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Abstract: In this paper, we propose a novel Machine Learning Model based on Bayesian Linear
Regression intended to deal with the low sample-to-variable ratio typically found in neuroimaging
studies and focusing on mental disorders. The proposed model combines feature selection capabilities
with a formulation in the dual space which, in turn, enables efficient work with neuroimaging
data. Thus, we have tested the proposed algorithm with real MRI data from an animal model of
schizophrenia. The results show that our proposal efficiently predicts the diagnosis and, at the same
time, detects regions which clearly match brain areas well-known to be related to schizophrenia.

Keywords: Bayesian learning; neuroimaging; feature selection; kernel formulation; mental disorders;
schizophrenia; MRI

1. Introduction

Neuroimaging has undergone a major breakthrough in recent years and has helped in
the diagnosis, prognosis, and treatment monitoring of psychiatric disorders. The clinical
diagnosis of these disorders is troublesome due to the lack of specific biomarkers [1] and
to the fact that many of them share clinical features, thus hindering an accurate diagnosis.
Specifically, schizophrenia is one of the most complex pathologies to diagnose [2] since
it is commonly confused with other psychotic disorders in up to 20% of cases [3]. As
consequence, new tools for the diagnosis of mental disorders are emerging [4,5].

Machine Learning (ML) techniques have emerged as a promising tool for the analysis
of neuroimaging data. These algorithms are capable of analyzing any data source, either
images (structural or functional), genetic information [6] or behavioral information [7], to
carry out an automatic diagnosis of the pathology. Recent approaches based on Support
Vector Machine algorithm (SVM) have been applied in Magnetic Resonance Imaging
(MRI), showing great results in this field and detecting relevant brain areas involved
in the pathology, as well as inferring new useful biomarkers for their diagnosis [8–10].
However, although these models have provided accurate results for automatic classification,
the lack of interpretability in their results prevents the characterization of the pathology.
In particular, in contexts where only a few features are relevant for the problem, it is
advisable to detect the informative variables and eliminate the useless ones. For this
reason, many authors combine ML models with Feature Selection (FS) approaches, such
as the Recursive Feature Elimination (RFE) [11], consisting of the direct elimination of
the less representative features, methods based on decision tree formulations, such as
Random Forest Importance (RFI) [12,13], or embedded approaches which include L1 or
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L1–L2 regularizations to promote sparsity, such as Lasso and elastic-net algorithms [14,15].
Nevertheless, in neuroimaging, we have to deal with large datasets, where the number of
cases is significantly smaller than the number of variables, and many of these approaches
fail in this scenario, tending to over-fit. To avoid this problem, some authors propose
Bayesian approaches but work over a reduced set of features [16–18], whereas others point
to the use of more refined techniques better adapted to the problem needs [19–21].

To overcome these limitations, we present a novel formulation for the Bayesian Linear
Regression model. Our proposal, called the Dual Bayesian Linear regression model with
Feature Selection (DBL-FS), is formulated to work efficiently with a reduced number of
samples characterized in high-dimensional spaces, e.g., neuroimaging data. For this pur-
pose, the model is formulated in the dual space and simultaneously includes an Automatic
Relevance Determination (ARD) prior over the primal weights to provide the model with
FS capabilities so that it can remove irrelevant input features. Here, we have tested our
formulation on rodent data in an animal model of schizophrenia that show similar brain
anatomical deficits than patients with schizophrenia [22–24]. One advantage of using ro-
dent data is a more solid knowledge of the ground truth due to the controlled experimental
induction of the pathology.

2. Materials

Rodent MRI data were obtained from the Biomedical Imaging and Instrumentation
Group (Biig) of the Gregorio Marañón Hospital. The dataset consisted of 53 rat brain MRI
images divided into two groups: healthy rats (N = 24) and pathological rats (N = 29). Pathol-
ogy was induced by the administration of the viral mimic polyriboinosinic-polyribocytidilic
acid (poly I:C) in gestational day 15 to pregnant Wistar rats, since maternal immune stimu-
lation (MIS) is associated with increased risk of onset of schizophrenia in the offspring, with
behavioral abnormalities as well as neurophysiological and morphological traits. Model
details can be found elsewhere [25–27].

All images were preprocessed following the standard preprocessing pipeline in neu-
roimaging research, using the processing toolbox of the Statistical Parametric mapping
software (SPM12) [28], as shown in Figure 1. Output consisted of: White Matter (WM),
Gray Matter (GM), and CerebroSpinal Fluid (CSF) regions, with 464,487, 582,467, and
30,702 voxels, respectively.

