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Copula Stochastic Volatility in oil returns:

Approximate Bayesian Computation with
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Abstract

Modeling the volatility of energy commodity returns has become a topic of in-

creased interest in recent years, because of the important role it plays in today’s

economy. In this paper we propose a novel copula-based stochastic volatility model

for energy commodity returns that allows for asymmetric volatility persistence. We

employ Approximate Bayesian Computation (ABC), a powerful tool to make infer-

ences and predictions for such highly-nonlinear model. We carry out two simulation

studies to illustrate that ABC is an appropriate alternative to standard MCMC-based

methods when the state transition process is challenging to implement. Finally, we

model the volatility of WTI and Brent oil futures’ returns with the proposed copula-

based stochastic volatility model and show that such model outperforms symmetric

alternatives in terms of in- and out-of-sample volatility prediction accuracy.
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volatility.
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1 Introduction

Crude oil is among the most actively traded commodities, and it is a major input in

industrial production and transportation, among other industries. Therefore fluctua-

tions of oil prices, as well as other energy commodity prices, deserve a special attention

from the market participants and policymakers, since they extensively affect the devel-

opment of the economy (Papapetrou, 2001). For that, many authors have used Gen-

eralized Autoregressive Conditional Heteroschedasticity (GARCH) models proposed

by Engle (1982) and Bollerslev (1986) to model the volatility of commodity returns.

For instance, Cheng and Hung (2011) used the conventional GARCH model coupled

with flexible distributions for modeling petroleum and metal log returns. Also, Hou

and Suardi (2012) used a non-parametric GARCH to model and forecast the volatility

of crude oil prices and show that the out-of-sample volatility forecast of the proposed

non-parametric model results into superior performance as compared to standard para-

metric GARCH models. Additionally, Efimova and Serletis (2014) used various uni-

variate and multivariate GARCH models for modeling oil, natural gas, and electricity

price volatilities in the United States. More recently, Billio et al. (2018) have proposed a

new Bayesian multi-chain Markov switching GARCH model for hedging crude oil risk.

GARCH-type models for crude oil volatility have been also considered by Sadorsky

(2006), Wei et al. (2010) and Klein and Walther (2016), among many others.

Alternatively, other authors have used Stochastic Volatility (SV) models, proposed

by Taylor (1982), for modeling energy commodity returns since these models provide

more flexibility than GARCH-type specifications, see Kim et al. (1998), Yu (2002) and

Broto and Ruiz (2004). Indeed, Chan and Grant (2016) compared numerous GARCH

and SV models using nine series of commodity spot prices (oil, petroleum products and

natural gas) using Bayes factors and found that the SV models generally compare fa-

vorably to their GARCH counterparts. Also, Baum and Zerilli (2016) considered several

SV models to analyze the volatility of crude oil futures returns and found that SV mod-

els with jumps are more effective than SV models without jumps. Recently, Chen et al.

(2019) used multiple SV models for modeling spot crude oil returns and showed that

the best out-of-sample prediction results for measuring risk, namely Value-at-Risk, are

produced by the traditional SV models with Normally distributed errors. SV-type mod-
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els for crude oil volatility have also been considered by Sadorsky (2005) and Trolle and

Schwartz (2009), among many others.

In early 2000’s, high frequency trading data became available to practitioners and

researchers alike, marking a shift in paradigm in volatility modeling. Andersen and

Bollerslev (1998) introduced the realized volatility to accurately measure volatility, see

Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004) for general overviews.

Realized volatility is an actually observable volatility measure (unlike SV) and does not

rely on any model assumptions (unlike GARCH), albeit in many cases is highly contam-

inated by market microstructure noise and is not always readily available. For modeling

and forecasting purposes, Corsi (2009) proposed the HAR model that assumes that the

log realized volatility follows an AR(22) process with Normal errors. Although other

alternatives have been proposed, the HAR model remains very popular due to its sim-

plicity and ability to forecast multiple steps ahead. RV measures can also be used for

estimating conventional volatility models, such as GARCH or SV. For example, Baum

and Zerilli (2016) used a conditional moment estimator for SV-type models based on

matching the sample moments of RV with population moments of integrated volatility

for crude oil futures price data.

The key assumption in these three conventional volatility models - GARCH, SV and

RV - is the linear dependence structure. Call rt = htet � FL the de-meaned log returns

with some distribution F that depends on parameters L. Here h2
t is the volatility of the

log returns, which can be modeled as one of the following:

GARCH: h2
t = a0 + a1r2

t�1 + a2h2
t�1, (1)

SV: log h2
t = b0 + b1(log h2

t�1 � b0) + b2ht, ht � N(0, 1), (2)

HAR: log h2
t = g0 + g1 log h2

t�1 + g2 log h
2
t�1,5 + g3 log h

2
t�1,22 + g4xt, xt � N(0, 1),

(3)

where h
2
t�1,i is the average volatility over the last i days. However, the assumption of

linear temporal dependence in the above models is not in line with the actually ob-

served behavior of the volatilities, since in practice many financial time series exhibit

asymmetry not only in the mean but also often in the variance, see Chen et al. (2009).

