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Abstract

A new computational algorithm for estimating the smoothing parameters of a mul-

tidimensional penalized spline generalized linear model with anisotropic penalty is pre-

sented. This new proposal is based on the mixed model representation of a multidi-

mensional P-spline, in which the smoothing parameter for each covariate is expressed

in terms of variance components. On the basis of penalized quasi-likelihood methods

(PQL), closed-form expressions for the estimates of the variance components are ob-

tained. This formulation leads to an efficient implementation that can considerably

reduce the computational load. The proposed algorithm can be seen as a generaliza-

tion of the algorithm by Schall (1991) - for variance components estimation - to deal

with non-standard structures of the covariance matrix of the random effects. The prac-

tical performance of the proposed algorithm is evaluated by means of simulations, and

comparisons with alternative methods are made on the basis of the mean square error

criterion and the computing time. Finally, we illustrate our proposal with the analysis

of two real datasets: a two dimensional example of historical records of monthly pre-
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cipitation data in USA and a three dimensional one of mortality data from respiratory

disease according to the age at death, the year of death and the month of death.

KEY WORDS: Smoothing; P-splines; Tensor product; Anisotropic penalty; Mixed

Models.

1 Introduction

Roughness penalty smoothing has become the most popular method for performing non-

parametric regression. However, this methodology depends on a key step: the selection

of the smoothing parameter, which controls the trade off between fidelity to the data and

smoothing.

There are two main approaches to smoothing parameter selection: one based on the

optimization of some criteria such as Akaike Information Criteria (AIC) or Generalized

cross-validation (GCV) (see e.g Eilers and Marx 1996, Wood 2004; 2008), and one in

which the smooth function is treated as random, and the smoothing parameters estimated

by maximum likelihood (ML), or restricted maximum likelihood (REML) (Fahrmeir et al.

2004, Currie and Durban 2002, Ruppert et al. 2003, Wand 2003, Wood 2011). When the

model includes several smooth functions, the computational burden increases rapidly with

the number of smoothing parameters to be chosen, and the minimization procedure can

become unstable. Several algorithms have been developed to achieve numerical stability

and improve the computational time. Most of these algorithms are in the framework of

GCV, some are based on matrix factorizations (Wood 2004), or use full Newton method

(Wood 2008) rather than iterative re-weighted least squares. More recently, Wood (2011)

proposed a stable nested iteration method for REML or ML, that proved to outperform

previous approaches in this context.

When it came to extending the aforementioned approaches to the estimation of mul-

tidimensional interaction surfaces, low-rank tensor product smoothers have become the

general approach (Eilers and Marx 2003, Wood 2006b). Their popularity is primarily

due to the flexibility that tensor product smoothers provide, mainly by the posibility of

incorporating anisotropic penalties. However, in this context one is faced with the chal-

lenge of making estimation feasible from a computational point of view. Moreover, for the

REML/ML-based estimation approaches one is also faced with the fact that estimation of

the variance components can not be accomodated using standard mixed model software.

Although estimation can be done by numerical maximization of the (restricted) log - like-
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lihood (Wood 2006b; 2011), it has the drawback of being computationally demanding,

especially for large datasets. Very recently, Wood et al. (2013) and Lee et al. (2013)

have proposed an alternative method for the estimation of a tensor-product smoother with

anisotropic penalties. Both approaches are based on the decomposition of the multidimen-

sional smooth term in different terms that each depend on only one smoothing parameter.

Although both approaches have proved to be useful, the development of efficient and fast

algorithms to deal with proper anisotropic penalties is still challenging, in particular for

more than two covariates.

This paper presents a new algorithm for estimating the smoothing parameters of a

multidimensional tensor product penalized spline (P-spline) generalized linear model with

anisotropic penalizations on the basis of the mixed model formulation. Following the

ideas presented in Harville (1977) and Schall (1991), we derive separate closed-form

expressions for the estimates of each variance component, that are then embedded within an

iterative procedure. The algorithm is, therefore, straightforward to implement in practice.

Moreover, some characteristics of the derived expressions can be used to further speed up

computation.

The rest of this paper is organized as follows: in Section 2 a brief introduction to low-

rank tensor product P-splines models and its representation as a mixed model is presented.

For the sake of illustration, we primarily focus our attention on a two-dimensional (2D)

generalized P-spline. However, smoothing in more that two dimensions can also be accom-

modated. Once the needed background and notation have been introduced, we describe our

approach in detail in Section 3. In Section 4, we present some extensions of the proposed

algorithm. Specifically, we describe the three-dimensional (3D) case and the generalized

additive mixed model (GAMM, Lin and Zhang 1999). A simulation study evaluates the

practical performance of the proposed algorithm in Section 5. We illustrate our method

in Section 6, using two real examples, and conclude with a discussion in Section 7. Some

technical details have been added as appendices. Detailed proofs and extended simulations

are available in the online Supplementary Material.

2 Two-dimensional low-rank tensor product smoothers

Consider a bidimensional generalized regression problem in which observations on the ith

of n independent units consists of a univariate response variable yi and a 2D covariate

3



vector xi = (xi1, xi2)
t

g (E[yi|xi]) = g (μi) = ηi = f (xi1, xi2) , (1)

where f is a smooth and unknown function, and g is a monotonic link function. Here, we

asume that yi follows an exponential family distribution, where Var(yi|xi) = φν (μi), with

ν being the variance function that is determined by the exponential family the response

variable belongs to, and φ is a dispersion parameter that may be known or unknown.

Within the P-spline framework, the unknown surface f(x1, x2) can be approximated by

the tensor product of two univariate low-rank spline bases (see e.g Eilers and Marx 2003,

Wood 2006b), i.e.,

f(x1, x2) =

c1∑
j=1

c2∑
k=1

θjkB1j (x1)B2k (x2) ,

where B1j and B2k are the univariate basis functions of x1 and x2 respectively (as e.g

B-splines (de Boor 2001) or thin plate regression splines (Wood 2003)), and θjk is a

vector of regression coefficients. Let’s denote B1 and B2 the marginal model matrices for

the covariate values x1 = (x11, . . . , xn1)
t and x2 = (x11, . . . , xn2)

t respectively. Then, in

matrix notation, model (1) can be expressed as

g (μ) = η = Bθ, (2)

where B = B2�B1 is the full regression matrix (with � denoting the ‘row-wise’ kro-

necker product (Eilers et al. 2006)), μ = (μ1, . . . , μn)
t, η = (η1, . . . , ηn)

t, and θ =

(θ11, . . . , θc11, . . . , θc1c2)
t.

In the context of P-splines, smoothness is achieved by imposing a penalty on the re-

gression coefficients θ in the form θtP̆ θ, where P̆ is the penalty matrix. For P-spline

smoothing in more than one dimension, one is faced with the decision to either assume the

same amount of smoothing for all the covariates (an isotropic penalization), or to allow

different smoothness on each covariate (an anisotropic penalization). Whereas the isotropy

could be justified when modelling, for instance, a smooth function of latitude and longi-

tude, this is not always the case when the covariates, e.g. x1 and x2, are measured in

different units.