Figure 1. MRI pipeline for data processing [28]. First, images were corrected for field homogeneity,
resized by a factor of 10 and spatially normalized to create a custom template based on a Wistar rat
brain template [29]. All images were resliced to this custom template and were segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Later, all images were modulated
using the Jacobian determinants and smoothed with a 10-mm FWHM Gaussian kernel. Finally, the
segmented tissues were processed by the ML model to classify them into healthy and pathological
subjects and to identify the brain areas relevant to this decision.
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3. Methods

This section introduces the formulation of the proposed Dual Bayesian Linear re-
gression model with Feature Selection (DBL-FS). Later, we also introduce some reference
methods that we will use as baselines to show the advantages of the proposed approach
together to the experimental setup.

3.1. A Dual Bayesian Linear Regression Model with Feature Selection
3.1.1. Model Definition

The proposed model borrows some ideas from the Bayesian Principal Component
Analysis (BPCA) [30] and Bayesian Canonical Correlation Analysis (BCCA) [31] algorithms
to endow a Bayesian Linear Regression (BLR) [32] with a dual formulation able to carry
out automatic feature selection over the primal variables. This relies on including an
ARD prior over the weight matrices to automatically infer the feature relevance in the
input feature space by assigning higher/lower relevance values when there are more/less
relevant features. Meanwhile, the model works with a formulation in the dual space. In
turn, this allows the model to efficiently deal with large data problems by working in the
data space while it applies a feature selection over the variable space. In addition, we can
exploit the DBL-FS Bayesian formulation to facilitate including prior expert knowledge
to guide the FS process. This way, we can guide the learning process and compensate the
limited number of samples to train the model.

To define the model, let us consider X as the observation matrix with the MRI infor-
mation of N subjects; this way, each row, xn,: for n = 1, . . . , N, is a D-dimensional vector
containing the brain image of the n-th subject, and each column, x:,d for d = 1, . . . , D,
contains the information of the d-th voxel over the N subjects. On the other hand, the
column vector y represents the diagnosis labels (control or schizophrenic) for the N subjects
under study. Although each label, yn, belongs to the set {0, 1} (indicating the subject is
control or not), for the model formulation, we consider yn ∈ <, and thus, we will generalize
the model for regression problems. Later, we will apply a threshold over the model output
to classify each subject into one of two categories.

3.1.2. Generative Model

As the graphical model of Figure 2 shows, the generative model of DBL-FS considers
that each datum, xn,:, is combined with a weight vector w plus some Gaussian noise to
generate the output variable:

yn = xn,:w + η, (1)

where η is a Gaussian noise with zero mean and precision τ. In turn, the noise precision is
modeled with a gamma distribution with parameters aτ

0 , bτ
0 :

τ ∼ Γ(aτ
0 , bτ

0 ) (2)

In addition, DBL-FS considers that the weight associated to the d-th input feature
follows a normal distribution:

wd ∼ N
(

0, α−1
d

)
d = 1, . . . , D (3)

where its precision, αd, is modeled with a gamma distribution as:

αd ∼ Γ(aα
0 , bα

0) d = 1, . . . , D (4)

This ARD prior over wd allows us to obtain the relevance over the elements of w, and
therefore, DBL-FS is capable of automatically setting to zero the features that are irrelevant
for the problem.

As the model will have to work with MRI data, composed by few samples (less than
100) and tens or hundreds of thousands of voxels, it is clear that working in the primal
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space is not the most efficient way to proceed. So, we propose to reformulate the model
making use of the Representer Theorem [33] (RT). That is, as the RT states that the primal
weights of any regression model resulting from minimizing an empirical error (risk) can be
expressed as a linear combination of the input data and its equivalent dual coefficients, we
can express w as:

w = XTa (5)

where a is a vector of length N containing the dual variables. As we will see later (see
Equation (19)), the lower bound that maximizes our variational inference is equivalent to
minimizing an empirical cost. This way, the model can be formulated to work in the dual
space as:

yn = kn,:a + η, (6)

where kn,: denotes to the n-th row of the linear kernel matrix K = XXT . This way, with the
dual formulation, the target variables yn, for n = 1, . . . , N, are modeled as:

yn ∼ N
(

kn,:a, τ−1
)

n = 1, . . . , N. (7)

With this new formulation, the model will be able to work in the space of a, where
only N parameters have to be inferred. Thus, model complexity and overfitting risks are
drastically reduced, as long as we are able to maintain the feature relevance determination
over w, providing the model with feature selection capabilities.

Finally, it is important to note that the model formulation does not need to specifically
include the distribution of a since the relation between w and a is deterministic, and
therefore, the statistical characterization of w is also characterizing a.

yn

xn,: wd,:

αd

a

τ

aα0
bα0

aτ0

bτ0

D

N

Figure 2. Plate diagram for the DBL-FS graphic model. Grey circles denote observed variables, white
circles unobserved variables. Model hyperparameters do not have a circle.