As an illustration of non-linear dependence in the variances, consider 1500 observations
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Figure 1: Kernel density estimates between probability integral transforms of squared
returns and lagged squared returns.
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of de-meaned log returns for two oil futures - WTI and Brent - that are analysed in real

data application section. Since for the return data the volatility is not observed, the

most commonly used proxy for volatilities is the squared returns. Figure 1 plots the

kernel density estimators of dependence between ut and ut�1, where ut is the empirical

probability integral transform of squared returns. In other words, the marginals of the

squared returns are modeled non-parametrically, and then we fit a kernel density esti-

mator on the uniformly distributed data and its first lag. As seen from the plots, there

is positive dependence between the volatility proxies. This is in line with the financial

econometrics literature, where the estimated volatility persistence in models (1)-(3) is al-

ways positive. However, we can also observe increased dependence in the upper tail, a

feature that cannot be captured using conventional linear models. This stylized feature

is characteristic not only for oil futures returns, but for most of the publicly traded assets

and index returns.

In order to incorporate such asymmetry, the benchmark linear model (SV, GARCH

or RV) can be extended by allowing for structural breaks, regime-switches or jumps,

but then the model quickly loses its parsimonious representation. For example, Fong

and See (2002) found strong evidence of regime shifts in GARCH volatility of the WTI

daily oil futures prices. Vo (2009) used regime switching SV model for crude oil prices

and found clear evidence of regime switching in the oil market; similar findings were
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also present in Chen et al. (2019) for crude oil spot price data. Larsson and Nossman

(2011) and Brooks and Prokopczuk (2013) both found the jump-in-volatility parame-

ter to be statistically significant for the crude oil returns in the SV with jumps model.

Sokolinskiy and van Dijk (2011) proposed to use copula based time series models to cap-

ture the non-linear dependence structure observed in RV data. The authors found that

their proposed model outperforms the HAR model in 1-day-ahead volatility forecasts.

Moreover, the Gumbel copula model achieved the best forecast performance, meaning

that the volatility persistence is asymmetric. This article is motivated by the model in

Sokolinskiy and van Dijk (2011), however, we allow for even more flexibility by con-

sidering the SV model, where the volatilities are actually not observed, giving rise to a

copula stochastic volatility (CSV) model. As mentioned before, the RV measure has a

very attractive property of being an actually observed volatility measure although it is

not always readily available.

The use of copulas in stochastic volatility setting is only recently gaining popularity.

Loaiza-Maya et al. (2018) considered mixture copulas to capture serial dependence in

heteroskedastic time series and derived new measures of volatility persistence. These

authors applied their proposed model to daily foreign exchange returns and compared

it to the conventional GARCH specifications. Smith and Maneesoonthorn (2018) pro-

posed a new class of the so called inversion copulas that are constructed by inverting

parametric nonlinear state space models, such as the stochastic volatility model for ex-

ample. Their approach allows to combine the same serial dependence as a stochastic

volatility model, but with arbitrary margins that can be asymmetric. The authors il-

lustrate their methodology to model and forecast the U.S. quarterly inflation. Kreuzer

and Czado (2018) considered modeling multivariate time series by using a factor copula

with stochastic volatility models for the univariate marginal distributions. Additionally,

Ibragimov and Lentzas (2017) investigated the persistence properties of copula-based

time series. They showed via simulations that stationary Markov processes generated

by Clayton copulas may exhibit a spurious long memory-like behavior. This finding ad-

vocates the use of copulas for volatility modeling, since the realized volatility measures

might exhibit long-memory like behavior. Also, the authors applied the survival Clay-

ton (rotated Clayton) copula to a GARCH-type model using financial time series data

and showed that it performs better than Clayton copula and the simple GARCH model,
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indicating an important finding: the volatility persistence has a stronger upper-tail de-

pendence.

As for estimation, we employ a novel Bayesian estimation technique called Approx-

imate Bayesian Computation (ABC), see Marin et al. (2012) for a general introduction.

ABC is especially well suited for models with intractable likelihoods or when the state

transition process is challenging to implement within an exact algorithm, and when the

model is easy to simulate from. As noted by some authors, ABC can be seen as the

Bayesian version of the indirect inference (Gourieroux et al., 1993). Since the model pro-

posed in this paper is highly non-linear and involves latent states, ABC seems like a

good choice. This paper makes use of a special ABC variant, namely, ABC based on the

scores of the auxiliary model, a methodology proposed in Martin et al. (2019). This ap-

proach is computationally less demanding than other ABC alternatives, and, since the

ABC algorithm does not involve loops, we are able to parallelise the algorithm reducing

the computational cost dramatically as compared to the possible MCMC-based alterna-

tives. Important to mention, that ABC is not the only possible estimation strategy and

particle MCMC (Andrieu et al., 2010) or SMC2 (Chopin et al., 2013) are perfectly valid

alternatives.

The rest of the paper is organized as follows. Section 2 introduces the CSV model and

the estimation algorithm. Section 3 contains two simulation examples to illustrate the

ABC’s ability to recover the true model parameters for a conventional SV model and for

a newly proposed CSV model. Section 4 presents the modeling of the volatility of WTI

and Brent oil futures’ returns with the proposed copula-based stochastic volatility model

and evaluates model performance in volatility prediction. Finally, Section 5 concludes.

