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Abstract

In fatigue problems, an accurate estimation of the propagation direction

is important for life prediction. We identify the most relevant factors that

affect the crack orientation during the propagation stage of fretting fatigue

cracks, arising from complete contacts. Contrary to what initially expected,

parameters such as normal load, cyclic bulk load, etc. do not have a no-

ticeable influence on the orientation. However the relative Young’s moduli

of indenter/specimen materials, the indenter width and the surface coeffi-

cient of friction are the most influencing factors. Analyses are performed

through the extended finite element method (X-FEM) and an orientation

criterion for non-proportional loading proposed by the authors. Experimen-

tal fretting fatigue tests confirm the predicted trends. An explanation of

this behaviour is also given.
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1. Introduction5

Fretting problems are found in many mechanical components and are6

often responsible for accelerating an eventual fatigue failure. They are7

characterized by the existence of two or more solids in contact that un-8

dergo relative displacements and they can be broadly classified into fretting9

fatigue and fretting wear problems. One of the main features of fretting10

fatigue problems is that cracks initiate next to the contact zone typically11

under conditions of partial slip [1]. After the initiation stage, cracks usually12

propagate under the cyclic stress field existing relatively far from the con-13

tact region. On the other hand, fretting wear situations often hinder crack14

propagation, as the incipient nucleated cracks are erased by material wear15

due to gross slip conditions [2] and there is no far field cyclic stress that16

promotes crack growth. This paper focuses on the study of complete con-17

tact problems under fretting fatigue in metals, and more specifically, on the18

crack propagation stage, i.e. the stage when the crack is already nucleated19

and its length is several times greater than the typical grain size.20

Compared to the plain fatigue endurance for the same materials, fretting21

fatigue lives are substantially reduced. The main reason is that the contact22

region acts as a stress raiser [3, 4] causing crack initiation and subsequent23

crack propagation until the eventual failure of the component [1]. Hence,24

the propagation life spans a greater percentage of the total life than in plain25

fatigue problems, for which crack initiation involves a large part of the total26

life.27

When the propagation life of a fretting crack is to be estimated, numer-28

ical methods such as the extended finite element method (X-FEM) [5–8]29

or standard FEM with remeshing techniques [9] can be used to model the30
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crack presence under the combined influence of the bulk load and contact31

stresses. Then, fracture mechanics approaches and crack growth laws can32

be applied to estimate the remaining life, e.g. [7, 10, 11] in combination33

with methods that predict the initiation life, such as the variable initiation34

length approach [12]. Recently, the prediction of crack location and orien-35

tation in the initiation stage has been addressed in [13] using a cohesive36

zone model approach (CZM) in conjunction with XFEM. Another proposal37

to predict the crack initiation direction is given in [14], where a method is38

developed by calculating the average values of the normal and shear stresses39

along a critical prospective direction.40

In this work, a complete contact fretting fatigue configuration as the41

one sketched in Fig. 1 is considered. In a complete contact, the contacting42

area is independent of the normal load P due to the abrupt change of the43

indenter geometry, as opposed to incomplete contacts, such as Hertzian44

contacts. Some of the parameters affecting the loading conditions are the45

normal load P , the tangential load Q, the cyclic bulk load σBulk and its46

corresponding stress ratio R (defined as R = σBulk,min/σBulk,max) and the47

friction coefficient between the contacting solids.48

A question arises regarding the influence of the different fretting param-49

eters on the crack orientation. No information was found in the literature50

regarding this issue. This work makes use of the numerical tools such as51

X-FEM and the orientation criterion for non-proportional loading condi-52

tions proposed in [15] to study the relevant parameters that affect crack53

orientation. The X-FEM enables the parametric study of different fret-54

ting configurations (loading, materials, etc.) in a straightforward way, as55

the crack growth is simulated automatically without the need of remeshing56

3
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Figure 1: Sketch of the main loads acting in a complete contact fretting fatigue problem,
as the one analyzed in this work.

