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Abstract Multi-agent planning (MAP) dealswith planning systems that reason on long-term
goals by multiple collaborative agents which want to maintain privacy on their knowl-
edge. Recently, new MAP techniques have been devised to provide efficient solutions. Most
approaches expand distributed searches using modified planners, where agents exchange
public information. They present two drawbacks: they are planner-dependent; and incur a
high communication cost. Instead, we present two algorithms whose search processes are
monolithic (no communication while individual planning) andMAP tasks are compiled such
that they are planner-independent (no programming effort needed when replacing the base
planner). Our two approaches first assign each public goal to a subset of agents. In the first
distributed approach, agents iteratively solve problems by receiving plans, goals and states
from previous agents. After generating new plans by reusing previous agents’ plans, they
share the new plans and some obfuscated private information with the following agents. In
the second centralized approach, agents generate an obfuscated version of their problems
to protect privacy and then submit it to an agent that performs centralized planning. The
resulting approaches are efficient, outperforming other state-of-the-art approaches.

Keywords Multi-agent planning · Automated planning · Privacy-preserving planning ·
Distributed planning · Centralized planning

1 Introduction

Multi-agent systems are being used for many applications. One of the newer research areas
with a huge potential is the one related to integrating multi-agent systems with classical
planning capabilities, generating the subfield of multi-agent planning (MAP). Automated
planning deals with the task of finding sequences of actions that achieve a set of goals from
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an initial state. A key requirement for most automated planning techniques is to be domain-
independent, so the same problem solver is able to generate solutions in different domains
by receiving as input a domain model expressed in a declarative language, PDDL (Planning
Domain Description Language) [36]. Automated planning has been useful in many real-
world applications, ranging from rovers’ operations [1] to transportation logistics [34] or fire
extinction [29]. In most of these applications, planning involves selecting plans for a set of
agents (e.g., rovers, trucks or firemen). Recently, there has been an interest on handling these
classical planning tasks by explicitly considering the characteristic of being multi-agent.
Also, the new approaches deal with the task of preserving privacy of information among the
agents.

There have been two main approaches to solve multi-agent planning tasks: centralized
and distributed [24,26]. The centralized approach aims at generating the complete plan for
all agents in the same common search episode. A problem with this approach is that the
complexity grows exponentially with the number of agents in general. Also, the naïve cen-
tralized approach could have some difficulties maintaining the privacy on some internal
agents’ knowledge. This private information can refer to any of the planning components:
states, goals and actions. For instance, in a transportation logistics application, a company
might have divided its operation in several branches [34]. Each branch might receive its list
of specific services (goals) to be addressed. The central branch might as well receive some
common services to be planned for. So, there is a mixture of public and private goals. In
some branches, they might use public trains to transport goods, while in others they might
use private ships. Thus, there can be private and public objects as well. The same can be said
about information on states. For instance, the locations of drivers of other branches.

Distributed planning consists of each agent solving its own planning task; planning is
performed by the agents. However, given that in many domains, there are public interacting
goals, it might be that one agent, φi , generates a solution that invalidates another agent’s, φ j ,
solution since it did not take into accountφ j ’s private and public goals and plans to solve them.
Potential solutions are plan merging [32,50] or plan coordination [22], that can be as hard as
centralized planning and are usually only useful for loosely coupled tasks [21]. If agents can
achieve their goals creating few (or no) interactions with the plans of other agents, the tasks
are called loosely coupled. As the number of interactions increases, the tasks become more
tightly coupled. Interaction among agents’ plans can be either positive—one agent achieves
a set of (sub)goals that are also achieved by another agent—or negative—an agent deletes a
subset of (sub)goals achieved by another agent. Brafman and Domshlak have recently shown
that complexity of MAP can scale polynomially in the number of agents if some parameters
related to the coupling level are fixed [13].

We are interested in a deterministic MAP setting, where we have a set of agents for which
we have to find a solution to a collaborative MAP problem with private information [67].
Thus, agents are not self-interested and there is no reasoning on agents’ utility. There are
two main features of MAP. The first one can become an advantage for planning: if we know
just a bit more information than standard planning tasks, i.e., who the agents are, then we
can exploit that information to naturally decompose planning tasks. And that can lead to big
improvements on planning efficiency, as other decomposition methods [11]. The second one
can be seen as a disadvantage for planning: we have to keep some level of privacy among
agents, such that no agent should be able to infer the private information of other agents.

In this paper, we deal with both issues. The user declares as input some information:
the agents, and their privacy requirements. So, privacy is defined by the user, as opposed
to other techniques where privacy is computed from the structure of the planning task [12].
Also, as opposed to other MAP techniques [12,66], the agents not only share the public
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knowledge, but also their private knowledge. However, private knowledge is obfuscated to
maintain privacy. Again, by sharing the obfuscated private information, we maintain privacy,
but at the same time we are able to design more efficient MAP approaches than only sharing
public information. We have devised several privacy preserving methods that balance the
privacy level and planning efficiency.

We first propose mapr (Multi-Agent Planning by plan Reuse). This approach occupies
a middle ground between distributed and centralized planning. We have been inspired by
iterativeMAP techniques [42]. It starts from a PDDLdescription of the planning task (domain
and problem) and generates an obfuscated version for each agent. Currently, we deal with
PDDL2.1. Then, it first assigns a subset of public goals to each agent, while each agent might
have an additional set of private goals. Afterward, mapr calls the first agent to provide a
solution (plan) that takes into account its private and public goals.mapr iteratively calls each
agent with the solutions provided by previous agents, augmented with domain and problem
components needed to reproduce the solution (goals, literals from the state and actions).
Each agent receives its own goals plus the goals of the previous agents. Thus, each agent
solves its own problem, but taking into account the previous agents’ augmented solutions.
Since previous solutions might consider private information, all private information from an
agent is obfuscated for the next ones. We have called it planning by reuse given that each
agent reuses information from previous agents planning episodes. They pass their goals,
and can reuse (or not) the actions in their plans. Since each agent receives the plan from
the previous agent, that implicitly considers the solutions to all previous agents, instead of
starting the search from scratch, it can also reuse the previous whole plan or only a subset
of the actions. Therefore, we can use any recent work on planning by reuse [7,33]. Sharing
the obfuscated private and public information of previous agents also solves the potential
problem of invalidating previous agents plans, by forcing each agent to regenerate previous
agents’ plans or provide an alternative subplan to achieve previous agents’ goals.

The second approach is a centralized version, cmap (Centralized Multi-Agent Planning).
It shares the same first step withmapr: each agent obfuscates its initial planning task (domain
and problem), and a central agent assigns a subset of public goals to some agents. This goal
allocation indirectly generates a smaller set of agents (those to which cmap has assigned
goals). Then, each agent sends its obfuscated planning task to a common agent. This agent
joins all problemdescriptions and performs centralized planning over the obfuscated planning
tasks. Experiments show that both techniques outperform state-of-the-art MAP techniques.
One of the key differences of our approaches with respect to current MAP techniques lies on
our focus on the division of labor. Bothmapr and cmap explicitly reason about efficient ways
of splitting the MAP task among agents, while other techniques focus on the collaboration
of agents to achieve goals.

A previous version of this paper was published as an extended abstract in [4], and in a
workshop [5]. Both approaches also participated in the First Competition of Distributed and
Multiagent Planners (CoDMAP) [6].1 The main contributions of this paper are:2

– Detailed definition of two newMAP algorithms,mapr and cmap, that explicitly consider
(preserve) agents privacy.

– Definition of seven goal assignment strategies for both mapr and cmap. We report on
three new ones with respect to our previous papers.

– Definition of four strategies for ordering agents. We only considered one before.

1 http://agents.fel.cvut.cz/codmap/.
2 Some of these issues were already described at a very high level in [6]. Here, we provide a comprehensive
description of all the underlying algorithms and analysis.
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– Definition (and implementation) of three methods to preserve privacy.
– Definition of two new domains, Port and Depots-robots, to test some of the properties of

the algorithms. We had already introduced Port before.
– Evaluation of all the combinations of the previous algorithms and strategies against state-

of-the-art MAP and centralized planners. We have greatly extended the experimentation.
– Evaluation of privacy preservation on different domains.

The paper is structured as follows. Section 2 presents the MAP task we are dealing
with. Next, Sect. 3 defines the privacy we use in this paper and four different algorithms for
maintaining privacy. Section 4 describesmapr, andSect. 5 presentscmap. Section 6 describes
the experimental setup, shows results and discusses them. Section 7 presents relevant state-
of-the-art approaches. Finally, Sect. 8 draws some conclusions and presents some future
work.

2 Single and multi-agent planning tasks

We deal here with multi-agent classical planning tasks.We describe the standard single-agent
planning task. We start by providing a standard definition of single-agent planning task in the
propositional setting. An alternative common setting nowadays is SAS+ [20]. Our approaches
follow the propositional setting, so we will use it to describe our algorithms. We mention
the SAS+ representation given that the base planner used for the experiments uses it as we
describe later.

Definition 1 (Single-agent classical planning task)A single-agent classical planning task is
a tuple � = {F, A, I,G}, where F is a set of propositions, A is a set of instantiated actions,
I ⊆ F is an initial state, and G ⊆ F is a set of goals.

Each action a ∈ A is described by a set of preconditions (pre(a)) that represent literals
that must be true in a state to execute the action and a set of effects (eff(a)), literals that
are expected to be added (add(a) effects) or removed (del(a) effects) from the state after
execution of the action. The definition of each action might also include a cost c(a) (the
default cost is one). The application of an action a in a state s is defined by a function γ ,
such that γ (s, a) = (s\del(a))∪ add(a) if pre(a)⊆ s and s otherwise (it cannot be applied).3

The planning task should generate as output a sequence of actions π = (a1, . . . , an) such
that if applied in order from the initial state I would result in a state sn , where goals are true,
G ⊆ sn . Plan cost is commonly defined as: C(π) = ∑

ai∈π c(ai ). Even if mapr and cmap
can deal with the same cost functions that current planners can, in this paper we will only
report on quality measured as the plan length. Thus, c(ai ) = 1 ∀ai ∈ A.

In order to represent planning tasks compactly, the automated planning community uses
the standard language PDDL [36]. A planning task � is automatically generated from
the PDDL description of a domain D and a problem P . The domain in PDDL is a tuple
D = {T y,Co, Pr, Fn, Op}, where: T y is a hierarchy of types (to characterize the problem
objects); Co is a set of constants that are used by all problems in the domain; Pr and Fn
are sets of definitions of predicates and functions, respectively, whose instantiations generate
the facts in F ; and Op is a set of operator schemas or generalized actions, defined using
variables—parameters, par(a). The instantiations of those operators with problem objects
generate the actions in A. A planning problem in PDDL is a tuple P = {D, Ob, I,G, Me},
3 Also defined as ∅ when the action cannot be applied.
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where: D is the domain; Ob is a set of objects (instances of types in the domain); I is the
initial state; G is the set of goals; and Me is an optional metric to define optimization criteria
(most commonly minimizing plan cost). We will present some results related to the quality
of the solutions that will use a cost metric.

In MAP, a set of m agents, � = {φ1, . . . , φm} have to solve the planning task �.

Definition 2 (MAP task) A MAP task is a set of planning subtasks, one for each agent,
M = {�1, . . . , �m}. Each planning subtask can be defined as a single-agent planning task,
�i = {Ai , Fi , Ii ,Gi }. An alternative equivalent lifted representation of each single-agent
planning task in PDDL would be a pair (domain,problem): �i = {Di , Pi }.

In the definition, we do not require the sets Ai to be disjoint. So, there can be domains
where agents share a subset of actions. For instance, in the Driverlog, if we set the agents to
be the drivers (a common way to agentify—model—the domain), there are actions (load and
unload) that do not have an agent in their parameters. In those cases, these actions will be in
the set of all agents. As we will see, this is a major difference in terms of modeling with other
MAP approaches that assume that all actions have to be performed by at least one agent (an
agent has to be in the parameter list of each action), and thus they require that the sets Ai are
disjoint [12,54].

The components of each �i have a public part that can be shared with other agents, and
a private part. We assume that both the complete initial state, I = ∪m

i=1 Ii , and set of goals,
G = ∪m

i=1Gi are consistent; that is, they are conflict-free (there are no mutex). In other MAP
approaches, they allow conflicts among goals [70].

3 Preserving privacy

One of the key requirements in MAP is privacy preservation. How to represent privacy and
what levels of privacy preservation are available is still an open issue. We will first address
some definitions of privacy preservation and later we will define the methods we propose and
use in our MAP algorithms. Nissim and Brafman [54] define weak privacy preserving (wpp)
planning algorithms as those that do not exchange private information among the agents
and strong privacy preserving (spp) algorithms as those where agents cannot infer more
isomorphic models of other agents information than the ones that can directly be inferred
from the public information. Their approaches lie in between these two extremes. Recent
work has defined formally privacy leakage in terms of the inferred transition systems [64].
Our approach is based on the idea of actually sharing information and still being able to
preserve privacy in a level equivalent to Nissim and Brafman, as we will discuss later. We
defined in previous works a simple way to preserve privacy [5]. Here, we define several
methods for preserving privacy with different properties in relation to privacy preservation.
Next, we discuss them in more detail.

3.1 Definition of privacy

The best alternative for defining MAP tasks would be to have a standard language as PDDL
for single-agent planning tasks. However, the community is still small and there has been yet
no agreement on such standard, even if there have already been some attempts at defining it,
as mapl [15], ma- pddl [44] (as the one used in the recent MAP comparison CoDMAP, or
the one used by Torreño et al. [68]). Most of these approaches require that the user manually
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augments the PDDL (or equivalent) definitions of domains and problems to incorporate the
extra multi-agent components into the corresponding language.

The most used approach, ma- strips, defines a multi-agent model as a rewriting of the
single-agent task [12]. In this case, the multi-agent task is redefined as M = {F,∪i Ai , I,G},
where each Ai is the set of actions of agent φi . Systems using ma- strips only take as input
the set of agents. Then, instantiated actions are assigned to the corresponding agent, and the
notion of private atoms is inferred as the ones that are only handled by one agent’s actions.
So, in their privacy model, the focus is on defining agents’ actions and then inferring the
privacy of atoms. The fact that an atom (piece of information) is private is a side effect of the
fact that an action belongs to an agent.

We follow a different approach. We prefer to attach the property of privacy to the infor-
mation available to agents (states, goals and objects). While ma- strips defines privacy at
the instantiated level (propositions), we define it at the lifted representation level (PDDL).
Intuitively, and also from our experience on projects, privacy relates to knowledge (state or
goals) that each agent does not want to share openly with the rest of agents when planning.
In particular, we can attach the property of private to predicates and types, and they will be
inherited by their instantiations (atoms and objects). A side effect of our approach is that
we can deal with private goals where other approaches cannot in their current state without
further reformulation, and we can deal with actions with no associated agent.

To showcase a difference between the two models, suppose, for instance, a logistics
domain where a company is structured in some branches, one per city. Each branch owns
some trucks to move packages within the same city, and there are common airplanes that
can carry packages from one city to another. Assume that, in a given problem, a truck,
truck1, is the only one that can move a package p1 from location locA to location
locB (it is the only truck in the city of both locations). ma- strips would assign action
move(truck1,p1,locA,locB) to truck1. Then, it would infer that the location of
p1 at locA is private to truck1. However, in the real world, sometimes the location of the
package might be considered as public (when we want the user to be able to track the position
of the package) and sometimes as private (internal) by the whole company. In our case, the
user can decide at planning time to define the predicate at as either private or public. So, in
the case of ma- strips, the definition of privacy is operational for decomposing the problem
into subproblems and deciding what to share or not with the rest of agents. Instead, our
definition of privacy relates to the common concept used by most people/organizations, and
can be parameterized by the user by setting the predicates as private or public, as explained
next.

In the experiments, we have used as agents the standard setting in most MAP works (e.g.,
rovers, satellites, or aircrafts), and that selection of agents leads to use as private predicates
and types exactly the same ones that ma- strips would generate. So, in most cases, both
definitions generate the same privatization model. Torreño et al. [68] use a richer model of
privacy that allows the user to specify which predicate is public for each agent. Bonisoli et al.
[3] also describe a richer model of privacy where agents might not need to know the presence
of other agents. In these three privacy models, the richer the model is, the more inputs it
requires from the user.

Since PDDL does not allow us to define privacy, nor agents, and we wanted to minimally
change the input descriptions of domains and problems from the single-agent case, we have
developed a compiler that translates any classical single-agent planning task into a multi-
agent planning task. The compiler takes as input a domain D and problem P in standard
PDDL. In order to define the agents and the privacy level, the compiler also takes as input
three lists: the agents’ domain types AT , the private predicates and functions PP , and the
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private types PT . We will call agentification of a domain to the particular assignment of
values to these three variables. The compiler generates as output a domain and problem file
for each agent that corresponds to the lifted representation of the MAP task of Definition 2.
For example, in the logistics domain mentioned before, AT={truck}, PP={at} and PT={}.
If trucks would have any measurement instrument, then PT could be {instrument}, as it
would be private for each truck. AT , PP and PT are mainly used for creating the domain
and problem definitions from the point of view of each agent. In particular, AT is used to
guide the processes that define the particular domain and problem for each agent, and the
ones that try to preserve privacy as explained later.

The domain file of a given agent contains only those actions that can be carried out by
that agent or those actions that are not carried out by any agent. That is, if agent’s type is t ,
those actions that contain a parameter of type t ′ such that either t ′ = t , or t ′ is a super-type
of t in the PDDL types’ hierarchy, or those actions that do not contain any parameter of a
type in AT . The problem file of a given agent contains only the parts of the state and goals
that are either public or private for that agent. Thus, it removes all references of objects of
types in AT ∪ PT of one agent from the domain and problem files of the other agents.