2 Model and estimation

In this section we shortly introduce copula-based time-series models and their main

uses. We then propose a more general version of the conventional SV model that is able

to capture non-linear volatility dependence via such copula time series models. Finally,

we describe in detail the use of ABC in our specific setting.
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2.1 Copula based time series

The construction of flexible multivariate distributions using copulas has started with

the seminal work of Sklar (1959). For a formal introduction and details on copulas the

reader is referred to the books of Nelsen (2006) and Joe (2015), and for applications of

copulas in the context of financial time series, see Patton (2009), among others.

Nelsen (2006) defines copulas in the following manner. Consider a collection of ran-

dom variables Y1, . . . , Yd with corresponding distribution functions Fi(yi) = P[Yi � yi]

for i = 1 . . . , d and a joint distribution function H(y1, . . . , yd) = P[Y1 � y1, . . . , Yd � yd].

Then, according to a theorem by Sklar (1959), there exists a copula C such that

H(y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)).

In other words, it is possible to model the univariate marginals and the dependence

structure separately. Copulas are defined in the unit hypercube [0, 1]d, where d is the

dimension of the data, and all univariate marginals are uniformly distributed.

The majority of the copula-related literature focuses on modeling contemporane-

ous dependence between multiple time series. For example, Liu et al. (2017) use time-

varying copula models to investigate the dependence between oil returns and crude oil

volatility index, meanwhile Ji et al. (2019) investigate the dynamic dependence between

crude oil and the exchange rates of the United States and China also using time-varying

copula models. Ho et al. (2019), on the other hand, use non-parametric copulas to ana-

lyze tail dependence of crude oil price returns between four major markets.

Nonetheless, copulas also permit to model the temporal dependence of a univariate

time series, as noted in Chen and Fan (2006). The use of copulas in modeling tem-

poral dependence of univariate time series relates to Markov processes and have been

described in Darsow et al. (1992), and Joe (2015), for example. Depending on the cop-

ula family, it is possible to model non-linear temporal dependencies, as opposed to the

standard linear regression type models. Chen and Fan (2006), Ibragimov (2009), Ibragi-

mov and Lentzas (2017) explore the relationship between Markov processes and copula

functions for univariate time series.

As described in Chen and Fan (2006), let fYtg be a stationary first order Markov

process whereas its probabilistic behavior is completely defined by the joint distribution
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function H(�) between Yt�1 and Yt. On the other hand, as seen above, using Sklar’s theo-

rem, this joint can be expressed using a copula representation H(yt, yt�1) = Cy(F(yt), F(yt�1)),

where F(�) is a marginal cumulative distribution function (CDF) of Yt and y is a set of

copula parameters. This formulation allows to model a stationary Markov process us-

ing a copula, where the transition probability is constant over time. Let h(�) be the joint

density of Yt and Yt�1, and f (�) the corresponding marginal probability density func-

tion (PDF) of Yt. Then h(�) can be expressed as a product of the marginals and a copula

density, which defines the dependence structure:

h(yt, yt�1) = cy(F(yt), F(yt�1)) � f (yt) � f (yt�1),

and the conditional distribution of yt given yt�1 is

f (ytjyt�1) = h(yt, yt�1)/ f (yt�1) = cy(F(yt), F(yt�1)) � f (yt).

The parameter y completely determines the dependence structure which is constant

over time. Then the collection of fYtg follows a stationary first order Markov process

with constant transition probabilities.

As mentioned before, Sokolinskiy and van Dijk (2011) employ the described copula

time series approach for modeling the RV, where RV is an observable volatility measure.

In the following section we introduce a copula stochastic volatility model, in which,

differently than in Sokolinskiy and van Dijk (2011), the volatilities are unobserved.

2.2 Copula Stochastic Volatility model

Define rt as the de-meaned log returns (in %) for day t:

rt = 100�
(

log
Pt

Pt�1
� E

[
log

Pt

Pt�1

])
, t = 1, . . . , T,

where Pt�1 and Pt are the prices at the beginning and at the end of the period, respec-

tively. Then, the complete model for the log returns has the following form, where the
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dynamics of the standardized log volatility xt can be modeled via a copula specification:

rt = htet, et � FL, (4)

log h2
t = m + txt, xt � N(0, 1)

f (xtjxt�1) = cy(F(xt), F(xt�1)) � f(xt).

Here only rt is observed, m and t are the parameters for the Normal marginals for the

log volatility, meanwhile y are the copula-related parameters. Call W = (m, t, y) the

complete set of model parameters. Also, define Kendalls’ tau, also known as rank cor-

relation coefficient, tk 2 (0, 1), such that there is a one-to-one copula-specific transfor-

mation between tk and y (at least for the copulas we consider in this work). Here k

stands for ’Kendall’ and we use the subscript in order to differentiate from the standard

deviation parameter t. As shown in Chen and Fan (2006), if both marginals are Normal

and the copula is bivariate Gaussian, the above copula time series model reduces to the

well-known AR(1) process, i.e., the standard SV model. The model in (4) is a non-linear

state-space model.

Throughout the paper, we have considered that et is Normally distributed, i.e. FL �
N(0, 1). At first glance, the assumption of Normality can be seen as being rather restric-

tive. Nonetheless, there is evidence in the literature that modeling volatility as a latent,

instead of a deterministic, process can capture excess kurtosis in the distribution of the

returns, even if et is Normally distributed. As noted in Brooks and Prokopczuk (2013),

higher values of the variance of the log-volatility (called t in our model) can capture

higher levels of kurtosis in the returns. Chan and Grant (2016) fitted GARCH and SV

models with t-distributed errors on the WTI data. The authors found that degrees of

freedom parameter increased significantly in the SV model (from 11 in GARCH-t model

to 56 in SV-t model), indicating that the tails of the t-distributed returns are thin and sim-

ilar to those of the Gaussian distribution. Their explanation is that SV-type models are

inherently more flexible, making the necessity of the t-distributed errors less apparent;

in other words, SV-type models are less sensitive to misspecification. Finally, Chen et al.

