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1 Introduction

This article proposes testing that the conditional distribution of an ergodic and stationary

time series process given the available information is symmetric around a nonparametric

regression function. The test is valid under fairly general conditions, which include situations

where conditional location-scale models are too restrictive.

Testing for conditional inference is well motivated. Statistical inferences can be improved

under the conditional symmetry assumption. Location and dispersion can be unambiguously

defined under symmetry, and the center of symmetry can be robustly, even adaptively es-

timated. Also, testing for conditional symmetry is a useful specification tool, since most

popular specifications are ruled out when the hypothesis of symmetry is rejected.

Conditional symmetry is also a relevant feature worth testing in econometrics and non-

parametric modelling. For instance, we may be interested in testing whether losses are more

likely than gains in stock markets controlling for the available information, or whether nega-

tive and positive shocks are equally likely in macroeconomic models. Checking asymmetries

in business cycles is also well motivated. The rich body of empirical studies suggests that

business cycle expansions appear to be more persistent and less volatile than contractions.

For example, DeLong and Summers (1986), Hussey (1992), Verbrugge (1997) and Belaire-

Franch and Contreras (2002) all showed that economic time series tend to behave asym-

metrically over the business cycle. Brunner (1992) argued that the assumption of Gaussian

shocks places strong restrictions on the time series behavior of economic fluctuations. Models

built upon the Gaussian assumption would be too restrictive and even produce unreliable

conclusions. The assumption of symmetry would also affect our forecasts. Symmetry im-

plies that positive shocks to the conditional mean are as likely as negative shocks. If this

is not the case, forecasts should adjust to the possibility that positive and negative forecast

errors are not equally likely. For example, Campbell and Hentschel (1992) proposed the

“No news is good news”model in which the residuals in a model of log returns conditional

on volatility are asymmetrically distributed. Therefore, both theoretically and empirically

speaking, whether or not to impose symmetric Gaussian shocks to the conditional mean is

a crucial problem to be addressed in macro-model-building exercises before exploring more

complicated business cycle structures.

The first symmetry test is due to Smirnov (1947), and many alternative proposals have

been proposed since then. Testing symmetry of the unknown marginal distribution after

centering is an effective way of testing conditional symmetry when innovations are indepen-

dent of the explanatory variables. See, for instance, Gupta (1967), Butler (1969), Gastwirth

(1971), Doksum et al. (1977), Randles et al. (1980), Aki (1981), Antille et al. (1982),
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Bhattacharya et al. (1982), Hušková (1984), Koziol (1985), Csörgo and Heathcote (1987),

Schuster and Barker (1987), Hollander (1988), Ahmad and Li (1997), Henze et al. (2003) ,

Psaradakis (2003) and Fang et al. (2015). These tests are unable to detect infinitely many

departures from the conditional symmetry hypothesis where innovations are not indepen-

dent of the explanatory variables, e.g. under conditional heteroskedasticity. The hypothesis

of independence between innovations and explanatory variables has been relaxed to allow

conditional location-scale models, where rather than the innovations, only suitably scaled

innovations are assumed to be independent of covariates. For instance, Fan and Gencay

(1995) and Bai and Ng (2001) considered fully parametric location and scale functions,

motivated by testing conditional symmetry in GARCH-type models. The resulting test is

in fact a specification test of the conditional symmetry center when innovations are inde-

pendent of covariates. Dette et al. (2002), Neumeyer and Dette (2007) and Hušková and

Meintanis (2012) considered conditional symmetry tests in the context of a nonparametric

location-scale model. However, these tests are still inconsistent in directions where the scaled

innovations are not independent of the covariates, which is likely in a serially dependent data

context, e.g. conditional heteroskewness and heterokurtosis are expected when dealing with

financial data (see, Harvey and Siddique, 1999, 2000 and Brooks et al., 2005).

Delgado and Escanciano (2007) proposed a test of conditional symmetry around a para-

metric location function in a serial dependence context, which is valid when the conditional

location/scale assumption fails. The null hypothesis is rejected when the parametric center of

symmetry is misspecified, even when the conditional distribution is symmetric with respect

to some other center. Hydman and Yao (2002) introduced conditional density estimators

under absolutely regular (ARE) serial dependence, which were applied to testing symmetry

of the conditional density evaluated at a given conditioning point. We consider a test of

the hypothesis that the conditional distribution is symmetric a.s. in a pure nonparametric

context, which does not need to estimate the underlying conditional distribution, just the

underlying nonparametric regression, and is also valid in a general nonparametric set up.

The test is based on the joint empirical characteristic function of nonparametric residuals

and the explanatory variables and only needs to estimate the nonparametric regression using

kernels. The empirical characteristic function has been used for testing symmetry of the

innovations marginal distribution by Csörgo and Heathcote (1987), Henze et al. (2003) and

Hušková and Meintanis (2012), amongst others. These type of tests are easier to justify

under fairly weak regularity conditions compared with those based on comparing empirical

distribution functions. Our test statistic is the integrated squared difference between the

restricted and unrestricted estimators of the joint characteristic function of nonparametric

residuals and explanatory variables with respect to a weighting function. Unlike tests based
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on smooth estimators of the conditional distribution, like the pointwise test of Hydman and

Yao (2002), our test is sensitive in the direction of local alternatives converging to the null

at the parametric rate T−1/2, with T the sample size. The critical values can be estimated

with the assistance of a bootstrap technique.

The rest of the article is organized as follows. In next section we present the testing

procedure and the basic asymptotic results assuming that the regression function is known.

These results are used in section 3 for deriving the asymptotic distribution of the test sta-

tistic when the nonparametric regression is estimated. Critical values are estimated using a

bootstrap procedure. The finite sample performance of the test is studied in section 4 by

means of Monte Carlo experiments. In section 5 we report the results of two applications of

the test using real data to study whether losses are more likely than gains in stock markets

and whether expansions and contractions are equally likely in business cycles. Section 6

is devoted to conclusions and final remarks. Mathematical proofs of the main results and

discussion of regularity conditions are deferred to a mathematical appendix at the end of the

article.

2 The testing procedure

Consider a R1+d−valued strictly stationary and ergodic time series process {(Yt, Zt)}t∈Z
defined on the probability space (Ω,F ,P), which satisfies the Markov’s property

P (Yt ≤ y| At−1) = P (Yt ≤ y|Xt) for all y ∈ R a.s., (1)

where At := σ
(
{Ys, Zs+1}ts=−∞

)
, σ(·) means smallest sigma algebra and

Xt = (Yt−1, Zt, Yt−2, Zt−1, ..., Yt−k, Zt−k+1)τ = (X1t, ..., Xpt)
τ , with p = k(d+ 1), (2)

and “τ”denotes transpose. That is, the only relevant information for explaining Yt are the

first k lags of (Yt, Zt+1) .

We propose a nonparametric test for the hypothesis that the conditional distribution of

Yt is symmetric about the (nonparametric) regression function, i.e.

H0 : P (Ut ≤ u|Xt) = P (−Ut ≤ u|Xt) for all u ∈ R a.s., (3)

where Ut := Yt − r(Xt) are innovations and r(Xt) := E (Yt|Xt) is the regression function.

The alternative hypothesis, H1, consists of all non-possible events under H0.

Remark 1 A necessary, but non-suffi cient, condition for H0, is that the marginal distrib-
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ution of Ut is symmetric about zero, i.e. that P (Ut ≤ u) = P (−Ut ≤ u). The conditional

distribution of Ut is conditionally symmetric about zero iff E (sin(Utu)|Xt) = 0 for all u ∈ R
a.s., i.e. iff the conditional characteristic function is real, while the marginal distribution

function of Ut is symmetric about zero iff E (sin(Utu)) = 0 for all u ∈ R, i.e. iff the marginal

characteristic function is real. The conditional expectation can be different than zero, while

the marginal expectation is zero. There are many consistent tests for marginal symmetry that

are inconsistent for H0 in infinitely many directions where Ut and Xt are not independent, as

it was already pointed out in the introduction. Tests designed for testing symmetry of the mar-

ginal distribution of St := Ut/
√
E( U2

t |Xt), in the context of non-parametric location/scale

models, are also inconsistent for H0 in infinitely many directions where the assumption of a

conditional location/scale model is not satisfied, e.g. when higher conditional moments of St
given Xt are not constant.

Since (3) is satisfied iff the conditional characteristic function of Ut given Xt is real, H0

can be equivalently expressed as,

H0 : E (sin(Utu)|Xt) = 0 for all u ∈ R a.s.

Therefore, applying the integrated conditional moment (ICM) approach (see e.g. Bierens

1982, Bierens and Ploberger 1997 and references therein), H0 and H1 can be alternatively

expressed in terms of the function

J(u, x) : = 2i · E [E (sin(Utu)|Xt) exp (iXτ
t x)]

= 2i · E [sin(Utu) exp (iXτ
t x)]

= E [exp (i (Xτ
t x+ Utu))− exp (i (Xτ

t x− Utu))] ,

with i2 = −1, which is the difference between the joint characteristic functions of (Ut, Xt) and

(−Ut, Xt) . That is, H0 is satisfied iff |J(v)| = 0 for all v ∈ R1+p, where |a+ ib| =
√
a2 + b2.

Then, an ICM test is based on an estimator of J using nonparametric residuals. However, as

it happens in most semiparametric problems involving integrals of nonparametric regression

functions, or other conditional expectations, random denominators involve serious technical

diffi culties that are circumvented using different strategies. In testing problems like ours, a

reasonable alternative consists of ridding off the random denominator problem by weighting

by the density estimates evaluated at the data points (e.g. Delgado and González-Manteiga

2000.) We follow this approach. Assuming that Xt admits a bounded Lebesgue density fX ,
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H0 can be alternatively expressed in terms of the weighted version of J(u, x),

J̄(u, x) : = 2i · E
[
sin(Utu) exp (iXτ

t x) f 2
t

]
,

with ft := fX (Xt) , i.e., we can express H0 and H1 as,

H0 :
∣∣J̄(v)

∣∣ = 0 for all v ∈ R1+p vs H1 :
∣∣J̄(v)

∣∣ 6= 0 for some v ∈ R1+p. (4)

Consider a Lebesgue integrable even function W : R1+p → R+ such that

{
v ∈ R1+p : W (v) = 0

}
has Lebesgue measure 0. (5)

Then, H0 and H1 can be expressed as a significance test on the parameter,

η(W ) : =

∫ ∣∣J̄(v)
∣∣2W (v)dv

= 4

∫ ∫ ∣∣E [sin(Utu) [cos (Xτ
t x) + i sin (Xτ

t x)] f 2
t

]∣∣2W (u, x)dudx

= 4

∫ ∫ (
E2
[
sin(Utu) cos (Xτ

t x) f 2
t

]
+ E2

[
sin(Utu) sin (Xτ

t x) f 2
t

])
W (u, x)dudx

=

∫
ατ (v)α(v)W (v)dv,

where α(v) := E [Vt(v)], vτ = (u, xτ ) and Vt(v) := 2 sin(Utu)·f 2
t ·θt(x), with θt(x) = θ(x,Xt)

and θ(x, x̄) := (sin(x̄τx), cos(x̄τx))τ . Henceforth, an unspecified integral denotes integration

over the whole space. That is, (4) can be alternatively expressed as

H0 : η(W ) = 0 vs H1 : η(W ) 6= 0.

Assume by the moment that r(Xt) and the corresponding errors Ut are observable. Given

a time series of length T, {(Yt, Zt)}Tt=1 , the sample analogue of η(W ) is

ηT (W ) :=

∫
ατT (v)αT (v)W (v)dv,

with

αT (v) :=
1

T̃

T∑
t=k+1

Vt(v),

and T̃ = T −k. If the regression function were known, we would consider the test ΨW,T (c) =

1{TηT (W )>c}, where c is the critical value.
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Note E (Vt(v)| At−1) = 0 a.s. for each v ∈ R1+p, i.e. {Vt (v)}t∈Z is a martingale difference

sequence with respect to the filtration {At}. A convenient setting for studying the asymptotic

distribution of
√
TαT under H0 and, hence, the distribution of TηT (W ), is the infinite

dimensional Hilbert space L2
W of measurable R2-valued functions on R1+p that are square

integrable with respect to the measure W (v)dv. The norm in L2
W will be denoted by

‖g‖L2W :=

(∫
gτ (v)g(v)W (v)dv

)1/2

. (6)

Since
√
TαT is a random element of L2

W , the asymptotic distribution of
√
TαT under H0 is

obtained by applying a central limit theorem (CLT) for real valued vectors of martingale

differences taking values in the Hilbert space L2
W (e.g. Walk 1977, Jakubowski 1980, Métivier

and Nakao 1987, Xie 1995 or, more recently, Kundu, Majumdar and Mukherjee 2000.) Let

α∞ be a centered Gaussian process in L2
W with covariance kernel

Ω (v1, v2) := E [α∞(v1)ατ∞(v2)] = E [Vt(v1)V τ
t (v2)] , v1, v2 ∈ R1+p.

