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ABSTRACT Robotic systems that are developed for social and dynamic environments require adaptive
mechanisms to successfully operate. Consequently, learning from rewards has providedmeaningful results in
applications involving human-robot interaction. In those cases where the robot’s state space and the number
of actions is extensive, dimensionality becomes intractable and this drastically slows down the learning
process. This effect is specially notorious in one-step temporal difference methods because just one update
is performed per robot-environment interaction. In this paper, we prove how the action-based learning of a
social robot can be improved by combining classical temporal difference reinforcement learning methods,
such as Q-learning or Q(λ), with a probabilistic model of the environment. This architecture, which we
have called Dyna, allows the robot to simultaneously act and plan using the experience obtained during real
human-robot interactions. Principally, Dyna improves classical algorithms in terms of convergence speed and
stability, which strengthens the learning process. Hence, in this work we have embedded a Dyna architecture
in our social robot,Mini, to endow it with the ability to autonomouslymaintain an optimal internal state while
living in a dynamic environment.

INDEX TERMS Action learning, decision-making, human–robot interaction, probabilistic model, reinforce-
ment learning, social robots.

I. INTRODUCTION
Adaptive learning in changing environments is crucial for
living beings to survive. Accordingly, if robots are to be
deployed in dynamic environments to assist humans in real-
time complex tasks, then endowing them with learning capa-
bilities is essential [1]. Thrun and Mitchell [2] claims that if a
robot lacks initial knowledge about itself and its environment,
then learning becomes inevitable because otherwise the robot
would be a simple unresponsive automaton. In this context,
multiple works describe how social robots learn to behave
naturally by learning from demonstration, as surveyed in [3].
Many studies support the use of social robots to help older
adults inmany different tasks, which suggests that the opinion
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of the aging population will become very important for robot
acceptance and usability [4]–[6]. Consequently, many authors
have concentrated their efforts in designing robots with nat-
ural interaction capabilities [7], [8] and biologically inspired
motivated affective behaviours [9]–[11].

This work is a continuation of our previous studies about
endowing our social robot, Mini, with action-based learning
capabilities according to its needs and the stimuli that it
perceives from the environment [12]. Mini is a social robot
that is principally devoted to assisting caregivers in cogni-
tive stimulation therapies with older adults, and is also able
to offer different entertainment and educative applications.
Thus, when the robot is not focused on developing an specific
task, it autonomously performs complementary behaviours
(e.g. sleeping, dancing, or talking), which allows it to
behave in a more natural fashion. Consequently, autonomous
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decision-making architectures have been designed to pro-
vide social robots with action-based reinforcement learning
capabilities according to its internal needs and the perceived
resources in the environment; initially by Malfaz et al. [13],
Malfaz and Salichs malfaz2011biologically, and later in
Castro-González [14], [15].

In a recent contribution, we demonstrated howMini learns,
using Q-learning [16], to autonomously behave according
to its motivational urges and the resources that it perceives
in the environment. In these previous works, the goal of
the robot is to behave following a policy that allows it to
maintain the best possible internal welfare. Despite the pos-
itive results obtained in our previous studies regarding the
policy of behaviour learnt by the robot, classical reinforce-
ment learning methods, such as Q-learning, require extensive
training periods as the number of state-action combinations
increase. Consequently, to overcome this issue, this work
aims to present a new reinforcement learning approach that
is based on a Dyna architecture, which allows the robot to
speed-up the action learning to a large extent. Dyna [17]
can be defined as a probabilistic model, which improves the
convergence speed and stability of classical algorithms, such
as one-step Q-learning [18] or multi-step Q-(λ) [19]. This is
based on the idea of combining real experiences, which are
gathered from classical algorithms during real human-robot
interactions, with simulated trials supported by previous real
experiences lived by the robot. The probabilistic model that
we propose in this work replicates the rewards and state
transitions that were previously experienced by the robot in
simulation domains. This allows it to plan how it should
behave, while at the same time it gains real experience from
interacting with the real world. The possibility to improve the
model of the environment from real interactions is the main
contribution of this work because the learning system is able
to learn faster, while reducing any possible errors generated
by the model.

To assess how Dyna-Q+ (i.e. a Dyna architecture pre-
senting online adaption mechanisms) improves the perfor-
mance of Q-learning and Q(λ), we compare their efficiency
in a real human-robot interaction scenario where the robot
learns which action produces the best effects on its internal
state in each situation where the robot is involved. Reaf-
firming our previous hypothesis, Dyna-Q+ produces better
results in terms of learning speed and stability, but at the
cost of requiring more computational power per time step.
In addition, Dyna-Q+ yields an online adaptive behaviour
to dynamic environments because it promotes exploratory
behaviours, which is something that classical algorithms do
not contemplate unless training is repeated (leading to a loss
of the robot’s previous knowledge).

The rest of this paper is structured as follows. In Section II,
we survey the current state of the reinforcement learning
techniques that are used for robotic applications. Section III
theoretically describes the reinforcement learning algorithms
that will be used in this work, Q-learning, Q(λ) and Dyna-
Q+. It will describe the modifications that have been made

to improve their performance on our specific application.
A detailed enumeration of their advantages and disadvantages
is also provided. Section IV describes how the social robot,
Mini, motivationally learns to behave according to its needs
and the state of external cues perceived from the environment.
In Section V, we describe the experimental set-up and how
the performance of the learning system has been evaluated,
which demonstrates how the combination of a probabilistic
model with classical techniques improves the convergence
speed and stability. Section VI contains the results obtained
from the comparison of classical reinforcement learning tech-
niques andDyna-Q+ (model version). In the next sectionVII,
we discuss the outcomes produced by each of the algorithms.
Finally, we conclude in Section VIII, including a description
of some new ideas to enhance robot biological modelling and
learning by reinforced actions.

II. RELATED WORK
Assistive social robots in elderly care are now capable
of performing many different tasks, such as companion-
ship [20], assisting in mild cognitive impairment therapies
[12], [21], [22], entertainment [23], [24], or education [25].
Consequently, endowing robots with proper human-robot
interaction (HRI) mechanisms is essential to accomplish
these tasks. A natural interaction between humans and robots
will improve the user experience, which will allow the
robot to correctly execute its actions. Consequently, robot
behaviour plays an important role in the attainment of these
tasks.

In most cases the behaviour of a robot is normally prede-
fined. However, in the last few years robots have started to
autonomously learn how to behave through social interaction
using machine learning techniques (e.g. [26], [27]). Rein-
forcement learning has been proven to allow robots to learn
how to behave in a changing world, while interacting with
their environment. Remarkable examples in this field can be
found in the navigation systems of both social and mobile
robots, where behaviour adaptation is essential in not disturb-
ing the user’s intentions while moving around. Furthermore,
the navigation system must consider more information than
just path planning between two points, such as the personal
distance with the users, collision avoidance, and being recep-
tive for interaction; as Takayama and Pantofaru [28] posit.
Deep reinforcement learning has recently been applied in a
social robot’s navigation system. For example, in [29] the
navigation system that is embedded in the robot uses the
user’s feedback reward and the human’s prior knowledge
to autonomously wander in the environment. Chen et al.
presented [30] a fully autonomous learning process, which
they called ‘Socially Aware Collision Avoidance with deep
Reinforcement learning’ (SA-CADRL). SA-CADRL allows
a robot to learn how to autonomously navigate while respect-
ing social norms in a dynamic environment with the presence
of pedestrians. Collision avoidance with deep reinforcement
learning has evolved in recent works, such as [31], [32].
In particular, its performance in environments where big
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groups of people are involved and the robot does not have
any knowledge of people’s dynamics and behaviours has been
improved.