In this paper we assume an anisotropic penalization, i.e., a different amount of smooth-

ing for x1 and x2. Acccordingly, the penalty matrix is then given by (see, e.g., Eilers et al.
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2006)

P̆ = λ1Ic2 ⊗ P̆ 1 + λ2P̆ 2 ⊗ Ic1 , (3)

where ⊗ denotes the kronecker product, Ik is an identity matrix of dimension k, λd is a

smoothing parameter that controls the amount of smoothing along the covariate xd, and

P̆ d are cd × cd positive semidefinite matrices of rank (cd − qd) whose elements depend on

the chosen spline basis. For instance, in the case of B-splines, these penalty matrices can

be expressed as P̆ d = Dt
dDd, where Dd is a matrix that forms differences of order qd

(d = 1, 2) (Eilers and Marx 1996).

2.1 Mixed model representation

To estimate model (2) subject to the penalization defined in (3), we adopt here the equiv-

alence between P-splines and generalized linear mixed models (GLMMs) (Lin and Zhang

1999, Currie and Durban 2002, Wand 2003). Under this approach, the design matrix B

and the vector of regression coefficients θ in (2) are reformulated in such a way that

g (μ) = η = Bθ = Xβ +Zα, with α ∼ N(0,G), (4)

where X and Z are the model matrices, and β and α are the fixed and random effects

coefficients of the generalized linear mixed model respectively. The random effects have

covariance matrix G, which depends on two variance components τ21 and τ22 .

To obtain the mixed model representation (4), we follow the proposal by Lee (2010), Lee

and Durbán (2011). Their approach is based on the singular value decomposition (SVD)

of the marginal penalties P̆ d involved in (3), for d = 1, 2. Let P̆ d = UdΣdU
t
d, where Ud

is the matrix of singular vectors and Σd is the diagonal matrix of singular values. Let’s

also denote Uds the sub-matrix of Ud containing the singular vectors corresponding to the

(cd − qd) non-zero singular values. Then, the mixed model matrices for model (4) are

X = [X2�X1] ,

Z = [Z2�X1|X2�Z1|Z2�Z1] , (5)

where Xd =
[
1n|xd| . . . |x(qd−1)

d

]
and Zd = BdUds, with 1n being a column vector of ones

of length n and xr
d denoting the element-wise r-order polynomial of the column vector of

covariate values xd (for d = 1, 2). Note that matrix Xd contains as many columns as the
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number of null singular values of the penalty matrix P̆ d, i.e. qd. Under this representation,

the inverse of the random effects covariance matrix G in (4) becomes a block - diagonal

matrix

G−1 =

⎛⎜⎜⎝
1
τ22
Σ̃2 ⊗ Iq1

1
τ21
Iq2 ⊗ Σ̃1

1
τ22
Σ̃2 ⊗ Ic1−q1 +

1
τ21
Ic2−q2 ⊗ Σ̃1

⎞⎟⎟⎠ ,

where Σ̃d is the sub-matrix of Σd with the non-zero singular values, τ21 = φ
λ1

and τ22 = φ
λ2
.

As can be observed, under this new configuration, the smoothing parameter λd is given

by the ratio of the variance components, i.e., λd = φ
τ2d
, (d = 1, 2). Note the relationship

between each block of G−1 and each block of the random model matrix Z defined in (5).

Each variance component τ2d (as well as Σ̃d) appears in G−1 whenever the Zd matrix is in

the corresponding block of Z. This correspondence might be useful to better understand

how G−1 is constructed in the 3D case, which will be presented in Section 4 (or, by exten-

sion, in the d-dimensional case). In relation to this correspondence, the block-structure of

Z leads also to a very interesting decomposition of the penalized part of the bidimensional

surface f in (1) in three different terms: (a) a term associated with Z2�X1 that contains

the smooth main effect of x2 and (q1 − 1) varying coefficient terms (Hastie and Tibshirani

1993) with x2 varying smoothly with x1

(
f2 (x2) +

∑q1−1
j=1 xj1hj2 (x2)

)
, (b) a term associ-

ated with X2�Z1 with the smooth main effect of x1 and (q2− 1) varying coefficient terms

with x2 varying smoothly with x1

(
f1 (x1) +

∑q2−1
j=1 xj2hj1 (x1)

)
; and, (c) a pure smooth

interaction term associated with Z2�Z1

(
f1|2 (x1, x2)

)
.

As for the estimation of any GLMM, estimation of model (4) involves two interrelated

stages: (a) fixed and random effects coefficients estimation (β and α); and (b) variance

components estimation (τ21 , τ
2
2 , and, possibly, φ). In our context, and for fixed values of

the variance components, estimation of the model’s fixed and random effects presents no

problem. These can be obtained using Penalized Quasi-likelihood (PQL) methods (Sti-

ratelli et al. 1984, Schall 1991, Breslow and Clayton 1993). PQL is a very simple

method for estimation of GLMMs, and can be easily implemented by iterative fitting a

working linear mixed model to a working dependent variable z, on the basis of a Fisher

scoring algorithm which involves a weight matrix W that is updated at each iteration (we

describe this point in detail in Appendix A). However, estimation of τ21 , τ
2
2 , and φ can
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not be accommodated using standard procedures for variance components estimation in

mixed models (or, more precisely, standard mixed model software), since the covariance

matrix of the random effects G (see (15) in Appendix B) has a non-standard form, with

a block involving both the variance components τ21 and τ22 . In the following section we

present a computational efficient algorithm for estimating variance components. Following

Harville (1977) and Schall (1991), we derived closed-form expression for the estimates of

the variance components which in turn avoids the need of using numerical optimization

methods and thus rendering very good computing times.

3 Variance components estimation: the SAP algorithm

In this section we present the main result of this paper. Since, on the basis of PQL,

estimation of model (4) is implemented by repeated estimation of a working linear mixed

model (see Appendix A), we focus here on the estimation of the variance components

in each of these iterations. Accordingly, and by a slight abuse of terminology, we will

refer to the derived expressions for the variance components as ML or REML estimates,

although, strictly speaking, it only applies for normally distributed responses with identity

link function.

The key point of our proposal is the derivation of the first-order partial derivatives

of the approximate (restricted) log-likelihood separately for each variance component τ21
and τ22 . This separation, allows us to estimate separately each variance component by

equating the first-order partial derivatives to zero. Accordingly, the iterative algorithm

presented in this paper can be seen as a generalization of the algorithm by Schall (1991)

to deal with nonstandard structures of the covariance matrix G. However, some other

iterative procedures could also have been used in this context. Once the separate first-

order partial derivatives have been obtained, the second-order partial derivatives can also be

derived, allowing the use of gradient algorithms, such as Newton-Raphson or Fisher Scoring

(Harville 1977), or improved versions of these, as the Average Information (Gilmour et

al. 1995). Given that the aforementioned separation is key novelty of the paper, we have

denoted the algorithm as SAP: Separation of Anisotropic Penalties.

For the sake of illustration, in this section we restrict our attention to the estimation

of the variance components based on REML. However, ML estimates can also be easily

obtained following the same reasoning that will be used for REML. The corresponding

closed-form expressions for ML estimates of the variance components are described in the
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online Supplementary Material.

For ease of readability, we shall use the following notation to denote operations on

diagonal matrices: let A and M be diagonal matrices, �A denotes the vector containing

the diagonal elements of A, A2 denotes the diagonal matrix, whose diagonal is formed by

the element-wise square of �A, 1/A denotes the diagonal matrix formed by the element-wise

inverses of �A, and A/M denotes the diagonal matrix formed by the element-wise quotient

of �A and �M .