3.1.3. Variational Inference

Once the generative model is defined, we should evaluate the posterior distribution
of the variables to estimate their optimum values. Although, in this case, the posterior
distribution is not tractable, we can use variational inference together with the mean-field
technique [34] to find an approximation to this posterior q(Θ) ≈ p(Θ|y, X), where Θ

contains all model variables. Then, we can define a Lower Bound (LB) using the Kullback–
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Leibler divergence between the posterior and its approximation; so, maximizing this LB, we
can obtain the optimum model parameters. Therefore, using the mean-field approximation
to factorize over the posterior, we obtain:

p(Θ|y, X) ≈ q(Θ) = q(w)q(a)q(α)q(τ), (8)

and we can determine each approximated distribution by calculating:

ln(q∗j ) = E−qj [ln(p(X, y, Θ))] + const, (9)

where E−qj implies that we calculate the expectation over all random variables except the
j-th variable, and p(X, y, Θ) is the joint probability.

Therefore, we can apply (9) to the joint probability for each random variable to obtain
the model update rules. Firstly, the distribution of the dual weights a is:

q(a) = N (a|〈a〉, Σa), (10)

with mean and variance determined by:

〈a〉 = 〈τ〉ΣaKTy (11)

Σ−1
a = Xdiag(〈α〉)XT + 〈τ〉KTK, (12)

where diag(〈α〉) represents an identity matrix with vector α as the diagonal. The distribu-
tion of variable α is:

q(α) = Γ(α|aα, bα), (13)

with parameters

aα = aα
0 +

D
2

(14)

bα = bα
0 +

1
2

diag(XT〈aaT〉X), (15)

where αα
0 and βα

0 are hyperparameters, and the operator diagonal returns a column vector
formed by the main diagonal of the matrix. Moreover, the distribution of the noise precision
τ is given by:

q(τ) = Γ(τ|aτ , bτ), (16)

with parameters

aτ = aτ
0 +

N
2

(17)

bτ = bτ
0 +

1
2
(

N

∑
n=1

y2
n − 2Tr{yTK〈a〉}+ Tr{KTK〈aaT〉}), (18)

where ατ
0 and βτ

0 are hyperparameters, and Tr{}̇ is the trace operator. See Appendix A for
the full development of these mean field distribution approximations.

Once we have defined the different distributions, the model updates the different
random variables in an iterative coordinate-ascent-like optimization where the distribution
of each factor is obtained using (10) to (22). This optimization process is guided by the LB
cost function defined as:

LB = const +
N

∑
n=1

(
D
2
+ aα

0 + 1
)

ln (bα) −
(

D
2
+ aτ

0 + 1
)

ln (bτ) −
D
2

ln (|Σa|), (19)

where we analyze its convergence to stop the distribution parameters update. See Appendix B
for the full development of the LB.
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For an efficient optimization of the model, in practice, we will work in the dual space
updating the Equations (10) to (18). However, when the model convergence is reached, we
can obtain the approximate posterior distribution of w as:

q(w) = N (w|〈w〉, Σw), (20)

with parameters
〈w〉 = 〈a〉X (21)

Σw = XTΣaX. (22)

Once the model is trained, we can analyze the distribution of w and check which
feature components are zero and, therefore, are eliminated, having an automatic selection
of the relevant input voxels. This is due to the fact that, despite working in the dual space,
the precision of w components, α, is considered in the distribution of a (see Equation (12)).

Moreover, the inclusion of a prior over α (see Equation (13)) in the generative model
has an additional advantage since we can use it to adapt the prior distribution of w and
include expert knowledge in the model. Thus, in case we want to add more relevance to a
particular region (for instance, a neurobiologically meaningful Region of Interest (ROI)),
we can initialize the parameters bα associated to the voxels of this region with higher
values than the rest to promote that the distribution of w has also higher values for these
voxels. Otherwise, if we do not want to include this expert knowledge, this variable will be
uniformly initialized over all voxels.

3.2. Baselines

Here, we present the baseline methods used during the experimental section, whose
performances will be compared with those of the proposed DBL-FS model. In particular, we
considered three approaches, one baseline aimed to solve regression problems (as DBL-FS)
and the other two methods specifically designed to solve classification tasks:

• As the first baseline, we included a regression Gaussian Process (GP) [35], using
the implementation provided by the GPy library (available at github accessed on
9 December 2021). We have selected this model since it allows us to define lineal
kernels with ARD, so that we can work in the dual space and learn the relevance of
the different input features.

• Next, we included an SVM [36] with a linear kernel using the scikit-learn library [37]
to also optimize the model in the dual space.