[16, 17].57

As shown in experimental tests carried out by the authors [15] (see58

Fig. 2) and in many works in the literature, e.g. [18, 19], cracks emanating59

from the edge of a contact pressing onto a surface tend to grow with a60

slight deviation inwards beneath the contact and not fully perpendicular61

to the applied bulk stress. This slight deviation from the normal direction62

cannot be predicted using a conventional orientation criterion, such as the63

maximum tangential or hoop stress criterion (MTS) and this is the main64

motivation of this research.65

The objective of the work is to identify the relevant parameters affecting66

the crack path orientation. A parametric study of some a priori relevant67

magnitudes is carried out, such as normal load on the indenters, bulk load68

on the specimen, stress ratio, relative stiffness of the indenter and specimen69

materials, coefficient of friction and indenter width. This is performed by70

benefiting from the main advantage of XFEM, i.e. crack remeshing is not71

necessary for simulating crack propagation. Contrary to previous expecta-72

tions, it is shown that the relative magnitude of the applied loads has no73
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Figure 2: Propagation of non-failure cracks of four tests [15], emanating from the edge
of contact. The material of both indenter and specimen is Al 7075-T6. Loads of each
test: from left to right, σP = 40, 80, 80, 160 MPa and σBulk,max = 110, 130, 150, 190
MPa with R = −1, load-controlled. Frequency of the fatigue tests is 15 Hz.

significant effect on crack orientation although, of course, it does on the74

fatigue life. However, it is found that the indenter width, the friction coef-75

ficient between the indenter and the specimen and the stiffness ratio of the76

indenter with respect to the specimen have a noticeable effect.77

2. The criterion of the minimum shear stress range78

In order to predict correctly the path followed by the crack, it is impor-79

tant to apply an orientation criterion that considers the nonproportional80

evolution of loads in fretting fatigue problems. Usually, the contact loads81

5
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do not evolve proportionally to the cyclic bulk loads. This means that82

the principal stress directions and the stress intensity factor ratio KII/KI83

change with time, invalidating the application of the classical MTS crite-84

rion [20]. An orientation criterion for nonproportional loading conditions85

was proposed by the authors in [15], where a brief review of other criteria86

for nonproportional loading is also included. It was shown that the correct87

application of a criterion of this kind is essential to agree with experimental88

observations and a comparison is provided with the MTS criterion. Indeed,89

the MTS criterion was applied in one of our first works [5], leading to wrong90

estimations of the crack path. This was also found in [21].91

2.1. Fundamentals of minimum shear stress range criterion92

For the geometric and loading configuration considered in this work, the93

crack remains closed during a large part of the loading cycle, as verified from94

the numerical analyses. Assuming an elastic behaviour, the stress state un-95

der crack face contact conditions must be essentially controlled by KII, the96

only stress intensity factor that can exist for a totally closed crack in 2D.97

The criterion applied in this work [15] is a generalization for nonproportional98

evolutions of the so-called criterion of local symmetry, well established for99

proportional loading by Goldstein and Salganik [22] and Cotterell and Rice100

[23]. The criterion of local symmetry states that the crack will propagate101

in the direction where KII = 0. For nonproportional loading, the condition102

KII = 0 cannot be reached on the same plane along the whole cycle, and103

therefore, the proposed criterion seeks the angle for which the range KII is104

minimized along the cycle. This hypothesis obviously reduces to the con-105

dition KII = 0 when applied to proportional loading problems. It is worth106

6



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

noting that, for proportional loading, KII = 0, Nuismer and MTS crite-107

ria lead to very similar results [23, 24]. Sumi [25, 26] gives an interesting108

comparison of the results provided by different orientation criteria. In prac-109

tice, computing KII values under crack face contact must include the effect110

of friction tractions on crack faces, as in [27, 28], which can be cumber-111

some and prone to inaccuracies when using domain and contour integrals.112

Instead, and equivalently for the application of the minimum shear stress113

range criterion, we search for the angle that minimizes the shear stress range114

