
sensors

Article

Multispectral Mid-Infrared Camera System for Accurate
Stand-Off Temperature and Column Density Measurements
on Flames

Juan Meléndez * and Guillermo Guarnizo

Citation: Meléndez, J.; Guarnizo, G.

Multispectral Mid-Infrared Camera

System for Accurate Stand-Off

Temperature and Column Density

Measurements on Flames. Sensors

2021, 21, 8395. https://doi.org/

10.3390/s21248395

Academic Editor: Antonio Martínez

Olmos

Received: 25 October 2021

Accepted: 8 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

LIR—Infrared Laboratory, Department of Physics, Universidad Carlos III de Madrid, 28911 Leganés, Spain;
guillermoandres.guarnizo@uc3m.es
* Correspondence: juan.melendez@uc3m.es

Abstract: Accurate measurement of temperature in flames is a challenging problem that has been
successfully addressed by hyperspectral imaging. This technique is able to provide maps of not only
temperature T (K) but also of column density Q (ppm·m) of the main chemical species. Industrial
applications, however, require cheaper instrumentation and faster and simpler data analysis. In this
work, the feasibility and performance of multispectral imaging for the retrieval of T and QCO2

in
flames are studied. Both the hyperspectral and multispectral measurement methods are described
and applied to a standard flame, with known T and QCO2

, and to an ordinary Bunsen flame. Hyper-
spectral results, based on emission spectra with 0.5 cm−1 resolution, were found in previous works
to be highly accurate, and are thus considered as the ground truth to compare with multispectral
measurements of a mid-IR camera (3 to 5 µm) with a six interference filter wheel. Maps of T and Q
obtained by both methods show that, for regions with T & 1300 K, the average of relative errors in
multispectral measurements is ∼5% for T (and can be reduced to ∼2.5% with a correction based on a
linear regression) and ∼20% for Q. Results obtained with four filters are very similar; results with
two filters are also similar for T but worse for Q.

Keywords: infrared imaging; multispectral imaging; hyperspectral imaging; combustion monitoring;
remote sensing and sensors; spectroscopy; fourier transform; image processing

1. Introduction

Combustion processes are of paramount importance in many economic sectors. Since
temperature is the key factor that determines chemical reaction rates, an accurate control of
it is essential to optimize these processes: monitoring of temperature improves consistency
and energy efficiency in manufacturing, reduces wastage and pollution, increases reliability,
and extends intervals of maintenance tasks. However, to measure physical parameters in a
combustion process is a challenging problem, because intrusive probes can be damaged
by the harsh environment, and even the toughest ones, such as thermocouples, induce
perturbations in the flame, and provide readings with important systematic errors [1].
Therefore, non-intrusive methods, in particular those of optical thermometry, have become
the state-of-the-art.

Active laser-based techniques, such as CARS (Coherent Anti-Stokes Raman Spec-
troscopy) or LIGS (Laser Induced Grating Spectroscopy) require complex laboratory setups
that are difficult to install and operate in industrial environments, but still have a relatively
large uncertainty, generally not better than 5% [2]. A promising alternative is passive tech-
niques such as gas emission spectroscopy, whose setups are simpler since no excitation of
the flame is required. In particular, the main chemical species in a flame have very specific
emission profiles in the mid-IR band, that make possible their identification, quantization
and, in principle, the measurement of their temperature.

One of the aims of the European Metrology Programme for Innovation and Research (EM-
PIR) project EMPRESS [2] (Enhancing process efficiency through improved temperature
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measurement) was to validate these spectroscopic techniques by measuring a standard
flame of well-known temperature and chemical species concentration. The flame was devel-
oped by the British National Physical Laboratory (NPL), and its temperature was measured
by Rayleigh scattering thermometry (a technique traceable to the International Temper-
ature Scale of 1990, ITS-90) at NPL, and by Fourier Transform Infrared (FTIR) emission
spectroscopy by two research groups, one at the Technical University of Denmark (DTU) and
the other at Carlos III University of Madrid (UC3M). It was found that the agreement between
all measurements amounted to 1%, that is, ∆T ∼ 20 K for flame temperatures ∼2000 K [3].

This is a very good result that demonstrates the accuracy of flame temperature mea-
surement based on emission spectroscopy. The advent of portable Fourier-transform
hyperspectral imagers in the mid-IR region (also called Imaging Fourier Transform Spec-
trometers, IFTS) makes it possible to apply this technique to obtain temperature maps of
flames in-situ, without any ad-hoc setup, simply by acquiring and processing the spectral
radiance emitted by the flame. An additional advantage of the method is that it provides
also maps of concentrations for the main chemical species. Although, in contrast to tem-
perature, we have no reliable independent measurements to compare with, results for the
standard flame have shown an agreement with the calculations of the chemical equilibrium
software GasEq [4] better than 15% for CO2 and better than 10% for CO [5].