• The last selected baseline is the recently proposed adaptation of Sparse Semi-supervised
Heterogeneous Interbattery Bayesian Analysis (SSHIBA) [38] to work in the dual space,
the Kernelized SSHIBA (KSSHIBA) [39] is available at github accessed on 29 March
2021. This algorithm can simultaneously combine different data sources or views (in
our case, different tissues) in a common latent space providing a low-dimensional
representation of the data. In addition, this model can also include an additional
output view to categorically model the target variable (patient or control sample), as
well as a linear kernel with ARD coefficients over the input features (equivalent to the
GP configuration).

Both GP and KSSHIBA use an ARD to determine the relevance of the input features,
but they do not have a prior distribution or constraint to force their input weights to
be sparse and, therefore, obtain a real FS. Meanwhile, DBL-FS imposes sparsity with
the Gamma prior to actually promote zero values in the model weights which, in turn,
automatically eliminates the least relevant features.

Furthermore, it is important to mention that deep learning models are not included
in this study, as these methods are severely limited by the sample size required to learn
the model parameters. Therefore, although models such as convolutional neural networks
have promising results in image analysis, they also pose serious challenges when working
with datasets of small sample size. Furthermore, we have explored other baselines such as

https://github.com/SheffieldML/GPy
https://github.com/sevisal/KSSHIBA.git
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random forests but have not included the results due to their poor results. Nevertheless,
all the methods under study will be evaluated with different configurations to be able to
analyze different properties and, hence, to carry out an extensive study and analyze their
advantages and disadvantages in comparison to our model.

3.3. Experimental Setup

MRI data were standardized to zero mean and unitary standard deviation. As we
have a reduced number of subjects (only 53 samples), we have used a Leave-One-Out
(LOO) framework to evaluate the model performance. This way, we have trained as many
models as available samples, using in each training partition all the subjects except one,
which was used afterwards for testing. Then, to evaluate the model performance, we
present the results in terms of average accuracy, that is, the percentage of correctly classified
test subjects computed over all LOO iterations. Furthermore, since the performance of
some methods depends on their initialization we repeated the LOO process 10 times (with
different initializations) and depicted the average accuracy over them in order to obtain
more statically significant results.

To complete the performance analysis, the result table includes the final number of
voxels selected by each model (and their percentage with respect to the total), computed as
the average number of voxels used by each model for each LOO iteration and each run.

Regarding the different models under study, we considered several configurations
to carry out a more comprehensive analysis and more adequate evaluation of the differ-
ent methods.

For GPs, we have considered two versions: (1) the standard GP with a linear kernel,
denoted as GP, and (2) the previous GP but including ARD capabilities and an FS stage.
That is, we first trained a GP with ARD and analyzed the ARD coefficients to select the
most relevant features, and then trained a standard GP with the chosen features. Thus, this
two-step approach provided a GP with FS capabilities, denoted as GP+FS. For this pruning,
we selected the 25% most relevant features in order to compare the performance of this
method with DBL-FS. In addition, as both DBL-FS and GPs were formulated for regression
problems and our predictive task is a binary classification (0 or 1), we set the threshold
to 0.5.

We have implemented two different approaches for SVMs: (1) a standard SVM with
linear kernel and (2) an SVM with a Multi-Kernel Learning (MKL) strategy, denoted as
MKL-SVM. In the latter case, we independently considered the different tissues (GM,
CSF, and WM) and a different linear kernels for each of them, and subsequently, the
model learned the combination of these three kernels, including two parameters for their
combination. These parameters were defined as scalars multiplying each kernel term,
and a subsequent inner LOO was used to find their optimal values. Thus, the defined
combinations coefficients gave more or less relevance to each kernel (therefore, to each
tissue), providing additional flexibility to the model.

For KSSHIBA, we have included two versions, similarly to what was done in GP:
(1) the standard KSSHIBA model and (2) a two-stage version of KSSHIBA (denoted as
KSSHIBA+FS), in which KSSHIBA was first trained with ARD functionality, and subse-
quently, we selected the most relevant features to train the model using this subset of
features. For these experiments, we initially had 1000 latent factors, from which the model
will automatically prune the irrelevant ones. For FS, we kept the highest 25% of voxels
equivalently to the number of selected features from the DBL-FS model.

Finally, we have also defined two approaches for the DBL-FS model, with and without
expert knowledge. In the latter one, we have equally initialized the ARD prior for all
voxels, setting the parameters a and b of random variable α to 2 and 1, respectively. In the
expert knowledge case (denoted as DBL-FS+EK), we have initialized the parameters a and
b in such a way that the areas of the prefrontal cortex, ventral hippocampus, and lateral
ventricles (which are known to be more intensely affected [23]) had more relevance than
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the rest. In particular, parameter a was set to 50 and parameter b was fixed to either 1 or
0.001, depending on whether the voxel belonged to the indicated ROIs or not.