Theorem. In each iteration of the Fisher-Scoring algorithm, REML estimates of the vari-

ance components τ2d (d = 1, 2) and, when unknown, φ are given by

τ̂2d =
α̂tΛdα̂

edd
, (6)

φ̂ =

(
z −Xβ̂ −Zα̂

)t
W̃

(
z −Xβ̂ −Zα̂

)
n−∑2

d=1 edd − rank(X)
,

with

edd = trace

(
ZtPZG

Λd

τ2d
G

)
,

where P = V −1 − V −1X
(
XtV −1X

)−1
XtV −1 with V = W−1 + ZGZt, W̃ = φW ,

and

Λ2 =

⎛⎜⎝Σ̃2 ⊗ Iq1

0q2(c1−q1)

Σ̃2 ⊗ Ic1−q1

⎞⎟⎠ ,

Λ1 =

⎛⎜⎝0q1(c2−q2)

Iq2 ⊗ Σ̃1

Ic2−q2 ⊗ Σ̃1

⎞⎟⎠ ,

where 0q is a square matrix of zeroes of order equal to q.

The proof of the theorem is given in Appendix B. As can be seen in the proof, ed1

+ ed2 corresponds to the effective dimension of the penalized part of the fitted model.

This effective dimension (plus the dimension of the unpenalized part), can be interpreted,

as usual, as a measure of the smoothness of the fitted interaction surface. It would be

nevertheless interesting to elucidate the interpretation of edd in this context. One could be

tempted to interpret these quantities as a measure of the smoothness in the corresponding
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covariate (as e.g in the additive case or, in the multidimensional setting, in the P-spline

ANOVA proposed by Lee et al. (2013)). However, a detailed evaluation on how these

values are computed brings a completely different, and maybe surprising, result. The

computation of the trace of ZtPZGΛd

τ2d
G, given that Λd

τ2d
G is a diagonal matrix (since Λd

and G are), can be obtained as

trace

(
ZtPZG

Λd

τ2d
G

)
=

c1c2−q1q2∑
j=1

γjϕ
d
j , (7)

where γj is the jth element of the diagonal of ZtPZG and ϕd
j is the jth element of the

diagonal of Λd

τ2d
G. Given that the trace of ZtPZG corresponds to the trace of the hat

matrix of the penalized part (see proof of the theorem), expression (7) can be interpreted

as a decomposition of the effective dimension of the fitted model into components related

to each covariate xd according to the values of ϕd
j . Taking a look at the Λd

τ2d
G matrix, we

have

Λ2

τ22
G =

⎛⎜⎜⎜⎝
Iq1(c2−q2)

0q2(c1−q1)
1

τ22
Σ̃2⊗Ic1−q1

1

τ22
Σ̃2⊗Ic1−q1+

1

τ21
Ic2−q2⊗Σ̃1

⎞⎟⎟⎟⎠ ,

and,

Λ1

τ21
G =

⎛⎜⎜⎜⎝
0q1(c2−q2)

Iq2(c1−q1)
1

τ21
Ic2−q2⊗Σ̃1

1

τ22
Σ̃2⊗Ic1−q1+

1

τ21
Ic2−q2⊗Σ̃1

⎞⎟⎟⎟⎠ .

As a result, the first q1(c2 − q2) elements of the diagonal of ZtPZG are allocated to

covariate x2, the following q2(c1 − q1) to x1, and the last (c1 − q1)(c2 − q2) elements are

allocated among x1 and x2 according to weights ϕd
j that are inversily proportional to the

variance component associated with the corresponding covariate. However, an alternative

interpretation can be provided by expressing these weights as

τ21 Σ̃2 ⊗ Ic1−q1

τ21 Σ̃2 ⊗ Ic1−q1 + τ22 Ic2−q2 ⊗ Σ̃1

and
τ22 Ic2−q2 ⊗ Σ̃1

τ21 Σ̃2 ⊗ Ic1−q1 + τ22 Ic2−q2 ⊗ Σ̃1

.

It follows that the last (c1−q1)(c2−q2) elements of the diagonal of ZtPZG are allocated to

x1 according to weights that are directly proportional to the variance component associated
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with x2 (and the same holds for x2).

Correspondingly, and taking in mind the three-term decomposition of the bidimensional

surface f in (1) explained in Section 2.1, each edd can be obtained as the sum of two

components, that could be interpreted as follows: one that gathers the amount of smoothing

along xd (a sort of within smoothness), and the other one that gathers how much the smooth

effect of xd varies along the other covariate (between smoothness).

3.1 Estimation algorithm

In this section we summarize the algorithm for the estimation of model (4):

Initialize. Set initial values for model’s fixed and random effects and variance components.

For instance, β̂
(0)
k = α̂

(0)
l = 0 (1 ≤ k ≤ q1q2, 1 ≤ l ≤ (c1c2 − q1q2)) and τ̂

2(0)
1 = τ̂

2(0)
2 .

In those situations where φ is unknown, establish an initial value for this parameter,

e.g. φ̂(0) = 1. Set k = 0

Step 1. Given the initial estimates of model’s fixed and random effects, construct the

working response variable z and the matrix of weights W as follows

zi = g(μ
(k)
i ) + (yi − μ

(k)
i )g′(μ(k)

i ),

wii =
{
φ̂(k)g′(μ(k)

i )2ν(μ
(k)
i )

}−1
,

with μ(k) = g−1
(
Xβ̂

(k)
+Zα̂(k)

)
.

Step 1.1. Given the initial estimates of variance components, estimate α and β by

solving the linear system (12). Let α̂ and β̂ be these estimates.

Step 1.2. Estimate the variance components as

τ̂2d =
α̂tΛdα̂

ed
(k)
d

,

and, when necessary,

φ̂ =

(
z −Xβ̂ −Zα̂

)t
W̃

(
z −Xβ̂ −Zα̂

)
n−∑2

d=1 ed
(k)
d − p

,
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with

ed
(k)
d = trace

(
ZtP (k)ZG(k) Λd

τ̂
2(k)
d

G(k)

)
,

where P (k) and G(k) denote the corresponding P and G matrices obtained on

the basis of the initial estimates.

Step 1.3. Repeat Step 1.1 and Step 1.2 with τ̂
2(k)
1 , τ̂

2(k)
2 , and, if updated, φ̂(k) being

replaced by τ̂21 , τ̂
2
2 , and φ̂ respectively, until the convergence criterion

|φ̂− φ̂(k)|+∑2
d=1 |τ̂2d − τ̂

2(k)
d |

3
≤ ς,

where ς is a small threshold (the tolerance for the convergence criterion), e.g,

1× 10−6.

Step 2. Repeat Step 1. with the model’s fixed and random effects and variance compo-

nents being replaced by those obtained in the last iteration of Steps 1.1 - Step 1.3,

until the convergence criterion

‖η(k+1) − η(k)‖2
‖η(k+1)‖2 ≤ υ,

where υ is a small threshold.

3.2 Computational aspects

We present here some computational aspects that can be exploited for fast implementation

of the estimation algorithm presented in Section 3.1. Specifically, we focus on the compu-

tation of variance components (Step 1.2). It should also be noted that, when the data is

in an array structure, the generalized linear array model (GLAM) by Currie et al. (2006)

can be used for the construction of the model matrices involved in the linear system (12),

thus improving the speed of the estimation algorithm.

The estimation of the variance components by using the expression given in (6) requires

the computation of the trace of ZtPZGΛd

τ2d
G, which involves the computation and manip-

ulation of several n× n matrices. As pointed out before, this computation can be relaxed

by taking into account that both, G and Λd are diagonal matrices, and, therefore, GΛdG

is also a diagonal matrix. Then
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• GΛdG = diag( �G ∗ �Λd ∗ �G), with ∗ denoting the element-wise vector product.