However, hyperspectral imagers in the mid-IR are expensive, and data processing is
complex and time-consuming. Practical application in industrial environments requires
cheaper and simpler instrumentation and faster processing, even at the expense of a not-so-
good accuracy. This target has been addressed in the second part of the referred EMPIR
project, EMPRESS 2 [6].

The basic approach is to use a mid-IR camera that becomes a multispectral instrument
by using interference filters. In this low-cost instrument, the spectral radiance integrated
over six bands provides the equivalent of a low-resolution emission spectrum of the
flame, whose shape and intensity depend on the temperature T f and column density Q f
(concentration × optical path) of the chemical species of the flame. Simulations of emission
spectra for a whole range of values of temperature {Ti} and column density {Qi} are made
using a line-by-line model that extracts the spectral parameters from the HITEMP2010
spectral database [7]. These simulated spectra are then integrated over the spectral bands
of the camera and the results are compared with the measured radiances in each pixel;
the couple (T f , Q f ), which gives the best agreement, provides the retrieved values of
temperature and column density for the pixel.

This methodology overcomes the basic problem of thermography when applied to
flames or, in general, gas plumes: the unknown emissivity of the target. This is also a
problem in the thermography of solids, but it can be dealt with by assuming a smooth
spectral dependence of emissivity, and using Bayesian or regularization methods to solve
the coupling between temperature and emissivity effects in spectral radiance [8,9]. The
spectral structure of gases, in contrast, is extremely complex, with thousands of discrete
absorption-emission lines. For that reason, state-of-the-art flame pyrometry resorts to mea-
suring soot emission, generally in at least two bands the visible range [10]. This approach,
however, is limited to sooty flames. In contrast, resorting to simulated spectra effectively
parametrizes spectral emissivity as a function of T and Q, so that, if measurements are
restricted to a spectral region where emission is due to a single chemical species (in our
case, CO2), values of radiance in a few bands (in principle even two), could determine not
only temperature, but also chemical composition, for any flame.

The feasibility of the multispectral method was demonstrated in a previous
work [11], where the uncertainty of this procedure was estimated theoretically by a Mon-
tecarlo method. It was found that, for the typical values of T and CO2 in the standard
flame, expected errors due to radiance fluctuations were very small: ∆T ∼ 11 K and
∆QCO2 ∼ 35 ppm·m. Errors for the first experimental results, however, were an order
of magnitude larger, but no systematic analysis of the accuracy of the results was made,
and only the standard flame in stoichiometric conditions was measured. In this paper,
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we present the full results achieved by the UC3M group within the EMPRESS 2 project.
The basic approach has been to study experimentally the accuracy of the results of the
multispectral method by comparing them to those of the hyperspectral method in a variety
of flames: the standard flame in stoichiometric, lean, and rich conditions, and an ordinary
Bunsen flame. Since the hyperspectral method has demonstrated an excellent accuracy
in the EMPRESS project, its results have been considered as a “ground truth” for temper-
atures, making it possible to calculate statistical benchmarks to qualitatively assess the
accuracy of multispectral results. Column densities retrieved by both methods have been
also compared, although in this case the accuracy of hyperspectral results has not been
tested by independent measurements.

The effect of the number of filters has been studied, showing that temperature results
with only two filters are nearly as good as those using six bands. The feasibility of bi-spectral
measurement of flame temperatures opens the possibility of fast and cheap temperature
imaging, with important industrial applications.

The structure of the paper is as follows. Section 2 explains the radiative model used
and the fundamentals and implementation of the two measurement methods
employed—hyperspectral and multispectral. Section 3 outlines the experimental setup and
the instrumentation used, and Section 4 describes the experimental results using six filters,
comparing multispectral and hyperspectral T and Q values both for the standard flame
and the Bunsen flame. Multispectral results obtained with a reduced number of filters are
studied in Section 5, showing that, even with only two filters, properly chosen, good results
are achieved for temperature. Finally, Section 6 summarizes the conclusions and suggests
future work.