(2019) used daily spot returns of the crude oil markets (Brent and WTI) and found that

conventional SV models with Normally distributed errors perform the best according

to several out-of-sample metrics, even compared to the more flexible t and asymmetric
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Laplace distributed errors.

Therefore, we argue that given the main objective of the paper - volatility forecast-

ing1, and the ability of the SV-type models to capture at least some of the kurtosis, the

distributional assumption of the returns becomes secondary. However, if the ultimate

goal were to model and forecast the entire distribution of the returns rather than just the

volatility, a more flexible specification should definitely be considered.

2.3 Approximate Bayesian Computation

Note that in the model in (4) the latent log volatilities xt are not observed, thus the model

has a complicated likelihood function involving multidimensional integrals. Even though

in principle the likelihood-based inference is feasible, it is, however, complicated. Thus

we choose to employ ABC as one of possible estimation techniques, especially since we

are able to simulate from the model with relative ease. We make use of the procedure de-

scribed in Martin et al. (2019), which is based on the score of an auxiliary model. These

authors illustrate the proposed method by using three stochastic volatility models that

are challenging to estimate via standard MCMC or sequential Monte Carlo (SMC) meth-

ods. The method selects a simple auxiliary model that approximates the features of the

true data generating process (DGP). Then the sufficient statistic, a key ingredient in the

ABC methods, is simply the score of the auxiliary model. The auxiliary likelihood-based

ABC, as described in Martin et al. (2019), is as follows:

1. Obtain q̂MLE(r1:T) from the simple auxiliary model using observed data r1:T =

(r1, . . . , rT).

2. Simulate M values of the parameters of interest from the priors: W(m) = (m, t, y)(m),

where m = 1, . . . , M. Here M is the size of the ABC sampler.

3. Given W(m), simulate M datasets z(m)
1:T of size T each from our proposed model.

4. Evaluate each dataset at the score of the auxiliary model given the MLE parameters

S(z(m)
1:T ; q̂MLE(r1:T)), the closer the score is to zero, the closer the simulated data are

to the true data.
1Precise volatility forecasts are essential ingredients in option pricing and risk management models.
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5. Calculate the distances of M scores:

d(m) =

√
S(z(m)

1:T ; q̂MLE(r1:T))0 � S � S(z
(m)
1:T ; q̂MLE(r1:T)),

where S is a weighting matrix, for example, the variance covariance matrix of

q̂MLE(r1:T).

6. Select those parameter values W(m) = (m, t, y)(m) that give the smallest P distances

d(m).

Step 1 is done only once at the beginning of the estimation procedure. Step 2 is

straightforward. In Step 3 the conditional density from the CSV model in (4) is of non-

standard form:

f (xtjxt�1) = cy(F(xt), F(xt�1))f(xt),

Fx(xtjxt�1) =

xt∫
�∞

f (vjxt�1)dv.

Evaluating Fx(xtjxt�1) requires numerical integration and then in order to sample from

this conditional distribution we would need to solve this integral, which is computa-

tionally costly. Luckily, there is a more efficient way of how to draw samples from the

copulas belonging to the Archimedean family by using the so called h-functions, see

Aas et al. (2009) for more details. Step 4 involves the evaluation of S(�) for a simple aux-

iliary model at the simulated data, most likely using a numerical differentiation when

S(�) is not known in closed form (Martin et al., 2019). Steps 5 and 6 are also straightfor-

ward. The auxiliary model has to approximate the features of the true DGP and can be

estimated with relative ease. Same as in Martin et al. (2019), we consider some simple

auxiliary models, such as N-GARCH, t-GARCH or GJR-GARCH with Normal errors.

Finally, in order to calculate the size of the ABC sample, M, we first need to choose

a certain tolerance level. For example, Marin et al. (2012) consider tolerance level equal

to the 0.1% quantile of the sample of the distances. On the other hand, Martin et al.

(2019) choose the tolerance level that is a function of the sample size: 50/T3/2. Same as

in Martin et al. (2019), we fix a sample of size P = 250 from the posterior to be retained.

For example, in a sample of T = 1000 observations the tolerance level turns out to be
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0.158%, and the corresponding ABC sample size is M = 158114. Overall, the choice of

the tolerance level presents a trade off: when it goes to zero, the ABC algorithm becomes

exact, however, smaller tolerance levels are associated with higher computational costs

(Marin et al., 2012).

2.4 Bootstrap filter

As noted in Martin et al. (2019), the proposed ABC technique focuses on estimation

of the static parameters only, and marginal inference on the latent states, if necessary,

can be carried out at a second stage. In particular, once we have the accepted draws

from the posterior p(m, t, yjr1:T) we can make use of existing filtering and smoothing

methods to obtain draws from the posterior distributions of the latent states xt in (4).