• Computation of the former trace only requires the computation of the diagonal of

ZtPZ.

Moreover, by expression (5.3) in Harville (1977) we have

ZtPZ =
[
0(c1c2−q1q2)×q1q2 |I(c1c2−q1q2)

]
C−1 [X|Z]tWZ,

with C−1 being the inverse of matrix C defined in (12). Correspondingly, the computation

of its diagonal can be carried out by the column-wise addition of

([
0(c1c2−q1q2)×q1q2 |I(c1c2−q1q2)

]
C−1

)t � [
XtWZ

ZtWZ

]
, (8)

where � denotes the Hadamard or element-wise matrix product. For ease of notation, let

denote ζt this diagonal vector, and ξdt = �G ∗ �Λd ∗ �G. Then, it follows that:

trace

(
ZtPZG

Λd

τ2d
G

)
=

1

τ2d

c1c2−q1q2∑
j=1

ζjξ
d
j .

Note that no new matrices have to be computed to evaluate expression (8), since all of

them have been already computed for the estimation of β̂ and α̂.

4 Some extensions

In this section we present some extensions of the SAP algorithm presented in Section

3. As will be observed, the key point is to determine the variance-covariance matrix G

of the random effects as well as its derivatives with respect to the variance components.

Specifically, the only requirement will be to specify the form of the matrix Λ involved in the

expression of the estimate of each variance component (see (6)). This feature makes, for

instance, straightforward the extension of the SAP algorithm to deal with the ANOVA-type

decomposition presented in Lee and Durbán (2011). We therefore focus here on presenting

more complex extensions. We first present the generalization of the SAP algorithm to the

three dimensional case, and then we show how the algorithm can also be incorporated into

the estimation of a GAMM (Lin and Zhang 1999) with sets of i.i.d Gaussian random
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effects.

4.1 Extension to the three dimensional case

Consider a three-dimensional generalized regression problem

g (E[yi|xi]) = g (μi) = ηi = f (xi1, xi2, xi3) ,

where f is a smooth and unknown function. As for the bidimensional case, we model

function f by tensor product of spline basis functions and we assume an anisotropic penal-

ization

P̆ = λ1P̆ 1 ⊗ Ic2 ⊗ Ic3 + λ2Ic1 ⊗ P̆ 2 ⊗ Ic3 + λ3Ic1 ⊗ Ic2 ⊗ P̆ 3.

Following the same procedure as in Section 2.1 for the bidimensional case (see Lee 2010,

Lee and Durbán 2011 for further details), we obtain the mixed model model matrices

X =[X1�X2�X3]

Z =[Z1�X2�X3|X1�Z2�X3|X1�X2�Z3|Z1�Z2�X3|Z1�X2�Z3|
X1�Z2�Z3|Z1�Z2�Z3],

and the inverse of the random effects covariance matrix G

G−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1u

τ21
d2u

τ22
d3u

τ23
d11

τ21
+ d21

τ22
d12

τ21
+ d31

τ23
d22

τ22
+ d32

τ23
d1t

τ21
+ d2t

τ22
+ d3t

τ23

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where

d1u = Σ̃1 ⊗ Iq2 ⊗ Iq3 , d2u = Iq1 ⊗ Σ̃2 ⊗ Iq3 , d3u = Iq1 ⊗ Iq2 ⊗ Σ̃3,

d11 = Σ̃1 ⊗ Ic2−q2 ⊗ Iq3 , d12 = Σ̃1 ⊗ Iq2 ⊗ Ic3−q3 , d21 = Ic1−q1 ⊗ Σ̃2 ⊗ Iq3 ,

d22 = Iq1 ⊗ Σ̃2 ⊗ Ic3−q3 , d31 = Ic1−q1 ⊗ Iq2 ⊗ Σ̃3, d32 = Iq1 ⊗ Ic2−q2 ⊗ Σ̃3,

d1t = Σ̃1 ⊗ Ic2−q2 ⊗ Ic3−q3 , d2t = Ic1−q1 ⊗ Σ̃2 ⊗ Ic3−q3 , d3t = Ic1−q1 ⊗ Ic2−q2 ⊗ Σ̃3.

As shown in Section 3 and Appendix B, the covariance matrix G and its derivatives with

respect to the variance components τ2d (d = 1, 2, 3) can be easily obtained

∂G

∂τ2d
=

1

τ4d
GΛdG,

with

Λ1 = diag(�d1u, �0q1q3(c2−q2),
�0q1q2(c3−q3),

�d11, �d12, �0q1(c2−q2)(c3−q3),
�d1t),

Λ2 = diag(�0q2q3(c1−q1),
�d2u, �0q1q2(c3−q3),

�d21, �0q2(c1−q1)(c3−q3),
�d22, �d2t),

Λ3 = diag(�0q2q3(c1−q1),
�0q1q2(c2−q2),

�d3u, �0q3(c1−q1)(c2−q2),
�d31, �d32, �d3t).

Finally, the estimates of the variance components are obtained according to expression (6).

4.2 Extension to Generalized Additive Mixed Models

Consider the generalized additive mixed model

g (E[yi|xi,u]) = g (μi) = ηi = f(1,2) (xi1, xi2) +

P∑
p=3

fp (xip) +U t
i1u1 + . . .+U t

icuc, (9)

where f(1,2) and fp (p = 3, . . . , P ) are smooth functions, uj are kj × 1 vectors of random

effects, such that u =
(
ut
1, . . . ,u

t
c

)t ∼ N (0,Ω), where Ω = diag
(
σ2
11k1 , . . . , σ

2
c1kc

)
, and

U ij are known vectors of covariates associated with the random effects.

To estimate model (9), each fp (p = 3, . . . , P ) is approximated by a low-rank spline

basis (with penalty matrix λpP̆ p), and, f1|2, as shown in Section 2, by the tensor product

of two univariate spline basis and anisotropic penalty. Moreover, we also adopt here the

equivalence between (9) and a GLMM. On the basis of the SVD of the penalty matrices

14



P̆ j (j = 1, . . . , P ), we obtain the mixed model model matrices

X =[X2�X1|X̃3| . . . |X̃P ]

Z = [Z2�X1|X2�Z1|Z2�Z1|Z3| . . . |ZP |U1| . . . |U c],

with X l and Z l (l = 1, . . . , P ) as defined in Section 2.1 and X̃p =
[
xp| . . . |x(qp−1)

p

]
, where

the vector of ones has been removed from Xp to ensure identifiability (p = 3, . . . , P ).

Finally, U j (j = 1, . . . , c) are the random effect matrices associated with the proper random

effects uj . It is straightforward to show that the covariance matrix G of the random effects(
αt,ut

)t
becomes

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

G̃
τ23
Σ̃3

. . .
τ2P
Σ̃P

Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with G̃ being defined in (15), and τ2p being the variance components associated to the

smooth function fp (p = 3, . . . , P ).