2. Measurement Method: From Hyperspectral to Multispectral
2.1. Radiative Model

In a typical experimental setup for gas measurement with an IFTS (Figure 1), the
instrument images a gas plume against a background, measuring the spectral radiance
incoming to each pixel. In order to relate this radiance to the plume parameters, a radiative
model of the measurement configuration is needed. In this work, we will follow the model
explained in detail in [12]. For simplicity, the plume has been modeled by a single value of
T and Q for each pixel; in a non-homogeneous flame, these values should be considered as
line-of-sight averages.

Background 

(Tb, eb) IFTS 

RadiativeModel.pdf 

atm 1 

plume 

atm 2 

(Tpl, tpl) 

LBB(Tb)·eb·ta1tplta2 

LBB(Tpl)·(1-tpl)ta2 

Lin 

Figure 1. Schematics of the radiative model.

It is assumed that atmospheric emission is negligible, the background emissivity εb
is large (so that reflection in the background is negligible), the gas is in local thermal
equilibrium (so that Boltzmann distribution holds), and the effects of absorption and
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scattering by particulate matter are negligible. With these approximations the incoming
radiance at the radiometer is:

Lin = LBB(Tb)·εb·τa1τplτa2 + LBB(Tpl)·
(

1− τpl
)

τa2, (1)

where τpl , τa1 and τa2 are, respectively, the transmittances of the plume and the first and
second atmospheric paths (atm 1 and atm 2 in Figure 1), LBB stands for Planck’s blackbody
radiance, and Tb, Tpl are the temperatures of background and plume.

Transmittances are given by Lambert–Beer’s law, that is, for a single chemical absorb-
ing species, with an optical path L,

τ(ν, C, T) = e−α(ν,T)CL ≡ e−α(ν,T)Q, (2)

where C is the concentration, Q ≡ CL is the column density (measured usually in parts
per million per meter, ppm·m), and the dependence of the absorptivity α on wavenumber
and temperature has been shown explicitly. Absorptivities are generally well known and
can be extracted from spectroscopic databases like PNNL [13], HITRAN [14], or its high-
temperature version, HITEMP2010 [7]. If there is more than one absorbing species, τ(ν) is
just a product of terms like Equation (2), one for each species; if the concentration is not
homogeneous, the product αCL is replaced by an integral.

Our aim is to obtain, from experimental measurements of Lin(ν), the values of plume
temperature Tpl and column density Qpl at each pixel, in order to have a “temperature map”
and a “column density map” of the scene. It is not possible, however, to solve Equation (1)
for Tpl and Qpl , because they are coupled in the Lambert–Beer expression of transmittance
(Equation (2)), where the absorptivity α depends on Tpl in a nontrivial way. Instead, our
approach will be to calculate theoretical spectra as a function of Tpl and Qpl and assign to
each pixel the values that provide the best fit to its experimental spectrum.

Case of Very Hot or Very Cold Backgrounds

This process can be somewhat simplified for the extreme cases of very hot or very
cold backgrounds. When the background is much hotter than the plume, the second term
in Equation (1) can be neglected. In this absorption (or active) mode, Equation (1) becomes:

Lin
abs ≈ L

BB(Tb) · εb · τa1τplτa2. (3)

The plume transmittance is then:

τpl(ν, Qpl , Tpl) ≈
Lin

abs(ν)

LBB(ν, Tb) · εb · τa(ν, Qa, Ta)
, (4)

where τa = τa1 · τa2 stands for the total atmospheric transmittance. If Tb, εb and τa are
known, Qpl , and Tpl can be determined by fitting the theoretical τ (Equation (2)) to this
experimental value. Furthermore, the denominator in Equation (4) is just the reference
spectrum Lin

re f that can be measured experimentally if it is possible to turn off the plume,
so that:

τpl(ν, Qpl , Tpl) ≈
Lin

abs(ν)

Lin
re f (ν)

. (5)

Since transmittance is measured as a ratio, in absorption spectroscopy a radiometric
calibration of the instrument is not necessary, as long as it has a linear response.

If, on the other hand, the background is much cooler than the plume, its contribution
to the measured radiance will be negligible. This is the emission (or passive) mode. In this
case, Equation (1) becomes:

Lin
emi(ν) ≈ LBB(Tpl) ·

(
1− τpl

)
· τa2 (6)
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and the experimental transmittance spectrum is:

τpl(ν, Qpl , Tpl) ≈ 1−
Lin

emi(ν)

LBB(ν, Tpl) · τa2(ν, Qa2, Ta2)
. (7)

This is formally similar to Equation (4), but there is a crucial difference. Whereas
the denominator in Equation (4) can be easily estimated, or measured with a reference
spectrum, in Equation (7) it contains the plume temperature, which is precisely what has
to be determined. So, transmittance cannot be measured experimentally with this simple
setup, and the approach of emission spectroscopy is to fit the measured radiance by simulated
spectra, calculated with the right-hand side of Equation (6). This means that the radiometer
must be accurately calibrated in radiance.