Since the model of interest contains extreme non-linearities, exact Kalman-type filters

are not available. Thus we rely on Sequential Monte Carlo (SMC) methods, also known

as particle filters, to produce draws that approximate the posterior latent states. For

a general review of the SMC filters with illustrations refer to Lopes and Tsay (2011),

among others.

In particular, we rely on a bootstrap filter (BF), also known as the sequential impor-

tance sampling with resampling (SISR) filter, which was introduced by Gordon et al.

(1993). BF is a propagate-resample type filter: first it propagates the latent states from

t � 1 to t by sampling from a transition density and then it resamples the propagated

particles with weights proportional to the predictive density at time t. The model in (4)

can be re-written as a generic state-space model:

rtjxt � p(rtjxt), (5)

xtjxt�1 � p(xtjxt�1). (6)

Here (5) is an observation equation, oil spot log returns in our case, and (6) is the tran-

sition equation, latent log volatilities in our case. All static parameters, governing the

dynamics of observation and state transition equations are known (estimated via ABC

previously). Then, the BF, for each particle j, such that j = 1, . . . , P, iterates through the
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following steps:

Step 1: Propagate fx(j)
t�1g

P
j=1 to fx̃(j)

t g
P
j=1 through p(xtjxt�1).

Step 2: Resample fx(j)
t g

P
j=1 from fx̃(j)

t g
P
j=1 with weights proportional to p(rtjx̃(j)

t ).

Here we set the number of particles equal to P which is equal to the sample size of the

posterior ABC output.

3 Simulation studies

This section contains two simulation studies. The objective of the first simulation study

is to investigate the performance of the ABC estimation technique for a simple SV model

and compare the posterior output with the MCMC. The goal of the second simulation

study is to investigate if the ABC estimation technique is able to recover the true pa-

rameter values using the simulated data from the new proposed model, where MCMC

estimation procedure is computationally demanding and there are no readily available

routines.

3.1 Simulation study I: SV model

Since the seminal paper of Jacquier et al. (1994), numerous MCMC schemes have been

proposed for estimating SV-type models. In this simulation study we investigate the

performance of the ABC estimation technique for a simple SV model and compare the

posterior output with the MCMC. In particular, given the exact same priors, we com-

pare the posterior densities for the parameters and filtered volatility states for both al-

ternative estimation methods, MCMC and ABC. This simulation exercise also allows

us to compare the three different ABC variants, that are based on three different aux-

iliary models (N-GARCH, t-GARCH and GJR-GARCH). For this purpose, we simulate

T = 1500 observations from a volatility-linear SV model in (2) with Normal errors.

We choose some realistic parameter values: b0 = 0.35, b1 = 0.99, b2 = 0.14. The pri-

ors are as in Kastner and Frühwirth-Schnatter (2014): b0 � N(0, 10), (b1 + 1)/2 �
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B(15, 1), b2
2 � G(0.5, 2.5). The prior for the mean is very uninformative. Kastner and

Frühwirth-Schnatter (2014) propose using such hyperparameter values for the prior on

the persistence parameter that the prior mean is E[b1] = 0.99 and prior standard devi-

ation is SD[b1] = 0.022. We opt for a less informative prior such that E[b1] = 0.87 and

SD[b1] = 0.2. Simulated data can be seen in Figure 2. As we can see, the simulated

data resembles the actually observed return series and exhibits such stylized features as

volatility clustering.

Figure 2: Simulated data from the volatility-linear Normal SV model, T = 1500.
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For ABC estimation we consider N-GARCH, as seen in (1), t-GARCH and GJR-

GARCH as auxiliary models. ABC sample size was chosen using the tolerance level

of 0.086%, retaining 250 parameter sets that yield the smallest distances. The MCMC

estimation was carried out using the stochvol package in R, see Kastner (2017), which

is based on the ancillarity-sufficiency interweaving approach of Kastner and Frühwirth-

Schnatter (2014). Figure 3 contains the estimation results. In general, all three auxiliary

models produced very similar posterior densities for model parameters, that are also

very similar to the MCMC output. Same goes for the filtered log volatilities. Note that

the ABC posterior densities for persistence parameter are wider, but, as seen in Martin

et al. (2019), MCMC and ABC dot not necessary produce the exact posteriors. Important

to note that MCMC outputs present smoothed volatility estimates, meanwhile the BF
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procedureprovidesthefilteredvolatilitystates. Nonetheless,ifnecessary,smoothing

canbeperformedforBFaswell.Thusinthesubsequentsimulationstudyandrealdata

applicationwewilluseN-GARCHasanauxiliarymodelbecausetherearenoapparent

differencesintheposterioroutputandithasthesmallestcomputationalcost.

Figure3:Simulateddatafromthevolatility-linearNormalSVmodel,T=1500,ABC
estimationresults. Topplots: MCMCisinblueandpriorsareingrey,bottomplot:
MCMCisinblueandthetruelatentlogvolatilityisingrey.Lettersn,tandgjr
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present
ABCschemesbasedonthreedifferentauxiliaryGARCHmodels.