Reinforcement learning techniques are not just used in
social navigation applications. Robot behaviour adaptation
can be successfully obtained in real-time in many different
ways, such as using speech recognition or estimating user
engagement by body posture and face orientation [33]. For
example, the speech velocity and vocal content of a robot has
been adapted in post-stroke rehabilitation therapies, depend-
ing on the personality of the patient [34]. Similar studies
presented in [27] show how the robot’s social behaviour
has been adapted, depending on the task it is performing.
In a recent contribution, Park et al. [35] demonstrate how
their robot selects optimal stories according to the child’s
educational level. In this educational line, assistive robots
with adaptation capabilities have been studied for use with
children with autism disorders [36].

Depending on the field of sociable robots, learning by
rewarded actions has gained huge attention in the last few
years. For example, Matarić studied how groups of mobile
social robots learn to yield and share information in a foraging
task [37]. In addition, Qureshi et al. [38] study how a robot
learns social skills from trial and error. They found that
the robot’s behaviour adaptation, while learning from social
interaction, lets the agent perceive the effects of its actions on
the environment and on other peers. By using action rewards,
the robot is able to modify its behaviour if it detects that the
human peer is not engaged, or maintain its behaviour if
feedback is positive. Following similar studies, Ritschel [39]
shaped the social behaviour of a robot by dynamically adapt-
ing its extroversion using reinforcement learning techniques.
By gathering audio and visual information from the user,
the robot was also able to adapt its affective expressiveness.
In a similar approach, Weber et al. used social information to
adapt the humour of a robot using reinforcement learning and
social rewards [40]. In conclusion, these previous studies are
representative examples of how social robots can successfully
learn after interacting with their environment by reinforced
signals.

Continuing with the reinforcement learning paradigm,
many algorithms have been proven to converge to an optimal
solution in different robotic applications (Q-Learning [18]
and Q(λ) [19] are two outstanding examples). In social
robotics, Q-learning has been successfully applied to learning
the optimal policy of behaviour inmotivated agents [14], [16],
or in user personalized robots during social interac-
tion [35]. Departing from the remarkable results provided by
Q-learning, Q(λ) arose as a temporal difference method that
notably improves the convergence speed using the well-
known multi-step update, which is called eligibility traces.
Q(λ) has been used in the context of mobile robots, which
allows the robot to learn how to navigate in the environment,
in works such as [41]. In the field of healthcare and therapy,
users have socially interacted with the Zeno robot [42]. Other
applications can be found in the well-known robot soccer

competition [43]. However, Q-learning and Q(λ) can often
have slow training processes because each update performed
on the algorithm requires long interactions and many states
may not be visited regularly. To overcome this drawback,
a learning architecture based on modelling the environment,
called Dyna, has developed been [44]. The Dyna archi-
tecture is grounded in the idea of combining a classical
reinforcement learning temporal-difference method, such as
Q-learning or Q(λ), with a model of the environment. The
use of an environmental model results in an increase of
the learning speed. This has been demonstrated in robotic
navigation systems, where Dyna outperforms previous algo-
rithms, especially speeding up learning and providing online
adaptation by promoting exploration [45]. Dyna has also
been used with deep reinforcement learning algorithms, such
as the one described in [46], where a task-completion dia-
logue agent is trained in a more efficient way using less real
user interactions. More recently, Hayamizu et al. [47] have
proven how a Guided Dyna-Q architecture (GDQ) allows
a mobile robot to successfully navigate while reducing the
exploration speed of the environment. Similarly, Lee and
Jeong [48] highlight the benefits provided by a Dyna-Q
architecture in comparison with classical Q-learning during
path planning tasks for mobile robots. In their results, Lee at
al. demonstrate how paths generated by Dyna-Q are much
shorter than those learnt by Q-learning, at the cost of an
increase in time consumption. In mobile robotics, Deep RL
has been used to optimize autonomous exploration tasks
(e.g. [49]), providing remarkable results. In relation to social
robotics, recent works have used Dyna-Q architecture and
Deep RL to improve the learning speed of classical algo-
rithms in tasks related to getting a pedestrian’s attention
without causing them discomfort [50], in learning proper
approach behaviour [51], and in autonomous speech volume
control for noisy environments [52].

In addition to its broad application in robotics, Dyna-Q and
Deep RL has also been applied to different fields, notably
improving the learning speed and convergence stability of a
system. For example, in underwater scenarios, both acoustic
communications [53] and acoustic sensor networks [54] have
been enhanced using Deep RL algorithms. In line with the
previous work, Deep RL in combination with Dyna-Q has
also been applied to support green computing in Internet of
Things (IoT) scenarios. Min et al. [55] propose a Dyna model
that allows IoT devices to reduce computational latency and
energy consumption. In electrical vehicles, Wang et al. [56]
proposed an autonomous scheduling system for charging the
vehicles’ battery. Finally, in an interesting study presented
in [57], both Deep RL and model-based Dyna architectures
are combined to enhance the learning process. Using a new
framework, these authors developed an intelligent trainer
that is able to autonomously deal with common algorithm
problems, such as hyperparameter tuning.

Considering the previous works presented in this section,
in this contribution we propose an action-based learning sys-
tem for a social robot, Mini, that relies on a probabilistic
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Dyna architecture. This architecture allows classical temporal
difference algorithms, such as Q-learning or Q(λ), to improve
both convergence speed and stability. This enhancement is
produced because the learning process occurs simultaneously
during real and simulated human-robot interactions. Thus,
this architecture is embedded in our robot to learn how to
adapt its behaviour to maintain its physiological and social
state in the best possible conditions. Even though many of
the previous works use Deep RL to approximate the learning
function, this approach is mostly useful when the space-
action state is too large to be handled by tabular methods.
In our environment, the representation of our state-action
space can be afforded by tabular methods, so we decided not
to use Deep RL because we believe that it will not improve the
results but will instead increase the complexity of the learn-
ing system. This work extends our previous research in the
field [13]–[16], not only by speeding-up the learning process
but also by endowing it with a greater convergence stability
(in spite of presenting a stochastic reward distribution).

III. LEARNING BY REWARDED ACTIONS
This section formalizes the reinforcement learning problem,
which will form the basis of the principal algorithms that
will be used in this work and how they have been com-
bined with a probabilistic model to speed-up the learning
process. Reinforcement learning methods have commonly
been grouped into dynamic programming, Monte Carlo, and
Temporal-Difference (TD); as Sutton and Barto propose
in [44].Whereas theMonte Carlo and TDmethods aremodel-
free, and dynamic programming is model-based, the former
are used for episodic tasks. Consequently, in this work we
decided to use TD methods because they can be used in
continuous applications and do not require an explicit model
of the environment.