The law of large numbers (LLN) and CLT needed to justify the test ΨW,T (c) require less

restrictive assumptions than those assumed by Delgado and Escanciano (2007) to justify

tests based on generic functionals of J̄ estimators suitably scaled, e.g. Kolmogorov-Smirnov

type test. Next proposition establishes the properties of the asymptotic power function

βW (c) = limT→∞ E [ΨW,T (c)] under H0, H1 and local alternatives of the form

H1T : E (sin (Utu)|Xt) =
γt(u)√
T

a.s.,

where γt is a random element of L2
W and δ(u, x)τ := 2 · E [γt(u)f 2

t θt(x)] 6= 0 on a set of

positive Lebesgue measure. Notice that, if the conditional distribution of Ut given Xt admits

a Lebesgue density, we can equivalently express H1T as,

H1T : f(u|Xt) = f0(u|Xt)

[
1 +

ht(u)√
T

]
a.s. for all u ∈ R,

where f0( ·|Xt) is positive, symmetric, and integrates to one a.s., and ht is a random

element of L2
W with ht(u)/

√
T ≥ −1 and

∫
f0(u|Xt)ht(u)du = 0 a.s. Then γt(u) =∫

sin(ūu)f0( ū|Xt)ht(ū)dū. Define, ΦW (•) = P
(
‖α∞‖2

L2W
> •
)
.

Proposition 1 Assume that {(Yt, Zt)}t∈Z is a strictly stationary ergodic process satisfying

(1), such that Xt in (2) admits a bounded Lebesgue density fX , and positive weightsW satisfy
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(5). Then, for any c > 0, under H1

βW (c) = 1, (7)

under H0,

βW (c) = ΦW (c) , (8)

and under H1T ,

βW (c) = P
(
‖α∞ + δ‖2

L2W
> c
)
≥ ΦW (c) . (9)

Therefore, the test ΨW,T (cα) with critical value cα, such that ΦW (cα) = α is valid for

testing H0 in the direction of H1, and is sensitive to local alternatives H1T . The asymptotic

critical values are not pivotal and they must be estimated, e.g. using the bootstrap method

introduced in next section.

A convenient weight function, introduced by Fan (1998) in the context of goodness-of-fit

testing of a probability density function (pdf), is W̄h(v) := (2π)−1−p K̄(hv)2, where K̄(v) =∫
exp (iv̄′v)K(v̄)dv̄ is the Fourier’s transform of K(v) :=

∏1+p
j=1 k(vj) with v = (v1, ..., vp+1)τ

and k a univariate pdf. With this choice of weights, applying Plancherel’s theorem after a

change of variable (see Fan 1998, Lemma 2.1),

η
(
W̄h

)
=

∫
J̄2(v)

1

(2π)1+p

[∫
exp(ihvτ v̄)K(v̄)dv̄

]2

dv

=

∫ [∫
f 2
X(x̄)Kh (u− ū, x− x̄) (F −G) (dū, dx̄)

]2

dudx

=

∫ (
f̄h − ḡh

)2
(v)dv,

where F (u, x) := P (Ut ≤ u,Xt ≤ x) and G(u, x) := P (−Ut ≤ u,Xt ≤ x) are the joint c.d.f.’s

of (Ut, Xt) and (−Ut, Xt), respectively, f̄h and ḡh are the densities of the convolutions Kh ∗
F̄ and Kh ∗ Ḡ, respectively, where F̄ (u, x) :=

∫
{ū≤u,x̄≤x} f

2
X(x̄)F (dū, dx̄) and Ḡ(u, x) :=∫

{ū≤u,x̄≤x} f
2
X(x̄)G(dū, dx̄). That is, the parameter η

(
W̄h

)
is the squared Lebesgue integral

of the difference between the densities of convolutions Kh ∗ F̄ and Kh ∗ Ḡ, with Kh(v) :=

h−1−pK(v/h). When F (resp. G) admits a Lebesgue density f (resp. g), under suitable

conditions, limh→0 f̄h(u, x) = f 2
X (x) f(u, x) and limh→0 ḡh(u, x) = f 2

X (x) g(u, x) by Bochner’s

theorem (see e.g. Prakasa Rao 1983, Theorem 2.1.1).

The estimator of η(W̄h) can be expressed as

ηT (W̄h) =

∫ (
f̄hT − ḡhT

)2
(v)dv,

where f̄hT and ḡhT are the densities of the convolutions Kh ∗ F̄T and Kh ∗ ḠT , respectively,
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with F̄T (u, x) = T̃−1
∑

t f
2
t 1{Ut≤u, Xt≤x} and ḠT (u, x) = T̃−1

∑
t f

2
t 1{−Ut≤u, Xt≤x} the sample

versions of F̄ and Ḡ, respectively. Henceforth, summations run from k + 1 to T . That is,

f̄hT and ḡhT are Rosenblatt-Parzen’s kernel estimators of the densities f̄ and ḡ, respectively,

using a kernelK and a bandwidth h. It can be also justified that f̄hT is a consistent estimator

of f̄ under suitable regularity conditions, with h converging to zero as T diverges to infinity

at a convenient rate (e.g. Prakasa Rao 1983, Theorem 2.1.2). Reasoning as Bickel and

Rosenblatt (1973) in the context of specification testing of a pdf, we can also justify that the

distribution of ηT (W̄h), suitably centered and scaled, can be approximated by a standard

normal assuming that h converges to zero at a suitable rate and smoothness conditions for

the density of F, f, and the regression function r. See Fan (1994) for discussion. In our

proposal the weights W̄h take h fixed.

This test is not feasible, because the functions r and fX are unknown in practice under

H0 and the critical values are not pivotal. A feasible test is introduced in the next section.

3 Implementation and asymptotic justification of the

test

A natural feasible version of ηT (W ) consists of substituting the innovations Ut by nonpara-

metric residuals, once r(Xt) is estimated. Assume that FX(x) = F (∞, x) admits a Lebesgue

density function fX , and consider the kernel estimator of r(x),

r̂T (x) :=
1

f̂XT (x)T̃ apT

∑
t
YtKX

(
Xt − x
aT

)
,

where

f̂XT (x) :=
1

T̃ apT

∑
t
KX

(
Xt − x
aT

)
,

estimates fX(x), KX(x) :=
∫
RK(u, x)du =

∏p
j=1 k(xj) with x = (x1, . . . , xp)

τ , and {aT}T≥1

is a sequence of positive bandwidth numbers. The sample analog of α(u, x) is

α̂T (u, x) :=
2

T̃

∑
t

sin
(
uÛt

)
· f̂ 2

t · θt(x).

where Ût := Yt − r̂t with r̂t := r̂T (Xt), and f̂t := f̂XT (Xt). The feasible version of η(W ) is

η̂T (W ) := ‖α̂T‖2
L2W

,

and the test is Ψ̂W,T (c) = 1{T η̂T (W )>c}.
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For each v ∈ R1+p fixed, α̂T (v) is a type of V − statistics that typically appears when

making inferences on semiparametric models. The following proposition provides a first order

asymptotic representation of η̂T (W ), which is crucial for deriving the asymptotic distribution

of T η̂T (W ) and, hence, to justify the test. The proof of this proposition in the appendix

uses a Hoeffding decomposition argument for α̂T , as in Robinson (1988, 1989) for different

statistics in other semiparametric problems. The asymptotic equivalence is proved assuming

ARE serial dependence, that the functions r and fX are smooth enough, and that Yt admits

enough moments. Our approach is based on results in Robinson (1989) in the context of

testing restrictions on index models using ARE time series. The assumptions discussed in

the appendix involve a relation between the rate of convergence of the bandwidth aT in terms

of T, the parameter governing the degree of dependence of the ARE time series, the number

of moments assumed on Yt, the number of derivatives imposed on r and fX , the dimension

of Xt, and the order of the higher order kernels used. These technical regularity conditions

are presented in the mathematical appendix. Define

η̃T (W ) := ‖α̃T‖2
L2W

,

where

α̃T (v) :=
1

T̃

∑
t
Ṽt (v) ,

with

Ṽt (v) := 2 [sin(uUt)− uUtφt(u)] f 2
t θt(x),

φt(u) := φ(u,Xt) and φ(u, x) := E [cos (uUt)|Xt = x] . Henceforth, the notation “ d→”means

convergence in distribution of random elements taking values in L2
W , and also of random

variables or vectors, OP(1) stands for a sequence of random variables bounded in probability,

oP(1) for a sequence of random variables converging to zero in probability, and “ d=”equality

in distribution.

Proposition 2 Under assumptions in Proposition 1 and assumptions A.1-A.3 in the ap-

pendix,

η̂T (W ) = η̃T (W ) + oP

(
1

T

)
.

Let α̃∞ be a Gaussian element of L2
W with zero mean and covariance function

Σ (v1, v2) := E [α̃∞(v1)α̃τ∞(v2)] = E
[
Ṽt(v1) · Ṽ τ

t (v2)
]
, v1, v2 ∈ R1+p,

and Φ̃W (c) = P
{
‖α̃∞‖2

L2W
> c
}
. Consider the asymptotic power function β̂W (c) =

10



limT→∞ E
[
Ψ̂W,T (c)

]
.

Corollary 1 Under the assumptions in Proposition 2, for any c > 0, under H1

β̂W (c) = 1, (10)

under H0,

β̂W (c) = Φ̃W (c), (11)

and under H1T ,

β̂W (c) = P
(
‖α̃∞ + δ‖2

L2W
> c
)
≥ Φ̃W (c). (12)

Since Φ̃W depends on nuisance parameters, the test is implemented using a bootstrap

technique.

Consider, the Rademacher’s sequence {ζt}
T
t=1+k of i.i.d. r.v.’s with Pζ (ζt = −1)

= Pζ (ζt = 1) = 1/2, where Pζ is the probability measure of the binary random variables

{ζt}
T
t=1+k . Define the α− level critical value cα(W ) : P

(
‖α̃∞‖2

L2W
> cα(W )

)
= α. The boot-

strap estimate of cα(W ) is based on the estimated asymptotic expansion in Proposition 2

using permutted residuals ζtÛt, i.e.,

α̃∗T (u, x) :=
2

T̃

∑
t

[
sin(uζtÛt)− uζtÛtφ̂t(u)

]
f̂ 2
t θt(x),

where

φ̂t(u) :=
1

apT f̂tT̃

∑
`

cos
(
uÛ`

)
KX

(
Xt −X`

aT

)
1{|f̂t|>bT},

and {bT}T≥1 is a sequence of positive trimming numbers converging to zero at a rate related

to aT and T , as indicated in A.4 in the appendix. The trimming is a technical device, which

is introduced to prove the consistency of the bootstrap test, which does not have a practical

effect, as shown in the simulations. The bootstrap critical values

c̃∗αT (W ) := inf
{
c : Pζ

(
T ‖α̃∗T‖

2
L2W
≤ c
)
≥ 1− α

}
,

forms a basis for the α−level test Ψ̂W,T (c̃∗αT (W )). The test can also be based on the p−value
estimate,

p− value∗ := Pζ
(
‖α̃∗T‖

2
L2W

> η̂T (W )
)
.

Next proposition establishes the validity of the bootstrap test.

Proposition 3 Under regularity conditions in Proposition 2 and assumption A.4 in the
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appendix, under H1,

c̃∗αT (W ) = OP(1), (13)

and

p− value∗ p→ 0, (14)

under H0,

c̃∗αT (W ) = cα (W ) + oP(1), (15)

and

p− value∗ d→ U(0, 1). (16)

The critical values are approximated by Monte Carlo as accurately as desired. Then,

the bootstrap critical values and p− value are approximated by c̃∗αT,B(W ) and p− value∗T,B,
respectively, computed as follows,

1. Generate B independent Rademacher’s sequences
{
ζ

(b)
t

}T
t=1

, b = 1, ..., B with B large.