Measurements of flames, like those performed in this work, will nearly always be
correctly modeled by this emission approximation.

2.2. Measurement Process: Hyperspectral

The process to obtain accurate temperature values from a flame through the hyper-
spectral imaging method can be described in three stages: acquisition of experimental
spectra, calculation of simulated spectra, and a comparison of both.

The procedure to obtain experimental spectra begins with the output of the IFTS, which
is a datacube that contains one interferogram for each pixel of the scene. Each interferogram
must be Fourier-transformed to become the emission spectrum, but several additional
processing steps must be performed in order to optimize the result [12]: correction of
the DC component to compensate for signal drifts, apodization to improve lineshapes,
zero padding to optimally interpolate spectra, phase correction to take into account small
asymmetries in the interferogram, and off-axis correction to account for the effect of the
distance from the optical axis on the interferograms of pixels away from the image center.
In the IFTS used in this work, an additional correction has to be made to compensate
for the non-symmetrical scan of the moving mirror in the Michelson interferometer for
high-resolution spectra [15]. Finally, in flame measurements low-frequency fluctuations in
the raw interferograms appear due to flame flickering, and must be corrected; this has been
done using the technique described in [16]. The system was radiometrically calibrated as
described in Section 3.

The second stage is the calculation of simulated spectra, using the spectroscopic
parameters of the main chemical species of the flame. For a wide range of expected temper-
atures, the spectral absorptivity α is retrieved from the free online available HITEMP2010
database [7], and its temperature dependence at each wavenumber is parametrized by
high-order polynomials [12,15]. Then, emission spectra are calculated with Equation (6)
using the Lambert–Beer law to obtain τpl as a function of the flame temperature and the
column densities. For a hydrocarbon flame that burns all the fuel, the only relevant species
are CO2, CO, and H2O, but in the region between 2000 and 2400 cm−1, only CO2 and
CO have emission/absorption lines of appreciable intensity. Spectra are also a function
of the column density of atmospheric CO2. The emission spectra L(ν) are computed
line-by-line in spectral radiance units (W/m2·sr·cm−1) and are subsequently convolved
with the instrumental line shape (ILS) of the IFTS to simulate spectra as measured by the
imaging system.

Finally, in the third stage, the simulated and experimental spectra must be compared.
An algorithm iteratively changes the parameters used to build the simulated spectrum until
an optimal agreement is found with the experimental one. In our case, the parameters are
QCO2 , QCO, and Tpl , as well as the atmospheric concentration of carbon dioxide, QCO2 atm,
and the fitting procedure is as follows (a single gas will be assumed in the explanation; for
each additional gas the procedure is the same but there is an additional unknown value
of column density to be determined). At each pixel, we start by assuming a value for the
couple (Tpl , Qpl). The theoretical radiance is calculated with Equations (2) and (6) at each
point of the wavenumber axis of the experimental spectrum. The differences with the
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measured radiance spectrum for each wavenumber are added up in quadrature to get the
sum of squared errors (SSE). The Nelder–Mead minimization algorithm, as implemented
in MATLAB software, is then used to find the value of (Qpl , Tpl) for the next iteration, until
convergence is reached. This iterative process is repeated to retrieve values of column
density and temperature for each pixel.

The complete process is schematized in Figure 2, and it ends up providing images
(“maps”) of T and Q for the flame.

Interferogram Acquisition

Low frequencies fluctuation correction

Spectral
Process

 DC correction
 Make symmetrical
 Apodization
 Padding
 Phase correction
 Off‐axis correction

Radiometric calibration (W/m2∙sr∙cm−1)

{ν}, Q and T + HITEMP

Absorptivity function: α (ν, T)

Polynomic adjust of α as a function of T and ν

Radiative transfer model using Beer‐Lambert law

experimental (ν) simulated (ν)

Convolution using ILS (Instrumental Line Shape)

Adjust algorithm
(SSE optimization)

Flame T and Q

START
Experimental measurement Theoretical simulation

Figure 2. Scheme of the procedure to retrieve temperature and column density from hyperspectral
measurements. Left: the stage of experimental measurement. Right: the stage of construction of
simulated spectra.