A constraint that users should take into account is that the definition of those inputs has
to be consistent. Thus, if two agents can modify the value of the same grounded literal,
the corresponding predicate cannot be private; i.e., it cannot be in PP . In our experience,
defining these inputs so that this property holds is really easy for the domains we have used
in the experiments. Appendix A.1 shows the settings we have used in the experiments for
each domain.

In case, the input domain and problem files are specified in the unfactored MA-PDDL
language (as for the CoDMAP competition), then the compiler takes the input MA-PDDL
domain file and problem file and defines the mapping from MA-PDDL to our model as:

– MA-PDDL private predicates: they become PP
– MA-PDDL action definition includes the agent of that action: the union of the types of

those agents becomes AT
– MA-PDDL private objects: their types become PT

The additional information required to convert a single-agent problem into a multi-agent
problem is the same in both cases. MA-PDDL includes it in the domain and problem files,
while we provide it as a separate input to the algorithm.

Nevertheless, this compilation is only needed until we have a standard language for spec-
ifying MAP tasks. In the real world, each agent would supply its own domain and problem
definitions andwewould not need this compilation. Therefore, the realMAP problem solving
starts in Sect. 4.

Since we will need it later, we define now public goals.

Definition 3 (Public goal) A goal g ∈ G is public in the lifted (PDDL) representation
if its predicate is not a private predicate, and it does not have as argument an object of a
private type. The set of public goals, PG, can be defined as: PG = {g | g ∈ G, g =
p(o1, o2, . . . , on), p /∈ PP, � ∃oi type(oi ) ∈ PT }, where type() returns the type of a
given object.

We could have dropped the condition of not including a private type, but in that case the
only agents that would be able to achieve it would be the “owners” of the objects of that
private type. So, we directly define those goals as private.

Now, we will define three methods for privacy preservation that we have implemented:
obfuscation by random substitution, generation and sharing of macro-operators, and gener-
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ation of zero-arity predicates. We believe these approaches are general enough to be used by
other MAP algorithms. For a better understanding of the three methods, we advance some
details of our MAP algorithms described in the next section. In our MAP approaches, the
search starts when each agent takes as input the compiler’s output (its domain and problem
files) and generates as output a first obfuscation of both files. In cmap, a centralized planner
solves the planning task generated by merging all these agents’ obfuscated files. Inmapr, the
first agent solves its obfuscated problem and sends to the next agent the solution plan together
with domain and problem components needed to reproduce the solution. These components
include the description of the actions in the solution plan in terms of preconditions and effects
and the goals (where private information is obfuscated). Then, the second agent integrates the
received information into its planning task and generates a plan that achieves its own goals
and the previous agents’ goals. The same process is repeated iteratively with the following
agents.

3.2 Obfuscation by random substitution

Since information on other agents is shared inmapr and cmap, each agent needs to obfuscate
its private information when sharing it with other agents (mapr) or with a central agent
(cmap). Thus, each agent takes as input the compiler’s output (its domain and problem
files) and generates as output a first obfuscation of both files. There can be potentially many
algorithms for encrypting/obfuscating the information. We define first a simple alternative.
The obfuscation function, denoted as @, can be described as a three-steps process.

First, a random substitution is generated for the names of all private information. So, each
agent reads its input domain and problem files and generates a random substitution σ for
everything considered for obfuscation. The elements of the PDDL files that are considered
for obfuscation are inferred from the inputs to the compiler, AT, PP and PT . So, they are:
types in AT ∪ PT ; constants of a type in AT ∪ PT ; predicates or functions in PP or whose
arguments are in AT ∪ PT ; literals from the state, goals and preconditions and effects of
actions in PP; actions that include any of the previous; and objects of types in AT ∪ PT .4

Second, each agent φi applies its substitution to its PDDL domain and problem, generating
two new files, D@

φi
and P@

φi
. And, third, each agent removes from D@

φi
and P@

φi
any parameter

referring to its type from actions, predicates and functions.
Let us see an example of the combined effect of the compilation and the obfuscation

in a simple multi-agent robot domain (Depots-robots) inspired by the Kiva robots used by
Amazon.5 These robots move in a grid inside a depot. They have to move inventory pods
from their storage places to human workers that fill orders by picking up items from the pods.
In our simplified version, a set of robots and a set of pods are placed in a grid. Robots can
move to adjacent cells (vertical or horizontal movements only). They can move empty or
with one pod (by placing themselves under the pod and taking it). Figure 1 (left) shows an
example of an initial state in this domain with two robots (R1 and R2) and three pods (P1,
P2 and P3). The goals (right) would be that pods are used by humans, so they have to be at
the same locations where human workers (H1–H4) are. Note that P2 cannot be moved in the
initial state before moving P1 or P3. A plan to solve the problem, would move R2 to take pod
P3 to H4, while robot R1 would move to take pods P1 and P2 to H1 and H3, respectively.

In Fig. 2 we show some parts of the input domain definition and their corresponding
obfuscated versions for agent R1 (agents are read from the problem file). The actions would

4 This step has to assure that the propositions used in the substitutions of different agents are different.
5 www.kivasystems.com, www.amazon.com
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Fig. 1 Example of an initial state (left) in a robot domain with two robots (Ri , circles), three pods (Pi , squares)
and four human workers (Hi ). The goals (right) would be that these three pods have been moved to service
humans

Fig. 2 On the left, we show some parts of the input domain file of the Depots-robots domain. On the right
we show the obfuscated version for agent R1

be: move robots (four when robots are free and four to take the pods); dropping the pods (one
action); and a human using a pod (one action). The agents in this domain are AT ={robot}.
The private predicates are PP={at-robot, carries, free}. All goals would be
public. In our simplified domain, there are no private types. In a more complex scenario, we
could model other issues, such as the robots’ batteries, that would be private types, while the
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Fig. 3 On the left we show some parts of an input problem file of the Depots-robots domain. On the right we
show the obfuscated version for agent R1

battery level would be a private predicate/function. Figure 3 shows some parts of the problem
file and their corresponding obfuscated versions.

The resulting substitution applicable to R1 is:6

σ ={(free/anon0), (at-robot/anon1), (carries/anon2), …}

Similarly, a possible substitution applicable to R2 would be:
σ ={(free/nona0), (at-robot/nona1), (carries/nona2), …}

Any stronger obfuscation function @ could be used instead, without loss of generality
of the rest of the approach. The main constraint is that the technique has to maintain the
standard properties of planning tasks. Examples of such properties are:

1. if the obfuscation technique converts an action a ∈ A of an agent φ into its obfuscated
version, a@, then for all states s such that a is applicable in s, a@ is also applicable in
the corresponding s@;

2. if a of an agent φ is applied in a state s, resulting in a state s1, then if a@ is applied in
s@, it must result in s@1
It is easy to see that the obfuscation technique proposed in this section fulfills these

properties. Each action a of a given agent φ is mapped into one action a@ where we have
applied a substitution @ to its preconditions and effects, followed by removing the agent
variable from all the lifted literals in pre(a)∪add(a)∪del(a).We also apply the same operation
to I , resulting in I@. Given that we perform the samemapping operation to each action a and
the I , then each literal will either not change, or change in the same way in I and a. Thus,
for all actions a, such that pre(a)⊆ I , then pre(a@)⊆ I@ (if they were applicable in I , the
mapped action will also be applicable in I@). Now, for all actions a applicable in I , the state
after applying a in I is s1 = γ (I, a). We also applied the same mapping to the effects of a,
so the result of applying a@ in I@, s2 = γ (I@, a@), should be s2 = s@1 . Therefore, we have
shown that the properties hold in the case of the initial state. If we apply them recursively,
they hold in all reachable states from I .

In relation to space complexity, the size of the input PDDL domain file, |D| is similar
to (slightly bigger than) the size of each of the agents’ PDDL domain file, |D| ∼ |D@

φi
|,

i = 1..m. We now have m such files. On the other hand, the size of each agent’s PDDL

problem file is usually much smaller from the original PDDL problem file |P| ∼ |P@
φi

|
m ,

6 All the new anonymized names, anonX , can be replaced by other arbitrary names.
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i = 1..m. In the obfuscated problem file of each agent, there is only private information of
that agent, plus public information. Therefore, the overhead is proportional (aroundm times)
to the size of the public information. If we see it from each agent’s perspective (the planning
tasks we will actually solve in mapr), the size of each MAP task �i is around m times
smaller in the private part than the original one, �. This is also relevant for the branching
factor that could be reduced in a factor of m (since each action that contains an agent as
parameter generatesm times less instantiations), resulting in potentially exponential benefits
in terms of search. In summary, one can see the compilation and obfuscation processes as a
problem decomposition technique based on domain-dependent features (agent types, private
predicates and private types) where space complexity is linearly augmented.

In mapr, agents also exchange plans. Next, we will study further obfuscation techniques
that can be appliedwhen plans have been generated and improve privacy preservation. Before,
we explain another type of obfuscation technique with stronger privacy-preserving properties
that can be applied when plans have been computed, based on generating macro-operators.

3.3 Generation and sharing of macro-operators

In mapr, agents will generate individual plans and share them with the next agents as dis-
cussed later on. Thus, we have devised a method to obfuscate further the information shared
among agents by generating macro-operators from the agents’ plans. Given a plan π , a
macro-operator is defined as a new action mπ that has as preconditions those conditions of
actions in the plan that are not achieved by previous actions in the plan, and whose effects
are the ones that are added or deleted by the execution in sequence of the actions in π . They
were defined in the strips planner and have been successfully used as a learning technique
[30,31]. The idea of sharing macro-operators rather than individual actions is that details
on the underlying plan are missing and thus cannot be inferred by the next agents. We have
defined two alternative methods that work in combination only with mapr.

– Generate onemacro-operator for the complete plan of each agent, which is communicated
to the rest. Thus, if agent φi generates the plan π = (a1, . . . , an), then we generate its
corresponding macro-operator mπ using the standard procedure, though it is left fully
grounded; that is, we do not perform the final generalization step [31]. Sharing themacro-
operator instead of the primitive actions restricts the next agents’ capability to interleave
primitive actions from the previous agents in the new plan. So, it introduces a balance
between privacy preservation and completeness/quality of solutions.

– Generate several macro-operators. It traverses the actions in the plan from the first one,
maintaining a list of actions to be included in the next macro-operator. At each step, if
action ai contains private information, it adds it to the list of actions. If not (all information
is public), then it generates a macro-operator with all the collected actions, empties the
list of actions and continues. Once it finishes, it sends the next agents the list of generated
macro-operators. Nissim and Brafman [54] mentioned that they tried to use a variation
of this idea, but it was not useful for them due to the utility problem [53]. Very recently, a
variation of that approach has been published [51]. Themain differencewith our proposal
is that they create and use themacros online (during the search of a solution), and inmapr
agents build them after their search of a solution has finished and the macro-operators
are used by the following agents.

Suppose, for instance, in a transportation problem where some trucks have to move pack-
ages from one place to another using a road network. They have three actions: load, unload,
and move. The private component of the state would be the location of each truck, so loading
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and unloading have a mixture of public and private information, and move is completely
private. Assume truck tr1 generates a plan such as:
load(t1,p1,n1), move(t1,n1,n2), move(t1,n2,n3), unload(t1,p1,n3),

move(t1,n3,n4), load(t1,p2,n4), move(t1,n4,n3), unload(t1,p2,n3)

Then, the first methodwould build and share a single macro-operatorm with the following
contents (that would be further obfuscated as described in Sect. 4):
pre(m)={at(tr1,n1),at(p1,n1),at(p2,n4),conn(n1,n2),…,conn(n4,n3)}7

eff(m)={at(p1,n3),at(p2,n3),not(at(tr1,n1)),at(tr1,n3)}

n2 disappears from the dynamic predicates. Thus, in case, there are different ways to go
from n1 to n3, the fact of having gone through n2 would be hidden for the next agent. The
second method would generate the following macro-operators:
m1(t1, p1, n1, n3)=move-move-unload, m2(t1, n3, n4, p2)=move-load, and
m3(t1, n4, n3, p2)=move-unload. It would share the plan π=[load,m1,m2,m3] plus some
extra information (including the macro-operators models) as detailed in Sect. 4. Again, the
fact of having gone through n2 would be hidden for the next agent.

This second method is similar in terms of privacy preserving to that of distributed MAP
approaches (fmap [66], or mafs [54]). In their case, every time an agent changes some
public component of the state, it broadcasts that information to the rest (mafs broadcasts
states and fmap also include information on the partial-order plan, such as causal links,
preconditions and effects related to the changes). Thus, what each agent receives from the
others can be seen as a sequence of states. Suppose that agent φi receives from another agent
φ j the sequence of states 〈s0, s1, . . . , sn〉 during a MAP search (each pair of consecutive
states corresponds to the execution of a sequence of private actions of φ j ). φi can compute
the differences between consecutive states that it has received from φ j (similarly with the
other agents). So, it can translate the input sequence of states into 〈s0,�1, . . . ,�n〉, where
�i = (si\si−1) ∪ not (si−1\si ). That is, the set of literals that are true in si that were not
true in si−1 (adds) and the set of literals that were true in si−1 and are not true in si (dels).
Each of these deltas can be seen as the effects of a macro-operator that explain the changes
generated by φ j ’s private actions applied between two consecutive public actions. The only
difference with a macro-operator is that preconditions cannot be computed directly from
each delta. However, since we have a set of deltas, some inductive procedure could be used
to derive such preconditions [78,79]. Furthermore, in the case of fmap, those preconditions
are shared.

Therefore, the information exchanged among agents when learning and sharing a set
of macro-operators can be seen as similar to the information that distributed approaches
exchange, given that all agents broadcast to the rest all changes in the public state. In our
case, each agent only receives as information the obfuscated plans, and reduced domain and
problemdescriptions of the previous agents (a subset of all agents). Given that the information
of all the previous agents has been merged, the following agents are not able to decide from
which previous agent they are receiving which part of the plan, and reduced domain and
problem descriptions. In other MAP approaches, they do know which agent has made which
changes to the public part of the state. The first method of learning macro-operators leaks
even less information, since it removes all intermediate changes made in the public part of
the state that are no longer true at the end of the plan (they will not appear as effects in the
corresponding macro-operator).

7 The predicate conn defines the road network through the connection between locations.
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3.4 Generation of zero-arity predicates

The next privacy-preserving method is also applied by mapr when agents share their plans
with the next agent. It consists of the following steps:

– Since all actions in the plan are instantiated, we generate a second level of obfuscation,
by removing public objects from the private literals in the preconditions and effects and
generating a new symbol for the literal’s name. Private objects were already removed
from all literals in the first obfuscation. So, after this step, the only objects that are left
in the action are public objects that appear in public literals. Also, we remove param-
eters from the action. Suppose, for instance, in a Logistics domain, there is an action
a1=drive-truck(?tr,?l1,?l2):

drive-truck(?tr,?l1,?l2)

pre={at(?tr,?l1), connected(?l1,?l2)}

eff={not(at(?tr,?l1)), at(?tr,l2)}

Since at is private, the first obfuscation process would have generated the following
model for an agent tr1 (the one used by mapr to search for a solution):

anon1(?l1,?l2)

pre={anon2(?l1), connected(?l1,?l2)}

eff={not(anon2(?l1)), anon2(?l2)}

Suppose now that agent tr1 has used an instantiation of that action in a plan, such as
anon1(A,B). A second obfuscation step is performed converting it into:

anon3()

pre={anon4, connected(A,B)}

eff={not(anon4), anon5}

Obviously, all appearances of anon2(A) in the actions in the plan would have to be
obfuscated with the same substitution (anon4), and the same applies to anon2(B)
for anon5. Thus, the semantics of drive actions should be inferred from the predicate
connected and we deal with it in the next step.

– All static predicates (both public and private) in the preconditions of the actions are
removed (as the connected predicate in the previous example). Since the action was
applied, its preconditions were true in the initial state, in particular the static predicates.
Also, no action can change their truth value, and they were already true, so they can
be safely removed from the actions preconditions. As an example, the previous action
would be shared with the remaining agents as follows. We can observe that this step has
removed all semantics of the original action:

anon3()

pre={anon4}

eff={not(anon4), anon5}

Let us see now an example of where these previous steps do not remove completely the
semantics of the original domain. Supposewe are in theDepots-robots domain and a robot
has used an instance of themove-right action (in Fig. 2) such asanon3(C31,C41).
The previous steps would translate this action into:

anon27()

pre={anon28, empty(C41)}
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eff={not(anon28), anon29, empty(C31), non(empty(C41))}

In this case, given that empty is a public literal, mapr cannot obfuscate it (other agents
might need to know whether cell C41 is empty or not). Thus, this second obfuscation
step removes all semantics for actions with no public literals, and it keeps semantics pro-
portional to the number of public predicates in the preconditions or effects of the actions.
Again, the same applies to other MAP approaches (mafs or fmap). The other agents
would see that empty(C41) is true and in the next state it is false, while empty(C31)
becomes true.

– As explained before, mapr can learn and share macro-operators, so that privacy-
preserving is further augmented by not sharing the individual private actions (either
between two public actions, or all). For instance, in the case of the previous example
in the Logistics domain, the truck would not communicate all individual movements
(private literals referring to the truck being at intermediate locations).

4 Multi-agent planning in mapr

The main steps of the mapr algorithm are to first assign public goals to agents and then
iteratively solve each agent problem. Once an agent solves a problem, it communicates an
augmented solution to the next agent where private components are obfuscated. In turn, the
next agent should solve its own problem augmented with the obfuscated private part of the
solution of the previous agents and the public part of those solutions.