Closed-formed expressions for the estimates of variance components τ2l (l = 1, . . . , P )

and σ2
j (j = 1, . . . , c) based on REML/ML can be obtained using the same procedure as

presented in Section 3. As pointed out before, we just need to calculate the Λ matrix

involved in the derivative of G with respect to each variance component. In the case of

τ21 and τ22 , these matrices are equivalent to those defined in (14), but with a sub-matrix of

zeroes corresponding to those blocks of matrix G where τ2p and σ2
j appear. Moreover, for

each τ2p , it is easy to show that

Λp = diag(�0(c1c2−q1q2),
�0(c3−q3), . . . ,

�̃
Σp, . . . , �0(cP−qP ), �0K), with K =

c∑
j=1

kj ,

and, as far as the variance components σ2
j (j = 1, . . . , c) is concerned, we obtain

Λj = diag(�0(c1c2−q1q2),
�0(c3−q3), . . . ,

�0(cP−qP ), �0k1 , . . . ,1kj , . . . , �0kc).
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5 Simulation Study

This section reports the results of a simulation study conducted to study the empirical

performance of the estimation procedure described in Section 3 above. Specifically, the

aims of this study were twofold: (a) to evaluate the practical behaviour on the basis of

the Root Mean Square Error (RMSE); and (b) to study the achievement in terms of the

computing time.

For these purposes, we compared the SAP algorithm with the method given in Wood

(2011), jointly with the anisotropic tensor product approach presented in Wood (2006b).

In Wood (2011), the author presents a fast and stable approach to the estimation of the

smoothing parameters of a GAM based on ML or REML. That approach outperforms -

in terms of MSE, convergence failures, and computational cost - previous approaches in

this context (see Wood 2011 for further details), and therefore it has been chosen as

the benchmark method for our simulations. Moreover, the method is implemented in the

gam() function of the R-package mgcv (version 1.7-22) (Wood 2006a). The mgcv package

has become, in recent years, the reference R-package for the estimation of GAMs, due to its

versatility, easy-to-use interface and good and stable performance. Note that the R-package

mgcv also includes a funcion bam() specially designed to deal with very large datasets, which

in turn can be much faster than gam(). We are aware that the evaluation of the proposed

algorithm as far as the computing time is concerned would be more accurate and fair with

respect the bam() function. However, preliminary simulation studies have revealed that, in

some circumstances, this function presents severe problems of convergence, thus rendering

computing times of about 30 minutes for small sample sizes. Moreover, for moderate

sample sizes (as those used in this study) the computing time can be even larger than with

the use of gam(). For all these reasons, in this simulation study we have restricted the

comparisons of our approach to the gam() function.

5.1 Scenarios and Setup

In the first study, 200 values of covariates x1 and x2 were simulated independently from a

uniform distribution on the interval [0, 1], and the following scenario was considered:

η = f (x1, x2) = cos

(
2π

√
(x1 − 0.5)2 + (x2 − 0.5)2

)
.
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Note that this scenario was also used in Lee et al. (2013). The response data y was then

generated under two different distributions:

1. y = η + ε, where ε ∼ N
(
0, σ2

)
with σ ∈ {0.1; 0.5; 1}.

2. y ∼ Bernoulli (p), with p = exp (η̃) / exp (1 + η̃), where η̃ = (η + 0.2) /0.5,

where the scaling factors that appear in the Bernoulli case were used to control the signal-

to-noise ratio. For each marginal, 14-dimensional basis were chosen, and R = 500 replicates

were performed.

On the basis of the previous scenario, we then evaluated the impact of increasing the

sample size, and as a consecuence the basis dimension, on the computing time. Here, the

simulations were done assuming a sample size of 1000, and only σ = 0.5 was considered for

the Gaussian case. R = 100 replicates were perfomed, and 30-dimensional marginals were

chosen.

Finally, we also undertook a small simuation study with three covariates. Five hundred

values of covariates x1, x2, and x3 were simulated independently from a uniform distribution

on the interval [0, 1], and the response was generated from (see also Wood 2006b)

y =1.5 exp

(
−(x1 − 0.2)2

5
− (x2 − 0.5)2

3
− (x3 − 0.9)2

4

)

+ 0.5 exp

(
−(x1 − 0.3)2

4
− (x2 − 0.7)2

2
− (x3 − 0.4)2

6

)

+ exp

(
−(x1 − 0.1)2

5
− (x2 − 0.3)2

5
− (x3 − 0.7)2

4

)
+ ε,

where ε ∼ N
(
0, σ2

)
. As for the first study, different levels of noise were considered

(σ ∈ {0.1; 0.5; 1}), R = 500 replicates were performed, but only 7-dimensional marginals

were used, yieding a basis dimension of 343.

For both, the SAP algorithm and the gam() function, cubic B-splines basis functions

with second order difference penalty (qd = 2) were chosen to obtain the marginal model

matrices, and REML criterion was used for the estimation of the variance components.

For the gam() function, the tensor product of marginal bases (function te()) was used

and anisotropy was assumed (Wood 2006b). With respect to the numerical options for

the fitting process, for the SAP algorithm, the tolerance for the convergence criterion of
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the variance components and the Fisher’s scoring algorithm was set to 1 × 10−6, and the

starting values of the variance components and the fixed and random effects were set to 1

and 0 respectively. As far as gam() function is concerned, the numerical options were those

established by default. The evaluation of the practical performance of both approaches was

judged on the basis of the RMSE, computed at the observed covariate values. For Gaussian

data, the true linear predictor was chosen as the target. However, in the case of binary data,

the RMSE was computed on the response scale (the probability). Finally, with regard to

the evaluation of the computing time, for the SAP algorithm the times reported include the

computing time needed for (a) the construction of the matrices involved in the algorithm;

and (b) the algorithm itself. All the computations were done in a 2.40GHz Intel Core i5

processor computer with 4GB of RAM.

5.2 Results

Figure 1(a) shows the results in terms of the RMSE for the two dimensional case, the

Gaussian distribution and a sample size of n = 200. The figure shows the log10(RMSE)

of both approaches (left y-axis) as well as the difference between the log10(RMSE) of the

SAP algorithm and the method by Wood (2011) (right y-axis). Thus, in this latter case,

values lower than zero indicate a better behaviour of the new proposal. As can be observed,

the SAP algorithm gave better performance in all cases. However, the differences between

both approaches diminish as the signal-to-noise ratio decreases. Figure 1(b) depicts the

behaviour of both approaches as far as the effective dimension is concerned. For ease of

interpretation, we have incorporated into this figure the ratio of the effective dimension

of the Wood (2011)’s method to the SAP algorithm (right y-axis). The SAP algorithm

provides, in general, a lower effective dimension than the method given in Wood (2011),

although, again, these differences diminish as the signal-to-noise ratio decreases. On the

basis of both RMSE and effective dimension results, we hypothesize that for high signal-to-

noise ratio, the method given in Wood (2011) tends to undersmooth when compared to our

approach. In Figure 1(c), the results with respect to the computing time of both approaches

are presented, as well as their ratio (in log10 scale). Again, for the SAP algorithm the

computing times are influenced by the signal-to-noise ratio. The lower the signal-to-noise

ratio, the slower the convergence of the algorithm. For instance, the median (range) of the

number of iterarions was 12 (7, 23), 17 (8, 41), and 19 (9, 61), for σ = 0.1, σ = 0.5, and

for σ = 1 respectively. Despite this fact, our proposal outperfoms Wood (2011)’s method,
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requiring, in median, between 13.0 (for σ = 0.1) and 7.12 (for σ = 1) times less of the

computing time.