Retrieval of compositional data, spatial resolution, and the high accuracy for tem-
perature measurements with a very simple setup, are all very appealing features of the
hyperspectral method just described. However, the process of iteratively generating simu-
lated spectra for each pixel until convergence is reached is computationally intensive and
may take hours to finish on a high-performance PC. This is a handicap for practical flame
temperature retrieval; in particular, the method cannot be used for continuous monitoring.
Therefore, a simpler and faster alternative, even if some accuracy in the measured values is
lost, would be highly appreciated for industrial applications. This is where multispectral
imaging comes in.

2.3. Measurement Process: Multispectral
2.3.1. Effect on Spectra of Temperature and Concentration

Measurement by hyperspectral emission spectroscopy, as just described, is based on
the dependence on T and Q of the high-resolution spectra of gases, with individual lines
resolved. However, lines are grouped into ro-vibrational bands, and when the intensity of
the lines changes because of temperature, the overall shape and intensity of the band also
change. The reason is that as T increases the emitted radiance in each line increases, but
the effect is stronger for lines far from the band center because higher energy rotational
levels become more populated, and thus the band becomes wider. Therefore, it is possible,
at least in principle, to measure T and Qwith an instrument whose spectral resolution is
not fine enough to resolve individual lines.

This effect can be seen in Figure 3, which shows at the left-hand side calculated
spectra (using HITEMP2010 parameters) for three different temperatures and column
densities of CO2 (the sharp decrease for ν & 2300 cm−1 is due to absorption by the cold
atmospheric CO2). In the right-hand side of the figure these spectra have been integrated
over spectral intervals 50 cm−1 wide to simulate a multispectral measurement. Values of T
and Q have been chosen to give the same spectral radiance at 2275 cm−1, but it is clear that
the ambiguity can be resolved using the information of additional bands.
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This suggests that retrieval of both temperature and species concentration from the
multispectral measurement can be made, as in the hyperspectral case, by the iterative fitting
of the experimental data with the theoretical simulation, but the simulation will include
now an additional step of integration over the spectral band of the respective optical filter.

Figure 3. Left: Three simulated emission spectra for different column densities Q of CO2 and
flame temperatures. Right: Integrated radiances over spectral bands of 50 cm−1 width for the same
high−resolution spectra of the left. (Figure previously published in [11]).

2.3.2. Calibrated Multispectral Measurements: Definition of Pseudospectra

As in the hyperspectral case, the multispectral process for temperature retrieval can
be described in three stages. The first one, the experimental measurement, is performed
with an infrared camera in which a set of transmittance filters define a discrete number,
n, of spectral channels. To radiometrically calibrate the instrument, a nominal spectral
width ∆i is defined for each filter as the full width at half maximum (FWHM) of its spectral
transmittance. A blackbody radiator is set at different temperatures and the measured
digital number (DNi) is plotted versus the incoming radiance, integrated over ∆i. A least-
square linear fitting provides the parameters Gaini (slope) and Offseti (y-intercept). The
experimental radiance in the spectral interval of the i-th channel can be subsequently
obtained from the measured digital number as

Li =
DNi −Offseti

Gaini
. (8)

Since the camera is calibrated for the incoming radiance, the effect of atmospheric
absorption must be taken into account, multiplying the blackbody emitted radiance by the
average transmittance over the spectral interval ∆i.

When a multispectral measurement has been made, Equation (8) provides a measure-
ment vector (L1, . . . ,Ln) with the radiometric information. Values of Li do not depend on
the transmittance of the filter, since calibration is made against the total integrated radiance
over the spectral width ∆i, but they do depend strongly on its spectral width. Therefore, it
is convenient to divide Li by ∆i, to have an estimation of the spectral radiance at each filter
central wavenumber. The normalized measurement vector (L1

∆1
, . . . , Ln

∆n
) is the output of

the multispectral measurement, and may be considered a low-resolution approximation
to the real emission spectrum as measured at the location of the camera; it will be called
pseudospectrum in this work.

2.3.3. Pre-Calculation of Simulated Pseudospectra

The use of an infrared camera instead of an IFTS fulfills the aim of achieving a cheaper
measuring system. The additional aim of a faster and simpler processing needs to be ad-
dressed in the following stages. The simulation of the pseudospectra is straightforward: the
process is the same as in the hyperspectral case, with the additional step of integration over
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the spectral intervals ∆i of the high-resolution spectra. The key to simplifying the method
and making it faster is the third stage of the process: comparison between experimental
and simulated pseudospectra. The bottleneck of the hyperspectral retrieval process is the
iterative generation of simulated spectra to fit the experimental spectrum. Thus, a great
efficiency improvement could in principle be achieved by avoiding that process. This can
be done if the simulated emission spectra are pre-calculated, as follows:

1. For a specific scene, a set of {Ti} and {Qi} values can be defined, such that their
ranges cover the expected values in the flame. Nominal emission pseudospectra
can be calculated for all the values of the (T, Q) matrix (for a given atmospheric
transmittance). A simulated pseudospectra datacube is thus obtained;

2. An experimental pseudospectrum can now be compared to all the pseudospectra
of this datacube; the (Tf , Q f ) couple retrieved is the one that gives the smaller error.
The discrepancy between experimental and theoretical pseudospectra was quantified
as the sum of absolute errors (SAE), instead of the sum of squared errors (SSE), as
used in the hyperspectral method, in order not to excessively weight the errors of a
single filter.