at the crack tip, min(∆τ). Shear stresses develop always in two orthogonal115

planes and there are two orthogonal planes on which the range is minimum,116

min(∆τ). From these two possible crack growth directions, we choose the117

plane with the maximum ∆σn, because it is the plane where less frictional118

energy is lost and there is more energy available for crack propagation. This119

approach is in line with the principle that a crack will grow in the direction120

which maximizes the strain energy release rate G [23, 24].121

As verified in [15] and also in this work, the min(∆τ) direction coincides122

with the direction of the maximum range of normal stress, max(∆σn). This123

is due to the in-plane stress tensor transformation that yields both extremes124

in the same direction, although this may not be the general case. However,125

one should notice that the criterion based on max(∆σn) is inconsistent,126

since compressive stresses (usually present during a large portion of the127

fretting load cycle) do not contribute to crack propagation. Moreover, the128

direction predicted by the maximum range of the effective normal stress,129

max(∆σn,eff), i.e. considering only the positive part of σn, does not lead to130

good results at least in the problems studied by the authors, despite the131

intuitive idea that only the positive normal stresses will govern the crack132

7
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propagation under an elastic material behaviour.133

Fig. 3 sketches the convention used in the procedure. For each crack134

growth increment, the criterion is applied ahead the current crack tip and135

the prospective local direction is searched for which ∆τ is minimum (see136

example of the estimation of the third increment direction in Fig. 3). In the137

results provided in this work, the predicted angle is reported with respect138

to a fixed reference: the angle is measured from the specimen surface. This139

way, a crack segment growing inwards (with respect to the indenter contact140

zone) has an angle 0◦ < θ < 90◦ and −90◦ < θ < 0◦ indicates a crack141

segment growing outwards.142

σBulk

P

∆τ(θ)

−θ

θ

−θ

θ ����

θ ����

σBulk

P

∆τ(θ)

−θ

θ

−θ

θ ����

θ ����

Figure 3: Application of the min(∆τ) criterion to predict e.g. the third crack-growth
increment direction. Sign convention for direction angles of a crack growth increment.

2.2. Application to a crack in a plate subjected to a tension-compression143

cycle144

As an example of simple application of the minimum shear stress range145

criterion, a cracked bar of uniform section loaded in tension is analyzed.146

8
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Our intention with this simple configuration is to illustrate that the cri-147

terion reduces to the expected angle of 90◦ for such a simple case under148

proportional loading. Fig. 4 shows the geometry and loads of the model149

and a contour plot of the von Mises stress field. This preliminary analysis150

is performed using standard FEM with ABAQUS (no X-FEM is considered151

at this stage). Plane strain bilinear elements with four nodes and full in-152

tegration are used (CPE4 in Abaqus). Inertial effects are not considered153

in this work and the fatigue crack propagation problem can be regarded as154

quasi-static. The material is modeled as linear elastic. The bulk load is155

cyclic with R = −1 and no indenter load exists in this simple example. The156

time evolution of the bulk load is similar to the one shown in Fig. 7 and it157

is also divided into four load steps.158

Fig. 5, left, shows the variation of the normal stress σn and shear stress τ159

on a plane forming an angle θ with respect to the horizontal surface. Stresses160

are evaluated at finite elements located ahead the crack tip and transformed161

according to the angle of the prospective plane. The successive curves show162

the variation along time for the last load step (step 4, i.e. between t = 3.0163

and t = 4.0). Note that the normal stress is maximum at the end of the step164

(curves located at the top of Fig. 5, left). This tensile stress is higher than165

the corresponding compressive stress due to the effect of the crack opening166

(mode I of fracture), whereas the closing stage does not concentrate such167

high stresses. The evolution of the shear stresses is analogous. Note that168

the shear stresses τ are zero for the angles θ where the normal stress is169

maximum or minimum (for any given increment of time). The fact that all170

the maxima and minima are attained at the same angles (±90◦ for σ and171

±45◦ for τ) is indicative that the stresses evolve in a proportional way. If172
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a
0
=0.3mm

Bulk
= ±20 MPa

Figure 4: Top, geometry and loads of the model of a cracked bar in tension. Bottom,
detailed view of a von Mises contour plot.