4.1 mapr algorithm

Figure 4 shows a high-level description of the algorithm. It takes as input a set of agents �,
a MAP task (set of agents planning tasks), the lists of private predicates and types, a goal
assignment strategy, an agents ordering scheme, the planner to be used by the first agent,
and a second planner (it might be the same one) to be used by the following agents. The
reason to use two planners is that the second planner might be a replanning system. Since all
inputs and outputs are in PDDL, we can use any state-of-the-art planner. Themapr algorithm
requires the execution of a virtual central agent that orchestrates all the relevant calls. It starts
by computing the set of public goals (from M, PP and PT following Definition 3) and a
first ordering of agents.mapr is then composed of eight main steps: goal assignment; second
ordering of agents; first planning episode; building of augmented solution; communication
of augmented solution to the next agent; merging of the information of prior agents with the
current agent’s planning problem; subsequent planning episodes; and termination. We will
now explain in more detail each step.

4.2 Goal assignment

In the input MAP task M , each agent’s problem definition includes all public goals. But it
would be inefficient to devote all agents to achieve all goals, given that it is a collaborative
task. Thus, given the total set of public goals PG and a set of agents �, mapr first assigns a
subset of goals to each agent. For each public goal g ∈ PG, each agent φ ∈ � computes the
cost of the relaxed plan, c(g, φ), from its initial state, Ii , following the well-known relaxed
plan heuristic of ff [40]. The relaxed plan heuristic computes the cost of a plan that could
reach the goals from the initial state without considering the deletes of actions. If the relaxed
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Fig. 4 High-level description of mapr planning algorithm. In the second and following iterations, when
j = 1, then j − 1 = N , where N is the number of agents on �′

plan heuristic detects a dead-end, then c(g, φ) = ∞. Each agent communicates to a cen-
tral agent each c(g, φ). The central agent defines a cost matrix, c(PG,�). Next, we have
devised seven goals assignment strategies: all-achievable, rest-achievable,
best-cost, load-balance, contract-net, all, and subset.

– all-achievable: assigns each goal g to all agents φi such that c(g, φi ) < ∞; that
is, if the relaxed plan heuristic estimates g could be reached from the initial state of agent
φi , then g is assigned to φi . So, it can assign the same public goal to more than one agent.

– rest-achievable: assigns goals iteratively. It first assigns to the first agent φ1 all
goals that it can reach (cost less than ∞). Then, it removes those goals from the goals
set, and assigns to the second agent all goals that it can reach from the remaining set of
goals. It continues until the goals set is empty. The agents order might be relevant. Thus,
we have defined several orderings, as specified later.

– best-cost: assigns each goal g to the agent that can potentially achieve it with the
least cost: argminφi∈� c(g, φi ).
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Table 1 Example of two agents, φ={R1,R2} and three goals (humans using P1, P2 and P3)

Goals

Agents (used H1 P1) (used H3 P2) (used H4 P3)

R1 7 10 12

R2 7 6 6

The table reflects the estimated cost of achieving each goal by each agent. It is computed as ff heuristic (length
of the relaxed plan)

– load-balance: tries to keep a good work balance among agents. It first computes the
average number of goals per agent, k = � |PG|

m �. Then, it starts assigning goals to agents as
in best-cost. When it has assigned k goals to an agent, it stops assigning goals to that
agent. The next goals that could be assigned to this agent will be redirected to the second
best agent for each goal. At the end, agents will have either all k goals, or m − 1 agents
will have k goals and one agent will have the remaining goals, | PG | −k × (m − 1).

– contract-net: it is inspired by the well-known negotiation scheme in multi-agent
literature [62]. Under this setting, the virtual central agent takes the first public goal
g1 ∈ PG and assigns it to the best bidding agent, where each bid is c(g1, φi ). Let us
assume, it isφb1. Then, it selects the second goal g2 and assigns it to the best bidding agent
as before.However, in order to compute c(g2, φb1) it takes into account that g1 has already
been assigned to φb1, so φb1 computes the estimated cost to achieve both g1 and g2, while
the rest of agents only compute the cost of achieving g2. Usually, but not necessarily,
the cost of achieving both g1 and g2 for φb1 is more expensive than using another agent
φb2 for achieving only g2. In summary, at each iteration (over PG), contract-net
assigns the current goal to the best agent, taking into account all previous assignments.

– all: assigns each goal g to all agents, independently of whether each agent can achieve
the goal or not. It is a naïve strategy that allowsmapr and cmap to use all agents, instead
of using a subset of them.

– subset: as explained in the previous section, there are domains where agents must
collaborate; e.g., one agent has to achieve one subgoal for another agent as moving a
package to a given location. The subset goal assignment iterates over all goals. For
each public goal gi ∈ G, it computes the relaxed plan as in previous goal assignment
strategies. However, instead of just computing the cost, it computes the subset of agents
that appear in the relaxed plan for that goal, �i ⊆ �. Those are agents that could
potentially be needed to achieve the goal gi . It is computed as the subset of agents that
appear as arguments of any action in the relaxed plan. Then, it assigns gi to all agents
in �i . A side effect of this strategy is that the set of selected agents for the combined
planning task is the union of the agents subsets for all goals: �′ = ⋃

gi∈G �i .

Let us see how each strategy of goal assignment works in the example of theDepots-robots
domain. The estimated cost of achieving each goal would be computed by each agent using
the relaxed plan, generating Table 1. For instance, for R2 to achieve P2,8 it first has to move
P3 out of the way:

(take-right(R2,P3,C33,C43), move-left(R2,C43,C33)),

8 For simplicity, we will refer to goals by the pod that has to be used by a human. In this case, achieving P2
means achieving (used H3 P2).
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and then move to P2, take it and carry it to C31 where the human will use it. In the relaxed
plan, R2 does not need to drop P3 before moving, since it did not delete (free R2) when
it took P3.

The following is the set of goals that each strategy would assign to each agent. Given that
there is a tie in the estimated cost of achieving P1, if needed we will assume R1 is selected
for P1 given that it is the first agent in the problem. We discuss agent ordering techniques in
the next subsection.

– all-achievable: R1(P1,P2,P3), R2(P1,P2,P3).
– rest-achievable: R1(P1,P2,P3), R2().
– best-cost: R1(P1), R2(P2,P3), due to tie breaking on P1.
– load-balance: R1(P1), R2(P2,P3), due to tie breaking on P1.
– contract-net: assigns P1 to the best agent. Since there is a tie, let us assume it will

select R1. Then, it recomputes the estimated cost of each agent moving P2, given that
now R1 also has to move P1. And assigns P2 to the best agent. The cost of moving P2 for
R2 would be 6, while the cost of R1 moving both P1 and P2 would be 12 (7 for moving
P1 and 5 for moving P2 afterward). So, it would assign P2 to R2. Now, contract-net
recomputes the estimated cost of each agent moving P3, given that R1 has to move also
P1, and R2 has to move also P2. The estimated cost for R1 would be 14. It would need
7 actions to achieve P1. Then, when going to take P3, it can start in C12, given that it
passed through it and did not delete the fact that it was at C12. Thus, it would require 7
more actions to take P3 to H4. Similarly, the estimated cost for R2 would be 10. Thus,
the final assignment would be: R1(P1), R2(P2,P3). As load-balance, it indirectly
also tries to obtain a good balance.

– all: R1(P1,P2,P3), R2(P1,P2,P3). In general, the result would be different than the one
of all-achievable; for instance, if there is a given agent that cannot achieve any
goal, all would select it, while all-achievable would not.

– subset: computes the relaxed plan for achieving each goal and selects all agents in
all relaxed plans. The relaxed plans of the goals would include R1 for P1 (due to tie
breaking) and R2 for the other two pods, since the relaxed plan does not delete the initial
position of R2 which is closer to all pods. Thus, subsetwould assign goals as: R1(P1),
R2(P2,P3).

In configurations rest-achievable, best-cost and contract-net, there
can be agents for which mapr does not assign public goals. See, for instance, rest-
achievable did not assign goals to R2 in the previous example. If they do not have
private goals, those agents will not be used by mapr for planning. The output of this step is
a set of N ≤ m pairs (N agents assignments), where each pair is an agent φi ∈ � and the
set of public goals assigned to it, Gi ⊆ PG. The N selected agents (they have been assigned
at least one public goal or have at least one private goal) compose the subset �′ ⊆ �. Only
agents in �′ will be used in the next steps of the algorithm.

4.3 Ordering

The ordering of agents might be relevant for mapr. We have defined four ordering schemes:
name, agents are ordered by their given names in the problem description (in case the user
has defined agents in a specific order this might be useful); max-goals, agents with more
assigned goals are ordered first; min-goals, agents with less assigned goals are ordered
first; and random, agents are randomly ordered.
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Table 2 R1 plan for achieving the goal (used H1 P1). On the left, we show the unobfuscated plan, and
on the right we show the actual plan generated by R1

(a) Unobfuscated plan (b) Obfuscated plan generated by R1

move-right(R1,C14,C24) anon3(C14,C24)

take-right(R1,P1,C24,C34) anon7(P1,C24,C34)

move-left(R1,C34,C24) anon4(C34,C24)

move-down(R1,C24,C23) anon6(C24,C23)

move-down(R1,C23,C22) anon6(C23,C22)

move-left(R1,C22,C12) anon4(C22,C12)

move-down(R1,C12,C11) anon6(C12,C11)

drop(R1,P1,C11) anon11(P1,C11)

uses(H1,P1,C11) uses(H1,P1,C11)

Agents ordering is relevant in two steps of mapr: (1) before assigning goals; and (2)
before iterating over the selected agents to generate subplans. In relation to (1), only name
and random are used, since the other two ordering schemes depend on the assigned goals.
In relation to (2), we can use all four schemes. In case there is a tie, such as assigning two
agents the same number of goals, mapr uses the name ordering.

4.4 Planning

Once goals have been assigned to the subset of N agents in �′, planning starts by calling
the first agent to solve its planning task. The task will be composed of its private planning
task and its assigned public goals. If it does not solve the problem, it just passes the empty
plan to the next agent. It could be either because there is no such plan, or because its plan
needs some propositions to be achieved by the plans of the remaining agents. So, either the
rest of agents solve the problem, or, eventually, it will be called again to solve the planning
problem, but with some extra information coming from the other agents planning episodes.
The following planning episodes can either use a planner or a replanner. In the latter case,
apart from the domain and problem definitions, replanners take a previous solution as input
[7,33].

Let us continue with the Depots-robots domain. Assume that we have used the
load-balance goal assignment, leading to the assignment of P1 to R1 and P2 and P3 to
R2. Thus, mapr would first call R1 to generate a plan for achieving the goal (used H1
P1). The plan would be the one shown in Table 2 where we have shown the unobfuscated
version on the left and the obfuscated one on the right. It is obfuscated given that agents
use the obfuscated version generated at start. As we have seen, there are further obfuscation
methods that are applied before sharing it with the following agents.

4.5 Building an augmented solution

If the first agent solves the problem, then it passes relevant information to the other agents.
Since domains and problems are already obfuscated, in this step at each iteration the corre-
sponding agent builds an augmented obfuscated solution to be used by the following agents.
An augmented obfuscated solution is a solution found by any agent, augmented with domain
and problem components needed for the other agents to reuse it.
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A key issue for mapr is what should one agent φ j pass to the next agent φ j+1. First, it
has to pass the goals G j it was assigned to achieve (both public and private), plus the goals
of all previous agents that were passed previously to φ j (let us call G j the set of all these
goals, including its own goals). Second, φ j+1 might not be able to generate a plan for those
goals (because some of them might be private goals of previous agents), or it might find that
the actions used by φ j are preferred over the ones of φ j+1. Therefore, φ j also passes the
instantiated actions’ descriptions of the actions in the plan that φ j used to achieve all the
goals in G j . Given that we could use a second planner that is able to reuse the previous plan,
it also passes the plan that φ j used to achieve G j . Thus, a replanner might spend less time
planning when reusing the previous plan.

Finally, φ j+1 will need the private part of φ j ’s initial state (and the one of all the previous
agents) to be able to regenerate φ j plan. But, in order to preserve privacy by providing other
agents as little information as possible, only the relevant part of that initial state is needed:
those literals that are preconditions of actions in φ j ’s plan. An alternative would be to regress
over the goals to obtain the literals from the initial state that are really needed, discarding
those that are added by some action in the plan, ap , that another action needs, ac, and are not
deleted by some other action between the execution of ap and ac.

Therefore, an augmented obfuscated solution S@j consists of the obtained plan and the
set of components that are needed by the other agents to regenerate that solution if needed.
More specifically, if agent φ j generates the plan π j = (a1, . . . , at ), it communicates S@j =
{A@

j , π@
j , I@

j ,G@
j } to the next agent, φ j+1. We explain next each component of S@j .

Actions A@
j = {PDDL(ai ) | ai ∈ π j , not original(ai )}, where PDDL(ai ) is the instanti-

ated (no variables) PDDL description of action ai in the plan. There can be three kinds of
actions in the plan: those that were shared by previous agents,A@

j−1; those whose name was
obfuscated by φ j given that they had a private predicate or a variable of a private type related
to φ j ; and those that are the original ones (the ones whose definition has not been changed
by any agent). Given that the ones of the third type are in the set of all agents, mapr does not
share those with the following agents. When φ j obfuscates its private actions, it performs
the second level of obfuscation explained in 3.4.

Plan π@
j = {a@1 , . . . , a@t } is the obfuscated plan, where each a@i is the result of applying

the previous obfuscation steps. If macro-operators are learned, then π j will be formed by
either just one action, or a smaller set of actions than the original t actions.

Goals G@
j = G@

j−1 ∪ G@
j are all goals (private and public, including goals of previous

agents) of agent φ j .
Initial state I@

j is the relevant initial state. Since mapr only needs to pass to φ j+1 the
relevant private part of the state, it only considers the literals that are preconditions of any
action in the plan. Since it has already removed static predicates from actions preconditions,
no private static literal from the initial state will be shared. Therefore, it is computed as:

I@
j = { f | f ∈ I@j , ai ∈ π j , f ∈ pre(ai )}

4.6 Communication

Each agent communicates S@j to the next agent. We assume there is no noise in the com-
munication. The size of the messages depends on: the plan size (number of actions in the
generated plans π j ); the number of goals, where often | G j |<| π j |; and the size of the initial
state, | I j |. Thus, the size of messages is linear with respect to the plan size and initial state
size. Sincemapr only communicates after each planning episode, the communication cost is
proportional to the number of planning episodes and the size of each communication. If the
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number of selected agents is N =| �′ |, the number of planning episodes is between N (the
problem is solved in the first iteration after all agents have generated their plans) and per-
forming k iterations until the problem is solved or resources are consumed (time or memory).
So, communication cost is in the order of O(kN (| π | + | G | + | I |)). Furthermore, if
mapr learns only-one-macro-operator, then | π |= 1. This is a low communication overhead
compared with other approaches that broadcast search decisions [54,68].

4.7 Merging

Each agent φ j+1 receives S@j and builds a new planning problem by adding (performing the
union of sets) the instantiated actions to its actions set, the goals to its own goals, the private
previous initial state to its own initial state and all new propositions to its own propositions
set. So:

� j+1 = {F ′
j+1, A j+1 ∪ A@

j ,G j+1 ∪ G@
j , I j+1 ∪ I@

j }
where F ′

j+1 = Fj+1 ∪ G@
j ∪ I@

j ∪ L(A@
j ), and L(A@

j ) are all the literals in preconditions

and effects of actions in A@
j ,

L(A@
j ) = {l | ai ∈ A@

j , l ∈ (pre(ai ) ∪ eff(ai ))}
φ j+1 would now call the planner to generate a new plan that would achieve the goals in

G j+1, which also takes into account φ j goals. It can reuse parts of the plan of φ j , or it could
generate a plan from scratch that does not use φ j , such as only using φ j+1 for all goals.

4.8 Termination

Given that each planning task incorporates all previous goals, including the private ones of the
previous agents, as soon as the last agent finds a plan achieving all goals, the whole planning
process finishes. If the last agent does not find a plan and there is still time, mapr iterates
over all agents again, but with the accumulation of goals. Starting in the second iteration, as
soon as an agent finds a solution, then the whole planning task finishes, since it incorporates
all goals from all agents. The planning process will terminate with failure only if the time or
memory bounds are reached, or a maximum number of iterations are performed. We set the
maximum number of iterations as five. We have found experimentally in the tested domains
that mapr only performs more than one iteration when the problem cannot be solved by
mapr.

4.9 Plans parallelization

mapr generates totally ordered (sequential) plans. However, in MAP, plans are going to be
executed by a set of agents. Therefore, parallel plans are preferred over sequential plans,
so that other agents do not have to wait for executing their next actions when an agent is
executing an action in the sequential plan. We have implemented an algorithm to transform a
sequential plan into a parallel plan. First, a suboptimal algorithm generates a partially ordered
plan from a totally ordered one by using a similar algorithm by Veloso et al. [73]. Then, a
parallel plan is extracted from the partially ordered plan. The parallelization algorithm is
planner independent. It receives two inputs: a planning task,�, and a sequential plan, π , that
solves the task. It outputs a parallel plan that is one of the potential parallelizations of the
sequential plan.
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4.10 Properties

First, as we mentioned before,mapr performs suboptimal planning. Second,mapr is incom-
plete mainly in two different scenarios: when there is at least one of the goals that needs
more than one agent to achieve it and when there is a dead-end due to a strong interaction
among agents. In the first case, consider, for instance, the Logistics domain. In almost all
problems, more than one agent has to partially contribute to the achievement of single goals.
For instance, in the standard agentification (definition of the sets AT , PP and PT ) of the
domain, trucks and airplanes are agents. If a package is initially at the post-office of a city
city1 and has to be delivered to the airport of another city, city2, we first need a truck to
move the package from the source post-office to the airport ofcity1 and then use an airplane
to move it to city2. Thus, the goal of having the package at city2 cannot be achieved
only by any of these two agents in isolation. So, they return no solution when executed even
if at least one solution exists. A potential solution to this problem could be to assign the
same goal to both trucks and airplanes. However, this solution does not work without further
changes in the algorithms. The truck in the first city would need to achieve a subgoal of the
goal (that a package is in the airport of the first city, so that the airplane can actually achieve
the goal). However, given the same domain, by just using a different agentification, such as
airplanes as the only agents (as a real-world application for an airline company), mapr can
solve all IPC problems.