Simulated pseudospectra were pre-calculated for two different ranges of T and Q: for
the measurements on the standard flame, T was varied between 250 K and 3000 K and
Q between 100 ppm·m and 5000 ppm·m; for the measurements on the Bunsen flame, T
was varied between 250 K and 2500 K, and Q between 10 ppm·m and 2500 ppm·m. On
the basis of the expected errors determined in [11], the steps of ∆T = 10 K were used for
temperatures, while for column densities the values were ∆Q = 20 ppm·m for the standard
flame and ∆Q = 10 ppm·m for the Bunsen flame.

As the final stage of the process, the experimental pseudospectrum was compared
exhaustively, for each pixel, with the full set of the simulated ones to assign it to the (T f ,
Q f ) couple that returned the best match. Exhaustive comparison is not the fastest method
to find a minimum error, but computation time is very affordable because of the small size
of the data handled, and it ensures the lowest error solution, unlike a search algorithm,
which could end up in a local minimum.

3. Experimental Setup and Instrumentation

The experimental setup is simply the practical realization of the scheme of Figure 1,
with a uniform low reflectance background at room temperature. Two different flames
(the standard flame developed at NPL and an ordinary Bunsen flame) and two different
imaging instruments (hyperspectral and multispectral) have been used.

The standard flame was developed by NPL in the framework of the EMPRESS [3]
project. The burner uses propane as fuel and produces a square array (40 × 40 mm) of
small diffusion flamelets stabilized above it, with a zone of nearly uniform temperature
and composition (Figure 4). It can be set to different equivalence ratios, from φ = 0.8 (lean
flame) to φ = 1.4 (rich flame). Temperature, species concentration, and flame dynamics
vary with the equivalence ratio. The hottest and more stable flame is the stoichiometric
(φ = 1), which has also a very small amount of CO [3]. An additional feature of the
standard flame is that the spatial profiles of temperature and species concentration are very
flat, and therefore the assumption of uniform temperature and concentration along the line
of sight is fully justified.

Measurements were also performed in a Bunsen burner using butane as fuel (model
Labogaz 206 from Campingaz) to test the multispectral method in an ordinary flame similar
to those used in many industrial applications. The equivalence ratio could not be measured,
but the fuel inlet was regulated to obtain a flame approximately stoichiometric.

To ensure stability, both flames were turned on for one hour before the measurements
were performed, and the doors and windows of the room remained closed throughout
the process to keep temperature stable and to avoid drafts that could cause movements in
the flame.
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Figure 4. Standard flame burner (Figure previously published in [11]).

The IFTS used in this work is an FTIR hyperspectral Imaging System (Telops FIRST-
MW) operating in the extended mid-infrared (MIR) region, from 1850 cm−1 to 6600 cm−1.
The system consists of a Michelson interferometer coupled to an InSb focal plane array
(FPA), with 320 × 256 pixel resolution, an instantaneous (pixel) field of view of 0.35 mrad,
and a maximum resolution of 0.25 cm−1. In order to reduce the long acquisition time to ∼2
or 3 min, all spectra have been measured at 0.5 cm−1 in a sub-window of 160 × 256 pixels.
More information about this system can be found in [12].

The IFTS was radiometrically calibrated at Centro Español de Metrología (CEM). Two
blackbodies were used with an aperture large enough (70 mm diameter) to cover the whole
field of view of the sub window used. Calibration temperatures were 180 ◦C and 400 ◦C.
Since the spectral emission of the flame is concentrated in a narrow band in comparison to
the full spectral range of the instrument, these blackbody temperatures were sufficient to
calibrate the instrument for flame temperatures up to 2500 ◦C [3,17].