2. Compute

α̃
∗(b)
T (u, x) :=

2

T̃

∑
t

[
sin(uζ

(b)
t Ût)− uζ

(b)
t Ûtφ̂t(u)

]
f̂ 2
t θt(x), b = 1, ..., B.

3. Compute

c̃∗αT,B(W ) = inf

{
c :

(
1

B

B∑
b=1

T
∥∥∥α̃∗(b)T

∥∥∥2

L2W
≤ c

)
≥ 1− α

}
,

and

p− value∗T,B =
1

B

B∑
b=1

1{∥∥∥α̃∗(b)T

∥∥∥2
L2
W

>η̂T (W )

}.

4. Reject H0 at the α− level of significance when η̂T (W ) > c̃∗αT,B(W ) or p−value∗T,B < α.

4 Finite sample performance

In this section we investigate the finite sample performance of the proposed test. The set

up of our Monte Carlo studies is as follows. All simulations in this section are based on

2,000 replications of each experiment using 500 bootstrap resamples. We deliver simulation

results for a 5% significance level and sample sizes of T = 50, 100 and 200 are considered.

Nonparametric regression estimates are computed using the fourth order kernel KX(x) =

0.5(3 − x2)φ(x) with φ(x) the standard normal pdf, and bandwidth aT = c ∗ sX ∗ T−1/3,
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where sX is the sample standard deviation of Xt. We report results for c = 0.5, 1.0, and 1.5.

In each bootstrap replication, the trimming parameter is chosen to be bT = 0.05 ∗ T−1/12.5,

which satisfies our assumptions. Results are fairly insensitive to the choice of bT .

First, consider a weight function W̄N
h (u, x) = exp (−h(u2 + x2)), which corresponds to

the standard normal characteristic function, with h fixed. Henceforth, η̂T (h) := η̂T (W̄N
h ),

which can be expressed as

η̂T (h) =
π1/2

2T̃ 2h1/2

∑
t

∑
s

[
e−

(Ût−Ûs)
2

4h − e−
(Ût+Ûs)

2

4h

]
e−

(Xt−Xs)2
4h f̂ 2

t f̂
2
s , (17)

where Ût’s are nonparametric residuals, and f̂t’s are kernel density estimates. Note that

alternative h provides alternative weight functions. We report h = 0.5 and h = 1, though

we have run simulations with other h values as well as W̄h corresponding to the Cauchy

characteristic function. Results are similar with alternative weight functions.

Applying Proposition 4.1 in Henze, Klar and Meintanis (2003) adapted to our context,

we obtain the computationally convenient expression for η̂∗T (h) = η̂∗T (W̄N
h ),

η̂∗T (h)=
π1/2

2T̃ 2h1/2

∑
t

∑
s

{[
2 +

Ū∗t Ū
∗
s

2h
−
(

1+
(U∗t − U∗s ) Ū∗s

h
+

(U∗t − U∗s )2 Ū∗t Ū
∗
s

4h2

)]
e−

(U∗t −U
∗
s )2

4h

+

[
Ū∗t Ū

∗
s

2h
−
(

1 +
(U∗t + U∗s ) Ū∗s

h
+

(U∗t + U∗s )2 Ū∗t Ū
∗
s

4h2

)]
e−

(U∗t +U∗s )2

4h

}
e−

(Xt−Xs)2
4h f̂ 2

t f̂
2
s ,

where U∗t = ξtÛt are permuted nonparametric residuals, and

Ū∗t =
1

T̃ apT

∑
s
KX

(
Xt −Xs

aT

)
U∗s

f̂s
1{|f̂s|>bT }.

The purpose of the first set of simulations is to study the finite sample performance of our

test under different time series designs. We consider the following nonlinear autoregressive

model of order 1, NLAR(1),

Yt = 0.5Yt−1 exp (−0.5Y 2
t−1) + εt,

where the errors εt are generated as follows:

(AU1) εt ∼ i.i.d. N(0, 1).

(AU2) εt ∼ i.i.d. t5.

(AU3) εt ∼ i.i.d. e11{Z≤0.5}+ e21{Z>0.5}, with e1 ∼ i.i.d. N(−1, 1), e2 ∼ i.i.d. N(1, 1) and

Z ∼ i.i.d. U(0, 1) mutually independent.
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(AU4) εt = σtet, σ2
t = φ0 +φ1σ

2
t−1 +φ2ε

2
t−1, et ∼ i.i.d. N(0, 1) with φ0 = 2, φ1 = 0.5, and

φ2 = 0.3.

(AU5) Same as (AU4) except that φ1 = 0.9 and φ2 = 0.05.

(AU6) εt = λtet and et ∼ tvt , where

λt = σt

√
vt − 2

vt
,

vt =
2(2kt − 3)

kt − 3
,

σ2
t = α0 + α1σ

2
t−1 + α2ε

2
t−1,

kt = β0 + β1kt−1 + β2

ε4
t−1

σ4
t−1

,

with α0 = 2, α1 = 0.9, α2 = 0.05, β0 = 3.5, β1 = 0.2, β2 = 0.5.

(AU7) εt ∼ i.i.d. exp(N(0, 1)).

(AU8) εt ∼ i.i.d. χ2
2.

(AU9) εt ∼ i.i.d. − ln(U(0, 1)).

(AU10) εt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.1, λ4 = −0.18.

(AU11) εt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.001, λ4 = −0.13.

(AU12) εt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.0001, λ4 = −0.17.

Here, Fλ, the generalized lambda distribution, is defined in terms of the inverse of the

cumulative distribution

F−1
λ (u) = λ1 +

[
uλ3 − (1− u)λ4

]
λ2

, 0 < u < 1,

and the λ values here and below are taken from Table 1 of Randles et al. (1980), indicating

different degrees of asymmetry and kurtosis. For instance, the λ values in (AU10) define a

distribution with the associated skewness and kurtosis coeffi cients 2.0 and 21.2, respectively.

The symmetric distributions (AU1)-(AU5) and asymmetric distributions (AU7)-(AU12)

are considered by Delgado and Escanciano (2007). The error terms in (AU4) and (AU5)

follow a generalized autoregressive conditional heteroskedastic [GARCH (1,1)] model of

Bollerslev (1986). Two different sets of parameters are considered, among which the choice

(φ0, φ1, φ2) = (2, 0.9, 0.05) is close to being an IGARCH (1,1) model. In (AU6), we consider

a model for generalized autoregressive conditional heteroskedasticity and heterokurtosis pro-

posed by Brooks et al. (2005), with time-varying degrees of freedom, and the conditional

variance and conditional kurtosis are permitted to evolve separately. See also the autore-
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gressive conditional skewness model developed in Harvey and Siddique (1999, 2000) where,

instead of conditional kurtosis, the conditional skewness is allowed to vary over time. Notice

that (AU1)-(AU6) fall under H0, whereas (AU7)-(AU12) fall under H1.

For the first experiment, we compute η̂T (h) with Xt = Yt−1. In designs (AU1)-(AU12),

we generate T + 300 observations and then discard the first 300 to minimize the effect of

initial values. We investigate the sensitivity of the test to the choice of weight functions W̄N
h

by considering two values of h (i.e. 0.5 and 1). Henceforth, η̂(j)
T (h) for j = 1, 2, and 3 in

the subsequent tables, corresponds to the η̂T (h) test with c taking values 0.5, 1.0, and 1.5,

respectively.

– – – – – – – – – – – – – –

TABLE 1 & 2 ABOUT HERE

– – – – – – – – – – – – – –

Tables 1 and 2 report the percentage of rejections for designs (AU1)-(AU12) for η̂T (0.5)

and η̂T (1), respectively. The tests show a very good size accuracy for moderate sample sizes

and reasonable powers. For (AU5) and (AU6), η̂T (0.5) is slightly undersized for small sample

sizes, which is corrected as sample size increases. On the other hand, both tests tend to be

oversized for (AU2) for T = 50. Among the alternatives considered, (AU10) is harder to

detect as it is fairly close to symmetry.

We also consider the NLAR(1) design in Hyndman and Yao (2002): Yt = 0.23Yt−1(1.6−
Yt−1) + 0.4εt with εt ∼ i.i.d. N(0, 1) truncated in the interval [−12, 12], which is in fact

a quadratic AR(1) model. Note that Hyndman and Yao (2002)’s test can only be used

to test symmetry of the conditional density evaluated at a given conditioning point, while

our conditional test is designed to check symmetry uniformly in the conditioning variable.

Hyndman and Yao (2002) report the p-values evaluated at a few Xt points using 500 time

series observations. For this quadratic AR(1) model, the conditional distribution of Yt given

Xt = Yt−m is symmetric for m = 1 but not necessarily so for m > 1. This model is non-

stationary. When c = 1, for sample sizes T = 50, 100 and 200, empirical sizes of η̂T (0.5)

for m = 1 (which falls under H0) are respectively 0.04, 0.05 and 0.05. The empirical powers

for m = 3 (which falls under H1) are respectively 0.05, 0.06 and 0.07. Note that since the

design m = 3 is very close to symmetry under our set up, the low power is expected, and

even when sample size reaches 1000, power only increases to 0.16. Results for c = 0.5 and

1.5 are quantitatively similar and are omitted.

The second set of experiments compares the performance of our test with others designed

to test marginal symmetry in two situations and in two directions. First, when the mar-

ginal and conditional distributions are both symmetric with i.i.d. data. Second, when the
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marginal distribution is symmetric, but the conditional distribution is asymmetric under

serial dependence. To this end, we introduce a marginal version of the test statistic in (17)

intended to detect departures from the hypothesis of symmetry of the marginal distribution

of Ut around zero, i.e

η̂T,m(h) =
π1/2

2T̃ 2h1/2

∑
t

∑
s

[
e−

(Ût−Ûs)
2

4h − e−
(Ût+Ûs)

2

4h

]
,

with critical values also estimated by the permutation procedure.

Specifically, we compare our test with Fang et al. (2015), TS henceforth. Also, we

consider for comparison the marginal test η̂T,m(h) using Ût = (Yt− Y T )/sY with Y T and sY
respectively the sample mean and sample standard deviation of Yt. Tests TS and η̂T,m(h) are

designed to detect departures of the null hypothesis of symmetry of the marginal distribution

using i.i.d. data. Tests based on η̂T,m(h) and TS are inconsistent to test conditional symmetry

when the marginal distribution is symmetric.

Table 3 reports the percentage of rejections under the null and alternative hypotheses

under designs considered by Delgado and Escanciano (2007) and Fang et al. (2015). We

use the test statistics η̂T (0.5) and η̂T,m(0.5), where the conditional test η̂T (0.5) uses non-

parametric residuals Ût = Yt − r̂(Xt) and Xt = Yt−1, and the marginal test η̂T,m(0.5) uses

standardized data Ût = (Yt−Y T )/sY . Results for η̂T (1) are similar and, hence, are omitted.

– – – – – – – – – – – – – –

TABLE 3 ABOUT HERE

– – – – – – – – – – – – – –

The designs considered are listed below.

• Symmetric distributions

(S1) Yt ∼ i.i.d. N(0, 1).

(S2) Yt ∼ i.i.d. t5.

(S3) Yt ∼ i.i.d. e11{Z≤0.5}+ e21{Z>0.5} with e1 ∼ i.i.d. N(−1, 1), e2 ∼ i.i.d. N(1, 1) and

Z ∼ i.i.d. U(0, 1) mutually independent.

(S4) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = 0.19754, λ3 = λ4 = 0.134915.

(S5) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = λ4 = −0.08.

(S6) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −0.397912, λ3 = λ4 = −0.16.

(S7) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = λ4 = −0.24.

• Asymmetric distributions

(A1) Yt ∼ i.i.d. exp (N(0, 1)).
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(A2) Yt ∼ i.i.d. χ2
2.

(A3) Yt ∼ i.i.d. − ln(U(0, 1)).

(A4) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = 1, λ3 = 1.4, λ4 = 0.25.

(A5) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.0075, λ4 = −0.03.

(A6) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.1, λ4 = −0.18.

(A7) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.001, λ4 = −0.13.

(A8) Yt ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.0001, λ4 = −0.17.

(A9) Yt = et − et−1 with et ∼ i.i.d. exp (N(0, 1)).

(A10) Yt = et − et−1 with et ∼ i.i.d. χ2
2.

(A11) Yt = et − et−1 with et ∼ i.i.d. − ln(U(0, 1)).