A. FORMALIZATION
Before delving more deeply in the TD algorithms, it is
important to formalize the problem that we are facing in
this work. A reinforcement learning problem can be formu-
lated as a Markov Decision Process (MDP), which fulfils the
Markov property [58]. This property states that the values of
future variables, such as the optimality of executing action
a in state s, only depend on present values, if and only if
Equation 1 equals Equation 2.

Pr{st+1 = s′, rt+1 = r|st , at , rt , st−1, at−1, . . . , r1, s0, a0}

(1)

Pr{st+1 = s′, rt+1 = r|st , at } (2)

MDPs are represented by a tuple of the type {S,A,T ,R, γ },
where S denotes a set of states, A denotes a set of actions,
T (s, a, s′) = P(s‘|s, a) denotes the transition probability
function, R denotes the reward function, and γ ∈ (0, 1]
denotes the discount factor. Considering this, in a reinforce-
ment learning problem, the agent, who is in a certain state
at a particular time (st ), after performing an action (at ),

selected following a greedy policy, ends in a new state (st+1).
In response to this transition, the agent obtains a reward r
from the reward function R, which represents the suitabil-
ity of executing action at in state st . Having this formu-
lation in mind, the goal of the agent is to find the policy
(π :A × S −→ [0, 1], π(a, s) = Pr(at = a|s = st ) that
maximizes the reward obtained during its lifespan, which is
normally defined as cumulative reward.

B. ONE-STEP Q-LEARNING
Watkins proposed Q-learning [18] as an off-policy TD algo-
rithm, which evaluates how beneficial an action turned out to
be in a certain state and assigns an optimality value (denoted
as Q-value) to each state-action pair of the robot, as in the
following Equation 3.

Q(st , at )←− Q(st , at )+ αδt (3)

where:

δt ←− rt+1 + γ max
a′

Q(st+1, a)− Q(st , at ) (4)

The Q-value assigned to the pair (s, a ) is only updated
when the robot is in state s and performs action a. The new
Q-value depends on the discount factor (γ ), which regulates
the importance given to the last reward obtained, and on the
learning rate (α), which defines the importance of the new
information gathered by the agent opposed to the previous
Q-value assigned to the state-action pair. According to [44],
the computational complexity of Q-learning is O(d) because
Q-learning is in nature an off-policy TD(0) method.

C. MULTI-STEP Q(λ)
TD(λ) methods appeared as an evolution of early TDs, being
supported by the concept of eligibility traces [19]. Eligibil-
ity traces influence the Q-value update by considering how
recently an action has been executed. Then, as the agent per-
forms new actions, traces of the different (s, a ) pairs decay
considering the last time that these actions were executed.
TD(λ) algorithms allow us to take into account actions that
occurred in the past. Thus, the update rule provides that not
only the Q-value assigned to the actual (s, a ) pair is updated
but all (s, a ) pairs with an eligibility trace different from 0 are
updated also per iteration. Consequently, the learning speed
of the agent is notably increased at the cost of requiring more
computational time per step, as learning back spreads to pre-
vious executed actions. Thus, the computational complexity
of Q(λ) is x ·O(d), where x represents the robot’s state space
number. Equation 5 shows the update rule considered in Q(λ),
making use of the eligibility trace e(st , at ) assigned to each
state-action pair in Equation 6. Every time that an action a is
selected in state s, its corresponding trace e(st , at ) is increased
by 1 unit. Meanwhile, traces of remaining state-action pairs
decay according to parameters discount factor γ and decay
rate λ, which controls the decay speed of traces.

Q(st , at )←− Q(st , at )+ αδte(st , at ) (5)
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where:

e(st , at )←−


et−1(s, a)+1 if a is executed in s

γ λet−1(s, a) ifQ(st , at )=maxa′ Q(st+1, a)

0 otherwise
(6)

D. DYNA-Q+

Temporal difference methods learn from real interaction with
the environment, which makes them especially slow, as the
number of the (s, a ) pairs increases. This issue becomes
more remarkable in robotics, mainly because real HRI actions
last too long and some states may not be visited regularly.
In contrast, model-based methods can overcome this problem
by simulating these interactions by replicating a model of the
environment.

The Dyna-Q+ architecture [17] offers the simplicity
of model-free methods with the faster convergence speed
of model-based ones by using a TD algorithm, such as
Q-Learning or Q(λ), in combination with a model of the
environment which plans in the background. In the Dyna-Q+
architecture, the model of how the agent interacts with the
real world is used to speed-up its action learning. In the
architecture, the agent makes use of the information obtained
from interacting with the environment in two different ways.
First, experience is used in model improvement, being an
important process since the model should accurately repre-
sent the real world dynamics, which are not static. Second,
it handles the learning process itself, combining both real and
simulated experiences. Once the agent has gathered enough
real experience, it plans its optimal behaviour using themodel
while gaining more real experience. As the agent contin-
ues interacting with the environment, planned information
generated by the model is used, in combination with real
experiences to speed-up learning, because the agent is more
aware of the effects produced by its actions. Considering
the operation of Dyna-Q+, its main advantages are bounded
to the planning process because it can be repeated more
than once per real interaction. In addition, states that are
rarely visited in real interactions can be elicited more often
in simulation domains, which produces positive effects in
the exploration of the environment. However, it is clear that
the computational complexity of Dyna-Q+ is increased with
respect to Q-learning and Q(λ). Thereby, according to [59],
the computational complexity of Dyna-Q+ can be expressed
as n · x · O(d), where n represents the number of planning
steps and x the number of possible states of the agent. Hence,
Dyna-Q+ requires n · x times more computational power that
Q-learning and n times more than Q(λ).

E. OUR APPROACH
The learning system that we propose in this work combines
Q(λ) with a model based on a probabilistic transition and
reward prediction. The model gets feedback from real inter-
actions that occur between the agent and the environment,

FIGURE 1. Learning process using the Dyna-Q+ architecture: Planning in
simulation (left-hand) and acting in the real world (right-hand).

and stores this information aiming to simulate (plan) the
effects produced by each action. The experiences lived by the
agent are saved in its memory so that it can preview (while
acting) the optimal behaviour that it has to execute in real
domains while maintain a good internal state. As Figure 1
depicts, every time that a real action ends and updates its
Q-value using Q(λ)’s update rule, the reward r and the next
state s′ derived from executing action a in state s are saved.
The model then randomly selects a (s, a ) pair. In case the
agent’s memory contains at least 5 values of real rewards
and 5 previous state transition from s to potential s′ after
executing action a, the model starts working in the back-
ground while the agent continues interacting with the real
world. Both the number of real rewards and real transitions
between states necessary to start the simulation domain have
been set empirically. Otherwise, the planning process will not
run until enough samples are obtained from real interactions.
Whether the Dyna-Q+ model has gained enough informa-
tion for (s, a ) pair, it generates a simulated reward r and
probabilistically decides the following virtual s′ to update the
Q(λ) algorithm.