4. Experimental Results

Table 1 shows the LOO accuracy results for the classification problem together with
the number of selected voxels (the approaches without FS used 100%). Despite using
different initializations in the evaluated models, the results were stable across them with a
negligible standard deviation, showing that the initialization hardly influences the results.
For this reason, we did not include the standard deviation in Table 1. The results show that
GPs, KSSHIBA+FS, and MKL-SVM obtained the worst classification accuracies, while SVM
and KSSHIBA achieved the best performances among the baselines. However, DBL-FS
and DBL-FS+EK still obtained an improvement of 5.7% in terms of accuracy over the best
baseline while learning the most restrictive selection mask. From these results, we need to
highlight that (1) KSSHIBA obtained a predictive performance similar to that of SVM while
summarizing the information of the original data (distributed in more than 106 voxels)
in only nine latent variables, and (2) MKL-SVM showed worse results than the standard
SVM, probably due to the higher number of hyperparameters it needed to learn in order to
perform the MKL, which may be causing overfitting.

Table 1. Performance of the different methods under study showing the model accuracy and the
number of selected voxels (with their percentages with respect to the total). In addition, models
with the best accuracy have been highlighted in bold and placed at the bottom of the table, which
corresponds to the proposed DBL-FS approaches.

Experiment Accuracy # Selected Voxels

GP 67.9% 1,077,656 (100%)
GP+FS 67.9% 269,414 (25%)
SVM 71.6% 1,077,656 (100%)

MKL-SVM 67.9% 1,077,656 (100%)
KSSHIBA 69.8% 1,077,656 (100%)

KSSHIBA+FS 64.1% 269,414 (25%)
DBL-FS 77.3% 287,996 (26.72%)

DBL-FS+EK 77.3% 242,754 (22.52%)

Figure 3 shows the brain areas selected by the methods with FS capabilities. As each
voxel has an associated weight, the image masks represent the absolute value of these
weight magnitudes for the selected of voxels as an indicator of the voxel relevance. In
addition, since we have a model for each LOO iteration, Figure 3 displays the average
values of these relevances (over all LOO iterations) and includes a normalization of their
scales to the range (0, 1) to simplify their analysis. As a result, we can observe that the
GP-FS selected meaningless voxels in neurobiological terms while KSSHIBA detected
well-defined areas corresponding to only WM tissues. Finally,the DBL-FS and DBL-FS+EK
approaches obtained well-defined regions in the GM and WM tissues and the CSF, which are
interpretable in neurobiological terms. Although both methods provided similar selections,
DBL-FS+EK selected a reduced set of voxels.
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Figure 3. Brain masks obtained by the FS of each model. Colors are defined in a linear scale and
associated to the relevance of the voxel (white: more relevant; dark red: less relevant). GP-FS model
yields meaningless results in neurobiological terms, where no anatomical regions can be identified.
KSSHIBA-FS model only identifies brain areas related to WM deficits in schizophrenia. Both DBL-FS
and DBL-FS+EK learn similar relevance in WM, GM, and CSF brain areas of interest in schizophrenia,
such as the hippocampus (hipp), prefrontal cortex (PFC), amygdala (Aa), septum, lateral ventricles
(LV), corpus callosum (cc), WM cerebellar (WM Cb), and WM brainstem (WM BS) fibers.

5. Discussion

This study shows, for the first time, the great advantage of using DBL-FS for the
detection and characterization of the morphometric brain changes in a rodent model of
schizophrenia. This Bayesian model was adapted for neuroimaging data, characterized
by a low sample-to-variable ratio (53 samples vs. 1,077,656 voxels in our case) relying on
a dual formulation of the Bayesian Linear Regression model. Furthermore, as the main
novelty of this proposal, we combine this dual formulation with a prior over the primal
weights to learn the feature relevance over the input features, forcing an automatic FS.
Finally, we can exploit the Bayesian nature of the model to include specific prior knowledge
to guide the learning process and counterweight the limitations caused by the low sample
size of the problem.

Thus, the comparison in terms of performance with the baselines provides clear
evidence of the promising results of the proposed DBL-FS model in the characterization of
neuroimaging data in mental disorders. Note that DBL-FS is able to largely outperform
the baselines in prediction accuracy, showing an advantage of 5.7% in terms of accuracy
over the best baseline. In addition, DBL-FS is the only method capable of detecting regions
within the three brain tissues that are known to be relevant in the biology of schizophrenia.
In this sense, the relevance learned by the GPs is inconsistent between the different LOO
iterations, generating a scattered voxel selection and, therefore, a non-localized, unreliable,
and uninterpretable mask. On the other hand, KSSHIBA provides a consistent result but
only finds relevant regions within WM tissue and, therefore, ignores relevant regions and
includes some irrelevant areas.