the time series of maxima and minima are shifted along the θ axis, then173

the loads are nonproportional. Fig. 5 right, shows the application of the174

min(∆τ) criterion. The same τ curves of Fig. 5, left, are replotted and the175

maximum and minimum with time are marked in black. Then, the range of176

variation ∆τ is computed simply as ∆τ = τmax − τmin. The minimum shear177

stress range criterion predicts that the prospective propagation angles are178

either 0◦ or 90◦ (there are always two prospective angles with a difference179

of 90◦). The discrimination between both angles is done by choosing the180

angle that also leads to the maximum normal stress to that plane. The181

predicted angle of propagation for this case is 90◦, as expected in such a182

10
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simple problem.183

One advantage of the min(∆τ) criterion over simply choosing the direc-184

tion of max(∆σn) is that the angle is detected sharply, as shown in Fig. 5.185

This sharpness of min(∆τ) is also what governs the mechanics of the prob-186

lem, leading to well defined propagation angles.187
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Figure 5: Left, variation of the normal stress σn and shear stress τ on planes forming a
varying angle θ with respect to the horizontal surface. Stresses are evaluated at elements
located ahead the crack tip. Right, application of the min(∆τ) criterion.

3. Numerical model188

Due to symmetry conditions, a quarter 2D finite element model has been189

considered to represent the fretting fatigue tests, as shown in Fig. 6. The190

rectangle L × b corresponds to the portion of the analyzed specimen and191

has a length of L = 4b = 20 mm, the half width of the indenter c is 5 mm,192

and the distance between the contact plane and the point of the indenter at193

which loads are applied is h = 10 mm. Four node, plane strain quadrilateral194

elements with full integration were used with a thickness t = 5 mm. The195

11
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smallest element size considered is 5µm at the right end of the contact zone.196

The friction model assumed for the contact zone is a Coulomb model and197

the ABAQUS contact formulation based on Lagrange multipliers is used to198

model the contact between the indenter and the specimen. Unless other-199

wise stated, the friction coefficient between crack faces (µCF) and between200

indenter and specimen (µIS) is taken as µCF = µIS = 0.8 [19]. The material201

behaviour is assumed linear elastic, despite the high stress concentration202

at the contact edge. The specimen material is an aluminium alloy 7075-203

T6, with E = 72 GPa and ν = 0.3. For some of the cases analyzed, the204

indenter material is changed, as explained in Section 5.5. The application205

of the linear regime is deemed valid, due to the very small edge radius of206

the indenter and the relative high yield stress of the aluminium alloy. In207

addition, the loads simulated in this work are typical of high cycle fatigue,208

and therefore are nominally small (in contrast to high loads typical of low209

cycle fatigue problems). Therefore, the extent of the plastic zone at crack210

tip during crack propagation is relatively small and there is no noticeable211

plastic wake along crack faces. This is confirmed by the observation of212

the tested specimens, which showed no macroscopic evidence of plasticity213

(see micrographs in Fig. 2 in which crack faces match very well each other214

and also a view of the specimen contact surface in Fig. 7 of our previous215

work [10]). As a consequence, the existing plasticity is very localized and a216

small scale yielding assumption can be applied, analogous to the small scale217

yielding assumption admitted in linear elastic fracture mechanics (LEFM)218

around the crack tip.219

The loading is considered quasistatic and its sequence is represented in220

Fig. 7 for one of the examples analyzed (case 3 of Table 1), where four load221

12
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Figure 6: Top, model geometry and detail of the refined mesh at the potential crack
growth zone. Bottom, complete contact testing rig, showing the contact elements.

steps have been considered in the analysis. Due to the non-linearity of the222

contact problem, loads were applied in sufficiently small time increments.223

At time t = 2.00 (and also at time t = 4.00) the maximum σBulk is being224

applied, which produces a clear opening of the crack. When the bulk load is225

decreased in the first half of step 3 (2.00 < t < 2.50), mode I is reduced and226