In designs (S1)-(S7), Y ′t s are i.i.d. symmetric around its mean with different kurtosis

coeffi cients. In designs (A1)-(A8), Y ′t s are i.i.d. and asymmetric around the mean with a wide

range of kurtosis. In (A9)-(A11), Y ′t s are identically distributed and not serially independent,

but they are symmetric about its mean. However, in these cases, the conditional distribution

of Yt given Yt−1 is not symmetric. We observe in Table 3, that in designs (S1)-(S5), under the

null hypothesis of marginal symmetry and i.i.d. data, all the tests have good size accuracy,

even for the smallest sample size. In designs (S6) and (S7), η̂T,m(0.5) and η̂T (0.5) are

slightly oversized. The three tests have reasonable power in most designs (A1)-(A8) under

the alternative hypothesis of marginal asymmetry. Within this group, the alternative (A6)

seems the most diffi cult to detect for all tests. However, our test η̂T (0.5) behaves similarly

than tests designed to detect marginal symmetry under these circumstances. It is worth

noticing that our test is not designed to test marginal symmetry in the direction of marginal

asymmetry, though it is valid to do so under designs (A1)-(A8). In the designs (A9)-(A11),

under marginal symmetry, tests based on TS and η̂T,m(0.5) have very poor size, which is

explained because they neglect the serial dependence structure. As expected, these tests

have trivial power for detecting conditional asymmetry. However, since the conditional

distribution of Yt given Yt−1 is asymmetric in these cases, the test based on η̂T (0.5) has

reasonable power, which increases with the sample sizes.

The last set of simulations compares our tests with others designed to test symmetry of

the marginal distribution of the scaled error term of a conditional location/scale model in the

direction of nonparametric alternatives. Our test is compared with Hušková and Meintanis

(2012)’s test, henceforth HM, under the model

Yt = r(Xt) + Ut, with Ut = σ(Xt) · εt, t = 1, 2, ...,

with {Xt}t≥1 i.i.d. U(0, 1) independent of {εt}t≥1 i.i.d. according to (LS1)-(LS6) listed below.
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(LS1) ε ∼ i.i.d. N(0, 1).

(LS2) ε ∼ i.i.d. t5.

(LS3) ε ∼ i.i.d. e11{Z≤0.5} + e21{Z>0.5}, with e1 ∼ i.i.d. N(−1, 1), e2 ∼ i.i.d. N(1, 1) and

Z ∼ i.i.d. U(0, 1) mutually independent.

(LS4) ε ∼ i.i.d. χ2
2.

(LS5) ε ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.001, λ4 = −0.13.

(LS6) ε ∼ i.i.d. Fλ with λ1 = 0, λ2 = −1, λ3 = −0.0001, λ4 = −0.17.

We consider r(x) = sin(2πx) and σ(x) = |x|. Notice that the scaled error term εt is

symmetric around zero in the designs (LS1)-(LS3) and asymmetric in (LS4)-(LS6).

– – – – – – – – – – – – – –

TABLE 4 ABOUT HERE

– – – – – – – – – – – – – –

The HM test statistic is identical to η̂T,m(0.5), but the critical values are estimated using

a wild bootstrap procedure, rather than the permutation procedure that we suggest. The

resulting test is denoted by T
(2)
0.5 . The conditional test statistic η̂T (h) is computed with

the explanatory variable Xt, and nonparametric residuals Ût = Yt − r̂(Xt). Both statistics

η̂T,m(0.5) and T
(2)
0.5 are computed using the scaled nonparametric residuals ε̂t = Ût/σ̂(Xt)

with σ̂2(Xt) the kernel estimator of σ2(Xt). The percentage of rejections for the three tests

under designs (LS1)-(LS6) is reported in Table 4, in which Panels A, B and C use c = 0.5,

1.0, and 1.5, respectively, and Panel D aT = 0.075 as used by HM. All three tests have

good size accuracy. However, η̂T (0.5) has much larger power than η̂T,m(0.5) and T (2)
0.5 under

the designs (LS4)-(LS6) considered, while T (2)
0.5 has the least power. In addition, each test

behaves similarly under different choice of aT’s and is fairly insensitive to it.

Finally, we examine the power performance of our test under certain local alternatives.

Let Yt = sin(2πXt) + Ut, where Ut = |Xt|εt with εt = et − E(et) and Xt ∼ i.i.d. U(0, 1)

independent of et. We consider et following a normal mixture distribution with the density

given by

fe(x) =

(
1− 2√

T

)
1√
2π
e−

x2

2 +
2√
T

1√
2π
e−

(x−1)2

2 .

– – – – – – – – – – – – – –

FIGURE 1 ABOUT HERE

– – – – – – – – – – – – – –

Notice that when sample size T increases, the distribution of εt converges to a standard

normal. We consider sample sizes running from 50 to 800 with an increment of 50. We
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observe from Figure 1 that our proposed test η̂T (0.5) has non-trivial power against the local

alternatives converging to the null at a parametric rate for c = 0.5, 1.0 and 1.5, with c = 1.0

appearing to give the most powerful test under this specific local alternative.

5 Applications in Stock Markets and Business Cycles

In this section, we revisit two problems of practical interests, i.e. the asymmetric behaviour

for stock returns and business cycles. We apply our test to investigate whether losses are

more likely than gains in stock markets, and whether expansions and contractions are equally

likely in business cycles, given the relevant information.

We first consider four stock indices, namely, S&P 500, FTSE 100, Nikkei 225 and Shang-

hai A-Share (SSE-A). They represent various degrees of maturity and regulating conditions

of the underlying stock markets. The four index series are collected using daily data from

1 January 2001 to 31 December 2015, with 3773, 3787, 3694, and 3786 observations, re-

spectively. Returns series are obtained through Xt = log(Pt/Pt−1), with Pt denoting the

time series sequence for each stock index. Routine augmented Dickey-Fuller tests for the

four indices indicate that there exist unit roots in all four index series but not in their re-

turns series. Moreover, all returns series exhibit the well-recorded stylized facts of volatility

clustering and high kurtosis indicating the existence of fat tails.

In our empirical application, we focus on the scenario where only the first lagged value

will predict the stock returns. This feature is consistent with the stylized fact that today’s

financial markets are often more influenced by the most recent events. Specifically, we

consider the following nonlinear autoregressive process of order 1, NLAR (1),

Xt = r(Xt−1) + Ut.

The hypothesis of interest is that Xt is symmetric around the (unknown) nonparametric

regression function r(Xt−1) given the most recent information Xt−1.

To study the effect of 2008 financial crisis on the behavior of the financial markets, we

split the sample period into two parts, (1) before the crisis: 1 January 2001 to 31 December

2006, and (2) after the crisis: 1 January 2007 to 31 December 2015. The (marginal) skewness

coeffi cients for the four returns series before the crisis (resp. after the crisis) are respectively

0.16 (-0.32), -0.16 (-0.16), -0.08 (-0.52) and 0.64 (-0.51). Though these marginal coeffi cients

seem to indicate a potential change of behavior for the returns series after the crisis, especially

for Nikkei 225 and SSE-A, they are not justified theoretically to test the (unconditional)

symmetry hypothesis. In addition, they cannot be used to study the conditional symmetry
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of the returns before and after the crisis.

Next, we consider testing the conditional expansion and contraction behaviour of business

cycles in four major economies corresponding to USA, UK, Japan, and China. The data we

used are in terms of the real measures of gross domestic products (GDPs) for each country,

which are taken from the OECD’s quarterly national accounts (QNA) data set. Specifically,

the GDPs for USA, UK, Japan are seasonally adjusted quarterly series starting from the

first quarter of 1960 until the second quarter of 2016, with a total number of observations

226, while China’s quarterly GDP is only available from the first quarter of 1992 until the

second quarter of 2016 with 98 observations. The four series of quarterly growth rates of

real GDP (i.e. change over the previous quarter) are calculated. Like the stock returns, a

NLAR(1) model is examined. The hypothesis of interest in this case is whether the errors

Ut are symmetrically distributed given the previous period information of GDP growth rate,

i.e. whether expansions and contractions are equally likely.

– – – – – – – – – – – – -

TABLE 5 ABOUT HERE

– – – – – – – – – – – –

We report results with η̂T (0.5) with c = 0.5, 1.0 and 1.5, results for h = 1 are similar.

Table 5 reports the bootstrapped p-values for the four stock returns series S&P 500, FTSE

100, Nikkei 225 and (SSE-A) before the crisis (resp. after the crisis) as well as those for the

four GDP quarterly growth rates in USA, UK, Japan and China. All p-values are based on

500 bootstrap draws. For the four returns series we do not reject the hypothesis of conditional

symmetry at 5% significance level before the crisis. On the other hand, results in parentheses

of columns 2-5 support the conditional asymmetry for the four stock markets after the crisis.

Our findings for the conditional symmetry hypothesis thus confirm that there exists a distinct

behavior for the four stock markets before and after the crisis. As to the business cycles,

for all three c’s, the bootstrapped p-values indicate asymmetric behavior for UK’s macro-

economy in contrast to Japan and China, for which we do not reject the hypothesis of

symmetry at 5% significance level. Lastly, USA’s growth appears to be symmetric, though

the p-values are not as big as for Japan or China.

6 Conclusions

This article has proposed a test for symmetry of the conditional distribution about a non-

parametric regression that can be implemented using stationary time series data under fairly
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weak regularity conditions. The methodological approach exploits the fact that the condi-

tional distribution is symmetric iff the corresponding characteristic function is real, which

suggests a Cramér-von Mises type test statistic based on the integrated joint characteristic

function of regression errors and explanatory variables with respect to suitable weights. The

test is consistent in the direction of alternatives where existing tests have trivial power, which

includes situations under the alternative where the marginal distribution of the regression

errors, or their conditionally scaled versions, is symmetric about zero.

The test is proven to enjoy good size accuracy and power properties using small samples,

and is fairly insensitive to the smoothing parameter choice needed for estimating the non-

parametric regression function. We have applied the test to study conditional symmetry of

several stock indices returns, given the first lag, before and after 2008 crisis, and countries’

GDP.

The testing methodology presented in this article consists of characterizing restrictions

on the conditional distribution by means of the joint characteristic function, rather than

the joint distribution function itself, can be applied to test other restrictions. For instance,

the hypothesis of conditional independence between Yt and X
(2)
t given X

(1)
t , with Xt =(

X
(1)τ
t , X

(2)τ
t

)τ
, can be formally stated as

H0 : P
(
Yt ≤ y|X(1)

t , X
(2)
t

)
= P

(
Yt ≤ y|X(1)

t

)
a.s. for all y ∈ R.

This hypothesis can be equivalently expressed as

H0 : |M(v)| = 0 for all v ∈ R1+p,

where M(v) = E
{
U

(1)
t (y) exp (iXτ

t x) fX(1)t

}
, fX(1)t = fX(1)(X

(1)
t ) with fX(1) the density of

X
(1)
t and U

(1)
t (y) = exp (iYty) − E

(
exp (iYty)|X(1)

t

)
. Then, given a suitable estimators of

U
(1)
t (y) and fX(1)t, Û

(1)
t (y) and f̂X(1)t say, the test statistic for the omnibus test of H0 would

be

η̂
(1)
T (W ) =

∫
R1+p

∣∣∣M̂T (v)
∣∣∣2W (v)dv,

where

M̂T (v) =
1

T

∑
t

Û
(1)
t (y) exp (iXτ

t x) f̂X(1)t.

This test is an alternative to Delgado and González-Manteiga’s (2000) proposal.
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7 Appendix

The proof of Proposition 1 applies Fatou’s lemma and the ergodic theorem for consistency.

Convergence in distribution of the test statistics under the null is proved applying the CLT

for martingale differences taking values in separable Hilbert spaces. To this end we apply

Theorem 1.4 of Kundu, Majumdar and Mukherjee (2000), which is reproduced below as a

Lemma. Henceforth, for anym−dimensional random element G(0,Υ), of a separable infinite

dimensional Hilbert space H with mean zero and covariance operator Υ, given a, b ∈ H, we
use the notation 〈Υa, b〉 = E [〈G(0,Υ), a〉 〈G(0,Υ), b〉] .

Lemma 1: Let H stand for a real separable infinite dimensional Hilbert space endowed with

an inner product 〈·, ·〉, and corresponding norm ‖a‖H =
√
〈a, a〉. Let {ξTt} be a

H − valued martingale difference array with respect to the filtration {FTt} such that

E ‖ξTt‖
2
H <∞ for each 1 ≤ t ≤ T, T ≥ 1. Let {e` : ` ≥ 1} be an orthonormal basis of

H. Assume that the following conditions hold.

(i) For every b ∈ H,
∑T

t=1 E
(
〈ξTt, b〉

2
∣∣FTt−1

)
= σ2

b + oP(1) for some σb.