The second case of incompleteness can be observed in very tightly coupled domains.
Suppose a domain with two agents A1 and A2, two resources R1 and R2 (both can only be
used once), and two goals G1 and G2. A1 can use both resources, and can only achieve G1.
A2 can only use R1 and can only achieve G2. The goal assignment strategy would assign G1
to A1 and G2 to A2. Suppose that the ordering scheme decides to start with A1 and it uses
R1 to achieve G1. In A2’s turn, A2 will fail, since it can only use R1 which has been used by
A1 to achieve G1. It cannot make A1 use R2 instead (since A1 did not pass that action), and
there is no way for A2 to generate a valid plan for both G1 and G2. When planning comes
back to A1, it will also fail, for similar reasons. No IPC domain shows this kind of strong
interaction.

Third, mapr is sound if the first and second planners are. Intuitively, given that all goals
(public and private) are propagated, if the last agent solves the problem (in the first iteration)
or any agent solves the problem (in the next iterations), the plan must be applicable from
the initial state of the propagated initial state and its application must result in a state that
achieves all goals. Experimentally, we run the IPC9 software [47], that automatically validates
solutions. It validated all mapr solutions.

Fourth, mapr generates a totally ordered plan. But, we have seen how to convert a total-
order plan into an equivalent parallel plan in case it is needed for a concurrent execution.
The complexity of the first part of the conversion (from totally ordered to partially ordered)
is quadratic in the number of actions in the plan. The complexity of the second part (from
partially order to parallel plan) is again quadratic in the number of actions in the plan. In
case macro-operators are shared among agents, there is no potential conflict among agents’
plans (e.g., two robots occupying the same cell in depots-robots). When plans are sequential,
actions of other robots have to wait until previous actions have been executed. The effects of
each macro-operator summarize the changes in the state by all actions included in the macro-
operator. When plans are parallelized, the parallelization code ensures there is no conflict
among the parallelized actions (macro-operators in this case), so that no action deletes a literal

9 International Planning Competition, ipc.icaps-conference.org.

123



446 D. Borrajo, S. Fernández

that is needed by the other actions running in parallel (mutex actions cannot be executed in
parallel.

Fifth, in relation to privacy preserving, the base method used by mapr consists of a
combination of: obfuscation by substitution, removal of private types and agents from literals,
removal of objects from private predicates and removal of static predicates. Also, the actions
and components of the initial state that are shared are a subset of the whole domainmodel and
planning task. When an agent φ j receives from another agent φi the augmented obfuscated
solution, S@i , it receives a partial view of φi ’s knowledge. The privacy of φi will be assured
if φ j cannot gain knowledge about the private knowledge of φi . If we analyze separately the
provided information in S@i , the private literals of φi have been converted into propositions.
Since there is no relation in the initial state among literals (no common objects as arguments,
as they are propositions), inferring the relation among thembecomes harder. The same applies
to private goals.

In relation to actions, we have described several techniques for increasing the level of
privacy preservation. In real-world situations, static predicates contain much of the private
data of agents, such as different operation costs, times, providers, or agents’ preferences. So,
mapr can effectively preserve a great component of privacy after removing them. Another
example of how this step highly improves privacy-preserving over simple obfuscation is
in domains where agents traverse a network (e.g., roads, or connected depots). One truck
(company) agent will not be able to infer the places another agent has visited in order to
deliver all goods. It will only be able to infer the places where it had to pick-up and drop
the goods (since those actions will require/modify the location of the goods). Thus, just
removing static predicates gets rid of almost all semantics in some domains (road networks,
costs, preferences, …). Also, if we add the learning of macro-operators, we remove further
semantics of actions (they become compact representations of subplans). A minor negative
side effect of macro-operators is that they tend to makemapr slightly less efficient, as results
of experiments show.

Finally, since some of the goal assignment strategies can reduce the number of agents to
be used, each individual (agent) problem to be solved is much smaller than the original, even
if we have N ≤ m such problems. strips planning is PSPACE-complete [18]. Thus, both the
original problem and each subproblem is still PSPACE-complete in the worst case. However,
as the experimental results presented in the Sect. 6 show, by decomposing the problems
into subproblems, solving all these N subproblems often takes less time than solving the
original problem, even if we deal with privacy. This is specially true in the case of harder
planning instances. In order to achieve the benefits,mapr takes as input a domain-dependent
characterization of agents and privacy that, as a side effect, allows mapr to easily compute
the decomposition.

5 Multi-agent planning in cmap

In order to make our approach complete, we have devised a centralized variation of mapr,
named cmap (Centralized Multi-Agent Planning). mapr uses a decomposition scheme for
MAP.Thus, as explained in the introduction, it takes into account two aspects ofMAP: privacy
and problem decomposition. An alternative way of using some of mapr ideas consists of a
centralized approach that also takes into account privacy.
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Fig. 5 High-level description of the cmap planning algorithm

5.1 cmap algorithm

The main difference with respect to mapr is that cmap first selects a subset of agents, then it
combines all their obfuscated domains and problems into one single planning task and finally
calls another centralized agent that performs a single planning episode with the combined
problem. Figure 5 presents the algorithm. It takes as input the set of agents, �, the MAP task
M , that was generated by the previously described MAP compilation. It also takes as input
the list of private predicates and types (for computing the public goals), the goal assignment
strategy, the ordering scheme, the planner to be used, and the virtual agent φm+1 that will
perform the planning step.Wewill comment next on two issues relative to cmap: the planning
episode; and its formal properties. The rest of steps are common to those of mapr.

5.2 Obfuscation and planning

After the goal assignment, each selected agent sends its planning task (obfuscated domain
and problem) to a centralized planning agent, φm+1. This agent merges all planning tasks
and performs a centralized planning step with all the obfuscated information. Therefore,
cmap takes into account the privacy issue (by obfuscation) and benefits from the problem
decomposition by using only a subset of the agents.

5.3 Properties

cmap shares some of the properties withmapr. It is sound, suboptimal and generates a totally
ordered plan (that can be converted to a parallel one). It is suboptimal, since we are using a
suboptimal planner (this could easily be fixed by using an optimal planner), and due to the
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reduction on agents to be considered for planning (unless we use the all goal assignment). It
is also incomplete for the second reason of sub-optimality: given the reduction of agents to be
considered, there will be tasks where it is not able to solve problems. However, cmap has the
advantage over mapr that it can be complete by using the all goal assignment strategy if a
complete planner is used, and it can be made optimal if an optimal planner is used. We report
experiments on completeness (by using cmap and all), but we do not report experiments
on optimal planning.

Oneof the addedbenefits fromcmap is that any state-of-the-art planner can be used to solve
the compiled version, andwe obtain the benefits of advances in the state-of-the-art in classical
planning. Also, there is almost no communication cost (just the initial communication of the
domain and problem of each agent to the central one). Its efficiency and previous good
properties come at the cost of providing a weaker privacy-preserving behavior than mapr,
since it cannot use the second obfuscation, elimination of static private predicates, nor sharing
of macro-operators.

The main assumption of cmap in relation to privacy preservation is that we can protect
privacy by obfuscation. Then, indirectly cmap assumes that: either the centralized agent
(the one performing the computation) can be trusted, and in that case we would have strong
privacy-preserving properties; or, otherwise, the obfuscated versions of the domains and
problems do not allow agents to practically infer knowledge about the private components
of other agents (states and actions). In the second case, each agent is indirectly providing a
finite state machine (FSM, through the states and actions) and other agents could infer part
of the other agents’ knowledge by matching the public components, and then, by applying
some kind of backwards analysis from the known knowledge, infer the related knowledge
on the corresponding FSMs.

6 Experiments and results

In this section, we describe the experiments we have performed to test our approach. We
consider three sets of experiments: (1) comparing different parameter configurations, con-
sidering the two MAP algorithms, the goal assignment strategies and the ordering of agents
schemes; (2) analyzing scalability of our approaches; and (3) comparing our work with simi-
lar work.We next explain the common parts of the experimental setups while each subsection
describes the corresponding details. The section concludes with an analysis of the level of
privacy achieved by mapr.

6.1 Experimental setup description

We present here some common aspects of the experiments reported in the next subsections.

6.1.1 Metrics

Our objective in this paper is to improve planning efficiency in MAP tasks. We use the time-
score metric of IPC’11. In particular, we use time1 that computes the score of a planner p
for a given planning task � as:10

10 http://www.plg.inf.uc3m.es/sw-ipc2011/.
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time1(p,�) =
⎧
⎨

⎩

1

1+log

(
Tp,�
T∗
�

) if planner solved the task

0 otherwise

where T ∗
� is the minimum time required by any planner to solve problem �, and Tp,� is the

time it took planner p to solve �. Any Tp,� < 1 second is treated as one second.11

Although our main focus is planning efficiency, as quality of the solutions is a common
measure in planning, we include some results on the length of the solution plans, as well as
on the number of the parallel steps of the parallel plans (usually called makespan). The IPC
assigns the following quality score to each configuration (planner) p and problem �:

quality(p,�) =
{

Q∗
�

Qp,�
if planner solved the task

0 otherwise

where Q∗
� is the best quality obtained by any configuration and Qp,� is the quality obtained

by p in problem�.We use the same equation to report both plan length andmakespan scores.

6.1.2 Planners

We used Fast-Downward code [39] to build a simplified version of lama- 2011, the winner
of the sequential satisficing track of IPC’11.12 We use it as the base planner of mapr and
cmap and also as a centralized planner to compare with.13 The sequential satisficing track
aims at finding a solution to planning tasks that are deterministic and fully observable. lama-
2011 first runs a greedy best-first search with the ff and lm- count heuristics and preferred
operators, and unit cost (all actions are assumed to have unit cost). The goal of this first run
is to find a plan as quickly as possible. Once a plan is found, it searches for progressively
better solutions using a combination of greedy best-first and ωA∗. As the aim of our work is
to study our MAP algorithms, focusing on planning efficiency, we have configured lama-
2011 to apply only the first search. We refer to this configuration as lama- first during the
whole section. lama- mk refers to executing lama- first planner and then parallelizing the
solution.

We have used lama- first with unit costs for generating the plan for the first agent and
lama- first and lpg- adapt [33] for the successive planning episodes.While lpg- adapt is
a replanning technique, lama- first is not. We still call planning by reuse the configuration
that uses lama- first, because it can reuse the actions in the previous plans. lpg- adapt uses
stochastic local search. We followed current practice (as in the IPC), running lpg- adapt
only once per problem.

Our agents have been coded as function calls, so there is no overhead due to communication
delays. Since the information that is being exchanged among agents is linear with respect to
the size of plans and initial states, we do not expect a big overhead in planning time when
transmitting it through a different communication channel. In any case, we have analyzed
the time it takes each agent inmapr to communicate its augmented solution to the next agent
and it is always below 0.01 seconds.

11 This avoids paying extra attention to differences in solving time under one second.
12 http://www.plg.inf.uc3m.es/ipc2011-deterministic.
13 We have made available the code of mapr and cmap at http://www.plg.inf.uc3m.es/~dborrajo/software/
mapr-cmap-code.tgz.
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6.1.3 Domains

Wehave used several IPCdomains adapted forMAP that have been used in otherMAPpapers.
Specifically, Elevators and Transport from IPC 2011; Rover, Zenotravel, Driverlog, Satellite,
and Depots from IPC 2002 and Logistics, from IPC 2000.14 We used the 20 problems defined
in the corresponding IPC. We have used strips models without action costs.15

The compilation of single-agent PDDL tasks (domain and problem) into MAP tasks
requires three extra inputs, as we explained before. A.1 shows the inputs we have used
to define the agents and the privacy level of each domain. In the first set of experiments, we
have chosen agentifications that allow mapr to solve some of the problems. For example, in
the Logistics domain the agents are the airplanes. In case of considering the trucks as well,
more than one agent is needed to achieve most of the individual goals and only cmap with
the subset and all goal assignment strategies can solve the problems. In the Elevators
domain, there are two possible agent types: fast elevators for moving people quickly among
blocks of floors; and slow elevators that stop at every floor of the block. A passenger usually
needs a fast elevator to reach the required block, and then a slow elevator places him/her in
the target floor. Thus, considering only the fast elevators as agents allowsmapr to solve most
of the problems.

We have also defined two new domains: Depots-robots (the one we have used throughout
the paper) and Port. The Depots-robots domain shows how our approaches work in a domain
where all agents are able to achieve all goals. The Port domain deals with hoists that load
crates into ships (Appendix A.2 provides the details of this domain). It is an example of the
other extreme: how our approaches work in a domain where agents have only private goals
(there are no public goals). Given that all goals are private, all goal assignment strategies
perform the same assignment: a null assignment of public goals to each agent.

6.1.4 mapr and cmap Configurations

Wewill use: the two MAP algorithms,mapr and cmap; the seven goal assignment strategies
(all-achievable (aa),rest-achievable (ra),load-balance (lb),best-cost
(bc),contract-net (cn),all (all) andsubset (sub)); and the four schemes for ordering
the agents (name, min-goals (min), max-goals (max) and random (ran)). Agents
ordering is performed before goal assignment, and at planning time. name and random are
the only meaningful ordering schemes before goal assignment, since goals have not been
assigned yet. At planning time, ordering agents is only meaningful for mapr, since cmap
does not perform an ordered iteration over selected agents. So, mapr can work with all
ordering schemes, while only name and randommake sense for cmap. In the case of using
cmap with all and subset as the goal assignment strategies, the ordering schemes are
irrelevant. all selects all agents, independently of their order. subset selects the union
of the subsets of agents in the relaxed plans of all goals, and this is again independent of
agents orderings. Besides, given the way that most problem generators work, the name and
random strategies are equivalent, and thus, we do not report results on agents ordering for
cmap.

We name the systems as 〈algorithm〉-〈goal assignment〉-〈ordering of agents〉, omitting
the last suffix (-〈ordering of agents〉) when the ordering scheme is name. mlpg refers
to mapr with lpg- adapt as a replanning system, while the name mapr denotes that the

14 The IPC Web page details the description of all the domains.
15 In the following tables, names of domains have been shortened for space reasons.
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replanning system is lama- first. Finally, when using macros, mapr-macros-oo and
mapr-macros refer tomapr using macro-operators, sharing only-one-macro in the former
and several macros in the latter.

6.1.5 Computational resources

We have used 1800 seconds as in the IPC. We performed most of the following experiments
using the IPC’11 software [47]. Up to 6GB of RAM memory and 750GB of hard disk were
available for each system.We run experiments in a cluster of Intel Xeon 2.93 Ghz Quad Core
processor (64 bits) computers under Linux. The reported times include the whole process
(unless specified); that is, the time taken to: (1) perform the MAP compilation, generating
the domain and problem of each agent; (2) assign the public goals to agents; (3) find the
sequential plan; and (4) generate the parallel plan. In order to better grasp where the solving
time is spent, we have computed the average time spent in the used domains in these four
steps. In the case of the IPC problems, each one of the steps 1, 2 and 4 takes less than one
second in all domains and problems for most goal assignment strategies. Exceptions are
described later. All solutions have been validated by using VAL [41] given that we use the
IPC’11 software that includes the call to VAL.

6.2 Comparison among different configurations of mapr and cmap

In the first set of experiments the goal was to compare the different configurations of mapr
and cmap.

6.2.1 Ordering the agents

First, we analyze the impact of ordering the agents in mapr. Appendix A.3 shows the time-
score metric using maprwith the different goal assignment strategies and ordering schemes.
For each goal assignment strategy, the differences among the results of each ordering scheme
are not significantly large. So, we can conclude that the ordering of agents has little influ-
ence on the planning efficiency. The min-goals scheme is slightly better than the rest.
Henceforth, unless specified, we use that ordering scheme in the remainder experiments. As
we have discussed before, we do not report on agents’ orderings of cmap, since they are
irrelevant for cmap.

6.2.2 Goal assignment strategy

Next, we analyze the impact of the goal assignment strategies in cmap andmapr. We include
also a comparison for reference with lama- first (including a later step of parallelizing the
solution). Table 3 shows the time-score results.