The results for the two dimensional case, the Bernoulli distribution and n = 200 are

shown in Figure 2. Again, our method outperforms Wood (2011)’s method in terms

of both, the RMSE and the computing time. However, the differences in this case are

not as marked as for the Gaussian case. For instance, the required computing times of

our algorithm was, in median, 3.19 times less than with Wood (2011)’s method. Once

more, the effective dimension of the SAP algorithm was lower than the effective dimension

obtained with the gam() function. Finally, as regards the number of PQL iterations needed

to reach convergence, the median (range) was 5 (4, 7).

Figure 3 depicts the results for the two dimensional case and n = 1000, for both the

RMSE and the computing time respectively. As pointed out before, for the Gaussian case

only σ = 0.5 was considered. As far as the computing time is concerned, as can be observed

when comparing these results with those presented in Figures 1(c) and 2(c) for n = 200,

the behaviour of SAP algorithm with respect to the Wood (2011)’s method improves as

the sample size, and therefore the basis dimension, increases. In this case, our method

needed 10.55 and 4.00 times less than the method by Wood (2011), for the Gaussian and

Bernoulli distribution respectively.

Finally, the results for the three dimensional case are depicted in Figure 4. The same

pattern as in the previous studies is displayed (results for the effective dimension not

shown). As regards the computing time, SAP algorithm required, in median, 10, 4.66 and

3.65 (for σ = 0.1, σ = 0.5 and σ = 1 respectively) times less than the method given in

Wood (2011).

We would like to point out that, despite the fact that in the simulation study com-

parisons between both approaches have been made as fair as possible (in terms of basis,

smoothing parameter selection criterion, ...), there are several characteristics of the SAP

algorithm and Wood (2011)’s method that could explain the observed differences. In that

sense, the main discrepancy is that both approaches use a different parameterization of

model (2) as a mixed model. Besides this fact, some other characteristics of the imple-

mentation of both proposals could also have an impact on the results, such as the chosen

convergence criteria or starting values.
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Figure 1: Comparisons of the performance of the SAP algorithm and Wood (2011)’s
method for the two dimensional case. The boxplots show the results for the Gaussian
distribution, different levels of noise σ ∈ {0.1; 0.5; 1}, a sample size of n = 200 and R =
500 replicates. From top to bottom: (a) log10(RMSE), (b) Effective dimension, and (c)
Computing time. In each case, the two left boxplots show the log10(RMSE), the effective
dimension or the computing time achieved by each approach (left y-axis), while the one of
the right (right y-axis) shows: (a) the SAP log10(RMSE) minus the log10(RMSE) of the
gam() function, (b) the ratio of the effective dimension of the Wood (2011)’s method to
the SAP algorithm; and (c) the ratio of the computing time of the gam() function to the
SAP algorithm (in log scale).
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Figure 2: Comparisons of the performance of the SAP algorithm and Wood (2011)’s
method for the two dimensional case. The boxplots show the results for the Bernoulli
distribution, a sample size of n = 200 and R = 500 replicates. From left to right: (a)
log10(RMSE), (b) Effective dimension, and (c) Computing time. In each case, the two left
boxplots show the log10(RMSE), the effective dimension or the computing time achieved
by each approach (left y-axis), while the one of the right (right y-axis) shows: (a) the SAP
log10(RMSE) minus the log10(RMSE) of the gam() function, (b) the ratio of the effective
dimension of the Wood (2011)’s method to the SAP algorithm; and (c) the ratio of the
computing time of the gam() function to the SAP algorithm (in log10 scale).

6 Application to real data

In this section, we illustrate the utility of the computational algorithm presented in Section

3 using two real examples. The first example shows the performance of our approach in

the simplest case, a 2D case, but with a rather large sample size that requires a relatively

large number of inner knots. With the second example, we illustrate how the algorithm

can also be used in a 3D case, with non gaussian response. Moreover, since the data in this

case is in an array structure, we also take the advantage of the posibility of using GLAM

in this context.

6.1 Precipitation Data

This dataset contains weather observation records compiled in the United States of America

(USA). The data came from the National Climatic Data Center (NCDC) of the USA,

and contain monthly total precipitation (in millimeters) from January 1895 to December

1997. For illustration purposes, we focus our analysis on estimating the spatial pattern

of precipitation for April 1948 in the USA. This restricted dataset can be found in the
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(b) Bernoulli distribution

Figure 3: Comparisons of the performance of the SAP algorithm and Wood (2011)’s
method for the two dimensional case. The boxplots show the results for a sample size of
n = 1000 and R = 100 replicates. From top to bottom: (a) Gaussian distribution and (b)
Bernoulli distribution. In each case, the two left boxplots show the log10(RMSE) or the
computing time achieved by each approach (left y-axis), while the one of the right (right
y-axis) shows the SAP log10(RMSE) minus the log10(RMSE) of the gam() function or the
ratio of the computing time of the Wood (2011)’s method to the SAP algorithm (in log10
scale).
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Figure 4: Comparisons of the log10(RMSE) and the computing time (in seconds) perfor-
mance for the SAP algorithm and the Wood (2011)’s method for the three dimensional
case. The boxplots show the results for the Gaussian distribution, different levels of noise
σ ∈ {0.1; 0.5; 1}, a sample size of n = 500 andR = 500 replicates. Top figure: log10(RMSE).
Bottom figure: Computing time (seconds). In each case, the two left boxplots show the
log10(RMSE) or computing time for each approach (left y-axis), while the one of the right
(right y-axis) shows: (top) the SAP log10(RMSE) minus the log10(RMSE) of the gam()

function; and (bottom) the ratio of the computing time of the Wood (2011)’s method to
the SAP algorithm (in log10 scale).
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R-package spam, under the name USprecip, avaliable from cran.r-project.org (R Core

Team 2013). Specifically, the dataset comprises a total of 11918 records. For each record,

the longitude-latitude position of monitoring stations is provided, jointly with the monthly

total precipitation in millimeters and a standardization of this raw observation, called

anomaly (see Johns et al. 2003). From these 11918 records, only 5906 correspond to

stations where monthly total precipitation values were observed, and the remainder 6012

correspond to missing station precipitation values, that have been filled in using spatial

statistics (Johns et al. 2003). We therefore restricted our analysis to the 5906 true records.

Figure 5(a) shows the raw data of the monthly precipitation anomalies in USA for

April 1948. Using our aproach, we fitted a 2D P-spline model with longitude and latitude

as covariates, second order penalties and 40 inner knots for each marginal cubic B-spline

basis. The model had therefore a basis dimension of 1936. The convergence tolerance of

the variance components was set to 1 × 10−6, and REML was used. The fitted surface is

shown in Figure 5(b). The effective dimension for longitude and latitude was 302.656 and

408.757 respectively. As regards the computing time, the algorithm took 5.76 minutes.

For comparison purposes, we also analyzed this dataset using the gam() and bam()

functions in R-package mgcv. As pointed out before, the bam() function has been specially

designed to deal with very large datasets. However, since a severe convergence problem

was observed in the simulations when using this funcion, this dataset was therefore also

analyzed using the gam() function. As before, tensor product smoothers, as well as second

order penalties and 40 inner knots for each marginal cubic B-spline basis were used, and the

REML criterion (method = "REML" and method = "fREML" for gam() and bam() respec-

tively) was chosen for the automatic selection of the smoothing parameters (Wood 2011).

In both cases, the numerical options for the fitting process were those established by de-

fault, and the fitting processes converged. Regarding the results using the bam() function,

the fitted model had an effective dimension of 774.50, and the computing time achieved by

this approach was 22.17 minutes, about 3.8 times more than with using our algorithm. As

for the gam() function is concerned, the effective dimension was 796.1 and the computing

time was increased until 48.22 minutes, 8.4 times more than using the proposed approach.