(ii) limT→∞
∑∞

l=1

∑T
t=1 E

(
〈ξTt, e`〉

2)=
∑∞

`=1 σ
2
e`
<∞.

(iii) LT (ε, e`) = oP(1) for every ε > 0 and every ` ≥ 1, where for b ∈ H,

LT (ε, b) =
T∑
t=1

E
(
〈ξTt, b〉

2 1{|〈ξTt,b〉|>ε}
∣∣FT,t−1

)
.

Then,
{∑T

t=1 ξTt

}
converges in distribution to G(0,Υ), a centered Gaussian

process in H with covariance operator Υ, which is characterized by 〈Υb, b〉 = σ2
b ,

for all b ∈ H.

Proof of Proposition 1. By Fatou’s lemma and the ergodic theorem, under H1,

lim inf
T→∞

ηT (W ) ≥
∫ (

lim inf
T→∞

αT (v)
)τ (

lim inf
T→∞

αT (v)
)
W (v)dv = ‖EVt‖2

L2W
> 0 a.s.,

which proves (7). Taking into account that, under H0, {Vt (u)}t∈Z is a bounded sequence of

stationary ergodic martingale differences taking values on the real separable infinite dimen-

sional Hilbert space of squared integrable functions with respect to the measure W (v)dv,

v ∈ R1+p. The inner product in L2
W is denoted by 〈a, b〉 =

∫
a(v)τb(v)W (v)dv, with corre-

sponding norm ‖·‖L2W in (6). Then, in order to prove (8), take ξTt = Vt/
√
T and FTt = At

22



and check conditions in Lemma 1 with σ2
b = E 〈α∞, b〉2 = 〈Ωb, b〉. (i) For every b ∈ L2

W ,∑
t
E
(〈

Vt/
√
T , b
〉2
∣∣∣∣At−1

)
=

1

T̃

∑
t
E
(
〈Vt, b〉2

∣∣Xt

)
= σ2

b + o(1) a.s.,

by the ergodic theorem, where σ2
b = E 〈Vt, b〉2 = E 〈α∞, b〉2 . (ii) Let {e`} be an orthonormal

basis of L2
W , then,

lim
T→∞

∞∑
`=1

∑
t
E
〈
Vt/
√
T , e

`

〉2

=

∞∑
`=1

E 〈Vt, e`〉2 =

∞∑
`=1

σ2
e`
≤
∥∥∥∥∥
∞∑
`=1

e`

∥∥∥∥∥
2

L2W

<∞.

(iii) Since 〈Vt, b〉2 <∞ a.s. uniformly in t ∈ Z for b ∈ L2
W , for each ε > 0 and all µ ≥ 0,

LT (ε, e`) ≤
1

εµ

∑
t
E
[〈
Vt/
√
T , e`

〉2+µ

1{〈Vt/√T ,e`〉>ε}
∣∣∣Xt

]
≤ C

T
µ
2

a.s.,

for anyC <∞, where, henceforth, C denotes a generic bounded positive constant. Therefore,

αT →d α∞ as a random element of L2
W , and (8) follows applying the continuous mapping

theorem (CMT). Finally, (9) is proved by writing, under H1T ,(√
TαT − δT

)
(u, x) =

2√
T

∑
t
[sin (Utu)− E (sin (Utu)|Xt)] f

2
t θt(x),

where δT (u, x) = 2T̃−1
∑

t γt(u)f 2
t θt(x). Then, using the fact that ‖δT − δ‖2

L2W
= o(1) a.s.,

by the ergodic theorem. Then, applying (ii), under H1T ,
√
TαT

d→ α∞ + δ. Therefore, the

proof of (9) is completed applying the CMT, i.e.

lim
T→∞

P
[
T ‖αT‖2

L2W
≥ c
]

= P
[
‖α∞ + δ‖2

L2W
≥ c
]
≥ P

[
‖α∞‖2

L2W
≥ c
]
.

In order to justify the test Ψ̂W,T (c) we need to impose new restrictions on the underlying

DGP. Notice that, with v fixed, α̂T (v) is a standard V − statistic involving kernels under

ARE serial dependence. This type of V − statistics appears in many inference procedures

on semiparametric models. In order to prove Propositions 2, we follow Robinson (1989)’s

approach, who provided a set of flexible suffi cient regularity conditions to justify asymptot-

ics on statistics similar to T η̂T (W ) in the context of testing restrictions on semiparametric

index models with ARE time series data. These conditions involve using higher order ker-

nels to make compatible the rate of convergence of bias and variance of integrated kernel

estimators in high dimensions. The order of the kernel is related to the rate of convergence
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of the bandwidth, the smoothness conditions on the underlying nonparametric components,

moments of Yt, and the parameter of the ARE time series governing the severity of the serial

dependence.

First, we introduce some definitions. We use a multiplicative kernel KX(x1, ..., xp) =∏p
j=1 k(xj), where k belongs to the class of higher order kernels, according to the definition

below.

Definition 1 K`, ` ≥ 1, is the class of even functions k : R→R satisfying∫
R
xik(x)dx = 1{i=0}, i = 0, ..., `− 1

k(u) = O

((
1 + |u|`+ε+1

)−1
)
, some ε > 0.

Definition 2 Let {ξt}t∈Z be a stationary process defined on (Ω,G,P); {ξt}t∈Z is ARE if

β(j) = E

{
sup
A∈G∞j

∣∣P (A| G0
−∞
)
− P (A)

∣∣}→ 0 as j →∞,

with Gba = σ
(
{ξt}

b
t=a

)
⊆ G.

We have adapted conditions in Robinson (1989) to our context as follows.

A.1. a. E |Yt|µ <∞ for some µ > 2.

b. Xt admits a Lebesgue density fX uniformly bounded, which is at least N/2 times

boundedly differentiable.

c. The regression function r is N/2 times differentiable with derivatives r(j) such that

E
∣∣r(j)(Xj)

∣∣µ <∞, j = 1, ..., N/2. The remainder term in the Taylor expansion to

order N/2 of r (x+ ϑ) in a neighbourhood of ϑ = 0 is bounded by |ϑ|
N
2

+1 times

a function r′(x) a.s. such that E |r′ (Xt)|µ <∞.

d. φ(u,Xt) is N/2 times differentiable for each u ∈ R a.s., with derivatives φ(j)(u, ·)
such that E

∥∥∥φ(j)
t

∥∥∥µ
L2W

< ∞, with φ
(j)
t (u) := φ(j)(u,Xt), j = 1, ..., N/2. The

remainder term in the Taylor expansion of φ (·, x+ ϑ) in a neighbourhood of

ϑ = 0 is bounded by |ϑ|
N
2

+1 times a function φ′(·, x) such that E
∥∥∥φ′t∥∥∥µL2W < ∞,

with φ′t(u) := φ′(u,Xt).

e. The kernel function k belongs to KN , N = 2, 3, ....
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f. {(Yt, Zt)}t∈Z is ARE with coeffi cients

β(j) = O(j−v), for some v > 1 +
2

(µ− 2)
. (18)

A.2. a. Ta
p(1+ 2

µ
+ 2
v )+ε

T →∞ for some ε > 0.

b. Ta
2p(1+ 2

µ)+ε

T →∞ for some ε > 0.

c. TaNT → 0.

Conditions in A.1. are identical to the smoothness and moment conditions assumed by

Robinson (1989), which in turn can be found in Robinson (1988) in a different semiparametric

problem. Smoothness conditions on r(·) and φ (u, ·) are related to the order of the higher

order kernel, N, related to the rate of convergence of the bandwidth in A.2. Condition A.1.f,

which is also assumed in Robinson (1989), establishes the rate of convergence of the ARE

parameter, which is related to the moment restriction A.1.a, and the bandwidth convergence

rate in A.2. The order of the higher order kernel in A.1.e. and the rate of convergence of β(j)

in A.1.f. are related to the rate of convergence of the bandwidth aT in A.2. Restrictions on

the rate of convergence of the bandwidth A.2. are similar in Robinson (1989). In fact, A.2.a

and A.2.c. are identical to Robinson (1989) assumptions (6.8) and (6.10), but Robinson

(1989) assumption (6.9), Ta2p
T → ∞, is weaker than A.2.b. The weakest version of aT in

A.2.a and A.2.b is

Ta2p+ε
T →∞ for some ε > 0 (19)

when µ = v = ∞. In the i.i.d. case, it is only required (19) and A.2.c. Notice that

Ta
2p(1+2/min(µ,v))+ε
T → ∞ for some ε > 0 suffi ces for A.2.a and A.2.b. To reconcile all the

restrictions in A.2., we need that N > p (1 + 2/µ+ 2/v) and N > 2p (1 + 2/µ).

We need restriction (5) on W for consistency, and also a technical condition on its tail

behaviour, which is stated below.

A.3. W : R1+p → R+ is an integrable even function that satisfies (5) and
∫
u4W (u, x)dudx <

∞.

Henceforth, we use the following notation, Zt = (Yt, Xt) , a = aT , Kts = KX ((Xt −Xs) /a) ,

and st(u) = cos(uUt). The proof of Proposition 2 consists of applying Robinson (1988, 1989)

results to this problem.

Proof of Proposition 2. Introduce the empirical process

ᾱT (u, x) := 2
u

T̃

∑
t
f̂ 2
t

(
Ût − Ut

)
st(u)θt (x) .
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Since α̂T = α̃T + (α̂T − ᾱT − αT ) + (αT + ᾱT − α̃T ) , it suffi ces to show that

‖α̂T − ᾱT − α̃T‖L2W = oP
(
T−1/2

)
, (20)

‖αT + ᾱT − α̃T‖L2W = oP
(
T−1/2

)
. (21)

Applying a mean value theorem (MVT) argument, uniformly in u ∈ R,

sin
(
uÛt

)
= sin (uUt) + u

(
Ût − Ut

)
st(u) + εTt(u) a.s.

where |εTt(u)| ≤ u2
∣∣∣Ût − Ut∣∣∣2 a.s., and

‖α̂T − ᾱT − α̃T‖L2W ≤
(∫

u4W (u, x)dudx

)1/2
2

T

∑
t

∣∣∣Ût − Ut∣∣∣2 f̂ 2
t .

Hence, after applying A.3., we prove (20) by showing that,

1

T

∑
t

∣∣∣Ût − Ut∣∣∣2 f̂ 2
t = oP

(
T−1/2

)
, (22)

which is proved as follows. Write Ût − Ut = T̃−1nt`, where nt` := n (Zt, Z`) , with

n(z1, z2) =
1

ap
(r (x1)− r (x2)− u2)KX

(
x1 − x2

a

)
,

zi = (xi, ui) , i = 1, 2, and ñt = ñ(Zt) with ñ(z) = E [n(z, Zt)] . Since,

1

T

∑
t

∣∣∣Ût − Ut∣∣∣2 f̂ 2
t ≤

2

T 3

∑
t

∣∣∣∑
`
(nt` − ñt)

∣∣∣2 +
2

T

∑
t
ñ2
t ,

(22) follows from

∑
t

∣∣∣∑
`6=t

(nt` − ñt)
∣∣∣2 = oP

(
T 5/2

)
, (23)∑

t
n2
tt = oP

(
T 5/2

)
, (24)∑

t
ñ2
t = oP

(
T 1/2

)
. (25)

Applying Robinson (1989)’s Lemma (p.529) to E [(nts − ñt) (ntr − ñt)] for s, r 6= t, s < r,

treating separately the cases t < s < r, s < t < r and s < r < t, as in Robinson (1989)
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(7.17), for some δ > 0,

max
t

E
∣∣∣∑

`
(nt` − ñt)

∣∣∣2 ≤ CTs
2/(2+δ)
δ

∑∞

j=1
βδ/(2+δ)(j), (26)

with sδ := maxt6=` E |nt`|2+δ . By A.1.a, we can choose δ to satisfying δ ≤ µ − 2. Then, by

Hölder’s inequality,

sδ = O

(
max
t6=`

{
(E |(rt − r` − U`)|µ)

2+δ
µ ·

(
E |Kt`|

(2+δ)µ
µ−2−δ

)1− 2+δ
µ

})
= O

(
a−p(1+δ+(2+δ)/µ)

)
,

(27)

since,

max
t6=`

E |Kt`|α = O
(
ap(1−α)

)
for α > 0, (28)

by Robinson (1989) (7.10). So,

s
2/(2+δ)
δ = O

(
a−p(1+2/µ)−ε/2) ,

with ε = 2pδ/(2 + δ) arbitrarily close to zero as δ is. Therefore,

max
t

E
∣∣∣∑

`6=t
(nt` − ñt)

∣∣∣2 = O
(
T 3/2

)
·O
((
T 1/2ap(1+2/µ)+ε/2

)−1
)

= o
(
T 3/2

)
(29)

by A.2.b, which proves (23) using (26). To prove (24), notice that by the ergodic theorem,

∑
t
n2
tt =

1

a2p
K2
X (0)

∑
t
U2
t = OP

(
Ta−2p

)
= oP

(
T 2
)
.