The simulated reward r is obtained by randomly selecting
a value after defining a normal distribution from the previous
obtained rewards in (s, a ) pair. Following a similar approach,
s′ is selected by assigning a probability to each of the previous
states to which the agent transits from state s after executing
action a. The probability assigned to each s′ depends on the
number of times that the agent has transited from s to s′,
divided by the total number of transitions starting in s. The
planning process is repeated n times per real acting, unless
not enough experience had been acquired for any of the
(s, a ) pairs involved in the agent’s planning. It is important to
remark that the action selection process, both in real and sim-
ulated interactions, is performed using the well-known Boltz-
mann equation [60], which is a method that is widely used
in reinforcement learning domains, and which controls the
agent’s environmental exploration and exploitation of learnt
actions. This equation allows us to regulate the degree of
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exploration and exploitation bymeans of the Temperature (T )
parameter. High T values foster action exploration, while
low values promote exploitation of the robot knowledge.
Section IV-D describes how the learning system online reg-
ulates the Temperature parameter by decreasing it as the
number of actions performed by the robot in each action-state
pair increases. Finally, themodel is updated because it exists a
real interaction between the agent and the environment. As a
result of this interaction, a reward and a transition between
states is obtained. These data are then added to the previously
stored samples.

IV. AUTONOMOUS DECISION-MAKING IN THE
SOCIAL ROBOT MINI
The social robot Mini [12], as represented in Figure 2,
is an autonomous platform that was developed to assist older
adults with mild cognitive impairment. Mini was devised to
daily coexist with people at home, aiding them in common
tasks while providing them companionship and entertain-
ment. To provide these services, the robot is able to execute a
wide range of diverse activities that allow it to interact with its
environment in many different ways. Its software architecture
is supported on a decision-making system that controls the
behaviour execution using the actuation system of the robot
depending on the inputs received from the perception system
of the robot.

FIGURE 2. Mini, a social robot used to assist older adults with mild
cognitive impairment in cognitive stimulation therapies.

A. PERCEPTION AND ACTUATION SYSTEMS
Mini can perceive different stimuli from the environment, due
to its wide range of sensors. It contains four touch sensors
placed on its head, one on each shoulder, and another in the
belly, a 3D stereo camera, and amicrophone. The information
given by these sensors is received by the perception manager,
which is amodule that translates raw data into understandable
information that is processed by the rest of modules of the
robot.

Considering its actuation system, Mini is able to move
its upper body using five servomotors that are located at its
hip, one on each arm, one on the neck, and another on head.
Additionally, two animated screens simulate two expressive

eyes and a RGB led emulates the heartbeat. It contains a
stereo speaker to play nonverbal sounds and generate speech,
and a tablet device to display multiple multimedia content.
Actuators are controlled by the expression manager, which is
a module of the robotic architecture that receives commands
by the decision making system and handles them to produce
suitable expressions.

In this experiment, Mini principally uses its 3D camera to
perceive whether the user is present in the scene or not, so that
the interaction can be accomplished. It uses a microphone and
a speaker to verbally communicate with the user, and a tablet
device to play a quiz game. In addition, it can perceive if a
virtually created music player is able to play music.

B. ROBOT STATE
In this work, the state of the robot is defined as a combi-
nation of its internal (Sinner ) and external state (Sext ), being
mathematically expressed as Srobot = Sinner × Sext. On the
one hand, the internal state is ruled by its dominant moti-
vation mdom, which is the motivation with the highest level
of intensity among all active motivations (Sinner = mdom).
On the other hand, the external state is represented as the
state of the robot in relation to the agents and objects of the
environment that can interact with it. In this work, the robot’s
external state is defined by the state of a user (Sext user)
and by the state of a music player (Sext music player), being
mathematically expressed as Sext = Sext user×Sext music player.
The following sections will give a definition of both the
internal and external state of the robot. It is worth noting
here that, as will be detailed later on, the robot’s internal
state can be defined by four different dominant motivations,
the state of the user can be present or absent, and the music
player is on or off. Thus, the robot’s state space dimension
is 4 × 2 × 2 = 16, which is denoted in this manuscript as
Srobot =

(
mdom, Sext user, Sext music player

)
.

1) ROBOT’S INTERNAL STATE
The behaviour exhibited by the robot arises from the tem-
poral evolution of 4 biological processes modelled as home-
ostatically controlled variables, which represent the robot’s
Tiredness, Boredom, Social interaction, and Knowledge. The
evolution of each biological process ranges from 0 to 100,
presenting an ideal value on one of both extremes; as shown
in Table 1. As times goes on, each biological variable starts
deviating from its ideal value by a variation rate (applied
every time step of 0.2 seconds) starting from an initial value,
as represented in Table 1). The deviation of a biological vari-
able from its ideal value produces a deficit di on the biological
process with effect on the agent, which drives the robot’s
internal system to reduce it. The deficit derived from each bio-
logical variable influences a motivational state, driving moti-
vated behaviour. In this experiment, the internal state Sinner is
defined by the dominant motivationmdom; that is, the motiva-
tionwith the highest value. Thus, the internal state of the robot
can be Rest, Play, Socialise, and Learn. The higher the needs
of its related biological process, the higher the intensity of its
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TABLE 1. Definition of the motivational states of the robot Mini, its related biological process, its temporal evolution parameters and the stimuli with
influence on the motivational state. Each motivation is linked to a specific biological variable, which is defined by a set of features. The initial value
represents the starting point of the biological variable evolution. The lower and upper limits delimit the biological variable’s evolution range. The ideal
value represents the optimal state of the biological variable. Finally, the variation rate represents how fast the deficit related to each biological grows in
absence of regulatory behaviours.

corresponding motivational state. Moreover, the motivational
state’s intensities mi can be increased if the robot perceives
certain stimuli in the environment, as Equation 7 represents.
Note that the biological processes and motivations of the
robot pretend to emulate animal biology. Thus, the internal
state does not have any physical correspondence with any
processes occurring in the robot because they are fictional.

mi = di + di
1
N

N∑
k=0

sk (7)

Perceived stimuli are associated with an intensity value sk
ranging [0, 100]. The level of intensity sk increases 2 units
per time step if the stimulus is perceived, and is reduced
in 1 unit if the stimulus is not perceived by the sensors of
the robot. Thus, in Equation 7, mi represents the intensity of
each motivation, di is the deficit of the biological variable
associated with the motivation, sk is the intensity associated
to the stimuli with influence over the motivation, and N is the
number of stimuli with effect on the motivation. Equation 7
presents the novelty of considering more than one potential
stimuli with effect on the motivation intensity, which our
previous studies [14]–[16] did not consider.

In this work, the stimuli that the robot can perceive and
which can affect its motivational states are the presence of
the user, that increases its motivation to Play and Socialise,
and, if the music player is turned on, music increases the
motivation to play. Table 1 shows the parameters that denote
the temporal evolution of each biological variable in terms of
its initial value, lower limit, upper limit, ideal value and vari-
ation rate. It also contains the relationship of each biological
process to each motivational state, and the related stimulus
which boost motivational intensities.

In the last step, the decision-making system of the robot
selects, following a winner-take-all approach, the motiva-
tion with the highest intensity among all, denoted as dom-
inant motivation mdom, only if at least one motivational
state presents an intensity mi level above 20 units. Thus,
the internal state of the robot can be expressed as Sinner =
max(Rest,Play, Socialise,Learn). Note that the idea is that
the learning system implemented in Mini allows it to know
which action is the best for each motivational state and the

current external situation (perception of stimuli). So once
the policy of behaviour has been learnt, the robot will
autonomously reduce its deficits maintaining an optimal
well-being.