On the other hand, the multispectral measurements were performed using a Ther-
mosensorik SME 640 camera, that operates in the MIR band (3 to 5 µm), with a
640× 512 InSb Stirling-cooled FPA detector. It features a rotating wheel placed immediately
after the optics, with a capacity for six interference filters of 1-inch diameter. The spectral
transmittance profiles of the filters used are shown in Figure 5, superimposed to a typical
emission spectrum of the standard flame (in arbitrary units). For each filter, a different
integration time was used in order not to saturate the camera response, and a radiometric
calibration was performed with a 15 × 15 cm extended area blackbody radiator (model
4006 G from Santa Barbara Infrared, Inc., Santa Barbara, CA, USA) whose emissivity had
been previously measured at Centro Español de Metrología (CEM).

In all multispectral measurements, the effect of atmospheric transmittance was taken
into account using a standard atmospheric CO2 meter and calculating the corresponding
value for the atmospheric path for calibration and for measurement. In hyperspectral
measurements, the concentration of atmospheric CO2 was calculated by iterative fitting,
with results in good agreement with those of the CO2 meter.
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Figure 5. Transmittance in the mid−IR region of the six interference filters used, with a emission
spectrum of a the standard flame (in arbitrary units) shown for comparison.

4. Experimental Results: Six Filters

Since in previous works hyperspectral temperature measurements in the NPL stan-
dard flame have proven very accurate, as explained in the Introduction, we will assume
throughout this article that the results of the hyperspectral method are our “ground truth”’,
and use them to validate the multispectral temperature maps. Multispectral column density
will be compared also with the hyperspectral value, although in this case it should be con-
sidered simply as a reference rather than a “ground truth”’ since there is no independent
experimental validation of its results.

4.1. Measurements with Six Filters: Standard Flame

Figure 6 provides a visual comparison between multispectral and hyperspectral results
for the standard flame in the stoichiometric case (φ = 1) . Values are qualitatively very
similar in the flame region, although they show important differences where the gases are
colder. This is to be expected since results are unreliable outside the central zone, because
radiance, and consequently signal-to-noise ratio (SNR), decrease sharply outside of the
burner area, which translates into erroneous estimates of T and Q. However, multispectral
results seem to be more robust in areas of low radiance, where the hyperspectral maps
have more pixels with obviously wrong values.

On the other hand, since the value of radiance in a specific spectral region can be kept
constant by increasing T and decreasing Q or vice versa, regions or low SNR are prone to
errors in which a T value too high corresponds to a Q value too low, or vice versa. This can
be seen very clearly in the areas at the top of Figure 6, where the pixels with temperature
values at the bottom of the scale have column density values at the top of the scale.

A more detailed comparison of results can be made by plotting the hyperspectral
temperatures and CO2 column densities versus the multispectral values in a scatterplot,
as in Figure 7, where each dot corresponds to a pixel of the image. In the plots on the
left-hand side, all pixels of Figure 6 are plotted, and values are very noisy for regions of
small signal. However, if the plot is restricted to pixels from regions of larger radiance the
correlation becomes much better. The effect of radiance level has been studied by including
only pixels above a variable radiance threshold. To be specific, the third element of the
pseudospectra has been used, L3 ≡ L3

∆3
. Setting this threshold to a spectral radiance of

L3th = 4 W/m2·sr·cm−1 gives the scatterplots at the right-hand side of Figure 7. Now
the correlation is much better, as indicated by the R2 values shown in the graph, and it
can be improved further, especially for Q, by increasing the L3 threshold; for instance,
if L3th = 6 W/m2·sr·cm−1 it is found that R2(Q) = 0.85. This shows that, with enough
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radiance signal, nearly all T and Q information provided by the hyperspectral method is
captured by the multispectral measurements.

Figure 6. Maps of temperature and CO2 column density for the stoichiometric (φ = 1) standard
flame, obtained with the multispectral method and with the hyperspectral method.

Figure 7. Scatterplots of hyperspectral vs. multispectral retrieved values of T (top row) and Q
(bottom row) for the stoichiometric (φ = 1) standard flame. Each point corresponds to a pixel, with
no radiance threshold (left column) and with threshold L3th = 4 W/m2·sr·cm−1 (right column).

The agreement between temperatures measured by the hyperspectral method, TH
i and

by the multispectral method, TM
i , can be quantified by the average of relative errors (ARE)

of the TM
i values, defined as ARE ≡ 〈|TH

i − TM
i |/TH

i 〉 (and, in an analogous way, for QM
i ).
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The effect of increasing the radiance threshold can be seen, for T and Q, at the left-hand
side of Figure 8. The ARE for the multispectral T (black circles) stabilizes in ∼5% for pixels
above L3th = 4 W/m2·sr·cm−1, whereas for the multispectral Q (blue squares) it is ∼10%
and keeps decreasing slightly for larger thresholds.