13
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a clear mixed mode condition appears, which has been observed through FE227

analyses. Note that the vertical load due to the indenter is kept constant228

during the cycle and mode II increases its dominance over mode I as σBulk229

is reduced. At approximately t = 2.50 crack face contact is produced and230

a mode II condition is present at the crack tip. At time t = 3.00 the bulk231

load is completely reversed (since the stress ratio is R = −1) and the load232

is transmitted through the crack faces. When the crack is closed, the end233

of the contact zone acts now as a strong stress raiser, as the specimen is234

compressed against the contact corner. Results in the following section are235

presented for the load step 4 (3.00 < t < 4.00), when shakedown of the236

numerical model response is produced). It has been verified that the stress237

states at t = 3.50, t = 4.00 and those at t = 2.50, t = 2.00, respectively, are238

very similar.239
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Figure 7: Loads applied to the numerical model for one of the cases studied. Evolution
with time.

4. Analysis of the loading influence240

In this section we present an initial study of the loading influence on the241

crack orientation. The main parameters considered are the indenter load242
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σP (defined as the normal force P divided by the area of application on the243

indenter), the cyclic bulk load σBulk and the stress ratio R of the cyclic bulk244

load. The study is performed for the first propagation angle after the initial245

crack shown in Fig. 6 (a0 = 0.3 mm), which is assumed that it is already246

present. The analyses were carried out with standard FE models, i.e. no247

XFEM is used in this section, as propagation will be considered in the next248

Section 5. The stress solution is then postprocessed to estimate the first249

propagation angle after application of the min(∆τ) criterion.250

The variation of the loading parameters is listed in Table 1. The ge-251

ometrical model with an initial crack of length a0 = 0.3 mm and initial252

orientation of θ = 90◦ has been analyzed under 13 different cases. The253

cases consider different combinations of normal load P applied on the in-254

denter, the variable bulk load on the specimen σBulk and the stress ratio255

R. The material stiffness is 72 GPa in all cases, both for the indenter and256

specimen. The last column indicates the predicted angle using the min(∆τ)257

criterion. Contrary to what initially expected, the first fact that draws at-258

tention is that there is no practical variation of the predicted angle, since259

all cases lead to an orientation angle of 78◦–79◦. Even for the cases with260

negligible contacting normal load, P = 10−6, the prediction leads to angles261

pointing inwards. The influence of the wide ranges tested for σBulk and R is262

also negligible. This is in full agreement with the experimental evidence col-263

lected by the authors [10, 15], summarized in Fig. 2, with growing directions264

about 79◦.265

Fig. 8 shows the variation of ∆τ versus the prospective crack orientation266

angle θ for the last step of the loading cycle. This enables the application267

of the minimum shear stress range criterion. Fig. 8, left, shows the results268
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Table 1: Predicted orientation angles for different load cases, generated by variation of
σP , σBulk and R.

Case σP (MPa) σBulk,max(MPa) R θ(◦)

1 10−6 200 -1 79
2 10−6 200 0 79
3 50 200 -1 79
4 50 200 0 79
5 100 200 -1 78
6 100 200 0 79
7 200 200 -1 78
8 200 200 0 79
9 10−6 200 -0.5 79
10 50 200 -0.5 79
11 100 200 -0.5 79
12 200 200 -0.5 79
13 200 10 -1 79
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Figure 8: Application of the min(∆τ) criterion for cases 1, 7 and 8 of Table 1, leading
to predicted angles of 79◦, 78◦ and 79◦, respectively.

for case 1. The high proportionality of the loads is demonstrated by the269

same location of the maxima and minima (no shifting of the curves). The270

load proportionality is caused by the extremely low value of σP considered271

in this case 1. However, even under this situation, the effect of the indenter272

causes the deflection of the crack to 79◦, given the ideal contact conditions273

of the numerical model. Results for case 7 are presented in Fig. 8, centre.274

Here the nonproportionality is evident due to the high value of σP , which is275
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equal to σBulk, being the curves shifted ones with respect to each other. Due276

to the high value of the constant normal load, the effect of the cyclic load is277

less evident and the range between τmin and τmax is not so important. This278

range is even less for case 8 (Fig. 8, right), due to the change in R from -1 to279