Analyzing in detail the regions selected by the DBL-FS and DBL-FS+Ek models, we
can verify that these areas belong to brain regions whose morphometric changes have been
related to schizophrenia, based on the literature. First, as for CSF, the areas with the greatest
weight were the most frontal areas of the lateral ventricles and the third ventricle. One of
the morphometric hallmarks in schizophrenia is the enlargement of the ventricles [23,40],
which is consistent with the learned selection. Second, regarding GM, our model clearly
defined anatomical areas, such as the prefrontal cortex (PFC), hippocampus, amygdala,
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and septum, some of them in both hemispheres. Numerous studies have demonstrated the
relevance of the morphological changes of these areas in mental disorders [41,42] together
with the disconnection and lack of symmetry between both cerebral hemispheres [43,44].
Similar volumetric abnormalities have also been reported for the animal model used
in this study [24,45]. In addition, the method also detected the medial septum, which
plays a significant role in dopamine-related disorders such as schizophrenia [46,47] and
addictions [48–50], which highlights the relevance of this structure in mental disorders.
Regarding WM, the method found three well-defined brain areas, the frontal part of corpus
callosum and WM tracts of the brainstem and the cerebellum [51,52].

Regarding the inclusion of expert knowledge by means of the α prior, it reveals two
interesting behaviors. First, it demonstrates the robustness and potential of the standard
DBL-FS since it is able to obtain similar accuracy and roughly similar brain masks to its
DBL-FS+EK extension without the need for expert information. Second, the possibility of
including expert knowledge makes the model converge faster, and it also refines the brain
region selection. It is important to note that, although the expert knowledge guides the
inference process, the model is also learning from the data, allowing it to redefine the initial
expert knowledge into a specific set of voxels. For instance, looking at Figure 3, we can see
that using expert knowledge, we obtain a higher relevance associated with the core of the
WM brainstem and hippocampal areas.

6. Conclusions

This article shows a novel Bayesian approach using linear regression to characterize
neuroimaging data, tested in an animal model of schizophrenia. The proposed DBL-FS+EK
model allowed us to efficiently work with neuroimaging data, characterized by a low
sample-to-variable ratio. This is achieved by taking advantage of its Bayesian formulation to
work in the dual space while learning a voxel importance for feature selection. Furthermore,
the use of a specific prior to force sparsity can be combined with expert knowledge to
guide the model. The proposed model was analyzed using MRI data from a rodent model
of a schizophrenia database and compared to different baselines. The results provided
an outstanding classification performance of DBL-FS+EK, improving the accuracy of the
second best classifier, SVM, in ∼6%. Furthermore, looking at the selected voxels and their
associated relevance, we can confirm that the proposed model is able to detect biologically
relevant areas for the characterization of this disease, as it clearly agrees with known
literature.
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Appendix A. DBL-FS Variational Inference

This section explains in detail the development of the variational inference of the
proposed DBL-FS indicated in the Methods section. In particular, here we present the
calculation of the mean field approximation of the model parameters:

q(Θ) = q(w)q(a)q(α)q(τ), (A1)

where each term is calculated applying Equation (9) to the joint probability for each random
variable to obtain the updated model rules.

Appendix A.1. Mean Field Approximation of a

Using the mean field approximation over variable a, we find that the logarithm of its
approximate posterior is:

ln (q(a)) = E[ln (p(y|X, a, τ))] +E[ln (p(w|α, a))] + const. (A2)

If we develop the first term in the equation, we have:

ln (p(y|X, a, τ)) =
N

∑
n=1

lnp(yn|xn,:, a, τ) =
N

∑
n=1

lnN
(

xn,:XTa, τ−1
)

=
N

∑
n=1

(
1
2

ln (τ)− τ

2
(yn − aTXxT

n,:)(yn − xn,:XTa)) + const

=
N
2

ln (τ)− τ

2

N

∑
n=1

(
y2

n − 2ynxn,:XTa + aTXxT
n,:xn,:XTa

)
+ const, (A3)

and, calculating the expectation of this expression, we obtain:

Eτ [ln (p(y|X, a, τ))] =
N
2

ln(〈τ〉) + 〈τ〉yKa− 〈τ〉
2

aTKTKa + const. (A4)

Equivalently, the second term can be calculated as:

ln (p(w|α, a)) =
D

∑
d=1

lnp(wd|αd, a) =
D

∑
d=1

lnN
(

0, α−1
d

)
=

D

∑
d=1

(
1
2

ln (αd)−
1
2

aTx:,dαdxT
:,da
)
+ const

=
1
2

D

∑
d=1

ln (αd)−
1
2

D

∑
d=1

(
aTx:,dαdxT

:,da
)
+ const, (A5)

and, we if we use the expectation, we have:

Eα[ln (p(w|α, a))] =
1
2

D

∑
d=1

ln(〈αd〉)−
1
2

aTXdiag(〈α〉)XTa + const. (A6)