Mini has been endowed with the behaviours of sleep, wait,
dance, play a quiz game, talk alone, talk with a user, search
for information, and turn on the music player. Each one of
these actions produces different effects on the needs derived
from the biological processes of the robot. Therefore, what
is required is that our learning system acknowledges these
effects and links each action with a specific robot state.
Note that not all behaviours can be executed under the same
situation because some of them require the perception of a
certain stimulus. For example, the robot should learn that it
cannot dance if the music player is off, or cannot play the
game if a person is not perceived next to it. To overcome
these situations, Mini has a couple of behaviours, which are
normally defined as appetitive, that do not produce any direct
effect over the biological variables of the agent but drives it to
perceive/obtain specific environmental resources that enable
the execution of a new behaviour, which is normally denoted
as consummatory [61]. For example, if Mini wants to dance
to reduce its boredom, then it will have to learn that first it
has to turn on the music player (an appetitive behaviour). It is
important to remark that the robot does not know a priori
which behaviours are appetitive and which ones are consum-
matory, having to acknowledge this distinction during the
learning process. Thus, our approach seeks to maximize the
improvement in the biological state of the robot after execut-
ing an action. Consequently, the reward function (defined in
Equation 9, which is explained in detail in Section IV-D), that
is used in this experiment accounts for the variation of the
deficits of the biological processes, giving more importance
to the deficit related to the dominant motivation dmot . If the
action is not correctly executed, then it will fail and provide
a bad reward to the robot. Later, in Section IV-C, the list of
behaviours of the robot and the effects they produce over the
biological variables are presented.

Using the previous biologically inspired set-up, the internal
state of the robot, denoted as Sinner , allows it to behave by
fostering the interaction with people without leaving aside
the rest of its artificially created needs. This means that the
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deficits of the biological variables bound to the motivations
related to the interaction of the user (boredom and social
interaction) increase faster than the deficits of the rest of the
biological variables. Thus, the values set in Table 1 have been
set by empirically denoting the evolution of the biological
internal processes of the robot foster the interaction with the
user. In addition, these values have been empirically set by
considering the application of our robot and our previous
experience in this type of systems.

2) ROBOT’S EXTERNAL STATE
The perception of certain stimuli affects the state of the robot
and therefore influences which behaviour it will execute.
As previously stated, Mini’s external state, denoted as Sext ,
is defined by the state of the agents and the objects that the
robot interacts with. In this work, the robot’s external state is
influenced the user’s state Sext user and the state of the music
player Sext music player. Using its perception system, the robot
is able to perceive if the user is in front of it (present or absent,
Sext user = {present, absent}) and if the music player is turned
on or not (Sext music player = {on, off }). Thus, the external state
of the robot can be defined as the state of these objects with
respect to the robot, which is modelled as user present/absent
and music player turned on/off. Note that in some situations
the perception of the user and the music player influences the
action selection of the robot because certain behaviours can
only be activated if the user is present and the music player
is turned on. Considering the music player, Mini is able to
change its state by turning it on or off, but it cannot control
the users’ behaviour, and therefore their state. In contrast
from the internal state of the robot, the stimuli that affect its
external state have a correspondence with physical agents and
objects in real the world.

C. ROBOT’s BEHAVIOURS
The decision-making system [16] of Mini controls the exe-
cution of behaviours in each situation, as Figure 3 shows.
As was presented in in the previous sections, the goal of
this framework is to endow Mini with a learning system that
allows it to know how to execute optimal actions according
to its state towards maintaining a good welfare state. In this
sense, the robot’s state can be represented as a combination
of its internal state (i.e. needs of the robot derived from its
biological processes) and its external state, as a consequence
of the state of environmental stimuli considered by the robot.
In this learning scenario, Mini can deploy a set of behaviours,
which are listed below and represented in Figure 4, that allow
it to reduce its needs depending on the availability of cer-
tain resources. These actions present two possible outcomes:
success if the action is completely satisfactory executed, and
failed otherwise (e.g. if a necessary resource is not available).
The outcome of each action determines the reward obtained
by the robot once the action has finished, as will be detailed
later in Section IV-D. It is important to remark that the set
of behaviours that are listed below represent the action space

FIGURE 3. Decision-making architecture supported on the perception
system and the internal motivations of the robot for controlling its
behaviour execution.

considered in the RL system that learns how the robot can
reduce its deficits.
Sleep: The robot simulates that it is sleeping by closing its

eyes, and performing yawns and similar gestures.
Wait: The robot relaxes for a while without doing any

explicit activity.
Dance: The robot plays a song on the music player and

starts dancing following the rhythm of the music. This
action fails if the music player has not been turned off
previously.

Play game: The robot and the users play a quiz game
together in which the user has to guess the answer to
three different questions after selecting a category to
play from sports, art and entertainment, history, science
and technology, and geography. The game fails if the
user is not perceived by the user.

Talk alone: The robot talks alone by saying out loud some
phrases from a wide repertoire.

Talk with user: The robot asks the user general questions to
maintain a short conversation with them.

Search information: The robot autonomously surfs the
Internet looking for the last news and reads the news
stories out loud.

Turn on the music player: The robot turns on the virtual
music player to play songs. Once on, the music player
turns off by itself after two minutes.

D. LEARNING SYSTEM
The action-based learning system that is presented in this
paper is included in the decision-making module of the robot,
which endows it with the ability to autonomously learn the
most suitable action for each robot state. In this experiment,
three algorithms are simultaneously tested while running at
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FIGURE 4. Graphical view of the social robot Mini executing its available behaviours to reduce its needs to maintain a good biological state.

the same time in the robot, Q-learning, Q(λ), and Dyna-Q+
(which is supported on a probabilistic model and Q(λ)).
Thus, during the interaction, Mini selected its actions using
Boltzmann’s probability distribution, which assigns a selec-
tion likelihood to each of the actions of the robot depend-
ing on its Q-value and the Temperature parameter. In this
experiment, the robot initially randomly decides its actions
exploring the environment (i.e. setting high Temperature val-
ues) but, as Mini gains experience from these interactions,
it exploits its optimal behaviour by selecting those actions
that reduce its salient needs the most (dynamically reducing
the Temperature). Note that from the comparison of the three
algorithms, classical Q-learning and Q(λ) are supposedly
slower than Dyna-Q+ because it does not contain the benefits
provided by the planned experiences. Additionally, Dyna-Q+
presents the advantage of promoting subtle exploratory peri-
ods after the learning has been completed by perceiving
new changes in the environment. Nonetheless, the stopping
criteria in our learning setting was produced once one algo-
rithm converged to the optimal solution because one of the
main goals of this work is to demonstrate the faster learning
procedure of Dyna-Q+ architecture with respect to classical
RL algorithms.

