1
0 is bounded, and as a consequence a1 :=

∫∫
(̂k−1)2(s, t) ds dt < ∞. Then,

2
∫∫

{(̂c−0 − c0)2(̂k−1)2}(s, t) ds dt ≤ 2a1
∫∫

(̂c−0 − c0)2(s, t) ds dt

= 2a1oP(1).

Similarly, for the second component we have that

2
∫∫

{c2−0(̂k
−1 − k−1)2}(s, t) ds dt ≤ 2a2

∫∫
(̂k−1 − k−1)2(s, t) ds dt

≤ 2a21a2
∫∫

(̂k − k)2(s, t) ds dt

= O(1)oP(1),

with a2 :=
∫∫

c2−0(s, t) ds dt < ∞. Therefore, we conclude that∫∫
{(̂c−0̂k−1)(s, t) − (c−0k−1)(s, t)}2 ds dt P→ 0,

that is, ‖�̂ − �‖ P→ 0.
In the case where H is infinite dimension, one can obtain similar result following similar ideas

as in Bosq (2000, chap. 8.3). We omit the proof of this case. �

Proof of Corollary 4.2: Let �̂F and �F be the orthonormal projectors on ĤF andHF , respectively.
Then, for any z ∈ H with ‖z‖H < ∞, we have that

‖�̂F(z) − �F(z)‖ ≤
K∑

k=1

‖〈z, F̂k〉̂Fk − 〈z, Fk〉Fk‖

≤ a3a4
K∑

k=1

‖̂Fk − Fk‖

≤ a3a4
K∑

k=1

2
√
2

α̃k
‖�̂ − �‖,

with a3 = max{〈z, F̂k〉 : k = 1, . . . ,K}, a4 = max{〈z, Fk〉 : k = 1, . . . ,K}, α̃1 = α1 − α2, and α̃j =
min{αj−1 − αj,αj − αj+1}, j = 2, . . . ,K. Since α1 > α2 > . . . > αk > 0, we obtain ‖�̂F(z) −



JOURNAL OF NONPARAMETRIC STATISTICS 21

�F(z)‖ ≤ a3a4 K2
√
2

α̃
‖�̂ − �‖ with α̃ = min{α̃1, . . . , α̃K}. Thus, ‖�̂F(z) − �F(z)‖ ≤ O(1)oP(1),

and then ‖�̂F − �F‖ P→ 0. �

Proof of Proposition 4.3: We need only consider the case in which r is 0< r<K. We have that
the long-run covariance operator �	X of the functional process 	Xn is �	X = 
�ε0
, where

 = ∑

j≥0 
j, with 
j compact and self-adjoint operators. Thus, under Assumption 4.3, Xn can
be written as

Xn = X0 + 


⎛⎝∑
i≤n

εi

⎞⎠ + νn,

where νn is a stationary functional time series. Let ξk be an eigenfunction of�	X ; then, ξk /∈ ker(
).
From this, we can show that HN

λ = {ker(�	X)}⊥ and HS
λ = ker(�	X) (see Beare et al. 2017 for

more details). �

Proof of Corollary 4.4: The proof is similar in spirit to the proof of Corollary 4.2. �

Proof of Corollary 4.5: For ξk 	= 0, an eigenfunction of �	X , we have that

〈Xn, ξk〉 = 〈X0, ξk〉 +
〈



⎛⎝∑
i≤n

εi

⎞⎠ , ξk

〉
+ 〈νn, ξk〉 = Xk

0 +
∑
i≤n

εki + νkn,

whereXk
0 = 〈X0, ξk〉, εki = 〈εi,
ξk〉, and νkn = 〈νn, ξk〉. That is, {〈Xn, ξk〉}has a randomwalk compo-

nent
∑

i≤n εki since
(ξk) 	= 0. Thus, for each eigenfunction ξk 	= 0 of�	X , the process {〈Xn, ξk〉} =
{βn,k} is an I(1) process, and replacing ξk with their corresponding estimator ξ̂k, we obtain that {β̂n,k}
is also an I(1) process. In contrast, if v ∈ ker(�	X), then {〈Xn, v〉} = 〈X0, v〉 + {〈νn, v〉} is stationary.
This completes the proof. �

Appendix 2. Comparison of factors

Here we present the Nelson-Siegel curves corresponding to the three factors (see, e.g. Diebold and
Li 2006). Also, we present our estimators of the Yield curve data (Section 6).

The Nelson-Siegel curves are defined as

NF1(s) = 1, NF2(s) = 1 − exp(−λns)
λns

, and NF3(s) = 1 − exp(−λns)
λns

− exp(−λns).

Figure A1 presents the three Nelson-Siegel curves (second row) and our estimators (first row). In
the Nelson-Siegel curves, we fix the parameter λn = 0.9.
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Figure A1. Our estimator of factor loading curves, F̂1, F̂2, and F̂3, and the Nelson-Siegel curves NF1, NF2,
and NF3. We fix λn = 0.9.