The rest-achievable strategy is mostly the best one, while all-achievable
and contract-net are the worst ones, regardless of the used algorithm, mapr or cmap.
This result underlines the correlation between planning efficiency and the number of agents
involved in the planning process, due to the effect of problem decomposition. Appendix A.4
shows the number of selected agents by each goal assignment technique. In these domains,
most of the agents can achieve by themselves all or almost all the goals. Therefore, the
less number of selected agents, the better. Since rest-achievable is the strategy that
usually selects a smaller set of agents, it is more efficient than the others. At the opposite end,
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Table 3 Time-score metric usingmapr, cmap and lama- first, with the different goal assignment strategies

Planner Logis Rover Satel Driver Zenot Eleva Depots Port Trans d-rob Total

mapr-ra 20.00 20.00 20.00 18.39 19.54 18.86 18.75 14.41 19.83 10.37 180.14

cmap-ra 20.00 20.00 20.00 19.07 19.85 18.69 18.84 13.15 19.65 8.74 177.99

mapr-bc 20.00 19.77 19.54 18.91 18.27 15.77 15.72 15.56 13.25 17.27 174.05

mapr-sub 20.00 19.77 19.54 18.55 18.22 16.82 14.47 14.01 13.16 11.97 166.50

cmap-sub 20.00 20.00 20.00 19.39 18.66 18.47 14.66 13.18 11.65 8.90 164.91

lama-mk 20.00 20.00 20.00 19.40 18.21 18.32 15.39 12.79 9.70 10.96 164.76

cmap-bc 20.00 20.00 20.00 19.27 18.31 16.98 16.19 12.40 7.34 9.12 159.61

cmap-all 20.00 19.77 20.00 19.02 18.22 17.78 14.72 12.67 6.73 10.02 158.94

mapr-lb 20.00 19.45 19.07 18.24 17.85 14.50 11.42 15.30 9.64 12.43 157.90

cmap-lb 20.00 20.00 20.00 19.18 18.12 16.15 14.34 12.74 6.84 9.97 157.34

cmap-aa 20.00 19.77 20.00 19.00 18.16 15.75 14.25 13.42 6.83 9.91 157.09

cmap-cn 20.00 19.45 18.66 18.45 17.24 10.62 14.28 13.76 6.51 9.62 148.57

mapr-aa 19.77 19.45 18.52 17.79 17.64 13.57 12.15 14.94 6.66 7.39 147.87

mapr-cn 19.54 19.16 17.68 17.88 17.08 10.21 10.84 15.61 9.19 10.10 147.28

Total 279.31 276.57 273.01 262.53 255.35 222.49 206.04 193.94 146.97 146.76

Results are the sum of the scores of the 20 problems. Rows are sorted according to the total score

theall-achievable andcontract-net strategies usually involve the participation of
most agents, and they obtainworse performance. In the case ofall-achievable, it selects
all agents that can achieve at least one goal. In the case of contract-net, it tends to create
a balance among agents, so as a side effect it tends to select most agents. load-balance
also involves most agents, but load-balance is faster than contract-net, due to
implementation issues.16 These differences will be more clear in the scalability experiments.
The best-cost strategy usually reduces the agents required to solve the planning task, as
well, and it is also well placed in the ranking. As a side effect, some of our MAP privacy-
preserving algorithms behave better by a hugemargin than lama- first that does not preserve
privacy.

cmap-all differs from lama- mk on the obfuscated process performed on the former.
Thus, the input domain and problem to cmap-all and lama- mk are different and the pre-
processing step of Fast-Downward could generate different compilations into SAS+. That
explains the variations on the scores of both systems.

The Port domain maintains a similar behavior among the different configurations, because
goals are private and the goal assignment always returns the empty list of public goals
assigned to each agent. TheDepots-robots is a challenging domain.Most of the configurations
solved less than 15 problems, where the harder problems are defined over a grid of 10× 10.
On the opposite extreme, all the configurations solved the 20 test problems in the Rover,
Satellite, Zenotravel, Driverlog and Logistics domains. They also solved all the problems
in the Elevators domains except for the contract-net approaches that could not solve
one problem. All the configurations solved more than 16 problems in the Port and Depots
domains, while the number of solved problems in the Transport domain ranged from 13 to
20. Appendix A.5 shows the number of solved problems of the different configurations.

16 Among other issues, computation of estimated costs can be done in parallel for load-balance, while
contract-net requires a sequential computation.
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Table 4 Quality-score metric for the 20 test problems using mapr, cmap, lama- first and lama- 2011,
with different goal assignment strategies

planner Logis Rover Eleva Satel Zenot Driver Port Depots Trans d-rob Total

lama-2011 19.75 19.92 19.88 19.75 19.85 20.00 18.94 17.81 16.96 11.82 184.68

mapr-bc 18.64 18.46 18.27 15.54 16.47 15.74 14.74 14.70 15.75 15.32 163.62

lama-mk 18.62 19.15 18.61 17.43 17.93 14.38 14.63 14.14 14.80 11.79 161.47

mapr-sub 18.95 19.02 18.38 15.86 16.92 15.38 14.95 13.56 15.49 11.83 160.33

mapr-ra 19.30 17.29 18.70 15.62 16.49 14.37 14.91 16.12 17.01 8.50 158.32

cmap-ra 19.34 17.37 18.69 16.38 16.22 14.68 14.42 16.12 16.96 7.59 157.75

cmap-aa 19.18 18.76 18.47 18.12 17.37 14.47 14.40 13.39 10.34 11.31 155.80

cmap-sub 19.10 18.96 18.65 17.30 17.48 14.35 14.40 13.07 13.60 8.73 155.62

cmap-all 19.05 18.63 18.47 18.04 17.37 14.58 14.81 13.39 10.34 10.49 155.15

cmap-lb 19.18 18.68 18.47 17.81 17.37 14.64 14.41 13.34 10.34 10.47 154.70

cmap-cn 19.18 18.63 17.37 18.04 17.37 14.58 14.42 13.39 10.34 10.47 153.79

cmap-bc 19.12 18.67 18.43 17.16 17.47 14.41 14.41 13.75 10.77 8.68 152.87

mapr-lb 18.68 18.33 18.32 15.63 14.57 15.19 15.27 11.30 13.45 11.70 152.44

mapr-aa 19.15 18.54 18.45 16.26 15.63 15.52 14.73 12.61 11.38 7.57 149.85

mapr-cn 18.64 18.86 17.48 15.71 15.21 13.99 14.73 10.63 14.09 9.35 148.70

Total 285.89 279.28 276.63 254.65 253.70 226.27 224.16 207.30 201.61 155.61

Quality metric is plan length. Rows are sorted according to the total score

6.2.3 Quality

Even if the focus of this paper is not on improving quality of solutions, we report here on
the solutions’ quality obtained by mapr and cmap. Table 4 shows the quality-score metric
when the quality metric is plan length.We also compare the results with lama- 2011with the
original code that participated in the IPC’11 as a reference. lama- 2011 improves solutions
quality over time until it runs out of time, while our approaches stop as soon as one solution
is found.

The score differences between lama- first and the mapr approaches are small. In fact,
mapr-best-cost outperforms lama- first. This shows that our algorithms do not sig-
nificantly penalize the quality of the plans. The quality metric gives a zero to the unsolved
problems. In the domains where the score of mapr-best-cost is higher than the score of
lama- first, the former solved more problems except in the case of the Driverlog where
both systems solved the 20 problems. In theory, the solutions quality of contract-net
should be better than the one of load-balance, since the estimation of costs is more pre-
cise. However, we see that in practice there is not much difference in the scores of these two
configurations. The main reason is that contract-net approaches usually solve fewer
problems, since contract-net takes more time to compute the goal assignment than
load-balance.

We include now a study of the behavior of our algorithms in relation to the makespan of
the generated plans, since most MAP approaches use makespan to measure plan quality.
As we explained before, mapr and cmap generate sequential plans, but we can trans-
form a sequential plan into a parallel plan. Table 5 shows the quality-score metric when
the quality metric is makespan. lama- first scores better than our approaches, so even if
it is guided toward achieving goals as soon as possible, indirectly the generated sequen-
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Table 5 Quality-score metric for the 20 test problems using mapr, cmap, and lama- first, with different
goal assignment strategies

planner Logis Eleva Rover Satel Zenot Driver Port Depots Trans d-rob Total

lama-2011 18.85 18.94 18.90 17.63 19.21 19.13 17.42 17.74 18.61 11.46 177.89

lama-mk 16.08 17.27 15.94 15.86 17.41 12.89 13.37 13.95 15.47 10.08 148.32

cmap-aa 18.17 17.00 16.30 16.45 16.62 12.63 13.29 11.96 9.41 10.73 142.55

cmap-all 17.52 17.00 16.11 16.40 16.62 12.66 14.40 11.96 9.41 9.85 141.94

cmap-lb 18.17 17.00 15.90 17.00 16.62 12.73 13.00 11.92 9.41 9.70 141.45

cmap-cn 18.17 16.15 16.11 16.40 16.62 12.66 13.10 11.96 9.41 9.70 140.28

cmap-sub 17.45 17.19 15.82 15.39 15.91 12.47 13.29 10.12 11.21 8.40 137.25

cmap-bc 17.71 16.60 14.77 14.59 15.28 12.53 13.00 10.89 9.69 7.44 132.50

mapr-sub 16.28 16.41 16.27 13.90 12.70 12.80 12.68 9.51 9.43 9.34 129.32

mapr-bc 15.01 15.49 13.46 11.65 12.36 12.64 12.06 10.89 9.27 12.02 124.84

cmap-ra 15.91 16.74 12.86 13.25 12.31 11.99 13.10 11.32 9.27 4.96 121.71

mapr-lb 14.57 15.04 14.57 12.57 10.57 14.57 12.28 8.56 7.56 9.00 119.29

mapr-aa 15.71 15.58 15.55 13.33 12.67 13.12 11.46 9.23 6.06 6.46 119.17

mapr-cn 14.79 15.36 14.62 14.13 11.67 12.47 11.46 7.73 8.27 7.23 117.74

mapr-ra 16.30 16.85 12.18 11.93 11.57 10.46 11.48 11.32 9.28 5.30 116.66

Total 250.67 248.62 229.35 220.48 218.13 195.77 195.40 169.03 151.76 131.66

Quality metric is makespan. Rows are sorted according to the total score

tial plans yield good makespans. Given that cmap performs centralized planning, it has a
comprehensive view of the whole planning process, and thus can more easily improve the
quality of plans. Therefore, the cmap configurations obtain better results than themapr ones.
Among those, the goal assignment strategies that work best are the ones that try to obtain a
good balance (load-balance and contract-net) and the ones that select more agents
(all-achievable and all), indirectly allowing more agents to participate in the plan,
and thus reducing the makespan.

6.3 Scalability study

In this section, we present a study on scaling up the difficulty of the problems in each
domain, except for Transport, Depots-robots and Port. We did not use those domains in
this study, given that the planning tasks were already difficult for the planners. We have
generated harder problems than the ones used in the IPC; 20 random new problems in
every domain. We have increased the number of agents and goals. In order to define the
complexity of the new problems, we used a similar approach as the one used by the organizers
of the IPC’11. For each domain, we increased the number of agents and goals until some
configurations exhaust the computer resources (time or memory) when solving the problems.
The difficulty of these harder problem instances depends on the domain. For example, in the
Depots domain, some configurations have difficulties solving problems with 6 agents and 13
goals, while in the Rover domain more than 100 agents and 120 goals are needed to exhaust
computer resources. The experimental setup is similar to the previous ones, but we have only
tested the min-goals scheme for ordering agents. Appendix A.6 shows a summary of the
characteristics of the tested problems. Tables 6 and 16 show the results of the experiments
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Table 6 Time-score metric for the hard problems usingmapr, cmap and lama- firstwith the different goal
assignment strategies

planner Rover Driverlog Satellite Zenotravel Logistics Elevators Depots Total

mapr-ra 15.34 18.87 20.00 20.00 18.87 1.86 18.95 113.89

cmap-ra 15.34 12.25 9.94 11.46 17.81 2.37 18.92 88.09

cmap-sub 14.76 13.99 10.78 10.76 19.01 14.74 4.02 88.05

lama-mk 19.97 14.34 9.63 10.40 13.18 14.56 0.77 82.85

mapr-bc 15.12 17.74 16.52 14.19 8.36 4.47 3.24 79.63

cmap-all 13.66 12.72 9.94 9.97 12.80 16.34 1.64 77.07

cmap-bc 14.95 14.45 7.73 10.56 12.26 3.76 9.08 72.77

mapr-sub 14.68 8.09 10.67 12.45 6.92 9.64 4.03 66.48

cmap-lb 13.75 12.20 7.79 10.36 10.15 5.43 1.45 61.13

cmap-aa 13.55 11.46 9.32 10.10 9.12 4.70 2.36 60.61

mapr-lb 11.75 7.03 10.27 11.15 0.00 2.39 2.20 44.78

mapr-aa 5.62 2.74 8.71 9.92 0.00 0.00 2.62 29.62

cmap-cn 4.28 3.96 7.65 1.36 0.00 0.00 2.70 19.95

mapr-cn 2.12 3.17 6.43 1.37 0.00 0.00 2.00 15.09

Total 174.87 153.00 145.38 144.06 128.47 80.25 73.97

Rows are sorted according to the total score

on scalability. Table 6 shows the time score on these new problems and Table 16 shows the
coverage.

The rest-achievable strategy remains being the fastest one by a large margin. How-
ever,mapr scalesmuch better than cmap (there is a difference ofmore than 25 points between
mapr-ra and cmap-ra). There is little variation between the ranking with respect to the
goal assignment strategies. But the differences among the scores are bigger now than before.
For example, the score of our best approach exceeds in 31 points lama- first’s (lama- mk)
score. Hence, the differences on solving harder instances come from the fact thatmapr solves
smaller problems at each iteration, while cmap has to solve much bigger problems than the
IPC ones. Much of the score differences come from unsolved problems. If we look at the
worst configurations, those using contract-net, it is mainly due to the time it takes to
perform goal assignment in these harder instances that increases a lot. So, it is better to use
load-balance than contract-net if we are aiming at better load balance.

Appendix A.5 shows the number of solved problems of the different configurations,
which depends on the domain. In the Zenotravel, Driverlog and Depots domains the
contract-net strategy has scalability problems as described above. We have observed
that the assignment of goals in these domains consumes almost all the available time. For the
other strategies, it takes less than one second to assign the goals. As we can also see,mapr is
much faster than cmapwithrest-achievable: it solves approximately the same number
of problems, but the time score is much higher.

To better understand the scalability ofmaprwith therest-achievable strategywhen
the number of agents increases, Fig. 6 reports the total time taken to solve the 20 hard problems
on two representative domains: Driverlog and Rover. The x-axis shows the number of agents
of each problem (Driverlog/Rover). In the case of the Rover domain, the total time remains
practically equal as the number of agents increases. However, in the Driverlog domain, the
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Fig. 6 Total time taken to solve the 20 hard problems of the Driverlog and Rover domains

time notably increases. The peaks of the graph are due to the fact that complexity of planning
problems does not reside only on the number of agents.

6.4 Replanning algorithm

In this section, we want to study the impact of using a replanning system, mlpg (mapr using
lpg- adapt as second planner). So, we compare it against the configurations that obtained
the best scores in the time-score metric using the hard problems of the above experiments
and the problems of the challenging domains in the goal assignment experiments (Transport,
Depots-robots and Port). We include in the comparison again the different orderings, since
they have some impact as discussed below. Table 7 shows the results.

mapr total score with the rest-achievable strategy is almost 52 points higher than
mlpg scores. The cmap-rest-achievable score is also much higher than mlpg scores.
As we see, even with the advantage of reusing a past plan, mlpg performance is worse than
the one of a planning from scratch system, as lama- first. mlpg uses lama- first for
generating the plan for the first agent and lpg- adapt for the successive planning episodes,
whilemapr always uses lama- first. As a stand-alone planner, lama- first ismore efficient
than lpg- adapt, due to all the improvements that it has over lpg (use of SAS+, dual open
lists, use of preferred operators, greedy best-first, . . .).

The only advantage of using lpg- adapt over lama- first in the context of mapr is that
the successive planning episodes reuse the solutions communicated by the previous agent.
That explains why max-goals is the best ordering scheme for mlpg; the first planning
episode solves more goals, and the rest of planning episodes only have to add some addi-
tional plan steps for the new goals. Given how max-goals works, the second and later
planning episodes will plan for smaller sets of goals than the one on the first step. There-
fore, the previous plans can be mostly reused and planning is faster. When using a replanner
the goal assignment strategy has little influence in the planning efficiency; all the strate-
gies obtain very similar scores using the same ordering schemes. Let us take, for instance,
rest-achievable and all-achievable. In rest-achievable, the second and
later planning episodes will add a few new goals to the problem, so the planning tasks will be
small. In all-achievable, the first episode (performed by lama- first) will take care
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Table 7 Time-score metric for the hard problems using mlpg and the different goal assignment strategies
and ordering schemes

Planner Satel Trans Depots Zenot Port d-rob Rover Logis Driver Eleva Total

mapr-ra-min 19.97 19.96 19.12 20.00 12.11 10.37 11.23 19.00 19.99 2.00 153.76

cmap-ra 9.93 19.79 19.09 11.46 11.75 8.72 11.23 17.93 13.02 2.96 125.88

mlpg-ra-max 17.98 14.42 14.68 13.58 10.59 9.22 19.80 1.47 0.00 0.63 102.37

mlpg-aa-max 18.16 14.34 14.54 13.62 11.25 10.45 19.80 0.00 0.00 0.00 102.15

mlpg-lb-max 17.95 14.28 14.66 13.58 11.08 10.44 19.82 0.00 0.00 0.00 101.81

mlpg-bc-max 18.07 14.32 14.99 13.57 9.27 10.44 19.80 0.00 0.00 0.00 100.45

mlpg-cn-max 18.03 14.53 14.37 13.55 9.85 9.58 19.81 0.71 0.00 0.00 100.43

mlpg-aa 18.30 14.68 14.03 13.72 13.67 10.23 6.92 0.00 0.00 0.00 91.55

mlpg-sub 18.31 14.47 13.39 13.83 13.16 10.40 6.93 0.00 0.53 0.00 91.01

mlpg-bc 18.25 14.70 13.84 13.80 12.62 10.45 6.94 0.00 0.00 0.00 90.60

mlpg-cn 18.28 14.23 13.86 13.73 12.08 10.45 6.94 0.00 0.54 0.00 90.11

mlpg-ra 18.26 13.92 13.65 13.71 12.72 10.41 6.92 0.00 0.00 0.00 89.61

mlpg-lb 18.32 14.61 13.89 13.77 10.67 10.22 6.95 0.00 0.00 0.00 88.43

mlpg-cn-ran 18.25 14.72 14.57 13.83 12.35 9.35 2.92 0.71 0.00 0.64 87.34

mlpg-lb-ran 18.26 14.65 13.89 13.76 12.19 10.43 2.93 0.00 0.00 0.64 86.76

mlpg-aa-min 18.74 14.48 15.10 13.82 13.22 9.50 0.00 1.39 0.00 0.00 86.25

mlpg-bc-min 18.71 14.25 14.86 13.64 15.16 9.11 0.00 0.00 0.00 0.00 85.73

mlpg-cn-min 18.79 14.65 14.96 13.75 12.70 9.56 0.00 0.00 0.00 0.00 84.41

mlpg-bc-ran 18.24 14.78 14.22 13.79 11.30 9.19 2.87 0.00 0.00 0.00 84.41

mlpg-lb-min 18.64 14.48 15.21 13.66 11.96 9.11 0.00 0.00 0.00 1.34 84.39

mlpg-ra-ran 17.86 14.86 14.40 13.49 10.56 9.35 2.92 0.00 0.00 0.64 84.08

mlpg-aa-ran 18.24 14.72 13.67 13.53 11.02 9.21 2.91 0.00 0.00 0.64 83.95

mlpg-ra-min 18.69 14.33 14.60 13.64 12.20 10.46 0.00 0.00 0.00 0.00 83.92

Total 414.22 344.18 339.61 318.84 273.48 226.65 177.66 41.21 34.08 9.48

Rows are sorted according to the total score

of most goals (since we are dealing with domains where most agents can achieve most goals).
And then the following episodes will add again very few goals. So, the expected behavior
of rest-achievable and all-achievable is very similar when using replanning
(lpg- adapt), while it is very different when using planning from scratch (lama- first).