In this work, the discount factor γ of the three algorithms
has been empirically set to a constant value of 0.8 units,
the learning rate α was initially set to 1, decaying inversely
proportional to the number of times n each action at has been
performed in state st , αs,a = 1

n . For those algorithms sup-
ported on eligibility traces, the decay rate λ was empirically
set to 0.8 units. Following this configuration, the convergence
of all Q-values is guaranteed by the law of large numbers [62].
Additionally, the Temperature T of the Boltzmann equation
was initially set to a high value t0 = 100, promoting action
exploration. As the experiment moves forward, the Temper-
ature decays following the expression defined in Equation 8,
where tA represents the sum of the number of times the agent
has performed an action in a particular state s and dr =
−0.002 defines the decay rate, which was calculated to value
the low limit of 0.1 when tA = 1000. Thus, as tA increases,
T decreases. This drives the agent to exploit its learnt policy
by maintaining a good state of well-being.

T = t0 · edr ·tA (8)

Finally, it is important to clarify that once the robot has
enough real experience, the Dyna-Q+ architecture performs
n = 10 planning steps per real acting. This value has been
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TABLE 2. List of behaviours of the social robot Mini and the value of their
effects over each biological internal variable.

empirically set to balance the learning speed and compu-
tational resources. As pointed out both in [44] and [59],
the learning speed increases with the number of planning
steps but the computational time is also negatively affected.
Moreover, note that high n values may lead to the model not
representing the real world because it does not gather enough
real experience.

In every reinforcement learning setting, rewards are
obtained from feedback received after the agent executes
its actions making use of a reward function. This function
indicates to the agent how adequately it is performing each

action in a certain state. Previously, we stated that the goal
of this work is to endow our social robot with action-based
learning capabilities to maximize the improvement on the
internal state. Consequently, the reward obtained by the robot
after executing an action in a certain state depends on the
variation of the deficits di tied to each biological variable.
Thus, if the deficits of the robot are reduced after executing
the action, then the internal state of the robot has improved
leading to a positive reward. Additionally, in this setting, if the
deficit related to the dominant motivation mdom is satiated,
then the reward obtained by the robot is even higher because
it has reduced its most urgent need. Equation 9 represents the
reward function proposed in this contribution and used by
the action-based learning system, which defines the reward
received by the robot after executing a particular action.
Action rewards are calculated as the variation of the deficits
of the robot per unit of time (in seconds) during the execution
of the action weighting the deficit related to the dominant
motivation dmot by 0.5 and the rest of the deficits di by
0.5, where M is the total number of biological processes
representing the internal state of the robot and t is the duration
of the action in seconds.

r =


1
t

(
0.5 ·1dmot + 0.5 ·

∑M−1
i=0 1di

)
if a succeeded

−1 if a failed
(9)

V. EVALUATION
This section defines the experimental set-up in which our
social robot Mini demonstrates how it learns the optimal
behaviour by focusing on maintaining the deficits related to
its biological variables satisfied.

A. EXPERIMENTAL SET-UP
In this learning scenario,Mini was placed in a room of a house
where the two participants, aged 27 and 24, lived during the
COVID-19 lockdown in September 2020. None of the par-
ticipants’ personal information was stored. The participants
interacted with the robot without following a predefined pat-
tern, appearing at the scene of interaction at will. During the
experiment, which lasted for five consecutive days, the robot
was placed on a desktop in a bedroom of the house, exhibiting
an autonomous behaviour. Initially, the robot did not have
any kind of information about what behaviour was the most
suitable to execute according to its state. Consequently, at the
beginning of the experiment, the robot randomly selected
the behaviour to execute. Nonetheless, as the experiment
moved forward, the robot started to explore the effects yielded
by each action on its deficits, and under which situations
each action can be executed depending on the availability
of resources (e.g. the state of the user and the state of the
music player). If the resources needed to execute a particular
behaviour were not accessible, then the robot had to learn the
correct sequence of actions to reach them. Verbal expression
used by the robot when talking alone or when playing the
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game were set to motivate the user to approach the robot and
start the interaction. Taking this into account, if any experi-
menter was close to the robot when it needed to play or talk,
then Mini could perform behaviours that did not require the
presence of the user. It is important to remark that when
the participants were interacting with the robot, they acted
at will. Consequently, the answers provided while playing
the game or having a conversation with the robot were not
predefined and depended on the participant’s own intentions.

B. METRICS
The results obtained in this work are presented by focusing
on two main streams. First, we compare the learning results
of Q-learning, Q(λ), and Dyna-Q+ in terms of convergence
speed and stability, by contrasting the evolution of each
Q-value signal (for each algorithm) during the learning pro-
cess. Second, we evaluate the learnt policy in terms of the
robot’s well-being. Therefore, according to this evaluation
system, we formally define the metrics used in this experi-
ment as follows.
Convergence speed and stability are described by the tem-

poral evolution of the Q-values obtained for each of the
algorithms we have appraised. The convergence speed is
represented by the number of steps that each algorithm
needs to converge to an optimal solution, while the con-
vergence stability is represented by the Mean Squared
Error (MSE) (assuming that the optimal Q-value is the
one where the algorithm converges). Thus, in the com-
parison, we consider that the algorithm that needs fewer
real steps to converge is the faster one and the algorithm
with the minimum MSE is the more stable.

Optimal policy is the behaviour exhibited by the robot
which maximizes the sum of rewards returning during
the lifespan of the agent, which is represented by the
maximum Q-value in each robot state.

Wellbeing is a representation of the situation of the needs
of the robot. In related literature, this term has been
previously denoted as well-being [15] or comfort [63].
Mathematically, it is calculated following Equation 10,
where a value of 100 means that the internal well-being
of the robot is at its ideal value (i.e. all of the robot’s
needs are satiated), while a value of 0 means that all of
the robot’s needs are at their peak, for a number M of
biological needs di. This metric represents the goal of
this contribution because once the learning process has
finished, the robot’s well-being should have improved
noticeably with respect to the initial stages of the learn-
ing process.

Wellbeing = 100−
1
M

M∑
i=0

di (10)

VI. RESULTS
This section contains the results obtained by comparing the
performance of Q-learning, Q(λ), and Dyna-Q+ Reinforce-
ment Learning algorithms in terms of their convergence speed

and stability. It will also present the optimal policy learnt by
the winner algorithm and the benefits yielded on the robot’s
internal state once the learning process has been completed.

A. CONVERGENCE SPEED AND STABILITY
The experiment previously described in Section V was
performed to compare the performance of the three algo-
rithms. Due to impossibility of graphically representing the
160 Q-values derived from the state-action combinations,
we opted to simply show the graphs corresponding to the
optimal actions (the action that produce a bigger reduction
of the robot’s needs) for each robot state (see Figure 6
for the optimal policy Q-values representation and visit our
repository1 to check the graphs of all Q-values obtained in
the experiment). It is important to remark that the x axis
of each Q-value graph represents the number of times that
each action has been executed for each robot state. Note
that in case of Dyna-Q+, these real interactions also contain
simulated experiences. Considering this idea, if the Q-value
signal converges in less action executions, then the robot is
learning faster.

FIGURE 5. Averaged Mean Squared Error (MSE) (left-hand) and average
number of real steps to convergence (right-hand) for each of the
algorithms.