3.2 SimulationstudyII:CSVmodel

HereweinvestigatetheperformanceoftheABCestimationapproachusingthesyn-

theticdatafromthenewlyproposedcopulastochasticvolatilitymodel.Inthiscase

MCMCestimationschemeisnotreadilyavailableandiscomputationallydemanding

givenextremenon-linearitiesinboth,transitionandobservation,equations. Weshow

thattheABCestimationmethodisabletorecoverthetrueparametervaluesandtheBF

iscapableoffilteringoutthelatentstates.Forthatpurpose,wesimulateT=1500ob-

servationsfromamodelin(4)withµ=1.5,τ=1andτκ=0.9(correspondingψ=10)

fromaGumbelcopula.Theparametervaluesarechosentobesimilartotheonespro-

ducedbyfittingrealdatatotheCSVmodel.ComparedtothesimpleSVmodel,Gum-
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bel copula based model allows for asymmetric serial dependence in the latent volatility

process, at the same time maintaining parsimonious model representation. Here we es-

timate tk rather than the copula parameter y, since tk always has the support in (�1, 1)

and there is a copula-specific one-to-one transformation between tk and y. The pri-

ors for the mean and persistence are the same as in the conventional SV model, and

the prior for the variance is t2 � G(0.5, 0.5), which approximately corresponds to the

induced prior on the unconditional variance of the SV model. Figure 4 presents the sim-

ulated dataset, meanwhile Figure 5 presents the estimation results. As we can see, the

N-GARCH-based auxiliary ABC is able of accurately estimating the parameters and BF

is able to filter out the latent volatility states.

Figure 4: Simulated data from the CSV-Gumbel model, T = 1500.
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4 Real data application

In real data study we consider daily NYMEX Light Sweet Crude Oil (WTI - West Texas

Intermediate) Electronic Energy Future Continuation and ICE Brent Crude Electronic

Energy Future Continuation obtained from Thomson Reuters Eikon Database. WTI data

is from 2013-04-03 till 2019-03-14, resulting into a sample size of 1500 daily log returns,

meanwhile Brent data is from 2013-05-27 till 2019-03-19, which makes it 1500 returns,
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Figure5:SimulateddatafromtheCSV-Gumbelmodel,T=
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1500,ABCwithN-GARCH
auxiliarymodelestimationresults.Topplots:priorsareingreyandposteriorsinblack,
bottomplot:thetruelatentlogvolatilityisingreyandfilteredmeanlogvolatilityin
black.

seeFigure6. Wefitthemodelin(4)withFλ≡N(0,1)andweconsiderfourcopula

specifications:Normal,Gumbel,JoeandrotatedClayton,seeTable1. Normalcopula

correspondstotheconventionalvariance-linearNormalSVmodelandweuseitasa

benchmark.ABCestimationschemeisthesameasdescribedbefore,includingthepri-

ors.

Estimationresults. Figures7and8drawthepriorandposteriordensitiesformodels

parameters.Overall,theposteriordensitiesandposteriormeansforallcopulasparam-

etersarerathersimilartoeachother. Weapplyabootstrapfiltertofilteroutthelatent

logvolatilities,seeFigures9and10.Thegreylinesarefilteredlatentvolatilities,mean-

whiletheblacklinesdrawtheempirical30-dayrollingwindowvariance.Asexpected,

theestimatedvolatilitiesexhibitmoreabruptchangesascomparedtotherollingwin-

dowestimate,sincethelatterpresentsasmoothedversionofvolatility.Also,Joecopula

estimatedvolatilitiesaremoresmooth.Finally,Figures11and12drawtheestimated

copulasforthelatentlogvolatilitiesforbothdatasetsandbothmodels.Becauseofthe

unobservablenatureoftheunderlyingvolatility,wecannotcomparetheseestimated
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Figure 6: WTI and Brent daily closing prices and de-meaned log returns (in %), 1500
observations each.
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copulas to some observed data. However, these estimated surfaces should resemble

the plots in Figure 1, which draw the copula surfaces for the closest proxy of actual

volatility - squared returns. Just by eye-balling the plots it is obvious that the Normal

copula does not resemble the actual observed data, because the dependence structure is

symmetric, as in standard SV models. The copulas that resemble the most the actual ob-

served features of the squared returns are Joe and rotated Clayton. In order to examine

in more detail which is the most adequate model specification, we evaluate the in- and

out-of-sample model fits.

In-sample model performance. As mentioned before, the most commonly used proxy

for the volatility of the returns are the squared returns (Ghysels et al., 2006). We also con-

sider the 15, 30 and 45-day rolling window variances as another possible proxy. There-

fore, for this model comparison exercise we filter out the volatilities for the entire dataset

(1500 observations) and calculate the Root Mean Squared Error (RMSE) with respect to
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Table1:Gaussian,Gumbel,JoeandClaytoncopulas:theirCDFsandKendall’sτs.

Gaussian: C(u,v;ψ)=Φ2(Φ
−1(u),Φ−1(v);ψ),ψ∈[0,1]

τκ=2arcsin(ψ)/π,ψ=sin(πτκ/2)

Gumbel: C(u,v;ψ)=exp − (−logu)ψ+(−logv)ψ
1/ψ

,ψ∈[1,∞)

τκ=(ψ−1)/ψ,ψ=1/(1−τκ)

Joe: C(u,v;ψ)=1− (1−u)ψ+(1−v)ψ−(1−u)ψ(1−v)ψ
1/ψ
,ψ∈[1,∞)

Noclosedformexpressionbetweenτκandψ(numericalinversion)

Clayton: C(u,v;ψ)=(u−ψ+v−ψ−1)−1/ψ,ψ∈[0,∞)
τκ=ψ/(ψ+2),ψ=2τκ/(1−τκ)
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Figure7: WTIdataset:ABCposteriorparameterdensities,priorsareingrey.
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Figure9: WTIdata,meanoftheestimatedvolatilitiesforfourcopulaspecificationsin
greyand30-dayrollingwindowempiricalvariance.