6.5 Comparison with state-of-the-art MAP

In this section, we compare against state-of-the-art MAP. We first present the comparison
with a non privacy-preserving MAP approach, and then a comparison with several privacy-
preserving MAP approaches.

6.5.1 Comparison with other non privacy-preserving MAP Approaches

Crosby et al. proposed the Agent Decomposition-based Planner (adp) that automatically
detects the agents in planning tasks and then performs an iterative search over the discovered
agents [23]. As adp does not preserve privacy, we first run our obfuscation method to convert
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Table 8 Time and quality (makespan, Mk) scores and coverage (C) of padp, mapr-rest-achievable-
min-goals and cmap-all

Domain padp cmap mapr

Time Mk C Time Mk C Time Mk C

Satellite 20.00 15.44 20 20.00 18.99 20 20.00 14.71 20

Logistics 20.00 17.52 20 20.00 19.46 20 20.00 18.11 20

Rover 18.00 15.15 18 20.00 19.23 20 20.00 14.29 20

Driverlog 19.80 18.84 20 19.25 17.78 20 18.91 14.61 20

Zenotravel 16.65 16.13 18 18.47 19.02 20 20.00 13.19 20

Elevators 20.00 16.50 20 14.39 18.53 20 14.37 18.79 20

Depots 12.02 6.90 15 15.52 17.02 18 19.70 15.68 20

Transport 8.84 11.69 15 6.80 12.61 13 20.00 13.83 20

Depots-robots 13.00 12.60 13 9.44 9.55 11 10.21 5.65 11

Port 0.00 0.00 0 13.10 14.92 17 15.74 13.36 16

Total 148.31 130.77 159 156.97 167.11 179 178.93 142.22 187

the input domain and problem into the corresponding obfuscated versions. Then, we give
those obfuscated versions to adp as input, as wewere doing with lama- first in the previous
experiments. We named it padp (Privacy-preserving adp). Thus, we convert a non privacy-
preservingmulti-agent planner (adp) into a weak privacy-preserving one.We have compared
it with mapr and cmap. We used the same IPC domains we have used previously, as well
as the two new domains Port and Depots-robots with their 20 problems. Table 8 shows the
results of the comparison.

The total scores of mapr and cmap are higher than the scores of padp. padp did not solve
a significant number of problems; four of them were not solved because they are problems
with a single agent and the algorithm returns a null output. This shows that adp is better
than lama- first in some domains and that we can help a system that does not preserve
privacy (such as adp) to include some level of privacy, through the first obfuscation method.
However, it cannot benefit from stronger privacy preservation techniques as in the case of
the ones used by mapr.

6.5.2 Comparison with privacy-preserving MAP Approaches

Finally,we comparemapr (the best version found so far:rest-achievable-min-goals)
and cmap (all) against fmap [66],mafs [54], andmadla [27], since they represent the cur-
rent state-of-the-art on suboptimal privacy-preserving MAP. We do not provide comparisons
with other techniques because they are way behind in coverage (number of solved problems),
time score, or because they solve a different planning task (such as optimal approaches, or
planning with self-interested agents). In the fmap paper, its authors showed that fmap out-
performs by a great margin their previous approach, map- pop [68].17 PlanningFirst [56]
could only solve the first two problems in the Rovers domain and the first problem in the
Satellite domain. Other approaches, as the one presented by Jonsson & Rovatsos [42], also
show running times well above the ones we will present here in the satisficing version. They
also provide results for the optimal case, but we do not deal with optimal planning in this

17 We already reported similar results in a previous paper [5].
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paper. Also, they take as input a plan. We cannot compare with (ma- a∗) [55] either, since
their approach performs optimal planning. In the Related work section, we provide a more
comprehensive list of approaches and their differences with ours.

Domains We have used the same domains as in the previous sections, which are most of
the ones used by the authors of fmap [66]. We used the same instances they used. Since in
some domains they used more than 20 problems, we selected the first 20 problems of their
benchmark, so that all domains have the same weight in the scores.18 We could not compare
in some domains, given that they have a different input definition than our approaches. As
an example, in Openstacks, they used agents that are not in the IPC domain nor problem
definitions.

fmap takes as input a domain for each type of agent and a set of problem descriptions,
one for each agent. So, when running fmap, we have used their agentification of the domain.
On the other hand, approaches based on ma- strips, such as mafs and madla, fail to solve
any problem in agentifications of domains where there is at least one action with no agent in
their parameters (for instance an agentification of the Logistics domain with airplanes as only
agents, or Driverlog with drivers as agents). Thus, in order to test different agentifications
and their impact in the behavior of planners, we have used two alternative agentifications
for some domains (see details in Appendix A.1). Domains with a suffix -f in the name
mean that the systems used the agentification proposed by fmap to solve the problems.
The differences with our agentification affect only the private predicates in the Satellite,
Rover, Driverlog, Transport and Zenotravel domains. In the Logistics, Depots and Elevators
domains, differences lie onwho the agents are.madla uses untyped PDDL definitions. Thus,
we report its results only on the domains provided by its authors.

Other variables setup Goal assignment. We have used our best configuration for mapr
(with rest-achievable). Also, we have compared with the complete version: cmap-
all. Ordering of agents. We have used the best configuration for mapr (min-goals).
Ordering of agents is irrelevant when using cmap-all, since it uses all agents. Plan-
ners. We have used lama- first with unit costs for generating the plan for the first and
consecutive agents. We also compared obfuscation by learning only-one-macro-operator
(mapr- macros- oo) or learning several of them (mapr- macros). Time bound. We have
used 1800 seconds as in the IPC.We used a different computer for this experiment: a 2.6GHz
Intel Core i7with 4GbofRAMrunningMacOSX.19Metric.Wecompare here the approaches
with respect to time and makespan.

Table 9 shows the results of the time score. It does not show the totals, since it good
be unfair for systems that cannot handle all different agentifications. So, the analysis has
to be performed over domains or agentifications of domains. We highlight in bold the best
configuration per domain and agentification.

As it can be seen, mapr and cmap obtain a huge difference in time scores with respect
to the rest of state-of-the-art approaches. The best approach of the rest is mafs, followed
by fmap and madla. The difference in score is higher in domains where agents alternate
private and public actions in their plans, because mafs and fmap have to continuously
communicate the changes in the states. They are usually tightly coupled domains. This can
be seen for instance in Port, Depots-f, and Transport. As expected, some approaches get
penalized using some agentifications: mapr in Depots-f, Logistics-f and Elevators-f; and
mafs in Driverlog (both versions), Depots, Logistics, Elevators and Depots-robots. Others

18 This decision favors them since fmap scales worse than mapr and cmap and the more difficult problems
are the last ones.
19 fmap needs a specific execution setup that was difficult to reproduce in the cluster.
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Table 9 Time score of fmap,mafs,madla, cmap-all andmapr-rest-achievable-min-goalswith
and without macros

Domain cmap mapr mapr-macros mapr-macros-oo fmap mafs madla

Satellite 19.59 19.63 18.68 17.54 16.99

Satellite-f 19.75 19.64 18.71 17.49 8.58 15.77 10.54

Rover 19.80 19.78 18.97 18.11 15.00

Rover-f 19.83 19.79 18.66 18.13 10.13 14.36 11.26

Driverlog 19.85 18.89 18.25 18.17

Driverlog-f 19.82 19.20 18.79 18.33 9.13 1.00

Zenotravel 18.29 19.98 19.73 19.35 15.85

Zenotravel-f 18.26 19.98 19.70 19.77 11.88 15.10

Transport 8.56 19.32 19.67 19.86 0.9

transport-f 8.37 19.63 19.99 19.49 1.66

Depots 16.15 19.28 19.12 18.36

Depots-f 18.00 2.11 7.98 1.03

Logistics 20.00 20.00 20.00 20.00

Logistics-f 20.00 3.95 19.01 1.05

Elevators 18.34 19.76 19.66 19.20

Elevators-f 20.00 1.00 1.00 1.00 11.91 20.00 0.0

Port 15.05 16.66 17.18 3.29 7.84

Depots-robots 9.61 9.80 9.61 9.76

We show in bold the best configuration per domain

simply cannot solve problems in a given domain due to complexity: fmap in Transport-f;
and madla in Elevators-f.

Differences within themapr versions are small. Therefore, even if using macro-operators
provides smaller scores, they improve on privacy preservation. So, we can balance privacy
and efficiency, depending on the desired levels for a particular domain. Also, cmap andmapr
scores are quite similar in the domains that both can handle. cmap on the other hand does
not suffer from different agentifications, but it has a weaker privacy preservation.

Table 10 shows the results of the quality score measured as makespan. mafs and madla
only report plan length values, so we report the length as the makespan of their plans. Thus,
their scores are low. In the case of mafs, it does not return a plan, so we could not run our
parallelization algorithm. In the case of madla, the plans are returned obfuscated, so they
would have to be first deobfuscated to be parallelized. Therefore, the only fair comparison is
against fmap. The focus of our techniques has not been yet on improving quality. However,
given that we solve many more problems, the quality score is better than that of the others.
Also, even in the cases where fmap, mapr and cmap solve the same problem instance,
manual inspection of results show that our quality is usually not that far from that of fmap
and sometimes even better (fmap is suboptimal with respect to makespan). Only in the
Elevators domain fmap scores higher than cmap.

As with respect to modeling the MAP domains, we use the IPC version of the domains,
so we have very little modeling overhead; just the one needed to provide the values for the
agent types (AT ), private predicates (PP) and private types (PT ). fmap use some multi-
agent-oriented representation of the domains with most predicates represented as functions.
These versions are semantically equivalent to the ones of the IPC, even if they include more
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Table 10 Quality score (makespan) of fmap, mafs, madla, cmap-all and mapr-rest-achievable-
min-goals with and without macros

Domain cmap mapr mapr-macros mapr-macros-oo fmap mafs madla

Satellite 19.48 15.05 15.59 15.66 10.65

Satellite-f 17.82 14.03 14.68 14.68 15.46 9.68 3.14

Rover 19.60 15.26 15.97 15.9 6.14

Rover-f 19.02 14.38 14.96 15.01 16.15 5.73 3.87

Driverlog 19.61 15.19 14.98 15.04

Driverlog-f 17.58 13.53 13.31 13.42 14.65 1.00

Zenotravel 19.78 14.21 14.21 14.14 8.41

Zenotravel-f 18.26 12.94 12.94 12.87 16.32 7.34

Transport 16.00 13.12 13.14 13.05 0.11

Transport-f 16.00 13.10 13.05 13.06 2.40

Depots 17.53 16.17 16.20 15.14

Depots-f 18.00 4.94 6.20 0.20

Logistics 19.89 18.25 18.25 18.25

Logistics-f 19.44 8.29 5.88 0.02

Elevators 19.16 18.65 18.27 18.95

Elevators-f 16.93 0.50 0.50 0.50 18.53 10.14

Port 17.03 15.86 16.86 3.24 5.70

Depots-robots 10.92 6.79 6.79 6.79

information related to somemulti-agent aspects. So, our approaches can dealwith a simplified
version of privacy (slightly richer than the one of ma- strips), while fmap can use richer
semantics.

6.6 CoDMAP results

We participated in the First Competition of Distributed and Multiagent Planners (CoDMAP)
with the following versions of our systems:

– cmap- q: cmap algorithm with the subset goal assignment strategy and lama- 2011
as the base planner (including its anytime behavior). It aims at optimizing plans’ quality
and coverage.

– cmap- t: cmap algorithm with the subset goal assignment strategy and lama- first
as the base planner. It aims at optimizing planning time and coverage.

– mapr- p:mapr algorithm with the min-goals scheme for sorting agents, lama- first
as the base planner and learning only-one-macro. It aims at maximizing privacy among
agents.

They placed as follows in the centralized track:20

– cmap- q: 1st place - IPC quality score, 7th place - coverage score, 12th place - IPC
time agile score

– cmap- t: 2nd place - IPC time agile score, 4th place - coverage score, 5th place - IPC
quality score

20 See detailed results at http://agents.fel.cvut.cz/codmap/results.
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– mapr- p: 7th place - IPC time agile score, 11th place - IPC quality score, 12th place -
coverage score, 12th place

However, as organizers stressed in the presentation of results, it could be consideredmore a
comparison than a competition given that, among other issues, privacy preservation behavior
greatly varied among competing planners. For instance, the first two planners in coverage
were based on adp, so they did not preserve privacy. The third one, based on siw [48], had a
very light privacy-related scheme, so agents had full access to other agents states. So, cmap- t
was the first planner to preserve an equivalent level of privacy as other MAP planners (such
as the ones presented earlier).

6.7 Analysis of privacy preservation

As already stated, obfuscating agents’ private information only ensures weak privacy.
Guaranteeing strong privacy in MAP is hard to achieve. However, it is feasible to verify
experimentally privacy by extracting the information exchanged among the agents in the
planning process and then establishing whether an agent is able to infer private data of the
other agents, as it was done in [10] for some domains.

cmap assumes that either: the centralized agent can be trusted, and thus cmapwould show
strong privacy-preserving properties; or, otherwise, the obfuscated versions of the domains
and problems can only ensure weak privacy.

Regarding mapr, various parameters influence privacy preservation: the goal assignment
strategy, the agents ordering scheme, the use of macro-operators, the domain model, the
elements considered private in the domain (defined by PT and PP), and the agentifica-
tion (defined by AT ). We will study next the most relevant aspects of the relation of these
parameters and privacy.

The goal assignment strategy determines the set of agents involved in the planning pro-
cess. Hence, the excluded agents do not exchange any private information with the selected
agents, since they do not participate in the planning process. Then, goal assignment strate-
gies that select less agents in average tend to provide stronger privacy preservation. In
average, if we order goal assignment strategies according to this aspect from stronger to
weaker privacy preservationwewould have:rest-achievable,best-cost,subset,
load-balance, contract-net, all-achievable, and all. A second impact on
privacy preservation relates to the number of goals assigned by each strategy to each selected
agent. If a strategy assigns many goals to each agent, the agents’ subplans will be longer
in average and the amount of obfuscated private data exchanged among agents will be big-
ger than with the other strategies. According to this criterium, the weakest goal assignment
strategies in relation to privacy preservation would be all-achievable, and all.

The ordering of agents when they generate subplans also influences privacy. The first
agent generates its partial plan without previous information, so it learns nothing from the
rest of agents unless it is invoked again (this happens very few times in practice). The second
agent receives the augmented obfuscated solution from the first agent. Thus, it only can infer
private information from the first agent. The following agents receive all previous agents’
solutions together, so they cannot distinguish which agent each obfuscated data belongs to.
This is precisely one of the main differences with other approaches that run agent planners
in parallel, given that each agent knows which other agent is sending the information when
they change something from the public part of the state. While, in our case, each agent does
not know which information belongs to which other agent.

Each individual agent can potentially infer private knowledge only from previous agents.
Therefore, if we have an ordering of priorities of agents in privacy preservation, we can use
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it to order the agents. In that case, the agent with the less restrictions on privacy preservation
would be ordered first. The second agent could be the one with which the first agent does not
mind losing some privacy preservation. And the following agents can be ordered from the
less restrictive to the more restrictive ones in terms of privacy preservation.

The relation between the goal assignment strategy and the ordering of agents is also
relevant in relation to preserving privacy. For instance, in our case, we use min-goals
as agents’ ordering scheme. Thus, it will order first the agent with less number of goals. If
we combine it with rest-achievable, it will most probably have few goals to achieve.
Thus, the weaker link (between the first and second agents) would only have weak privacy
preservation for a small number of actions in average (the ones that achieve those few goals).