Looking at Figure 6 and with strong support from Figure 5,
it can be concluded that the curves corresponding to the
Dyna-Q+ architecture (green) converge in fewer interactions
than Q(λ) (red) and Q-learning (blue) for all state-action
pairs. In addition, Dyna-Q+ model provides a more stable
convergence curve, whereas, in some of the graphs, espe-
cially Q-learning but also Q(λ) curves are more dependent
on the stability of the rewards received. This effect is more
notable in two events: first, for those robot states where
the presence of the user and the state of the music player
suppose a big influence, the perception system can sometimes
provide wrong measures, leading to an incorrect reward; and
second, when there are not enough updates. For example,
Figure 6m represent a notable instability for both Q-learning
and Q(λ) algorithms as a consequence of a low number of
real updates (note that Dyna-Q+Q-value evolution combines
real and simulated updates). A second example of conver-
gence instability is represented in Figure 6l, where some

1Link to repository.

VOLUME 9, 2021 98391

https://github.com/MarcosMaroto/Experiments-ReinforcementLearning


M. Maroto-Gómez et al.: Speeding-Up Action Learning in Social Robot With Dyna-Q+

FIGURE 6. Temporal evolution for the best Q-value obtained for each robot state considering the reinforcement learning algorithms Q-learning, Q(λ)
and Dyna-Q+. Note that the key defining each graph follows the format (s,a) (e.g. ((Learn, present, off), search information)).

incorrect perceptions of the user presence make the signals
corresponding to Q-learning and Q(λ) algorithms to dither at
the beginning of its evolution. Hence, as we hypothesized,
the simulated experiences provided by Dyna-Q+ allow the
robot to learn on average in 46 real steps, by the 75 of
Q-learning and 68 of Q(λ) (Figure 5) (right-hand). Consid-
ering the MSE, Dyna-Q+ presents a value that is clearly
below (0.01), while Q-learning is clearly above 0.015 and
Q(λ) considerably above 0.02 (Figure 5) (left-hand). In addi-
tion, notable improvements are provided by Dyna-Q+ with
respect to classical Q-learning and Q(λ) in terms of learning
speed and stability. However, we observed from the outcomes
obtained in this comparison that the optimal policy learnt

by both classical algorithms is not correct because in some
situations (in some robot states) the robot is unable to reduce
its salient needs correctly.

B. LEARNT POLICY
It is worth noting here that none of the graphs in Figure 6
pretend to compare the final Q-values learnt by each of
the algorithms. Instead, they provide a graphical proof that the
convergence of Dyna-Q+ is faster and more stable than the
convergence of both Q-learning and Q(λ). Recall that, as was
explained in the previous section, the principal goal of each
algorithm is to learn the optimal policy of behaviour that
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FIGURE 7. Q-values learnt by the Dyna-Q+ algorithm for each state-action pair. The optimal Q-values for each state-action pair are framed in blue.
Actions with positive effects on the biological processes of the robot for each state are highlighted in green.

leads the robot to satisfy its deficits. Considering this, it is
important to remark that the Q-values learnt by each algo-
rithm must be compared among them, and not with the other
algorithms. Thus, in some of the graphs, the final Q-value
learnt by Q-learning and Q(λ) is above the Q-value learnt by
Dyna-Q+. This may be a clue that neither of the classical
algorithms has yet learnt an optimal policy of behaviour.

The optimal policy learnt by the robot is defined by the
actions that present the higher Q-values for each state of the
robot. Thus, the robot has learnt properly when it greedily
selects the best actions. Figure 7 represents the final Q-values
learnt by the robot using the Dyna-Q+ architecture, which
has resulted in the one with the best performance in this
experiment. Q-values are highlighted in a green to red colour
scale, indicating the optimality of a certain Q-value depend-
ing on the state of the agent. In this representation, shining
green indicates that the action is very optimal, producing
beneficial effects in the robot’s well-being when it is executed
in that particular state. In contrast, dull reds represent the non-
optimality of the action for a certain robot state, not reducing
properly the salient deficits of the robot. Additionally, the best
action of each state has been framed in blue, marking the
optimal policy that the robot will follow when exploiting its
learnt behaviour.

Following the blue frames highlighted in the table, it is
possible to describe the behaviour learnt by Mini. For exam-
ple, if the robot is motivated to Rest, independently if the
user is present or if the music player is on, the robot learns
that the best option is to Sleep to recover from Tiredness.
Looking at those states where the dominant motivation is

Play, the robot will play the quiz game if the user is present
independently of the music player’s state. However, if the
user is absent and the music player is off, then Mini learns
that to reduce its Entertainment need, it has to learn first
that it is necessary to turn on the music player to be able
dance. Regarding the motivation to Socialise, the robot will
talk alone if any user is present because talking with the user
is only successful if someone is perceived to be close to the
robot. Finally, every time that Mini is motivated to Learn,
the best action is to search for information because it is the
action that reduces themost the robot’s hunger of Knowledge.
While interactingwith the real world, an optimal internal state
of the robot is obtained if it exploits this policy of behaviour.
By doing so, it is able to rapidly reduce its needs as soon as
they appear, maintaining its artificially-created internal state
inside a comfortable range, as represented in the following
section. In addition, the motivated behaviour exhibited by
Mini could be perceived by many people as more ‘‘natural’’
because it expresses its needs and intentions according to
a grounded reason, instead of just performing autonomous
random behaviours.

In case of the algorithms Q-learning and Q(λ), the learn-
ing process does not attain an optimal solution. Considering
Q-learning, the policy learnt by the robot is almost correct,
excepting the robot state (Learn, user absent, music player
turned off), where instead of learning that the best action is
to search information on the Internet, the robot learns that
it has to turn on the music player. Meanwhile, in case of
Q(λ), the policy is incorrect for the state (Play, user absent,
music player turned off), where the robot learns it has to
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FIGURE 8. Well-being of the robot at the beginning and at the end of learning process.

sleep instead of turning on the music player. The full view
of the policy learnt by the robot for Q-learning and Q(λ)
can be found in the repository (referenced in footnote of
Section VI-A), together with the rest of the results.

C. ROBOT WELL-BEING
The artificially created internal state of our robot seeks to
define a biological ground to supply it with natural mecha-
nisms of motivated behaviour. During the initial steps of the
learning process, actions are randomly explored preventing
the robot to correctly regulate its internal state. Nevertheless,
as the robot gains experience with the interaction and it
realizes the effect each action produces on its needs, Mini
starts to select optimal actions instead of continue exploring.
Thereby, once the robot had learnt how to correctly reduce
its needs, the welfare state of the robot is notably improved.
It is worth noting here that well-being values of 0 or 100
are unlikely to occur because it is almost impossible that
all the biological process of the robot are at their highest
deficit or totally satiated. Figure 8 compares the outcomes
produced by the Dyna-Q+ model for evolution of the well-
being of the robot when it is naive about how to regulate its
internal state (Figure 8a) and once it has learnt its optimal
policy (see Figure 8b).