Now, by the smoothing assumptions in A.1, applying Robinson (1988)’s Lemma 5, maxt E |ñt|2 =

O
(
aN
)

= o (T−1) , which proves (25).

In order to prove (21), first write,

(ᾱT + αT − α̃T ) (u, x) =
2u

T̃

∑
t

[
f̂ 2
t

(
Ût − Ut

)
st(u) + f 2

t Utφt (u)
]
θt (x)

=
2u

T̃

∑
t

(
Ût − Ut

)
f̂t

(
f̂t − ft

)
st (u) θt (x)

+
2u

T̃

∑
t

[(
Ût − Ut

)
f̂tftst (u) + f 2

t Utφt (u)
]
θt (x) .

= E1T (u, x) + E2T (u, x)
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Applying Cauchy-Swartz’s inequality and A.3.,

E ‖E1T‖L2W ≤ C ·
(

1

T

∑
t

∣∣∣Ût − Ut∣∣∣2 f̂ 2
t

)1/2(
1

T

∑
t

∣∣∣f̂t − ft∣∣∣2)1/2

= oP
(
T−1/2

)
by (22) and, defining K̃t := K̃ (Xt) with K̃ (x) = a−pE (KX (Xt − x) /a) ,

1

T̃

∑
t

∣∣∣f̂t − ft∣∣∣2 ≤ 2

T 3

∑
t

∣∣∣∣∑`6=t

(
Kt` − K̃t

)
+
KX(0)

ap

∣∣∣∣2 +
2

T

∑
t

∣∣∣K̃t − ft
∣∣∣2 (30)

= oP
(
T−1/2

)
+ oP

(
T−1

)
,

since, using same arguments as in the proof of (22), maxt E
∣∣∣∑`6=t

(
Kt` − K̃t

)∣∣∣2 = o
(
T 3/2

)
,

and applying Robinson (1988)’s Lemma 4, maxt E
∣∣∣K̃t − ft

∣∣∣2 = O
(
aN
)

= o (T−1) . Finally,

we write ET2 in terms of the symmetric kernel c (v, v1, v2) = d (v, v1, v2) + d (v, v2, v1) with

v = (u, x) , vi = (ui, xi) , i = 1, 2, and

d (v, v1, v2) = uf(x1) (r (x1)− r (x2)− u2) cos (u1u)
1

ap
KX

(
x1 − x2

a

)
θ(x, x1).

That is,

1

2
E2T (v) =

1

2T̃ 2

∑
t

∑
`
(ct` − c̃t − c̃` + c̃) (v) +

1

T̃

∑
t

(c̃t + gt − c̃) (v) +
c̃(v)

2
,

where ct` := c (v, Zt, Z`, ) , c̃t (v) := c̃ (v, Zt) , c̃ (v, v1) := E (c (v, Zt, v1)) , c̃ (v) := E (c̃t (v))

and gt := gt(u, x) = uf 2
t Utφt (u) θt(x). Therefore, in order to show that ‖ET2‖L2W = oP

(
T−1/2

)
,

it suffi ces to show that ∥∥∥∥∥∑∑
t6=`

(ct` − c̃t − c̃` + c̃)

∥∥∥∥∥
L2W

= oP
(
T 3/2

)
, (31)

∥∥∥∑
t
ctt

∥∥∥
L2W

= oP
(
T 3/2

)
, (32)∥∥∥∑

t
(c̃t − c̃+ gt)

∥∥∥
L2W

= oP
(
T 1/2

)
(33)

c̃ = oP
(
T−1/2

)
. (34)

Note that (31) is similar to (7.1) in Robinson (1989). Therefore, applying Denker and Keller

(1983)’s Proposition 2 as in Robinson (1989), the mean square of the left-hand side of (31)
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is bounded by

b
2

2+δ

δ O
(
T 2+ε

)
, (35)

with bδ := maxt6=` E ‖ct`‖2+δ
L2W

, if for some δ, ε > 0, β(j) = O
(
j(ε−2)(2+δ)/δ

)
. Then, mimicking

the proof of (7.1.) in Robinson (1989) and, in view of (18), choose ε = 2− δv/ (2 + δ) , so

δ

2 + δ
<

2

v
. (36)

Take δ ≤ µ − 2, which is possible because µ > 2. Then, use the fact that

bδ ≤ C · sδ = O
(
a−p(1+δ+(2+δ)/µ)

)
by (27). Therefore, (35)= O (T 3)O

(
(Taκ)1−δv/(2+δ)

)
,

where κ = p [(2 + δ) (1 + 2/µ) + δ] / (δv − 2− δ) . Because of (18) we can choose δ to satisfy

not only (36) and δ ≤ µ− 2, but also

δ

2 + δ
>

1

v
. (37)

Under (37), the condition Taκ → ∞ implies that (35)= o (T 3) , which implies (31). Pick

ε = [ε/ (1− ε)] [p (1 + 2/µ+ 1/v)] , noticing that (37) implies ε < 1, and ε positive and

arbitrarily close to 0 implies the same for ε. Then κ = p (1 + 2/µ+ 2/v) + ε and, hence,

Taκ → ∞ by A.2.a, which proves (31). In order to prove (32), notice that E ‖
∑

t ctt‖
2
L2W
≤

C · Ta−2p and, hence, ‖
∑

t ctt‖L2W = oP
(
T 1/2a−p

)
= oP

(
T 3/2

)
by A.2.b. For the proof of (33)

notice that

(c̃t + gt − c̃) (u, x) =
∑3

i=1
[eit (u, x)− ēi] (u, x) ,

where eit (v) = ei (v, Zt) and ēi(v) = E [ei (v, Zt)] , i = 1, 2, 3, with

e1 (u, x, x1)= uE
[
(rtftφt (u) θt (x)− r(x1)fX(x1)φ(u, x1)θ(x, x1))

1

ap
KX

(
Xt − x1

a

)]
,

e2 (u, x, x1)= u (r(x1)+ u1)E
[
(fX(x1)φ(u, x1)θ(x, x1)−ftφt (u) θt (x))

1

ap
KX

(
Xt − x1

a

)]
,

e3 (u, x, x1)= ufX (x1) cos (u1u) θ(x, x1)E
[
(r(x1)− rt)

1

ap
KX

(
Xt − x1

a

)]
.

Now, use the fact that fX , θ and φ are uniformly bounded, and r(Xt) and Ut have at least

two moments, to show that, under the smoothing assumptions and applying Robinson (1988)

Lemma 5, A.2.c and A.3. imply that maxt E ‖eit‖2
L2W

= O
(
aN
)

= o (T−1) , i = 1, 2, 3, and

E ‖c̃‖2
L2W
≤ C ·

∑3
i=1 E ‖ēi‖

2
L2W

= o (T−1)

E
∥∥∥∑

t
(c̃t + gt − c̄)

∥∥∥2

L2W
≤ C ·

∑3

i=1

[
E
∥∥∥∑

t
eit

∥∥∥2

L2W
+ T 2E ‖ēi‖2

L2W

]
≤ C ·T 2O

(
aN
)

= o(T ),
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which proves (33) and (34).

Proof of Corollary 1. By Proposition 2, for each c ∈ R+, β̂W (c) = Φ̃W (c) + oP (1) ,

which proves (11) and (12), and, also (10), taking into account that by Fatou’s lemma,

lim inf
T→∞

η̃T (W ) ≥
∫ (

lim inf
T→∞

α̃T (v)
)τ (

lim inf
T→∞

α̃T (v)
)
W (v)dv = E

∥∥∥Ṽt∥∥∥2

L2W
> 0.

In order to justify consistency of the bootstrap test, we need the following assumption

on the trimming parameter, which is related to the bandwidth parameter aT .

A.4.
1

Ta
2p(1+2/µ)
T b4

T

+ bT → 0.

Henceforth, we denote b = bT . Let Eζ denote expectation with respect to the binary ran-

dom variables {ζt}
T
t=1+k , and for any random element of L2

W , {ϑ∗T}T≥1 , involving {ζt}
T
t=1+k ,

ϑ∗T = oP∗(1) means that for any ε > 0, Pζ
{
‖ϑ∗T‖

2
L2W

> ε
}

= oP (1) . Consider the infeasible

version of α̃∗T
α̃†T (u, x) :=

2

T̃

∑
t
[sin(uζtUt)− uζtUtφt(u)] f 2

t θt(x).

The proof of proposition 3, consists of three parts. First we show that∥∥∥√T (α̃∗T − α̃†T)∥∥∥L2W = oP∗ (1) . (38)

Then, (13) and (14) are proved using (38) and showing that for almost all sample sequences

(Y1, Z1) , (Y2, Z2) , ..., under H0, H1 or H1T,

lim sup
T→∞

Eζ
∥∥∥√T α̃†T∥∥∥2

L2W
<∞, (39)

and (15) and (16) are proved using (39) and showing that for almost all sample sequences

(Y1, Z1) , (Y2, Z2) , ..., under H0 and H1T

lim
T→∞

Pζ
{
T
∥∥∥α̃†T∥∥∥2

L2W
> c

}
= Φ̃W (c) for all c ∈ R+. (40)

The proof of (38) is based on results in Robinson (1988, 1989) and (39) is the result of

applying the ergodic theorem. The proof of (40) consists of showing that for almost all

sample sequences (Y1, Z1) , (Y2, Z2) , ...,
√
T α̃†T →d α̃∞ as a random element of L2

W applying

Theorem 1.1. in Kundu, Majumdar and Mukherjee (2000) for conditional convergence in
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distribution of Hilbert space valued martingale difference arrays, which is reproduced below

as a Lemma. See Henze, Klar and Meintanis (2003) for application in a related context.

Lemma 2: Let {el}l≥1 be an orthonormal basis of the infinite dimensional Hilbert space H,
with inner product 〈·, ·〉 and corresponding norm ‖a‖L2W =

√
〈a, a〉. Let {ξTt}

T
t=1 be a

finite sequence of independent H−valued random elements with zero means and finite

second moments, and put ST =
∑T

t=1 ξTt. Let ΥT be the covariance operator of ST .

Assume that the following conditions hold.

(i) limT→∞ 〈ΥT ej, e`〉 = aj`, for all j ≥ 1 and ` ≥ 1.

(ii) limT→∞
∑∞

`=0 〈ΥT e`, e`〉=
∑∞

`=0 a``<∞.

(iii) limT→∞
∑∞

`=0 LT (ε, e`) = 0 for every ε > 0 and every ` ≥ 1, where for b ∈ H,

LT (ε, b) =
T∑
`=1

E
(
〈ξTt, b〉

2 1{|〈ξTt,b〉|>ε}
)
.

Then ST converges in distribution to a centered Gaussian process G (0,Υ) in H
with covariance operator Υ characterized by 〈Υh, e`〉 =

∑∞
j=1 〈h, ej〉 aj`, for every

` ≥ 1.