Now, joining Equations (A4) and (A6), we obtain:

ln (q(a)) = 〈τ〉yTKa− 〈τ〉
2

aTKTKa− 1
2

aTXdiag(〈α〉)XTa + const. (A7)
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Therefore, we can identify the parameters of the q distribution on this equation, having:

q(a) = N (a|〈a〉, Σa) (A8)

where the mean is:
〈a〉 = τΣaKTy (A9)

and the variance is:
Σ−1

a = Xdiag(〈α〉)XT + 〈τ〉KTK (A10)

Appendix A.2. Mean Field Approximation of α

Now, using the mean field approximation over variable α, we find that the logarithm
of its approximate posterior is:

ln (q(α)) = E[ln (p(w|α, a))] +E[ln (p(α))] + const (A11)

Developing the first term, we obtain:

ln (p(w|α, a)) =
1
2

D

∑
d=1

ln (αd)−
1
2

D

∑
d=1

Tr{aTx:,dαdxT
:,da}+ const, (A12)

and we can apply the expectation to obtain:

Ea,τ [p(w|α, a)] =
1
2

D

∑
d=1

ln (αd)−
1
2

D

∑
d=1

αdTr{xT
:,d〈aaT〉x:,d} (A13)

If we look at the second term, we have

ln (p(α)) =
D

∑
d=1

(− bα
0 αd + (aα

0 − 1) ln (αd)) + const, (A14)

where we can apply the expectation of the function as:

E[ln (p(α))] =
D

∑
d=1

ln(p(αd)) =
D

∑
d=1

(− bα
0 αd + (aα

0 − 1) ln (αd)) + const. (A15)

Now, if we sum Equations (A13) and (A15), we obtain:

ln(q(α)) =
D

∑
d=1

((
1
2
+ aα

0 − 1
)

ln(αd)−
αd
2
(Tr{xT

:,d〈aaT〉x:,d}+ 2bα
0)

)
+ const. (A16)

Thus, if we identify terms on the variable distribution, we have:

q(αd) =
D

∏
d=1

Γ
(
αd|aαd , bαd

)
, (A17)

where the first parameter is:

aα =
1
2
+ aα

0 , (A18)

and the second parameter can be expressed as:

bα = bα
0 +

1
2

diag(XT〈aaT〉X). (A19)
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Appendix A.3. Mean Field Approximation of τ

Following the same steps as in the two previous approaches, we use the mean field
approximation over variable τ to obtain the logarithm of the approximate posterior:

ln (q(τ)) = E[ln (p(y|X, a, τ))] + E[ln (p(τ))] + const. (A20)

Therefore, the first term on this equation is:

ln (p(y|X, a, τ)) =
N
2

ln(τ)− τ

2

(
N

∑
n=1

y2
n − 2Tr

{
yTKa

}
+ Tr

{
KTKaaT

})
+ const, (A21)

and, applying the expectation we obtain:

Ea[ln (p(y|X, a, τ))] =
N
2

ln(τ)

− τ

2

(
N

∑
n=1

y2
n − 2Tr

{
yT K〈a〉

}
+ Tr

{
KTK〈aaT〉

})
+ const. (A22)

The second term is defined as:

E[ln (p(τ))] = ln (p(τ)) = −bτ
0 τ + (aτ

0 − 1) ln (τ) + const. (A23)

Now, if we sum Equations (A22) and (A23), we obtain:

ln (q(α)) =
(

N
2
+ aτ

0 − 1
)

ln (τ)

− τ

2

(
N

∑
n=1

y2
n − 2Tr

{
yTK〈a〉

}
+ Tr

{
KTK〈aaT〉

}
+ 2bτ

0

)
+ const. (A24)

Therefore, following the same procedure as with the previous variables, we identify
terms from the distribution and obtain:

q(τ) = Γ(τ|aτ , bτ), (A25)

where the first parameter is:

aτ =
N
2
+ aτ

0 , (A26)

and the second one is:

bτ =
1
2
(

N

∑
n=1

y2
n − 2Tr

{
yTK〈a〉

}
+ Tr

{
KTK〈aaT〉

}
) + bτ

0 . (A27)

Appendix B. Lower Bound Inference

As mentioned in the Methods section, we use the Kullback–Leibler divergence to first
determine the similarities between two distribution where, for any two probability density
functions p(x) and q(x), we have:

DKL =
∫

q(x) ln
q(x)
p(x)

dx (A28)
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In our case, if we particularize for the true posterior and the posterior approximation,
the divergence can be expressed as:

DKL = −
∫

q(Θ) ln
(

q(Θ)

p(Θ|X)

)
dΘ =

∫
q(Θ) ln(q(Θ))dΘ−

∫
q(Θ) ln(p(Θ|X))dΘ

= Eq[ln(q(Θ))]−Eq[ln(p(Θ|X))]. (A29)