Figure 8 represents the initial 300 minutes (the robot has
not gained any experience) and Figure 8b the last 5 minutes
of the learning process (once the robot has learnt the optimal
policy of behaviour). As Figure 8a shows, the well-being
state of the robot at the beginning of the experiment is very
poor (mostly below 30 units), meaning that the needs of the
robot are not correctly reduced. However, once the robot
has learnt the optimal policy of behaviour, the well-being of
Mini ranged between 60 and 85 units. Thus, as Figure 8b
represents, the variation of the well-being signal is enclosed
in a range between 60−85 units, while in Figure 8a the well-
being signal oscillates inside a wider range (values between
0−50 units). This shows that once the robot has learnt how to
behave, its internal state is more stable. Consequently, these

results ground one of the main goals of this contribution
because it represents how the welfare of the robot has been
notably improved once the learning process has been com-
pleted. Intrinsically, this means that the deficits derived from
the biological processes of the robot are correctly satisfied
and controlled inside an acceptable range.

VII. DISCUSSION
According to the results presented in the previous section, and
especially in the comparison shown in Section VI-A where
the performance of the three algorithms is proven, we have
been demonstrated how the probabilistic Dyna-Q+ model,
combined with a classical multi-step Q-(λ) reinforcement
learning algorithm, provides the best results in terms of con-
vergence speed and stability. Consequently, this model was
the chosen option to be embedded in the robot architecture
to allow it to maintain the best possible internal state by
exhibiting action-based learning capabilities.

The Dyna architecture has proven to be a promising frame-
work to speed-up the learning process in reinforcement learn-
ing research. Among its many advantages, it allows the agent
not only to speed-up the learning process but also to make
classical algorithms less sensitive to changes in the reward
distribution, especially in non-deterministic environments.
In our application, action rewards follow a stochastic distri-
bution, due to the problems derived from the errors produced
by the perception system and to the unforeseen behaviours
of the people while interacting with the robot. Consequently,
this issue produces an important fluctuation in the evolution
of the Q-values, as can be perceived for Q-learning and
Q(λ) algorithms in the graphs represented in Figure 6, but
particularly in Figures 6e, 6i, 6m, or 6n, among others.

Once the action learning has been completed, Mini is able
to naturally behave by seeking to reduce its internal needs.
As Figure 7 reflects, it has been able to learn the optimal
policy (framed in blue) of behaviour and acknowledge that,
for example, it cannot play a quiz game or talk with the user
if they are not present and correctly perceived. In a similar
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example, it is conscious that to dance, it is indispensable to
turn on the music player first because otherwise it will not be
possible to play any song. It is important to bear in mind that
this learning process requires a user to be engaged with the
robot because otherwise the correction of the robot’s deficits
cannot be tackled successfully. As previously mentioned in
Section VI-A, Dyna-Q+ not only outperforms Q-learning
and Q(λ) in terms of convergence speed but also in learn-
ing the optimal policy because both classical algorithms
did not reach the optimal solution as Dyna-Q+ architecture
did. In this approach, the dependency on the user is part
of our own experimental set-up because the nature of our
robot and its biological variables have been defined giving
more importance to its social needs to foster human-robot
interaction. As stated earlier, experimenters could behave at
will during the experiment but while the robot was selecting
and executing new actions, even in their absence, they were
influenced many times by Mini causing them to approach it
and start a new interaction. Additionally, the optimal policy
leads the robot to maintain a good welfare state, as Figure 8
shows by comparing the evolution of the robot’s well-being
before and after learning the optimal policy of behaviour.
As can be perceived by looking at Figure 8a, the well-being
starts being ideal at the beginning of the experiment but
rapidly decreases due to the incorrect reduction of the robot’s
needs. This tendency is maintained until the robot has learnt
the optimal policy, driving it to correctly reduce its salient
needs maintaining a good well-being and more stable value,
as depicted in Figure 8b. Considering this optimal deficit
reduction, we have proven how the robot correctly maintains
its biological processes inside comfortable ranges, attaining
a stable internal state while autonomously behaving.

At the initial stage of this experiment, the effects that each
action produced on the internal state of the robot were empir-
ically predefined using our previous experience in agent’s
motivational modelling, and taking into account the goal that
we pursue for Mini. Despite this empirical predefinition,
we realize that to attain a ‘‘natural’’ robot to interact with
people, it is critical to endow it to a wide range of behaviours;
as depicted in Figure 4. Moreover, it is important that the
robot is able to reduce its deficits by itself and not only by
depending on external resources, especially if these resources
are not always reachable by the robot. For example, in the
definition of this experiment, where the robot required people
to reduce its Entertainment and Social interaction needs,
we had to include actions (dance and talk alone) to allow it to
reduce these needs independently on the presence of the user.
Otherwise, in situations where the user is not engaged with
the robot or is absent during long periods of time, the robot
can enter in a looping situation where the other needs cannot
be reduced.

Finally, to conclude this discussion, we would like to
remark on the importance of behaviour adaptation in social
robots. In this work, we have presented a new approach
to speed-up action learning to endow Mini with the pos-
sibility to dynamically regulate its motivational behaviour.

This regulation depends on two external factors (the user
and the music player), but there are still many stimuli that
influence people on their lives and therefore are potential
factors of influence in adaptive artificial agents. In this sense,
the benefits provided in learning speed by Dyna-Q+will lead
us to improve the situations and considerations of our robot,
which will enhance its ’artificial’ intelligence and natural
behaviour.

A. LIMITATIONS
The architecture presented in this manuscript has some limi-
tations in its operation. First, as wasmentioned earlier, tabular
methods are only tractable if the state-action space is not too
large and can easily be represented as a table. Otherwise,
function approximation methods are required, as described in
Section II. In addition, the success of RL algorithms rely on a
correct definition of the reward function, which is necessary
to clearly specify the goal of the system during its design.

In this application, where our social robot Mini learns from
trial and error how to behave to maintain a good internal state,
the effects of each individual behaviour on the biological
processes of the robot have to be finely and empirically set.
This issue means that the designer of the robot’s behaviour
has to precisely define the existing relationships between
the biological processes of the robot and the behaviours.
If the number of behaviours and processes increases, then the
designing process becomes more tedious.

VIII. CONCLUSION
In this work, we have presented a biologically inspired
action learning system for our social robot Mini supported
on Dyna-Q+ architecture, which combines the classical rein-
forcement learning’s Q(λ) with a probabilistic model. This
model replicates the robot state’s transitions and rewards
obtained after executing an action in a particular state. Thus,
as was demonstrated in the results section, the learning pro-
cess of the robot is much faster and more stable than classical
algorithms such as Q-learning or Q(λ) because the probabilis-
tic model of the robot plans in the background while the robot
is acting in the real world. In addition, Dyna-Q+ architecture
allows the robot to continue exploring the environment by
recognising changes that appear in it, even after the initial
learning has finished.

This study represents the next step of our previous works
that are based on endowing Mini with autonomous bioin-
spired behaviour-based capabilities in a real human-robot
interaction domain. Our future work will provide Mini with
more actions and biological processes to give the robot a
more natural interaction with people and other important
stimulus available in the environment. Our results are nec-
essary to explore and understand how the organism of living
beings operate and how a new stimulus in the environment
can be perceived and appraised to provide our robot with
a wider range of capabilities. Accordingly, accomplishing
natural behaviours and decision-making in Mini will allow
us to deploy more social robots in homes, which will gather
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information about how people perceive the robot and whether
they really engage with it.
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