Proof of Proposition 3:. In order to prove (38), define,

φ̃t : =
1

f̂tT̃

∑
`
cos (uU`)Kt`Î`,

φ̄t : =
1

f̂tT̃

∑
`
cos (uU`)Kt`I`,

φ̌t : =
1

f̂tT̃

∑
`
φ`Kt`I`,

with Ît = 1{|f̂t|>b}, It = 1{|ft|>b/2}, and consider the decomposition,
(
α̃∗T − α̃

†
T

)
(v) =∑8

j=1 qjT (v),
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q1T (u, x) :=
2

T̃

∑
t
ζt

[(
sin
(
uÛt

)
− sin (uUt)

)
+ u

(
Ut − Ût

)
φ̂t

]
f̂t

(
f̂t − ft

)
θt(x),

q2T (u, x) :=
2

T̃

∑
t
ζt

[(
sin
(
uÛt

)
− sin (uUt)

)
+ u

(
Ut − Ût

)
φ̂t

]
f̂tftθt(x),

q3T (u, x) :=
2

T̃

∑
t
ζt

(
sin (uUt)− uUtφ̂t(u)

)(
f̂t − ft

)2

θt(x),

q4T (u, x) :=
2

T̃

∑
t
ζt

(
2 sin (uUt)− uUt

(
φ̂t + φt

)
(u)
)
ft

(
f̂t − ft

)
θt(x),

q5T (u, x) :=
2u

T̃

∑
t
ζtUt

(
φ̃t − φ̂t

)
(u)f̂tftθt(x),

q6T (u, x) :=
2u

T̃

∑
t
ζtUt

(
φ̄t − φ̃t

)
(u)f̂tftθt(x),

q7T (u, x) :=
2u

T̃

∑
t
ζtUt

(
φ̌t − φ̄t

)
(u)f̂tftθt(x),

q8T (u, x) :=
2u

T̃

∑
t
ζtUt

(
φt − φ̌t

)
(u)f̂tftθt(x).

Then (38) follows by showing that
∥∥∥√TqjT∥∥∥

L2W
= oP∗(1), j = 1, ..., 8. In order to show

that
∥∥∥√Tq1T

∥∥∥
L2W

= oP∗(1), apply the mean value theorem (MVT), Cauchy-Swartz’s inequal-

ity, (22) and (30), to obtain that,

Eζ ‖q1T‖L2W ≤ 4

T

∑
t

∣∣∣Ût − Ut∣∣∣ ∣∣∣f̂t∣∣∣ ∣∣∣f̂t − ft∣∣∣
≤ C ·

(
1

T

∑
t

∣∣∣Ût − Ut∣∣∣2 f̂ 2
t

)1/2(
1

T

∑
t

∣∣∣f̂t − ft∣∣∣2)1/2

= oP
(
T−1/2

)
.

Henceforth, ht(u, x) := θτt (x)θt(x)W (u, x). We show that
∥∥∥√Tq2T

∥∥∥
L2W

= oP∗(1), applying

the MVT and (22), i.e.

Eζ ‖q2T‖2
L2W

=
4

T̃ 2

∑
t
f 2
t f̂

2
t

∫ [(
sin (uUt)− sin

(
uÛt

))
+
(
Ût − Ut

)]2

ht(u, x)dudx

≤ C

T 2

∑
t

∣∣∣Ût − Ut∣∣∣2 f̂ 2
t

= oP
(
T−3/2

)
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We show
∥∥∥√Tq3T

∥∥∥
L2W

= oP∗(1) mimicking the arguments to prove (22) and (30), with n`t =

(1 + |Ut|)1/2K`t and ñt = (1 + |Ut|)1/2
(
K̃t − ft

)
; then,

Eζ ‖q3T‖L2W ≤ C

T

∑
t
(1 + |Ut|)

(
f̂t − ft

)2

≤ C

T 3

∑
t
(nt` − ñt)2 +

C

T

∑
ñ2
t

= oP
(
T−1/2

)
by (29), and applying Cauchy-Schwartz’s inequality,

E |ñt|2 ≤ CE |Ut|E
∣∣∣K̃t − ft

∣∣∣2 = O(aN) = o(T−1) = o(T−1/2).

We apply the same arguments to show that
∥∥∥√Tq4T

∥∥∥
L2W

= oP∗(1) using n`t = (1 + |Ut|)K`t

with ñt = (1 + |Ut|)
(
K̃t − ft

)
; then

Eζ ‖q4T‖2
L2W

=
4

T̃ 2

∫ ∑
t

[(
2 sin (uUt) + Ut ·

(
φ̂t + φt

)
(u)
)
ft

(
f̂t − ft

)]2

ht(u, x)dudx

≤ C

T 2

∑
t
(1 + |Ut|)2

(
f̂t − ft

)2

≤ C

T 4

∑
t
(nt` − ñt)2 +

C

T 2

∑
ñ2
t

= oP
(
T−1

)
.
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We show that
∥∥∥√Tq5T

∥∥∥
L2W

= oP∗(1), applying Cauchy-Schwartz’s inequality, the ergodic

theorem, A.2.b and A.4. as follows,

Eζ ‖q5T‖2
L2W

=
1

T 2

∑
t
U2
t ft

∫
u2

[
1

T

∑
`6=t

[
cos (uU`)− cos

(
uÛ`

)]
I`Kt`

+
KX (0)

apT

[
cos (uUt)− cos

(
uÛt

)]
It

]2

ht(u, x)dudx

≤ C

b2T 2

∑
t
U2
t

(
1

T

∑
`6=t

∣∣∣Û` − U`∣∣∣ ∣∣∣f̂`∣∣∣ |Kt`|
)2

+
C

a2pT 4

∑
t
U2
t

≤ C

Tb2

[
1

T 2

∑
t

∑
`6=t

U2
tK

2
t`

](
1

T 2

∑
`

∣∣∣Û` − U`∣∣∣2 f̂ 2
`

)
+OP

(
1

a2pT 3

)
=

C

Tb2
OP

(
1

ap

)
·OP

(
1

T 3/2

)
+ oP

(
1

T 2

)
= OP

(
1

T

)[
OP

(
1

T 3/2b2ap

)
+ oP

(
1

T

)]
= oP

(
1

T

)
.

To prove that
∥∥∥√Tq6T

∥∥∥
L2W

= oP∗(1), use that 1{|f̂` |>b} ≤ 1{|f̂`−f` |>b/2} + 1{|f`|>b/2} and

Cauchy-Swartz’s inequality;that is,

Eζ ‖q6T‖2
L2W

=
1

T̃ 2

∑
t
U2
t f

2
t

∫ (
1

T̃

∑
`
s` (u)

(
1{|f`|>b/2} − 1{|f̂` |>b}

)
Kt`

)2

ht(u, x)dudx

≤ C

T 2

∑
t

∑
`6=t

U2
t

(
1

T

∑
`6=t

1{|f̂`−f` |>b/2} |Kt`|
)2

+
C

a2pT 4

∑
t
U2
t

≤ C

T

(
1

T 2

∑∑
`6=t

U2
tK

2
t`

)(
1

T

∑
`6=t

1{|f̂`−f` |>b/2}

)
+OP

(
1

T 3a2p

)
≤ C

T
OP

(
1

ap(1+ 2
µ)

)
OP

(
1

T 1/2b2

)
= oP

(
1

T

)
,

by A.4, since by Hölder’s inequality,

max
t6=`

E
(
U2
tK

2
t`

)
≤ max

t6=`

{
[E |Ut|µ]

2
µ

[
E |Kt`|

2µ
µ−2

]µ−2
µ

}
= O

(
1

ap(1+ 2
µ)

)
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by (28), and by Markov inequality and (30),

max
t

E
(

1{|f̂t−ft|>b/2}
)
≤ 4

b2
max
t

E
∣∣∣f̂t − ft∣∣∣2 = O

(
1

T 1/2b2

)
. (41)

We show that
∥∥∥√Tq7T

∥∥∥
L2W

= oP∗(1), first noticing that, since supu E ((s` − φ`) (u)| A`) = 0

a.s.,

sup
u

E
(

1

T̃

∑
`
(φ` − s`) (u)I`Kt`

)2

= sup
u

1

T 2

∑
`
E
(
(φ` − s`)

2 (u)I`K
2
t`

)
≤ C · 1

T

[
max
`6=t

E
(
K2
t`

)
+

1

a2pT

]
= O

(
1

apT

)
+O

(
1

a2pT 2

)
= O

(
1

T 1/2

)
+O

(
1

T

)
,

by (28) and A.2.b. Then, applying Hölder’s inequality and the ergodic theorem,

Eζ ‖q7T‖2
L2W

: =
1

T̃ 2

∑
t
U2
t f

2
t

∫ (
1

T̃

∑
`
(φ` − s`) (u)I`Kt`

)2

ht(u, x)dudx,

≤ C

T

(
1

T

∑
t
|Ut|µ

) 2
µ

×

 1

T

∑
t

(∫ (
1

T̃

∑
`
(φ` − s`) (u)I`Kt`

)2

ht(u, x)dudx

) 2µ
µ−2


µ−2
2µ

=
C

T
·OP (1) ·OP

(
1

T 1/2

)
= oP

(
1

T

)

In order to show that
∥∥∥√Tq8T

∥∥∥
L2W

= oP∗(1) first notice that,

Eζ ‖q8T‖2
L2W

=
1

T̃ 2

∑
t
U2
t f

2
t

∫ (
1

T̃

∑
`
(φt(u)− φ`(u)I`)Kt`

)2

ht(u, x)dudx

≤ 2
1

T̃ 2

∑
t
U2
t f

2
t

∫ (
1

T̃

∑
`
φ`(u) (1− I`)Kt`

)2

ht(u, x)dudx (42)

+2
1

T̃ 2

∑
t
U2
t f

2
t

∫ (
1

T̃

∑
`
(φt − φ`) (u)Kt`

)2

ht(u, x)dudx. (43)
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In order to prove (42)= oP(T−1), we first show that

sup
u

E
(

1

T̃

∑
`
φ`(u) (1− I`)Kt`

)2

= oP(1). (44)

To this end, we mimic the arguments in the proof of (22). Write T̃−1
∑

` φ`(u) (1− I`)Kt` =

T̃−1
∑

`wt` with wt` (u) = w(u,X`, Xt),

w(u, x1, x2) =
1

ap
φ(u, x1)

(
1− 1{|f(x1)|>b/2}

)
KX

(
x1 − x2

a

)
.

Define w̃(u, x) = E [w(u,Xt, x)] and w̃t(u) = w̃(u,Xt). The left-hand side of (44) is bounded

by a constant times

K2
X (0)

T 2a2p
+ sup

u
E
(

1

T

∑
`6=t

(wt` − w̃t) (u)

)2

+ sup
u

E
(
w̃2
t (u)

)
(45)

= oP(T−1) + oP(T−1/2) + oP(1),

by A.2.b, and, since the second term of (45) is oP(T−1/2) as (29),

sup
u

E
(
w̃2
t (u)

)
=

∫ [∫
1

ap
φ(u, x1)

(
1{|f(x1)|>b/2} − 1

)
KX

(
x1 − x2

a

)
f(x1)dx1)

]2

f(x2)dx2

=

∫ [∫
{|f(v+ax2)|≤b/2}

KX (v) f(v + ax2)dv

]2

f(x2)dx2

= o(1),

as a, b→ 0 by dominated convergence. Then, applying Hölder’s inequality, (42) is bounded

by

C

T

(
1

T

∑
t
|Ut|µ

) 2
µ

 1

T

∑
t

(∫ (
1

T̃

∑
`
φ`(u) (I` − 1)Kt`

)2

ht(u, x)dudx

) 2µ
µ−2


µ−2
2µ

=
C

T
·OP (1) · oP(1)

= oP

(
1

T

)
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by the ergodic theorem and (44). We show that (43)= oP(T−1) reasoning as in the proof of

(44) and using the fact that

sup
u

E
(

1

T̃

∑
`
(φt − φ`) (u)Kt`

)2

= o

(
1

T 1/2

)
,

applying the same arguments as in the proof (30) with nt` = (φ` − φt) (u)Kt` and noticing

that φ(u, ·) is uniformly bounded and satisfies the same smoothing properties than r(·).
Now, under H0, H1 or H1T , by dominated convergence and the ergodic theorem,

lim sup
T→∞

TEζ
∥∥∥α̃†T∥∥∥2

L2W
= lim sup

T→∞

1

T

∑
t

∥∥∥Ṽt∥∥∥2

L2W
= E

∥∥∥Ṽt∥∥∥2

L2W
a.s.,

where E
∥∥∥Ṽt∥∥∥2

L2W
<∞, which shows (39). We show (40) by applying Lemma 2 with ξTt(v) =

ζtṼt(v)
/√

T . For each fixed sample {(Yt, Zt)}Tt=1 , {ξTt}
T
t=1+k is a sequence of independent

L2
W − valued random elements with Eζ (ξTt (v)) = 0 and Eζ

(
ξ2
Tt (v)

)
< ∞ uniformly in

v ∈ R1+p. Before checking (i)-(iii) in Lemma 2, we first obtain the (conditional) covariance

function of
√
T α̃†T ,

TEζ
[
α̃†T (v1) α̃†τT (v2)

]
=

1

T̃

∑
t
Ṽt (v1) Ṽ τ

t (v2) =: ΣT (v1, v2) .