Themacro-operators remove information about intermediate states, increasing the privacy
level. So, we have analyzed the information exchanged by mapr-all-achievable with
macro-operators (when it learns only one) and without them to determine the private data
the second agent and the following agents can infer from it. We have performed this analysis
per domain, using some of the configurations studied in the experiments. Table 11 shows the
results. The first columns display the private information the second agent could infer from
the first agent when mapr uses or not macro-operators. The last column displays the private
information the following agents could reliably distinguish from previous agents. The table
displays the private predicates we used to define the privacy level of the IPC domains used
in the experiments. An underlined predicate means that the displayed agent may not be able
to infer the corresponding private information.

Next, we explain the private data that may not be inferred per domain.

– Rovers: the goals are that a rover communicates soil, rock and image data located in
public locations. The private data are (1) the rover’s instruments, (2) the rover position,
(3) the waypoints the rover can traverse, (4) the instruments, cameras and stores the rover
has and its current state (full, empty, calibrate, available) and (5) the supported modes
of its cameras and its calibration target. The rover equipment for soil/rock analysis and
imaging can be inferred only in the case its assigned goals include to communicate a
soil/rok/image data. But the number of instruments, cameras and stores the rover has
remains private. The actions for moving and calibrating a rover include only private
predicates with a public object. The second level of obfuscation removes these public
objects. Then, if a rover has to navigate through a maze of waypoints, the other rovers
will be able only to infer the first and last waypoints the rover traversed, given that they
will appear in the macro-operator (while the other traversed waypoints will not appear
in the macro-operator). Also, other agents will not be able to infer the rover calibration
target if it is an intermediate waypoint in the traversed path.

– Satellite: the goals are that a satellite takes images of public directionswith a publicmode.
The private data is: (1) the on-board instruments, the modes they support and their states
(power-on and calibrated), (2) the calibration direction of the instruments and (3) the
satellite direction. It is possible to infer that the satellite has an instrument that supports a
mode, but the exact number of instruments and their states cannot be inferred. The action
for calibrating a satellite includes only private predicates with a public object. The second
level of obfuscation removes that public object from the action, and the macro-operator
removes all information on intermediate propositions before each take-image action. So,
other agents will not be able to infer the satellite calibration direction.

– Driverlog: the goals are that a package, a driver or a truck ends in a public position. The pri-
vate data are the location of the driver, in a public location or in a public truck (driving).
The predicate driving encodes intermediate states that the macro-operators remove.
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Table 11 Analysis of mapr privacy level in the IPC domains

Domain Second agent Rest of agents

Without macros With macros

Rover at can_traverse at can_traverse at can_traverse

(rovers) equipped_for_soil_analysis equipped_for_soil_analysis equipped_for_soil_analysis

Equipped_for_rock_analysis equipped_for_rock_analysis equipped_for_rock_analysis

Equipped_for_imaging equipped_for_imaging equipped_for_imaging

Empty have_rock_analysis empty have_rock_analysis empty have_rock_analysis

Full have_soil_analysis full have_soil_analysis full have_soil_analysis

Calibrated supports calibrated supports calibrated supports

Available on_board available on_board available on_board

Have_image store_of have_image store_of have_image store_of

Calibration_target calibration_target calibration_target

Satellite Calibration_target calibration_target calibration_target

(satellites) Pointing power_avail pointing power_avail pointing power_avail

Calibrated supports supports calibrated supports calibrated

power_on on_board power_on on_board power_on on_board

Driverlog At-driver driving at-driver driving at-driver driving

(drivers)

Transport At-truck in capacity at-truck in capacity at-truck in capacity

(trucks)

Zenotravel At-airplane fuel-level at-airplane fuel-level At-airplane fuel-level

(aircrafts) In in in

Depots In at-truck in at-truck in at-truck

(trucks)

Logistics Inside-airplane inside-airplane inside-airplane

(airplanes) At-airplane at-airplane at-airplane

Elevators Boarded-fast lift-at-fast boarded-fast lift-at-fast boarded-fast lift-at-fast

(fast- reachable-floor-fast reachable-floor-fast reachable-floor-fast

elevators) Passengers-fast passengers-fast passengers-fast

can-hold-fast can-hold-fast can-hold-fast

Port Lifting assigned available lifting assigned available lifting assigned available

(hoists) At-ship on-ship at-ship on-ship at-ship on-ship

D-robots At-robot carries free at-robot carries free at-robot carries free

(robots)

Underlined predicates represent the private data the displayed agent may not be able to infer from previous
agents (it may remain private for the previous agents). The analyzed agentification is displayed in parentheses
below the domain name
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Hence, the fact that a driver is driving a truck may remain private. Also, the final position
of the driver could also remain private, given that it canwalk somewhere else after leaving
the truck in its final destination, and the preconditions and effects of the walk action are
private and will not appear in the macro-operator.

– Transport, Zenotravel, Depots and Logistics: in these domains the agents are vehicles
(trucks or airplanes) and the private data is their location, the internal properties as their
capacity or fuel-level and the number of packages/persons they are transporting (in
and inside predicates). The second level of obfuscation removes the public objects
capacity and fuel-level, from the respective private predicates. So, the internal properties
of the vehicles may not be inferred in most problems. In addition, mapr increases the
privacy level if it uses macro-operators, since they also remove the intermediate states
and compact several actions into one.

– Depots-robot: the private data is the location of the robot andwhether the robot is carrying
a pod or it is free. The public predicate empty-cell allows all private data to be inferred.
Macro-operators can only hinder inferring the details of the robots movements when they
are loaded.

– Port: this domain deals with hoists that load crates into ships. Both, ships and hoists (the
agents) are private together with the information concerning them, i.e., (1) the surfaces,
crates and hoists a ship contains and (2) the current state of a hoist (whether it is available
and it is lifting a crate). Each hoist is associated to a ship, so mapr only maintains weak
privacy, as it would happen with any other MAP planner. Once a hoist picks up a crate
(public due to the position of the crate within the dock) and deposits it into its ship, the
crate disappears (its position becomes private). Thus, any agent can infer that the crate
is going to end up in the ship associated to the hoist.

– Elevators: this domain represents a set of elevators for moving up and down persons
from one floor to another. The private data is the elevator position, the floors the elevator
can reach, the number of persons it can hold and the persons it transports. The actions
for moving up and down a elevator contain only private or static predicates. The second
obfuscation removes the public objects from the private predicates and the static predi-
cates. Hence, it becomes more difficult for other agents to infer the reachable floors of
an elevator. Also, if we use macro-operators, the current occupation of the elevators and
the number of persons it can hold would also be more difficult to infer.

6.8 Summary of results

As a summary, we can draw some conclusions:
Ordering of agents All the schemes behave similarly, being the min-goals scheme

slightly better than the rest. Therefore, the ordering of agents has little influence on the
planning efficiency.

Goal assignment The rest-achievable alternative is the fastest one, while
all-achievable and contract-net are the slowest ones. We have also shown that
in average rest-achievable uses much less number of agents. In the scalability study,
rest-achievable continues to be the fastest one.

Centralized versus distributed algorithm In simple instances, given the same goal assign-
ment strategy, mapr is slightly faster than cmap in almost all strategies. Also, when dealing
with harder instances,mapr-rest-achievable scales better, and outperforms by a great
margin all other configurations.

Comparison with lama- first There is a difference of more than 15 points between the
time score of our best setting (mapr-rest-achievable) and the lama- first score (no
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privacy) in the simpler problems. The difference is even greater in the case of harder instances
between mapr-rest-achievable and lama- first (around 31 points).

Quality of solutions Our algorithms do not significantly penalize plans’ quality. Even
mapr-best-cost scores slightly better than lama- mk in plan length. As expected, there
is room for improvement in quality, given that our configurations do not focus on it, and we
are not using all the available time for improving the first solution, as lama- 2011.

Replanning versus planning from scratch in mapr Using lama- first (planning from
scratch) is better than using lpg- adapt (replanner). Therefore, there is room for improve-
ment on better replanners. The difference between the scores of the configurations that use
lpg- adapt are small, though. In these cases, the goal assignment strategy has little influence
on the planning efficiency.

Comparison with state-of-the-art similar planners We have shown that both cmap and
mapr outperform by a big margin state-of-the-art planners in the same setting that we
use: deterministic suboptimal privacy-preserving strips multi-agent planning. In the case
of mafs, its behavior depends on the interaction between public and private actions when
each agent is searching for a solution. If each agent has to interleave often between public
and private actions, then mafs cannot benefit of the effects of tunneling. Thus, it will have
to exchange often states and actions with the rest of agents, thus reducing its efficiency. This
can be observed in domains as Port.

Using macro-operators By sharing macro-operators between agents in mapr, we can
obtain better privacy preservation at a slight decrease of efficiency.

7 Related work

MAP has been approached from both the multi-agent and the automated planning commu-
nities [24]. In general, most works in the multi-agent community have not used standard
automated planning techniques, focusing on some related aspects as self-interested agents,
cooperation, negotiation or scheduling [8,26,46]. On the other hand, most previous works in
the planning community defined agents as resources and used centralized planning to solve
MAP tasks. In some works, each agent generates a separate plan, and then those plans are
merged [28,32,50,52]. These previous approaches differ from our work in that they focus on
maximizing utility, or do not preserve privacy of goals or actions. Recently, the psm planner
and their variants implement a new algorithm for merging plans from different agents in
the MAP setting with privacy. The initial plans also contain projections of public actions of
other agents [69]. The main difference with mapr and cmap is that it focuses on the merging
algorithm and it uses the ma- strips model.

Some of the ideas in mapr were already present at a high level in gpgp [46]. Particularly,
distributed problem solving, exchange of partial plans and plan repair. But, if we analyze in
more detail, there are strong differences with the planning mechanisms used in both. gpgp
uses a goal hierarchy for planning, similarly to the work on HTN planning, very different
from the planning models used in PDDL. They also deal with scheduling, and execution
coordination, while we only deal with planning. Also, their joint intentions (goals) are only
handled implicitly. So, agents could solve their planning tasks without taking into account a
known jointly shared goal. Inmapr, all agents know about the public goals and cooperatively
reason to achieve them.

Recently, there has been a renewed interest on developingMAP techniques for cooperative
agents that explicitly consider the agents private information in the suboptimal [56,66,68] and
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optimal settings [54,55]. Among the recent deterministic distributed planning approaches, we
find the ones that use iterative plan refinement [42], distributed CSP [12,56], distributed A∗
[54,55], SAT [25], or partial-order planning [66,68]. Also, there is some interest on including
mechanism design principles for self-interested agents [55].

Jonsson & Rovatsos described a MAP approach that is based on an iterative refinement
process of successive single-agent planning episodes [42]. They start the planning iterations
using an arbitrary initial plan in the joint-actions space. Then, they perform successive single-
agent cost-optimal planning steps to obtain better plans.We perform a similar iterative single-
agent process, but mapr differs in that we do not need an initial plan, and it does not work
in the joint-actions space; our plans are totally ordered, but we can later efficiently generate
a parallel plan. Also, at each iteration, we perform suboptimal planning.

Another approach, μ-SAT, uses SAT planning for generating individual agents’ plans and
combining the solutions [25]. It focuses on two agents problems, while we are not restricted
to the number of agents in the problem. In order to solve problems in domains as Logistics,
they expand the Strips representation of actions with a new type of preconditions, external
preconditions. Agents do not use those preconditions when planning, and they assume some
other agent will make those preconditions true when needed. The focus of their paper is on
optimal planning (minimizing makespan), even if in their experiments they only report on
suboptimal planning. Also, in the experiments they assume each agent is able to apply all
actions, and thus achieve all goals. Finally, they do not handle privacy.

Nissim et al. implemented ideas published in previous papers on using distributed CSPs to
solve the planning task [56]. As we have discussed previously, the approach is theoretically
sound, but in practice it is inefficient compared to other approaches. A later work compared
this system with two other optimal MAP systems corroborating its inefficiency in practice
[27]. Some of its authors have recently developed a distributed algorithm [54], that can be
configured to perform optimal planning,mad- a∗, optimal planning for self-interested agents
[55], or satisficing planning, mafs.

map- pop [68] is based on agents that share their public information when performing
partial-order planning. They also used an iterative refinement process that is able to work
on both loosely coupled and tightly coupled domains. The same authors have developed a
variation that is complete, fmap [66].

A difference with some of these previous approaches is that they generate either partial,
parallel or joint-actions space plans. In the case of mapr and cmap, plans are totally ordered
(sequential) plans. This is not a real drawback of our approach. Computing the optimal
partially ordered plan (and then the corresponding parallel plan) from a totally ordered plan
is NP-hard in general [19]. However, as we have discussed, there are efficient suboptimal
algorithms that can be used [73]. Another difference is that some of the other approaches
are able to share incomplete plans or states, while mapr in its current version is only able to
share complete plans. Thus, mapr cannot solve problems given some agentifications of the
domains, as Logistics or Elevators, where agents cannot achieve goals just by themselves.
As we have shown in the section on experiments, other approaches (such as those based on
ma- strips, mafs, madla) find similar problems with other agentifications. As a solution,
we have developed cmap that can solve problems in those domains, given that it performs
centralized planning. Finally, a key difference with all these previous approaches is that we
use state-of-the-art single-agent planners. Therefore, we automatically benefit from advances
in deterministic strips planning. On the other hand, they cannot automatically incorporate
new developments in planning into their MAP approaches.

The main difference between our method for protecting privacy and other distributed
approaches [54,66] is that we are sharing an obfuscated action model as well as the private
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initial state and goals. As we have discussed before, by using obfuscation by random substi-
tution, removal of static predicates and macro-operators, we are providing the same amount
of information as the one that mafs or fmap agents have.

In this paper, we have compared several task allocation strategies. Other decision-theoretic
approaches use more complex strategies, as creating agents coalitions, or maximizing the
utility [60,77]. In our work, we do not deal with coalitions, nor with utility maximization.
We do use contract-net [62], selecting the lowest cost bid at each iteration, as a sealed-bid
auction. In the context of decision theory, is very common to use a Vickrey [74] auction
[55,71]. The first work considers a dynamic planning-auction mechanism, where each agent
plans one goal at a time, and auctions those goals for which it cannot find a plan for. In
relation to our approach, they perform dynamic goal allocation, and use plan repair when
they receive the next goal, but the plan repair only deals with each agent’s plan. Thus, the
agents do not consider potential positive or negative interactions with the plans of the rest.

Another key topic we covered in this paper is privacy-preserving planning. Alternative
approaches deal with the problem of MAP and the fact that agents do not know the other
agents’ knowledge as planning under partial observability [2,76]. The second paper poses the
planning task using epistemic logic, instead of using belief states to represent the uncertainty
on other agents’ knowledge. Recently, Kominis and Geffner [43] have shown that generating
Bolander and Andersen’s multi-agent plans can be compiled into classical planning tasks.
They allow their agents to sense the beliefs of other agents, so again it is a different planning
task than the one with are dealing with here.

A related question is how much privacy we are loosing by sharing obfuscated augmented
plans among agents. One alternative would be to use the approach proposed by van der Krogt
[70], where he proposes to measure the loss of privacy using Shannon information theory.
They propose to take into account the number of plans that could potentially be generated,
and the number of plans that each agent observed. Others also use information theory to
measure privacy loss in the context of CSP [76]. They also deal with the issue of privacy-
preserving problem solving as problem solving under partial observability, given that private
information of other agents can be dealt with as such. Another alternative to measure privacy
loss is to consider it in the context of game theory [72].

One of the reasons mapr is efficient comes from the decomposition of the problem into
agent-based subproblems (it is not the case of cmap). There have been other decomposition
techniques in the literature that have been applied to planning both in the deterministic [11]
and non-deterministic settings [38].We work on the deterministic setting and the decomposi-
tion is induced by the definition of agents, and their private knowledge, instead of using other
structural reasons to decompose variables and/or actions. Early approaches provided a man-
ual agents’ decomposition [45]. Recently, Crosby et al. proposed how to automatically detect
agents in planning tasks and thus decompose the tasks into agent-oriented subtasks [23]. We
believe this is an important step for automatically determining agents and their properties to
decompose the planning tasks. Therefore, this work focuses on one of the aspects of MAP,
problem decomposition, but leaves out the other, preserving privacy, which is fundamental
for some applications. In most real-world applications with privacy concerns, privacy does
not emerge from the structure of the domain and problem, but what the users define as private.
Nevertheless, we have experimentally compared our approaches against their approach by
providing them an initial obfuscated domain.

In related fields, as path finding, there is also a current strong interest on multi-agent
research [59,63]. Approaches in this field also use centralized and distributed approaches,
and are also divided in optimal and suboptimal solutions. A similar approach tomapr is CA∗
[61], where a path is computed for the first agent, and then the positions that the agent has to
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visit and the times when it has to visit them are reserved in a table. Then, the algorithm plans
for the next agent, but taking into account that it cannot visit the same positions at the same
time as the ones reserved by the first agent. In the case of mapr, we allow the second agent
to change the plan for the first agent, as far as its private and public goals are still achieved.
The main differences of multi-agent path finding with our work is that they do not usually
handle privacy, and we deal with domain-independent planning.

Another interesting application of MAP is on plot generation [16]. The work is based
on Continual Multi-Agent Planning work by Brenner & Nebel [17]. They explicitly handle
sensing, communication as well as physical actions of agents, that are modeled using the
Multiagent Planning Language (MAPL). Their approach also allows to explicitly reason
about agents (self and others) beliefs.

Finally, while we focus on deterministic MAP, there has been plenty of work on solving
non-deterministic MAP tasks [14,58,65]. The advantage of these works over mapr is that
they can deal with uncertainty. But, usually, they do not scale up as well as deterministic
MAP.