0. In all cases, the predicted angle is approximately 79◦. We remark that by280

application of a conventional orientation criterion at the instant of maximum281

bulk load, such as MTS, an incorrect prediction of the crack direction is282

obtained (pointing outwards, see [15]). Other examples of inaccurate growth283

orientations using the MTS criterion under nonproportional fretting loading284

can be found in Figs. 6 and 7 of [5] and in [21].285

5. Study of relevant factors and prediction of propagation paths286

using XFEM287

In the previous section, the direction for the first crack growth increment288

has been estimated for different loading conditions. In this section, the ex-289

tended finite element method X-FEM [16] is used in combination with the290

min(∆τ) criterion to model propagation for successive crack growth incre-291

ments. The objective is to study other factors that can be relevant for the292

crack orientation and compare the numerical estimations with experimental293

tests. In these problems, the initial crack is a = 0.05 mm and the crack294

growth increment is set as ∆a = 0.05 mm. The initial crack orientation is295

based on a critical plane analysis [29, 30]. For further details, please refer296

to [5] and [10].297
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5.1. Crack propagation using X-FEM298

The great advantage of the X-FEM method is that the crack faces do not299

need to conform to the element sides of a mesh. Therefore, a single mesh300

can be used for virtually any arbitrary crack intersecting the mesh. This301

avoids remeshing and it becomes especially useful when modeling crack302

propagation in fatigue problems. This is accomplished through a special303

mathematical formulation of the FE method that includes the enrichment304

of the standard finite elements with additional degrees of freedom (DOFs)305

at the nodes. These additional DOFs are associated with the nodes of the306

elements that are geometrically intersected by the crack (called enriched307

nodes and elements, respectively). Thus, the discontinuity is included in308

the numerical model without modifying the discretization. The X-FEM309

formulation allows for a further type of enrichment for the nodes next to310

the crack-tip. These nodes are enriched with additional DOFs to represent311

the first term of the classical Williams series expansion in linear elastic312

fracture mechanics in terms of the displacement field. Further details can313

be found in [15] and references therein.314

The analyses have been carried out using the X-FEM implementation315

developed by the authors [17, 31] by means of a user’s subroutine linked to316

the commercial code ABAQUS. This implementation can take into account317

crack face contacts along the loading cycle, which have been proved to be318

essential for the correct crack prediction. Fig. 9 (left) shows paths obtained319

experimentally and numerically for the following parameters: Eindenter =320

Especimen = 72 GPa (Al 7075-T6), P = 160 MPa, σBulk = 190 MPa, R = −1,321

indenter width 2c = 10 mm and µCF = µIS = 0.8. A good agreement322

between the experimental path and the crack path predicted using X-FEM323
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is obtained. Fig. 9 (right) shows a von Mises contour plot at the first steps324

of the crack.325

4.8 5
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]

Indenter Exp.

min

Figure 9: Left, comparison between the crack paths obtained experimentally (rightmost
micrograph shown in Fig. 2) and obtained through X-FEM in combination with the
min(∆τ) criterion. The parameters of this problem are: Eindenter = Especimen = 72
GPa, P = 160 MPa, σBulk,max = 190 MPa, R = −1, indenter width 2c = 10 mm and
µCF = µIS = 0.8. Right, von Mises contour plot at one of the stages of the numerical
simulation of crack propagation.

.

In this section, the influence of these factors will be analyzed: indenter326

normal load P , coefficient of friction, indenter width and indenter stiffness.327

In general, and unless otherwise stated, the following values are considered328

Eindenter = 72 GPa (Al 7075-T6), Especimen = 72 GPa, P = 40 MPa, σBulk =329

110 MPa, R = −1, indenter width 2c = 10 mm and µCF = µIS = 0.8. This330

configuration is considered as the reference configuration.331
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5.2. Influence of the indenter normal load σP332