Hereσ2rwt isthek-dayrollingwindowestimateofthevariancewithk={15,30,45}and

r2tarethesquaredreturns. WealsocalculateMeanAbsoluteErrors(MAE),which,as

20



Figure 10: Brent data, mean of the estimated volatilities for four copula specifications in
grey and 30-day rolling window empirical variance.
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compared to RMSE, do not put so much weight on extreme errors:

MAEk
rw =

1
P

P

∑
i=1

1
T

T

∑
t=1

∣∣∣s2rw
t � h2(i)

t

∣∣∣ ,

MAEr2 =
1
P

P

∑
i=1

1
T

T

∑
t=1

∣∣∣r2
t � h2(i)

t

∣∣∣ .

Tables 2 and 3 present the ratios of RMSE and MAE with respect to the Normal

copula (i.e. standard SV specification). Numbers lower than one indicate better model

performance with respect to the benchmark model. The smaller the number, the better

the model. For both datasets for all metrics Joe copula consistently provides the best

model performance.

Out-of-sample model performance. In order to evaluate out-of-sample predictive model

performance we employ a realized volatility measure extracted from intraday prices.

Datastream database provides information for a limited period of high frequency data,

therefore, the out of sample evaluation period consists of more than 7 months of daily
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Figure 11: WTI data, estimated copulas for latent volatilities.
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observations.

Define RVt = ∑J
j=1 r̃2

t,j as a realized ex post volatility measure, where r̃t,j is a l-minute

log-return for day t and J is the number of l-minute intervals in a trading day (Barndorff-

Nielsen and Shephard, 2002, Andersen et al., 2003, Barndorff-Nielsen and Shephard,

2004). For an excellent review of realized volatility refer to McAleer and Medeiros

(2008). As noted by Andersen et al. (2003), one has to choose such sampling frequency as

to balance between the accuracy of the realized volatility measure by increasing J, and

the negative effects of the market microstructure noise, which are more pronounced for

larger J. Thus for empirical applications we employ 15-minute sampling frequency, re-
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Figure 12: Brent data, estimated copulas for latent volatilities.
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sulting into J = 129 intraday prices for each day t for WTI and Brent data (the data for

these futures are available for 24 hours). We also employ 30-minute sampling frequency

as a robustness check. The out-of-sample evaluation period for WTI data lasts from

2019-03-15 till 2019-10-21 resulting into 158 out-of-sample observations, and for Brent

from 2019-03-20 till 2019-10-21 resulting into 154 out of sample observations.

Figures 13 and 14 draw the mean and 95% credible intervals for the estimated out-of-

sample volatilities for four copula specifications in grey and 15 and 30-minute realized

volatilities in black. The realized volatilities measures look very similar to each other,

indicating the minimum effect of the market microstructure noise. Just by eye-balling
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Table 2: In-sample model performance: ratios of RMSE and MSE for WTI with Normal
copula as benchmark.

RMSE15
rw MAE15

rw RMSE30
rw MAE30

rw RMSE45
rw MAE45

rw RMSEr2 MAEr2

Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Gumbel 0.7815 0.9507 0.7598 0.9303 0.7574 0.9244 0.9212 0.9975

Joe 0.5657 0.8764 0.5179 0.8351 0.5075 0.8212 0.8566 0.9827
RClayton 0.8285 1.0118 0.8045 0.9923 0.7958 0.9790 0.9144 0.9900

Table 3: In-sample model performance: ratios of RMSE and MSE for Brent with Normal
copula as benchmark.

RMSE15
rw MAE15

rw RMSE30
rw MAE30

rw RMSE45
rw MAE45

rw RMSEr2 MAEr2

Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Gumbel 0.6738 0.9084 0.6545 0.8897 0.6542 0.8882 0.8625 0.9828

Joe 0.5639 0.8996 0.5293 0.8722 0.5232 0.8604 0.8317 0.9740
RClayton 0.6835 0.9264 0.6638 0.9055 0.6619 0.9005 0.8736 0.9887

the plots we can clearly see that Normal and rotated Clayton copula produced credible

intervals are wider resulting in more uncertainty when it comes to volatility estimation

and prediction.

Next, using the estimated realized volatility measure (15 and 30 minutes sampling)

and the predicted volatilities h2
t for the four models we calculate the RMSE and MAE:

RMSERVm =
1
P

P

∑
i=1

√√√√ 1
T�

T�

∑
t=1

(RVmt � h2(i)
t )2,

MAERVm =
1
P

P

∑
i=1

1
T�

T�

∑
t=1

∣∣∣RVmt � h2(i)
t

∣∣∣ ,

where T� is the out-of-sample evaluation period (158 for WTI and 154 for Brent), P = 250

is the sample size of the posterior distribution of parameters and RV is either 15 or 30-

minute sampling frequency based realized volatility measure with m = f15, 30g. Fi-

nally, in order to evaluate the estimation accuracy of the mean and variance parameters

(m, t2) we rely on the assumption that the latent volatility is marginally normally dis-

tributed, see (4). We calculate the average log score using the estimated realized volatil-
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Figure 13: WTI data, mean and 95% credible intervals of the estimated out-of-sample
volatilities for four copula specifications in grey and 15 and 30-minute realized volatili-
ties in black.

abr. may. jun. jul. ago. sep. oct.