6.2 Respiratory Data

This example uses American data on the number of deaths from respiratory disease (Currie

et al. 2006). The dataset contains the number of deaths according to the age at death
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Figure 5: Monthly precipitation anomalies in USA for April 1948. (a) Raw data. (b)
Fitted surface.

(ranging from 1 to 105), the calendar year of death (from 1959 to 1998), and the month of

death (ranged 1 to 12). The dataset also contains the number of days per month and year.

Specifically, the dataset presents an array structure of dimension 105× 40× 12, yieding a

total of 50400 observations. This feature offers us the opportunity of using, in combination

with our approach, GLAM for the computation of the model matrices involved in (12).

Following the paper by Currie et al. (2006) we modeled the number of deaths with a
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3D P-spline model (with age, year and month as covariates) with Poisson error and log-link.

The logarithm of the number of days in a month was used as an offset. For all the analyses,

second order penalties jointly with 11, 6 and 3 inner knots for the marginal cubic B-spline

basis of age, year and month respectively were used, yielding a basis dimension of 1050.

Since the number of deaths in 1972 was an extreme oulier, we removed this year from the

analyses by giving it a weight of zero (see Currie et al. 2006). To speed up the computa-

tional time, an initial estimate of
(
βt,αt

)t
was obtained by assuming log{(y + 0.5) /d} as

an initial estimate of Xβ +Zα, where y and d are the vectors containing the number of

deaths and the number of days per month respectively. When fitting the model using the

bam() and gam() functions, an initial estimate of μ (argument mustart) was obtained on

the basis of the initial estimate of
(
βt,αt

)
previously explained. Regarding the proposed

algorithm, the tolerance for convergence criterion of the variance components and the Fis-

cher’s scoring algorithm was set to 1 × 10−6. As far as the analyses using the R-package

mgcv is concerned, the numerical options for the fitting process were those established by

default. To make the comparisons between our approach and those using the R-package

mgcv fair, we fitted the model using our algorithm with and without GLAM.

As far as the numerical results are concerned, the effective dimension for age, year and

month was 62.86, 194.34 and 209.55 respectively, for both the SAP algorithm with and

without the use of GLAM, yielding a total effective dimension of 474.75 (incorporating the

dimension of the unpenalized or parametric part). With regard to the computing time, the

algorithm took 4.33 and 1.70 minutes without and with the use of GLAM respectively. As

can be observed, and as expected, the use of GLAM during the estimation process only has

an impact on the computing time, being reduced in about 2.6 times. For the gam() and

bam() approaches, the total effective dimension were 638.50 and 639.50 respectively, and

the computing time increased up to 105.39 minutes in the case of the gam() function and

27.50 for bam(), i.e., about 24.3 and 6.34 times more than with our algorithm. Despite the

fact that the total effective dimension of the models fitted using the proposed algorithm

and of those using the R-package mgcv differ by a large extent, the fitted values provided by

both approaches were very similar. In fact, the mean of the differences between the fitted

values (on the response scale) provided by the gam() function and those obtained with

our algorithm was 0.00712. Moreover, the 2.5% and 97.5% empirical quantiles of these

differences were −3.238 and 3.410 respectively, a rather small range if we take into account

that the observed number of deaths ranged between 0 and 1605. In Figure 6 the estimated

log mortality against age, year, and month for different covariate values is shown. As can
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Figure 6: Observed (◦) and smoothed (solid line) numbers of log(deaths/day) by age, year,
and month. Black line: proposed algorithm. Red line: gam() function. (a) January 1959;
(b) age 53 years, January; and (c) age 53 years, 1959.

be observed both approaches have yielded similar results.

7 Discussion

In this paper we considered the estimation of the smoothing parameters of a multidimen-

sional tensor product generalized P-spline model with anisotropic penalty. On the basis

of the mixed model representation of a P-spline and the use of PQL methods, closed-form

expressions for the estimates of the variance components were obtained based on both ap-

proximate ML and REML. Besides the simple-achieved expressions of the estimates, which

avoid the need of using numerical optimization methods, we also presented some computa-

tional aspects that can be used for the fast implementation of the proposed algorithm. For

data arranged in multidimensional grids, GLAM methods can also be accommodated, im-

proving even further the computational time. In addition, the proposed procedure can be

easily integrated into the estimation of a GAMM with sets of independent random effects.

For the sake of clarity, we focused here in a GAMM specified in terms of univariate effects

jointly with a 2D interaction surface. Nevertheless, the SAP algorithm can also be easily

extended to deal with factor-by-surface interactions. It should be noted that, although the

methodology presented in this paper can deal with any d-dimensional generalized P-spline,

for dimensions larger that d = 5 the computational time required by the algorithm could

make its application unfeasible. In this context, the P-spline ANOVA-type interaction
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models proposed by Lee and Durbán (2011) represent an alternative to fully multidimen-

sional models. On the basis of the results presented in Section 4, the extension of the

SAP algorithm to deal with such models is straightforward, thus allowing the estimation

of P-spline models including univariate main effects as well as two-way and/or three-way

anisotropic interactions.

Results of the simulation study showed the good performance of the proposed method,

in terms of both the MSE and the computing time, when compared with established

approaches. It should be noted, however, that an undesirable property of our method is that

it is affected by the signal-to-noise ratio. As the signal-to-noise ratio decreases, differences

between the new proposal and the method proposed by Wood (2011) become smaller.

Although in the simulation study our method outperformed Wood (2011)’s method in all

cases, this is an area that requires further investigation.

In both the simulation study and the precipitation data the initial estimates of the

model’s fixed and random effects were established to zero and the variance components to

one. We are aware that more suitable initial estimates could even improve the behaviour

of the proposed algorithm, yielding better computing times as well as avoiding convergence

failures in the estimation procedure. As far as the fixed and random effects is concerned,

our experience suggests that specifying an initial estimate of η = Xβ+Zα on the basis of

the response vector y and the link function g (·), as done in the respiratory data example,

usually provide good starting values for
(
βt,αt

)t
. In fact, we applied the SAP algorithm

to the two examples presented in the introduction of Wood (2008), by specifying as initial

estimates those establish by default in the gam() function (η = g ((y + 0.5) /2) for both

the mackerel egg and the simulated data). In both cases, the SAP algorithm converged

and the obtained results were similar to those using Wood (2011)’s method.

It is well known that PQL methods can suffer from severe bias (Breslow and Clayton

1993, Lin and Breslow 1996), especially for clustered binary data when the cluster size is

small. It can therefore be expected that the method proposed in this paper also inherits

this behaviour. An extensive simulation study has been conducted (results not shown) to

evaluate the practical performance of the SAP algorithm in different scenarios, supplying, in

general, good results. Nonetheless, the bias-corrected procedure proposed by Lin and Zhang

(1999) for the GAMM framework can be easily accommodated into the SAP algorithm.

The study of computationally efficient ways for incorporating bias-corrected procedures in

this setting remains an interesting area of research.

When it came to presenting the extension of the proposed procedure to the GAMM
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framework, sets of independent random effects were assumed. This random effect structure

implies a diagonal variance-covariance matrix of the random effects, thus allowing the

immediate incorporation of the SAP algorithm into this context. Although this random

effect structure might be sufficient in a wide area of real applications, as for instance

in multilevel studies, a current line of research is focused on investigating the possibility

of applying the SAP algorithm in longitudinal studies with possibly correlated random

intercepts and slopes.