Fig. 10 (left) shows the propagation paths estimated for different values333

of the indenter load σP after 14 crack growth increments. Note that a new334

set of loads is considered in this and following subsections because of the335

limitations of the testing rig shown in Fig. 6.336

The results confirm the analysis given in Section 4 because it is verified337

that the amount of indenter load does not significantly affect the crack338

orientation. This is in line with the experimental evidence of Fig. 2. This339

unexpected behaviour was one of the motivations of this work. Although340

the crack path tends to grow inwards, normal loads higher than σP = 80341

MPa do not further affect the crack orientation and converge to very similar342

crack paths.343
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Figure 10: Left, influence of the indenter load σP . Crack propagation after 14 increments
using X-FEM and the min(∆τ) criterion. Right, von Mises contour plot and crack
propagation for σP=40 MPa (reference problem).
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5.3. Influence of the friction coefficient µCF and µIS344

The potential influence of the friction coefficient between crack faces345

and between the indenter and specimen is addressed in this subsection. A346

friction coefficient of µ = 0.8 reported in [19] has been considered in the rest347

of analyses of this work for both contacts. However, a sensitivity analysis348

of these parameters was deemed necessary due to the uncertainty of their349

estimation.350

Fig. 11 (left,top) shows that a wide range variation of µCF between crack351

faces does not lead to any relevant modification of the crack path. However,352

Fig. 11 (left,bottom) displays a relevant influence of µIS between indenter353

and specimen. The rest of parameters are the same as in Section 5.2, with354

σP = 40 MPa. Values close to µIS = 0.8 and greater converge to very355

similar crack paths. On the other hand, there is no shear stress along the356

contacting plane for the limiting and ideal case of µIS = 0. Therefore, the357

directions 0◦ and 90◦ are directions of min(∆τ) and, accordingly, the crack358

grows in the 90◦ direction.359

5.4. Influence of the indenter width 2c360

The standard width of the indenter used in this work and previous stud-361

ies [15] is 2c = 10 mm, which implies a relative ratio to specimen height 2b362

of 1.0, see Fig. 6. Different analyses were carried out changing the indenter363

width and keeping the rest of parameters as in Section 5.2 with σP = 40364

MPa. The results shown in Fig. 12 (left) reveal that there is a large influ-365

ence of the indenter width on the inclination of the crack path: the larger366

the indenter width, the larger the inclination of the crack path up to a point367

at which this inclination reaches a limit. This behaviour will be explained368

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

μCF=1.5

μIS=0

Figure 11: Top, influence of the friction coefficient µCF between crack faces and µIS

between indenter and specimen (bottom). Crack propagation after 14 increments using
X-FEM and the min(∆τ) criterion. Figures on the right show von Mises contour plots
and numerical crack propagations for one case of both comparisons.
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in Section 5.7.369
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Figure 12: Left, influence of the indenter width 2c. Crack propagation after 10 increments
using X-FEM and the min(∆τ) criterion. Right, von Mises contour plot and crack
propagation for the case 2c=20 mm.

5.5. Influence of the indenter Young’s modulus Eindenter370

Fig. 13 (left) shows the results obtained when changing the Young’s371

modulus of the indenter, i.e. considering dissimilar materials for indenter372

and specimen. It can be seen that the relative stiffness of the indenter with373

respect to the specimen has an influence on the crack deflection inwards the374

contact zone. This effect, together with the influence of the indenter width,375

enabled us to gain insight into the mechanisms that cause the inclination376

of the the crack path, as explained in Section 5.7.377

It can be observed that for the case of a negligible Young’s modulus378

the predicted angle after the initial crack is close to θ = 90◦. The larger379
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the indenter Young’s modulus, the larger the inclination of the crack path,380

reaching a limit which corresponds to an angle of about θ = 75◦.381
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Figure 13: Left, influence of Eindenter. Crack propagation after 14 increments using X-
FEM and the min(∆τ) criterion. Especimen = 72 ·103 MPa for all cases. Right, von Mises
contour plot and crack propagation for the case Eindenter = 10 GPa.