8 Conclusions

This paper presents two MAP approaches for cooperative agents with private information,
mapr and cmap, as well as several methods to preserve privacy. In these two approaches,
agents share public and relevant private information, preserving agents’ privacy. Then, they
perform distributed iterative planning (mapr), and centralized planning (cmap). Instead of
performing parallel distributed searches as most work in MAP, mapr and cmap execute
sequential problem solving. The second main difference with respect to previous work is the
use of goal assignment in mapr and cmap. We have shown how different goal assignment
strategies lead to very different performance of both planners in terms of time to solve or
quality. These strategies encode different ways of performing division of labor among agents
according to varying criteria. This is a key difference with respect to other MAP approaches
that make a stronger focus on agents collaborating to achieve each goal.

In relation to the input description of MAP tasks, we hope that the MAP community
defines in the future a standard for MAP tasks. In the meantime, other works have advocated
for specific extended languages, thus changing the PDDLdescriptions [15,44,68], or defining
privacy as emerging from action descriptions [12]. Instead, we have preferred to receive the
inputs in standard PDDL and let the user define privacy with three simple lists: agents types,
private predicates and private types. From a knowledge engineering perspective, we believe
these three lists are quite easy to define (it took us very little time for each analyzed domain).

mapr calls each agent with the plans, goals and state literals from previous agents in order
to regenerate previous solution (obfuscated) if needed, while reasoning at the same time on
how to achieve the current agent goals as well as the other agents goals (private or public).We
remove from the domain actions the parameters related to the agents type, so the search space
diminishes. Actions in previous plans are added to the domain. So, there is a decrease in the
number of instantiated actions that each agent has to deal with proportional to the actions that
include the agents as a parameter. There is an increase in the number of instantiated actions
equal to the sum of actions of the plan of the previous agent. In general, the search space of
each agent is greatly reduced since the amount of new instantiated actions is usually much
less than the amount of removed instantiated actions.
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In relation to modeling, agentification, each system makes assumptions on agentification
and solvability.MAP approaches based onma- strips (mafs,madla) cannot solve any prob-
lem when there are actions where none of its parameters is an agent. Examples are: Logistics
(trucks), Depots (trucks), Driverlog (driver). On the other hand, mapr can solve problems
in some mapr-incomplete domains by changing the agentification, such as in the Logistics
(airplanes) or Elevators (fast elevator) domains. On the other hand, cmap completeness does
not depend on the agentification.

Another key issue in MAP is preservation of privacy. We have defined three main
techniques for obfuscating agents’ knowledge (random substitution, macro-operators, and
generation of zero-arity predicates). And we have implemented them, with some variations,
such as removal of static predicates or different ways to learn macro-operators. We have
shown that the level of privacy preservation in mapr is similar to the one provided by other
approaches (fmap or mafs). Instead, cmap needs either a trusted central agent.

In the experiments, we have compared seven different strategies for assigning public goals
to agents, as well as four different schemas for ordering agents. If we consider the IPC prob-
lems,we have seen that there are some approaches that have very similar performance in terms
of efficiency (number of solved problems as well as time to solve), such as mapr and cmap
with the rest-achievable strategy for assigning goals. Results also show that ordering
agents has little impact on planning efficiency, being the min-goals scheme slightly bet-
ter than the rest. Experimental results also show that mapr and cmap greatly improve the
efficiency on planning time over state-of-the-art MAP approaches, while providing a similar
level of privacy preservation (mapr).

We have also used two different replanning alternatives for mapr: a deterministic
greedy best-first approach (lama- first) and a stochastic local search replanning algorithm
(lpg- adapt). It is remarkable that many mapr and cmap configurations obtain a higher
performance than using a centralized approach that does not preserve privacy (lama- first).
In part, this is due to the fact that a secondary effect of distributing public goals among agents
is that we reduce the number of agents that are used for planning (those for which mapr or
cmap assign goals), effectively reducing the search space. Also, in the case of mapr, each
subproblem only considers the search space of the corresponding agent plus a much smaller
search space of previous agents; the one that corresponds to the actions that were needed to
achieve the previous agents goals. On the other hand, lpg- adapt configurations perform
worse than the ones that use lama- first. This does not imply that planning from scratch is
better than replanning for this setting. In fact, other papers have shown the opposite. Further
work remains to be done to show the benefits of using replanning with respect to planning
from scratch in this setting.

Considering quality, the IPC score has a strong bias toward coverage. Therefore, the best
configurations for quality are usually the ones that solve more problems; i.e., the ones using
rest-achievable as the goal assignment strategy.Whilemapr generates better solutions
in terms of plan length, cmap improves the makespan. In this paper, we are only computing
the first solution. In case we would be interested on obtaining good quality solutions, we
would have to run further searches to improve the solutions, as in lama- 2011.

As we have discussed, mapr does not work in domains and agentifications where two
agents have to collaborate to achieve a single goal. In those domains, there are at least two
alternatives: changing the agentification aswe have shown in the paper; or to use cmap (all).
We are currently working on other ways to handle that problem. A possibility consists on
computing goal regression from each goal and assigning each agent a set of subgoals that it
should address apart from the initial goals of the problem.
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In the future, we would like to provide a more in-depth analysis of the main theoretical
properties related to privacy preservation. It is still a open issue in the community. In some
of the papers on MAP, there are some hints on how privacy can be preserved [10], but there
is no formal framework yet that provides theoretical properties or methods to measure it.
New developments in cryptography as the approach proposed by Gentry [35] describe fully
homomorphic encryption schemes that allow an agent to manipulate data of another agent
without actually being able to see the data itself. In our case, this scheme would allow each
agent φi to pass other agents an encrypted function (or set of functions) that manipulate its
private states and actions, without the rest of agents knowing (or being able to infer) the
private data of agent φi .

Another line of research is on self-interested agents, by using the expected utility for each
agent and goal as in our preliminary work [75]. Also, we would like to provide solutions to
domains with joint (interacting) actions where an action uses two or more agents, such as
two robots moving a table, as has been recently studied by Brafman & Zoran [9]. Planning
for multiple agents shares some aspects with previous work that analyze symmetries among
resources [49]. We would like to study the connection with that work and perhaps benefit
from an analysis of the domain to detect unnecessary agents. Automatically inferring the
agent-related information from the domains could also benefit modeling, as proposed by
Crosby et al. [23]. Given that a planner (lama- first) is better than a replanning system
(lpg- adapt) for the reuse phase of mapr, we pretend to work on better replanning systems.
Finally, we would like to define new domains that focus more specifically on MAP tasks.
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A Complement to experiments and results

A.1 Agentification of domains

Table 12 shows the inputs we have used to define the agents and the privacy level of each
domain. The column AT represents the agents domain types, the column PT the private
types and the column PP the private predicates. Some domains require small changes in the
PDDL predicates to distinguish the private predicates from the public ones. For example, in
the Driverlog domain, the predicate (at ?obj - locatable ?loc - location) is split
into three predicates at-truck, at-driver and at, to represent the location of the trucks, drivers
or packages, respectively. The table displays the transformed domains in italic font. The table
also includes an alternative agentification of some domains. As planner fmap uses it, we add
the suffix -f to distinguish it from our agentification.
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Table 12 Agents types (AT ), private types (PT ) and private predicates (PP) used to define the agents and
the privacy level of the IPC domains used in these experiments

Domain AT PT PP

Rover Rover Camera At can_traverse equipped_for_soil_analysis

Store Equipped_for_rock_analysis equipped_for_imaging

Empty have_rock_analysis have_soil_analysis full

Calibrated supports available have_image

Store_of on_board calibration_target

Rover-f Rover Camera At can_traverse equipped_for_soil_analysis

Store Equipped_for_rock_analysis equipped_for_imaging

Empty have_rock_analysis have_soil_analysis full

Calibrated supports available have_image

Store_of on_board calibration_target

Satellite Satellite Instrument Supports calibration_target on_board

Pointing power_avail calibrated power_on

Satellite-f Satellite Instrument Supports calibration_target on_board

Power_avail calibrated power_on

Driverlog Driver At-driver driving

Driverlog-f dRiver

Transport Vehicle At-truck in capacity

Transport-f Vehicle At-truck capacity

Zenotravel Aircraft At-airplane fuel-level in

Zenotravel-f Aircraft Fuel-level

Depots Truck In at-truck

Depots-f Truck depot

distributor

Logistics Airplane Inside-airplane at-airplane

Logistics-f Truck airplane At at-airplane

Elevators Fast-elevator boarded-fast lift-at-fast reachable-floor-fast

Passengers-fast can-hold-fast

Elevators-f slow-elevator Lift-at reachable-floor passengers can-hold

Fast-elevator

Port hoist Ship Lifting assigned available on-ship at-ship

Depots-robots Robot At-robot carries free

In italics the domains where some predicates were changed
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Table 13 Time-score metric using mapr and the different goal assignment strategies and ordering schemes.
Each total is the sum of the scores of the 10 domains and the 20 problems per domain

Goal Agents ordering

assignment min-goals random name max-goals

aa 107.5 108.3 108.4 106.9

ra 116.5 116.0 116.6 114.6

bc 115.5 111.2 109.2 107.0

cn 111.4 109.9 108.4 108.4

lb 110.9 110.6 107.6 108.2

Total 561.8 556.0 550.2 545.1

A.2 The Port domain

The Port domain is similar to the container stacking problem [57], which is inspired by a
real-world port and it is similar to the DWR domain described in the book [37].21 In this
domain, there is an area in the dock of a port with towers of containers with height of at most
k containers (we used k = 3 in the experiments) placed in a grid of n×m. In comparison with
the Blocksworld domain there are fixed positions in the table, several arms and tables, and
a maximum height of towers. The port has a set of hoists, one for each ship that is waiting
to be loaded with containers. Initially, all containers are in the dock, and the goals are to
load all of them in the ships; the goals establish to which ship each container should go and
on top of which other container. In this domain, we have defined hoists to be the agents,
and all the goals to be private. Thus, each hoist has a set of containers that it has to load
in its corresponding ship, creating towers also specified in the goals. Goals derive from the
on-ship predicate.

Also, this domain is quite tightly coupled, given that there is a high interaction among
private goals of agents. In order for a hoist to load a container into a ship, it might have to
move around the containers in the dock (the container might be the bottom container in a
tower) and those containers are the ones that have to be loaded in other ships. So, there are
both positive and negative interactions.

A.3 Ordering the agents

Table 13 shows the time-scoremetric usingmaprwith the different goal assignment strategies
and ordering schemes. It displays the total time-score considering the ten domains (Transport,
Rover, Zenotravel, Driverlog, Satellite, Depots, Logistics, Elevators, Port and Depots-robots)
and 20 problems per domain.

A.4 Selected agents

In order to see the effect on the number of selected agents by each goal assignment technique,
Table 14 shows the average and standard deviation (over the 20 problems) of the number of
agents that each goal assignment strategy requires for solving a problem. The first column
shows the average and the standard deviation of the number of goals of the 20 problems,

21 The domain definition as well as the used problem files can be found at http://www.plg.inf.uc3m.es/
~dborrajo/software/mapr-cmap-domains.tgz.
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Table 14 Average and standard deviation of the number of goals of the 20 test problems and of the number
of agents used by each goal assignment strategy to solve the problems

Domain Goals All aa cn lb

Rovers 10.0 (± 4.5) 3.8 (± 1.8) 3.8 (± 1.8) 3.8 (± 1.8) 3.6 (± 1.8)

Satellite 16.4 (± 9.7) 4.8 (± 2.7) 4.8 (± 2.7) 4.8 (± 2.7) 4.6 (± 2.5)

Zenotravel 12.0 (± 7.6) 3.3 (± 1.4) 3.3 (± 1.4) 3.3 (± 1.4) 3.3 (± 1.4)

Depots 10.2 (± 3.9) 2.9 (± 1.4) 2.9 (± 1.4) 2.9 (± 1.4) 2.8 (± 1.2)

Driverlog 14.0 (± 8.7) 3.3 (± 1.6) 3.3 (± 1.6) 3.3 (± 1.6) 2.5 (± 1.3)

Transport 20.3 (± 2.9) 4.0 (± 0.0) 4.0 (± 0.0) 4.0 (± 0.0) 4.0 (± 0.0)

Logistics 14.5 (± 5.9) 1.6 (± 0.5) 1.6 (± 0.5) 1.6 (± 0.5) 1.6 (± 0.5)

Elevators 37.6 (± 12.7) 3.0 (± 1.0) 3.0 (± 1.0) 3.0 (± 1.0) 3.0 (± 1.0)

Depots-robots 16.0 (± 9.2) 3.8 (± 1.5) 3.8 (± 1.5) 3.8 (± 1.5) 3.8 (± 1.5)

Port 21.5 (± 11.7) 10.4 (± 6.7) 7.6 (± 4.6) 7.6 (± 4.6) 7.6 (± 4.6)

Domain bc sub ra

Rovers 2.7 (± 1.2) 2.8 (± 1.3) 2.2 (± 0.9)

Satellite 3.3 (± 1.9) 3.6 (± 1.9) 2.7 (± 1.5)

Zenotravel 2.5 (± 1.4) 2.5 (± 1.3) 1.6 (± 0.9)

Depots 2.0 (± 1.0) 2.2 (± 1.2) 1.0 (± 0.0)

Driverlog 3.3 (± 1.6) 2.8 (± 1.4) 2.8 (± 1.4)

Transport 3.3 (± 0.8) 2.8 (± 1.3) 1.0 (± 0.0)

Logistics 1.5 (± 0.5) 1.5 (± 0.5) 1.0 (± 0.0)

Elevators 2.4 (± 1.0) 2.1 (± 1.1) 1.0 (± 0.0)

Depots-robots 3.1 (± 1.1) 3.6 (± 1.4) 1.0 (± 0.0)

Port 7.6 (± 4.6) 7.6 (± 4.6) 7.6 (± 4.6)

and the remaining columns show both values for the number of agents for each strategy.
As a baseline, strategy all requires all the agents in the problem. We can confirm that
rest-achievable is the strategy that uses less number of agents in average. The standard
deviations of therest-achievable strategydecreasewith respect to the baseline strategy,
so the agents’ reduction occurs in most of the problems. In these domains, most of the agents
can achieve by themselves all or almost all the goals. Therefore, in domains as Transport or
Depots, the rest-achievable strategy can even select only one agent for all problems.
In Rovers and Satellite, it selects more agents given that both rovers and satellites have
different instruments and might be in unconnected waypoints (rovers). The best-cost
strategy is able to also reduce the number of selected agents, with the added advantage that
selects the agents that can supposedly achieve the goals with least cost. load-balance
and contract-net tend to select all the agents to achieve the desired load balance.

A.5 Coverage results

Table 15 shows the number of solved problems of the different configurations for the problems
used to analyze the impact of the goal assignment strategies. And Table 16 shows the number
of solved problems of the different configurations for the hard problems.
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Table 15 Number of problems solved usingmapr, cmap, and lama- firstwith the different goal assignment
strategies and the min-goals ordering scheme

Planner Rover Satel Zenot Drive Logis Eleva Depots Port Trans d-rob Total

mapr-bc 20 20 20 20 20 20 19 17 20 18 194

mapr-ra 20 20 20 20 20 20 20 16 20 11 187

lama-mk 20 20 20 20 20 20 18 17 19 13 187

cmap-ra 20 20 20 20 20 20 20 17 20 10 187

mapr-sub 20 20 20 20 20 20 18 16 19 14 187

mapr-lb 20 20 20 20 20 20 16 17 17 15 185

mapr-cn 20 20 20 20 20 19 15 17 17 12 180

cmap-aa 20 20 20 20 20 20 17 17 13 13 180

cmap-sub 20 20 20 20 20 20 16 17 17 10 180

cmap-all 20 20 20 20 20 20 17 17 13 12 179

cmap-lb 20 20 20 20 20 20 17 17 13 12 179

mapr-aa 20 20 20 20 20 20 18 17 14 9 178

cmap-bc 20 20 20 20 20 20 17 17 14 10 178

cmap-cn 20 20 20 20 20 19 17 17 13 12 178

Total 280 280 280 280 280 278 245 236 229 171

Table 16 Number of hard problems solved using mapr, cmap, and lama- first with the different goal
assignment strategies and the min-goals ordering scheme

Planner Zenotravel Rover Satellite Driverlog Logistics Depots Elevators Total

mapr-ra 20 20 20 20 19 20 2 121

cmap-sub 20 20 18 18 20 7 17 120

cmap-ra 20 20 15 17 18 20 3 113

cmap-all 20 20 18 17 16 2 19 112

lama-mk 20 20 17 18 16 2 17 110

cmap-bc 20 20 13 18 16 14 5 106

mapr-bc 20 20 20 20 11 6 6 103

mapr-sub 20 20 16 12 8 8 13 97

cmap-aa 20 20 17 16 13 3 6 95

cmap-lb 20 20 14 17 14 2 7 94

mapr-lb 20 17 17 11 0 4 4 73

mapr-aa 20 9 17 5 0 6 0 57

cmap-cn 4 8 18 8 0 4 0 42

mapr-cn 4 4 15 6 0 4 0 33

Total 248 238 235 203 151 102 99

A.6 Scalability study

Table 17 shows a summary of the characteristics of the tested problems. Particularly, the
range (minimum and maximum number) of agents and goals present among the problems of
each domain.
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Table 17 Minimum–maximum number of agents and goals of the 20 test problems

Transport Driverlog Zenotravel Rover Satellite Depots Logistics Elevators

agents 4–4 32–68 29–65 100–136 11–30 6–24 42–60 5–9

goals 16–22 49–85 51–87 120–156 41–59 13–14 62–80 40–40
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