A possible drawback of a tensor product P-spline model is that it assumes a smooth

surface, i.e. a smooth transition of the effect across the whole surface. In some practical

applications, however, more complex situations could arise, with effects that may not

change in some regions of the surface, while changing rapidly in other regions. In these

circumstances, the assumption of a single smoothing parameter for each covariate might be

not sufficient to capture such local effect, and adaptive P-splines (Lang and Brezger 2004,

Krivobokova et al. 2008) have been suggested. In adaptive P-splines the global smoothing

parameters are replaced by locally adaptive smoothing parameters, thus allowing more

flexibility. The extension of the SAP algorithm to adaptive anisotropic P-splines is a

current line of research.

Finally, the R-code used for the simulations as well as an R package implementing the

SAP algorithm for the 2D and 3D cases can be downloaded from https://bitbucket.org/mxrodriguez/sap.
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A Fixed and random effects coefficients estimation

For given values of the variance components τ2d (d = 1, 2) and φ, estimation of the fixed

and random effects coefficients of model (4), can be obtained by maximizing, with respect

to β and α, the approximate penalized log-likelihood (see equation (6) in Breslow and
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Clayton 1993)

− 1

2φ

n∑
i=1

Devi (yi, μi)− 1

2
αtG−1α,

where Devi denotes the deviance. This maximization can be carried out on the basis of

a Fisher-Scoring algorithm, involving a working dependent variable and a weight matrix,

which should be updated at each iteration. Specifically, at (k+1)th Fisher-Scoring iteration,

the working vector z is obtained as

zi = g(μ
(k)
i ) + (yi − μ

(k)
i )g′(μ(k)

i ),

and the model’s fixed and random effects are then estimated as

β̂
(k+1)

=
(
XtV −1X

)−1
XtV −1z, (10)

α̂(k+1) = GZtV −1
(
z −Xβ̂

(k+1)
)

= GZtPz, (11)

where

V = W−1 +ZGZt,

P = V −1 − V −1X
(
XtV −1X

)−1
XtV −1,

and W is a diagonal matrix of weights with elements wii =
{
φg′(μ(k)

i )2ν(μ
(k)
i )

}−1
.

From a computational point of view, a more convenient method for jointly obtaining

β̂ and α̂ is by the solution of the linear system (see equation (9) in Breslow and Clayton

1993) [
XtWX XtWZG

ZtWX I +ZtWZG

]
︸ ︷︷ ︸

C

[
β̂
(k+1)

b̂
(k+1)

]
=

[
XtWz

ZtWz

]
(12)

where b̂
(k+1)

= G−1α̂(k+1). Note that (12) corresponds to the normal equations of the best

linear unbiased estimation (BLUE) of β and the best linear unbiased prediction (BLUP)

of α under the working linear mixed model

z = Xβ +Zα+ ε, with α ∼ N(0,G) and ε ∼ N(0,W−1).
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B Proof of theorem

Proof. Ignoring the dependence of W on τd (d = 1, 2), the approximate restricted log-

likelihood of the working linear mixed model is given by (Breslow and Clayton 1993)

l∗ = −1

2
log |V | − 1

2
log |XtV −1X| − 1

2
(z −Xβ̂)tV −1(z −Xβ̂).

The REML estimates of the variance components are then obtained in the usual manner

by maximizing this quantity. Taking derivatives with respect to the variance components

τ2d (d = 1, 2), we obtain (see online Supplementary Material for details)

∂l∗

∂τ2d
= −1

2
trace

(
ZtPZ

∂G

∂τ2d

)
+

1

2
α̂tG−1 ∂G

∂τ2d
G−1α̂. (13)

Applying matrix differentiation properties, we have

∂G

∂τ22
= −G

∂G−1

∂τ2d
G =

1

τ4d
GΛdG, (14)

where

G = diag
(
τ22 /

�d2, τ
2
1 /

�d1, 1/(�d
∗
2/τ

2
2 + �d

∗
1/τ

2
1 )

)
, (15)

Λ1 = diag(�0q1(c2−q2),
�d1, �d

∗
1),

Λ2 = diag(�d2, �0q2(c1−q1),
�d
∗
2),

with �0r being a vector of zeroes of length r, and d1 = Iq2 ⊗ Σ̃1, d2 = Σ̃2 ⊗ Iq1 , d
∗
1 =

Ic2−q2 ⊗ Σ̃1, d
∗
2 = Σ̃2 ⊗ Ic1−q1 . By pluggin expression (14) in (13) we obtain that the

first-order partial derivatives of the approximate restricted log-likelihood become

2
∂l∗

∂τ2d
= − 1

τ2d
trace

(
ZtPZG

Λd

τ2d
G

)
+

1

τ4d
α̂tΛdα̂. (16)

Then, REML estimates of the variance components τ2d (d = 1, 2) are found by equating

expression (16) to zero, which gives

τ̂2d =
α̂tΛdα̂

trace
(
ZtPZGΛd

τ2d
G
) .
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Before proceeding with the estimation of φ - if unknown - it is important to observe

that the sum of the quantities involved in the denominators of the variance components

estimates corresponds to the effective dimension of the penalized part (or random part) of

the fitted model

trace

(
ZtPZG

Λ1

τ21
G

)
+ trace

(
ZtPZG

Λ2

τ22
G

)
= trace

(
ZtPZG

)
= trace

(
ZGZtP

)
= trace (HRandom)

where HRandom denotes the hat matrix (Hastie and Tibshirani 1990) of the random part

(see (11)).

Finally, an estimate of φ is obtained, as before, by taking derivatives of the approximate

restricted log-likelihood with respect to φ

∂l∗

∂φ
= −1

2
trace

(
P
∂V

∂φ

)
+

1

2
(z −Xβ̂)tV −1∂V

∂φ
V −1(z −Xβ̂).

First, by Equation (5.2) in Harville (1977), we have that V −1(z−Xβ̂) = W (z−Xβ̂−Zα̂).

Moreover, given that V depends on φ through W−1 which can be rewritten as W = 1
φW̃ ,

with W̃ being a diagonal matrix with elements w̃ii =
{
g′ (μi)

2 ν (μi)
}−1

, and ignoring

again the dependence of W̃ on φ, it then follows that

2
∂l∗

∂φ
= − 1

φ
trace

(
PW−1

)
+

1

φ2
(z −Xβ̂ −Zα̂)tW̃ (z −Xβ̂ −Zα̂).

By equating the above expression to zero, we obtain

φ̂ =
(z −Xβ̂ −Zα̂)tW̃ (z −Xβ̂ −Zα̂)

trace
(
PW−1

) ,
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where (see Equation 5.3 in Harville 1977 and expressions (10), (11), and (12))

trace
(
PW−1

)
= trace

(
W−1P

)
= trace

(
In − [X|ZG]C−1

[
XtW

ZtW

])

= trace

(
In − [X|ZG]

[(
XV −1X

)−1
XV −1

ZtP

])
= n− trace

(
X

(
XV −1X

)−1
XV −1

)
− trace

(
ZGZtP

)
= n− rank (X)−

2∑
d=1

edd.

Note that H = [X|ZG]C−1[X|Z]tW corresponds with the hat matrix of the fitted model,

whose trace, as shown, can be decomposed as the sum of the traces of the hat matrices of

the unpenalized (or fixed) part and the penalized (or random) part.
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