5.6. Experimental verification382

Figs. 14 and 15 show experimental paths found for tests with different383

indenter widths and different indenter Young’s moduli, respectively. The384

loads are defined in Section 5.2, with σP = 40 MPa. As expected, the385

micrographs show that the crack inclination is slightly greater for a steel386

indenter than for an aluminium indenter. Fig. 14 shows a greater inclination387

of the path, which was also observed in the previous numerical results.388

5.7. Discussion389

It has been shown that the most relevant parameters affecting the crack390

orientation are the indenter width, the relative value of the indenter Young’s391
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Indenter (Al, 2c=20mm)

1 mm 1 mm

Indenter (Al, 2c=4mm)

Figure 14: Influence of indenter width. Experimental paths found for two tests with
aluminium indenters, width 2c = 20 mm (left) and width 2c = 4 mm (right).

Indenter (Al)

1 mm
1 mm

Indenter (steel)

Figure 15: Influence of Eindenter. Experimental paths found for two tests with aluminium
(left) and steel (right) indenters, both of width 2c = 20 mm.

modulus with respect to the specimen and the coefficient of friction between392

indenter and specimen. In what follows, we provide a simple explanation for393

this behavior: the indenter acts as a contacting solid next to the specimen394

through which the force lines deviate. This is due to its stiffness and geom-395

etry, since a stiff solid tends to transfer a higher load than a compliant solid396
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(assuming a parallel configuration). Similarly, a large indenter width allows397

for an easier force line deviation than for a small indenter width (relative to398

the specimen height). This can be visualized by the directions followed by399

the maximum principal stresses shown in Fig. 16 for one of the analysis. It400

can be seen that the principal directions (that can be assimilated to local401

force lines) tend to divert to the indenter just behind the crack. Therefore,402

it is expected a growth path approximately normal to the directions of the403

force lines in this region. The amount of deflection reaches a limit, despite404

a high increase of Eindenter, due to the geometric configuration of the model405

that does not allow for further deviation of the force lines.406

For the case µIS = 0 shown in Fig. 11, the absence of shear stresses along407

the contacting surface implies that the directions 0◦ and 90◦ are principal408

stress directions. Therefore, the line forces in the specimen are parallel to409

the contacting surface and do not divert to the indenter, leading to a crack410

growth in the 90◦ direction.411

Figure 16: Deviation of the maximum principal stress directions near the contact zone.
Enlarged view around the crack tip.
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6. Conclusions412

In this work, a parametric study of the main factors affecting a fretting413

fatigue problem under complete contact conditions has been performed.414

Several parameters have been varied, such as the normal load on the inden-415

ter, the cyclic bulk load on the specimen, the stress ratio, the coefficient of416

friction, the indenter width and the elasticity modulus of the indenter. It417

has been shown that the parameters related to the loading have very little418

effect on the crack deflection, whereas changes of the indenter width, the419

indenter stiffness or the friction coefficient between indenter and specimen420

have a more significant effect on the crack direction.421

The crack path prediction has been performed numerically using XFEM422

including a formulation that allows for crack face contact, which is essential423

to take into account the effects during the compressive part of the cycle.424

The approach combines XFEM with the criterion of the minimum shear425

stress range along the whole cycle of loading, since this type of problem426

is subjected to nonproportional loading, which invalidates the application427

of conventional orientation criteria, such as the maximum tangential stress428

(MTS). The numerical results are in good agreement with the experimental429

observations, confirming the relevant factors affecting the crack orientation.430

The work provides insight into the mechanisms governing crack orientation431

in fretting fatigue and can lead to more accurate fatigue life estimations432

once the crack path is predicted using the proposed procedure.433
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Case σP (MPa) σBulk(MPa) R θ(◦)

1 10−6 200 -1 79
2 10−6 200 0 79
3 50 200 -1 79
4 50 200 0 79
5 100 200 -1 78
6 100 200 0 79
7 200 200 -1 78
8 200 200 0 79
9 10−6 200 -0.5 79
10 50 200 -0.5 79
11 100 200 -0.5 79
12 200 200 -0.5 79
13 200 10 -1 79

Table 1
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