Then, to prove (i), by dominated convergence and the ergodic theorem,

lim
T→∞

〈ΣT ej, e`〉 =

∫ ∫
eτj (v1) lim

T→∞
ΣT (v1, v2) e` (v2)W (v1)W (v2)dv1dv2 a.s. (46)

=

∫ ∫
eτj (v1) Σ (v1, v2) e` (v2)W (v1)W (v2)dv1dv2 a.s.

= : aj` for all j, ` ≥ 0.

To prove (ii), use (46) to obtain

lim
T→∞

∞∑
`=0

〈ΣT e`, e`〉 =
∞∑
`=0

a`` ≤ C

∥∥∥∥∥
∞∑
`=0

a``

∥∥∥∥∥
2

L2W

<∞ a.s.
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Finally, to prove (iii), for every ε > 0 and every ` ≥ 0

∑
t
Eζ
(〈

ζtṼt(v)
/√

T , e`

〉2

1{|〈 ζtṼt(v)/
√
T ,e`〉|>ε}

)
=

∑
t

〈
Ṽt(v)

/√
T , e`

〉2

1{|〈 Ṽt(v)/
√
T ,e`〉|>ε} a.s.

≤ 1

εµT 1+µ/2

∑
t

〈
Ṽt(v), e`

〉2+µ

1{|〈 Ṽt(v)/
√
T ,e`〉|>ε} a.s.

= O(T−µ/2) a.s.

by the ergodic theorem.
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Table 1: Empirical rejection frequency of η̂T (0.5) for (AU1)-(AU12)
DGPs η̂

(1)
T (0.5) η̂

(2)
T (0.5) η̂

(3)
T (0.5) η̂

(1)
T (0.5) η̂

(2)
T (0.5) η̂

(3)
T (0.5) η̂

(1)
T (0.5) η̂

(2)
T (0.5) η̂

(3)
T (0.5)

T = 50 T = 100 T = 200
(AU1) 0.03 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.05
(AU2) 0.07 0.07 0.06 0.07 0.05 0.05 0.06 0.06 0.06
(AU3) 0.03 0.03 0.05 0.03 0.04 0.04 0.04 0.03 0.06
(AU4) 0.04 0.04 0.04 0.04 0.05 0.06 0.04 0.04 0.05
(AU5) 0.02 0.03 0.04 0.02 0.04 0.04 0.03 0.04 0.05
(AU6) 0.03 0.03 0.04 0.05 0.03 0.04 0.04 0.04 0.05
(AU7) 0.92 0.94 0.94 0.99 0.99 0.99 1.00 1.00 1.00
(AU8) 0.75 0.83 0.84 0.98 0.99 0.99 1.00 1.00 1.00
(AU9) 0.81 0.89 0.91 0.99 0.99 0.99 1.00 1.00 1.00
(AU10) 0.26 0.27 0.27 0.43 0.46 0.48 0.71 0.74 0.76
(AU11) 0.89 0.96 0.96 0.99 1.00 1.00 1.00 1.00 1.00
(AU12) 0.91 0.96 0.97 0.99 1.00 0.99 1.00 1.00 1.00

Table 2: Empirical rejection frequency of η̂T (1) for (AU1)-(AU12)
DGPs η̂

(1)
T (1) η̂

(2)
T (1) η̂

(3)
T (1) η̂

(1)
T (1) η̂

(2)
T (1) η̂

(3)
T (1) η̂

(1)
T (1) η̂

(2)
T (1) η̂

(3)
T (1)

T = 50 T = 100 T = 200
(AU1) 0.04 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.06
(AU2) 0.08 0.07 0.06 0.08 0.06 0.05 0.06 0.06 0.06
(AU3) 0.04 0.04 0.06 0.03 0.05 0.06 0.04 0.05 0.05
(AU4) 0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.05 0.06
(AU5) 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.04
(AU6) 0.05 0.04 0.04 0.05 0.04 0.04 0.06 0.05 0.04
(AU7) 0.89 0.91 0.93 0.99 0.99 0.99 1.00 1.00 1.00
(AU8) 0.78 0.84 0.85 0.99 0.99 0.99 1.00 1.00 1.00
(AU9) 0.82 0.89 0.91 0.99 0.99 0.99 1.00 1.00 1.00
(AU10) 0.30 0.30 0.29 0.49 0.46 0.45 0.74 0.75 0.75
(AU11) 0.89 0.94 0.94 0.99 1.00 0.99 1.00 1.00 1.00
(AU12) 0.92 0.95 0.95 0.99 0.99 0.99 1.00 1.00 1.00
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Table 3: Empirical rejection frequency of TS, η̂T,m(0.5), and η̂T (0.5) for (S1)-(A11)
DGPs TS η̂T,m(0.5) η̂

(1)
T (0.5) η̂

(2)
T (0.5) η̂

(3)
T (0.5) TS η̂T,m(0.5) η̂

(1)
T (0.5) η̂

(2)
T (0.5) η̂

(3)
T (0.5) TS η̂T,m(0.5) η̂

(1)
T (0.5) η̂

(2)
T (0.5) η̂

(3)
T (0.5)

T = 25 T = 50 T = 100
(S1) 0.03 0.04 0.02 0.03 0.03 0.03 0.04 0.03 0.03 0.05 0.05 0.05 0.03 0.04 0.04
(S2) 0.03 0.06 0.05 0.05 0.05 0.06 0.07 0.04 0.05 0.05 0.06 0.06 0.05 0.05 0.05
(S3) 0.03 0.05 0.02 0.03 0.02 0.03 0.05 0.02 0.03 0.03 0.07 0.05 0.03 0.03 0.04
(S4) 0.04 0.05 0.03 0.03 0.04 0.05 0.05 0.04 0.04 0.03 0.04 0.05 0.03 0.03 0.04
(S5) 0.02 0.05 0.05 0.06 0.05 0.04 0.05 0.04 0.07 0.06 0.05 0.05 0.06 0.06 0.06
(S6) 0.03 0.08 0.07 0.07 0.05 0.04 0.07 0.07 0.06 0.06 0.05 0.06 0.07 0.07 0.06
(S7) 0.05 0.09 0.09 0.08 0.08 0.05 0.08 0.09 0.08 0.07 0.06 0.07 0.09 0.07 0.06
(A1) 0.53 0.92 0.48 0.54 0.58 0.91 0.99 0.83 0.88 0.89 0.97 1.00 0.99 0.99 0.99
(A2) 0.48 0.81 0.29 0.37 0.40 0.94 0.99 0.64 0.75 0.80 1.00 1.00 0.94 0.98 0.99
(A3) 0.51 0.81 0.31 0.42 0.47 0.95 0.99 0.66 0.80 0.85 1.00 1.00 0.96 0.99 0.99
(A4) 0.22 0.25 0.06 0.11 0.11 0.53 0.49 0.13 0.21 0.27 0.89 0.81 0.34 0.48 0.55
(A5) 0.20 0.42 0.15 0.19 0.23 0.63 0.74 0.33 0.46 0.50 0.97 0.97 0.70 0.82 0.85
(A6) 0.12 0.22 0.10 0.14 0.14 0.24 0.35 0.19 0.24 0.24 0.58 0.59 0.38 0.42 0.44
(A7) 0.56 0.86 0.39 0.53 0.59 0.95 0.99 0.79 0.88 0.93 0.99 1.00 0.99 1.00 1.00
(A8) 0.54 0.89 0.42 0.58 0.63 0.93 1.00 0.81 0.90 0.93 0.99 1.00 0.99 1.00 1.00
(A9) 0.00 0.01 0.23 0.18 0.14 0.00 0.00 0.45 0.37 0.30 0.00 0.00 0.72 0.68 0.63
(A10) 0.02 0.01 0.10 0.10 0.08 0.01 0.00 0.20 0.21 0.17 0.01 0.00 0.41 0.41 0.40
(A11) 0.02 0.02 0.11 0.13 0.11 0.01 0.01 0.21 0.26 0.24 0.01 0.00 0.41 0.51 0.46
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Table 4: Empirical rejection frequency of T (2)
0.5 , η̂T,m(0.5) and η̂T (0.5) for (LS1)-(LS6)

Panel A (aT = 0.5 ∗ sX ∗ T−1/3)
DGPs T

(2)
0.5 η̂T,m(0.5) η̂T (0.5) T

(2)
0.5 η̂T,m(0.5) η̂T (0.5) T

(2)
0.5 η̂T,m(0.5) η̂T (0.5)

T = 50 T = 100 T = 200
(LS1) 0.04 0.03 0.03 0.04 0.03 0.02 0.04 0.05 0.03
(LS2) 0.04 0.03 0.04 0.04 0.03 0.04 0.05 0.05 0.04
(LS3) 0.05 0.03 0.03 0.04 0.03 0.02 0.04 0.04 0.03
(LS4) 0.04 0.18 0.37 0.04 0.32 0.81 0.05 0.38 0.99
(LS5) 0.04 0.18 0.45 0.04 0.28 0.87 0.05 0.32 1.00
(LS6) 0.04 0.19 0.45 0.05 0.25 0.88 0.05 0.30 1.00

Panel B (aT = 1.0 ∗ sX ∗ T−1/3)
DGPs T

(2)
0.5 η̂T,m(0.5) η̂T (0.5) T

(2)
0.5 η̂T,m(0.5) η̂T (0.5) T

(2)
0.5 η̂T,m(0.5) η̂T (0.5)

T = 50 T = 100 T = 200
(LS1) 0.04 0.04 0.04 0.03 0.05 0.03 0.04 0.06 0.04
(LS2) 0.04 0.03 0.05 0.04 0.05 0.05 0.05 0.06 0.05
(LS3) 0.03 0.03 0.04 0.04 0.04 0.03 0.05 0.05 0.04
(LS4) 0.04 0.31 0.58 0.07 0.53 0.94 0.10 0.60 1.00
(LS5) 0.05 0.35 0.67 0.06 0.47 0.98 0.08 0.54 1.00
(LS6) 0.05 0.34 0.70 0.07 0.43 0.97 0.08 0.49 1.00

Panel C (aT = 1.5 ∗ sX ∗ T−1/3)
DGPs T

(2)
0.5 η̂T,m(0.5) η̂T (0.5) T

(2)
0.5 η̂T,m(0.5) η̂T (0.5) T

(2)
0.5 η̂T,m(0.5) η̂T (0.5)

T = 50 T = 100 T = 200
(LS1) 0.04 0.04 0.05 0.07 0.05 0.04 0.05 0.05 0.04
(LS2) 0.04 0.05 0.07 0.05 0.05 0.06 0.06 0.06 0.06
(LS3) 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.05
(LS4) 0.09 0.44 0.63 0.16 0.55 0.96 0.20 0.59 1.00
(LS5) 0.09 0.43 0.70 0.16 0.53 0.98 0.17 0.54 1.00
(LS6) 0.08 0.42 0.74 0.15 0.50 0.98 0.16 0.54 1.00

Panel D (aT = 0.075)
DGPs T

(2)
0.5 η̂T,m(0.5) η̂T (0.5) T

(2)
0.5 η̂T,m(0.5) η̂T (0.5) T

(2)
0.5 η̂T,m(0.5) η̂T (0.5)

T = 50 T = 100 T = 200
(LS1) 0.04 0.02 0.04 0.05 0.04 0.05 0.05 0.05 0.05
(LS2) 0.04 0.03 0.06 0.05 0.05 0.06 0.06 0.05 0.05
(LS3) 0.04 0.03 0.04 0.05 0.05 0.05 0.06 0.05 0.05
(LS4) 0.05 0.30 0.56 0.09 0.52 0.95 0.19 0.58 0.99
(LS5) 0.04 0.32 0.67 0.07 0.48 0.98 0.16 0.54 1.00
(LS6) 0.05 0.32 0.70 0.08 0.47 0.98 0.16 0.53 1.00

Table 5: Bootstrapped p-values of η̂T (0.5) of stock markets before (resp. after) the crisis
and business cycles

Bandwidths S&P500 FTSE100 Nikkei225 SSE-A USA UK Japan China
c = 0.5 0.802 (0.000) 0.194 (0.054) 0.168 (0.004) 0.942 (0.008) 0.134 0.006 0.374 0.358
c = 1.0 0.754 (0.000) 0.112 (0.022) 0.236 (0.000) 0.778 (0.002) 0.074 0.010 0.438 0.656
c = 1.5 0.728 (0.000) 0.096 (0.020) 0.228 (0.000) 0.718 (0.008) 0.078 0.006 0.438 0.682
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