Developing the conditional probability we obtain:

DKL = Eq[ln(q(Θ))]−Eq[ln(p(Θ, X))] + ln(p(X)). (A30)

Due to the impossibility of working with this distribution because the marginal
distribution p(X) cannot be calculated, we use an Evidence Lower Bound (ELBO/LB) to
this expression [34]. The LB is the divergence of negative KL plus ln(p(X)); therefore, the
greatest similarity between the two functions is achieved by maximizing this new measure.
We can calculate the LB as:

Lq = −
∫

q(Θ) ln
(

q(Θ)

p(X, Θ)

)
dΘ =

∫
q(Θ) ln(p(X, Θ))dΘ−

∫
q(Θ) ln(q(Θ))dΘ

= Eq[ln(p(X, Θ))]−Eq[ln(q(Θ))] (A31)

In order to easily calculate this lower bound, we will separately calculate the terms
related to Eq[ln(p(X, Θ))] and to the entropy in the following subsections.

Appendix B.1. Terms Associated to Eq[ln(p(X, y, Θ))]

This first term of the lower bound would be composed by the following terms:

Eq[ln(p(X, y, Θ))] = Eq[ln(p(X))] +Eq[ln(p(w | α, a))] +Eq[ln(p(α))]
+Eq[ln(p(y| a, X, τ))] +Eq[ln(p(τ))] (A32)

This way, the different elements of this equation can be calculated as:

Eq[ln(p(w | α, a))] = −D
2

ln(2π) +
D
2

D

∑
d=1

(
ψ
(
affd

)
− ln

(
bffd

))
−

D

∑
d=1

(
affd

)
+ bα

0

D

∑
d=1

(
affd

bffd

)
(A33)

Eq[ln(p(α))] = (aα
0 ln(bα

0)− ln(Γ(aα
0)))

+
D

∑
d=1

(
−bα

0
affd

bffd

+ (aα
0 − 1)

(
ψ
(
affd

)
− ln

(
bffd

)))
(A34)

Eq[ln(p(w, α))] =

(
D
2
+ aα

0 − 1
) D

∑
d=1

(
ψ
(
affd

)
− ln

(
bffd

))
− D

2
ln(2π)

+ (aα
0 ln(bα

0)− ln(Γ(aα
0)))−

D

∑
d=1

(
affd

)
(A35)
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Eq[ln(p(y| a, X, τ))] = − ND
2

ln(2π) +
D
2

N

∑
n=1

(
Eq[ln(τ)]

)
− 1

2
Eq[τ]

(
N

∑
n=1

y2
n −2 Tr

{
yT K〈a〉

}
+ Tr

{
〈a, aT〉KT K

})
= − ND

2
ln(2π) +

D
2
(ψ(aτ)− ln(bτ))− aτ +

aτ

bτ
bτ

0 (A36)

Eq[ln(p(τ))] = aτ
0 ln(bτ

0)− ln(Γ(aτ
0))− bτ

0
aτ

bτ
+ (aτ

0 − 1)(ψ(aτ)− ln(bτ)) (A37)

Eq[ln(p(y, τ| a, X))] = − ND
2

ln(2π)− aτ + aτ
0 ln(bτ

0)− ln(Γ(aτ
0))+(

D
2
+ aτ

0 − 1
)
(ψ(aτ)− ln(bτ)) (A38)

Appendix B.2. Terms of Entropy

The second term in the LB expression is the entropy of the model parameters:

Eq[ln(q(Θ))] = Eq[ln(q(w))] +Eq[ln(q(α))] +Eq[ln(q(τ))], (A39)

where the entropy of these parameters is:

Eq[ln(q(w))] =
D
2

ln(2πe) +
D
2

ln|Σw| (A40)

Eq

[
ln
(

q
(

α(m)
))]

=

Kc

∑
k=1

(
a

ff(m)
k

+ ln
(

Γ
(

a
ff(m)

k

))
−
(

1− a
ff(m)

k

)
ψ

(
a

ff(m)
k

)
− ln

(
b

ff(m)
k

))
(A41)

Eq

[
ln
(

q
(

ø(m)
))]

= aø(m) + ln
(
Γ
(
aø(m)

))
−
(
1− aø(m)

)
ψ
(
aø(m)

)
− ln

(
bø(m)

)
(A42)

Appendix B.3. Complete Lower Bound

Finally, joining Equations (A32) and (A39), the complete lower bound is calculated as:

Lq = −
(

D
2
+ aα

0 − 1
) Kc

∑
k=1

(ln(bαk ))−
(

D
2
+ aτ

0 − 1
)
(ln(bτ))

− D
2

ln|Σw|+
Kc

∑
k=1

(ln(bαk )) + ln(bτ) + const (A43)
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