0
5

10
15

20
25

30
35

Normal

RV15
RV30

abr. may. jun. jul. ago. sep. oct.

0
5

10
15

20
25

30
35

Gumbel

RV15
RV30

abr. may. jun. jul. ago. sep. oct.

0
5

10
15

20
25

30
35

Joe

RV15
RV30

abr. may. jun. jul. ago. sep. oct.

0
5

10
15

20
25

30
35

RClayton

RV15
RV30

ity measure:

LS =
1
P

P

∑
i=1

1
T�

T�

∑
t=1

fN(log RVt; m(i), t2(i)).

Here fN is the PDF for the Normal distribution. The results for the out-of-sample model

performance are in Tables 4 and 5, with Normal copula as benchmark. Because the log

scores are negative, the ratio of two log scores becomes positive and we prefer the model

with the smallest ratio as compared to the benchmark specification. Again, Joe copula

provides the best model fit for the three metrics and two realized volatility measures.

Table 4: Out-of-sample model performance: ratios of RMSE and MSE for WTI with
Normal copula as benchmark.

RMSERV15 MAERV15 RMSERV30 MAERV30 LSRV15 LSRV30
Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Gumbel 0.9415 1.0005 0.9330 1.0002 0.9878 0.9732

Joe 0.8852 0.9542 0.8650 0.9510 0.8718 0.8376
RClayton 0.9990 1.0262 1.0001 1.0248 0.8962 0.8437

These findings closely relate to the results in the existing time-varying volatility liter-
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Figure 14: Brent data, mean and 95% credible intervals of the estimated out-of-sample
volatilities for four copula specifications in grey and 15 and 30-minute realized volatili-
ties in black.
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Table 5: Out-of-sample model performance: ratios of RMSE and MSE for Brent with
Normal copula as benchmark.

RMSERV15 MAERV15 RMSERV30 MAERV30 LSRV15 LSRV30
Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Gumbel 0.9716 0.9821 0.9637 0.9824 0.9779 0.9739

Joe 0.9534 0.9815 0.9356 0.9791 0.9170 0.8883
RClayton 0.9801 0.9976 0.9773 0.9965 0.9243 0.8985

ature in energy economics, especially when we consider the non-linearity of the volatil-

ity process. Volatility models with jumps allow for deviations from the linear volatil-

ity process by modeling such jumps as a discrete Poisson variable (Duffie et al., 2000).

Such models were considered by Larsson and Nossman (2011), Brooks and Prokopczuk

(2013), Chan and Grant (2016), among others, who found that jump component is al-

ways statistically significant when modeling the crude oil prices. Also, models that

account for such jumps in the volatility process outperform the models that do not,

in- and out-of-sample. Similarly, the regime switching specification allows for changes

in volatility persistence in different market conditions via a discrete Markov switching

process. Such models were considered by Fong and See (2002), Vo (2009), for exam-

ple, who found clear evidence of regime shifts in oil price volatility (either in SV or
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GARCH framework), resulting into better in- and out-of-sample forecasts. The presence

of jumps or regime shifts indicates non-linear volatility response to its own past. Finally,

we model the volatility non-linearity by allowing for a gradual (continuous) transition,

instead of some discrete process (Poisson or Markov switching). This transition must

happen accordingly to the assumed copula model and different copulas allow for dif-

ferent pre-defined transition pathways. Overall, the empirical implications are clear:

our findings, in accordance with the previous studies, once more confirm the existence

of severe non-linearities in the volatility process of the crude oil returns. Capturing

these non-linearities, whether via discrete or continuous processes, results into superior

in-sample model fit and more precise out-of-sample volatility forecasts. As noted by

Larsson and Nossman (2011), conventional (i.e. AR-type) SV-type models cannot gen-

erate the high levels of volatility seen during the turbulent periods, meanwhile jump,

Markov-Switching, and copula stochastic volatility models - can.

5 Conclusions and discussion

In this paper we have proposed a novel copula-based stochastic volatility model. The

proposed model allows for asymmetric volatility persistence, often observed in empir-

ical applications. In other words, when the markets are in turmoil the volatility per-

sistence increases and when the markets are in calm state the volatility persistence de-

creases. The proposed model is a highly non-linear state-space model, therefore we

employ a novel ABC estimation technique called auxiliary-likelihood based ABC. For

latent state filtering we apply the bootstrap filter. We carry out two simulation studies

and show that ABC is a comparable alternative to standard MCMC based methods in

estimating the unknown model parameters. We also present a real data application us-

ing WTI and Brent returns. The in- and out-of-sample model comparison results always

favor the asymmetric specification, Joe copula in particular.

The drawbacks of the methodology developed in this paper also should be noted.

For the sake of simplicity and because the focus of the paper is the volatility prediction

we have considered Normally distributed returns. However, if the objective is to fore-

cast the entire distribution of the returns and the related measures, such as Value-at-Risk,

it would be appropriate to consider a more flexible specification for the distribution of
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the returns. In particular, one could assume an a-stable distribution for example, which

can be easily estimated using ABC.
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