In fact, since there is a good correlation between both methods, in particular for
temperature, the linear regression of the hyperspectral values on the multispectral values
can be used to improve the estimations. If the slope and y-intercept of that regression are m
and b, respectively, the estimated hyperspectral temperatures, based on the multispectral
measurements are T̂H

i = m·TM
i + b, and the residuals are TH

i − T̂H
i . The average of the

relative residuals, defined by ARR ≡ 〈|TH
i − T̂H

i |/TH
i 〉 is a meaningful benchmark of the

accuracy of the multispectral measurement of temperature (in an entirely analogous way, it
can be defined for Q). The right-hand side of Figure 8 plots this parameter for T and Q as
a function of the radiance L3th threshold. It can be seen that estimating the temperatures
using the regression line may reduce it to values as low as nearly ∼ 1% if only pixels with
large radiances are considered.

Figure 8. Evolution of the discrepancies between hyperspectral and multispectral temperatures
(black circles) and column densities (blue squares), measured as average relative error (left) and
average residuals (right), for the stoichiometric (φ = 1) standard flame, as a function of the radiance
threshold, measured in W/m2·sr·cm−1.

It is worth pointing out that, as observed in Figure 7, for high temperatures, hyper-
spectral values tend to be below multispectral values, whereas the opposite is true for
column densities. This seems to be another example of the relative equivalence for radiance
levels of lowering T and increasing Q, as mentioned before with respect to errors in the
T and Q maps. Using the linear regression to estimate T and Q corrects this effect, and
therefore relative errors of the residuals of T and Q should be smaller than those of the
multispectral values, as observed.

The same study has been conducted for the rich flame (φ = 1.4) and the lean flame
(φ = 0.8), with similar results, although the agreement with hyperspectral values is
somewhat worse, especially for column densities (see Figure 9).
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Figure 9. Evolution of the discrepancies between hyperspectral and multispectral temperatures (black circles) and column
densities (blue squares), measured as average relative error and average residuals, for the standard flame, as a function of
the radiance threshold, measured in W/m2·sr·cm−1. Left: lean flame (φ = 0.8). Right: rich flame (φ = 1.4).

4.2. Measurements with Six Filters: Bunsen Flame

The flame of the Bunsen burner has several important differences to the standard flame:
radiance levels are smaller, the flame is less stable, and the temperature and composition of
the flame are spatially inhomogeneous along the line of sight. The aim of the measurements
in this section is to study whether these factors, which in principle make multispectral
measurements less reliable, affect the retrieved values of T and Q.

Figure 10 compares the temperature and column density maps obtained by the hy-
perspectral and multispectral methods. Again, values are qualitatively very similar in
the flame region, but now there are many pixels with anomalous values of T and Q in
regions closer to the main flame. This is in fact to be expected, since radiance levels in
the Bunsen flame are smaller than in the standard flame, because temperatures are lower
but also because the flame is thinner, and column densities are considerably smaller. As
in the standard flame, most of the anomalous values correspond to Q too high and T
too low, but there are also pixels with the opposite behavior at the top and the bottom
of the image (yellow in the hyperspectral Q map). Almost all of these pixels appear in
the hyperspectral images, showing again that the multispectral method is more robust in
regions of low signal.

Figure 10. Maps of temperature and CO2 column density for a Bunsen flame, obtained with the
multispectral method and with the hyperspectral method.

The effect of the radiance threshold on the scatterplots is apparent in Figure 11. Values
of R2 are considerably worse than those of the standard flame, even for
L3th = 4 W/m2·sr·cm−1, but these data are somewhat deceptive because with that thresh-
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old, due to the lower level of radiance, only a small region of the flame is selected and the
range of T and Q values is too small to show a good correlation. The smaller values of Q
explain also why the threshold used selects now temperatures above ∼1650 K instead of
∼1350 K as in the standard flame.

Despite the poor values of R2, the error benchmarks, plotted in Figure 12, exhibit a
behavior similar to that of the standard flame, showing that the multispectral method is
also applicable to this flame with a similar level of accuracy.

Figure 11. Scatterplots of hyperspectral vs. multispectral retrieved values of T (top row) and Q
(bottom row) for a Bunsen flame. Each point corresponds to a pixel, with no radiance threshold
(left column) and with threshold L3th = 4 W/m2·sr·cm−1 (right column).
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Figure 12. Evolution of the discrepancies between hyperspectral and multispectral temperatures
(black circles) and column densities (blue squares) for a Bunsen flame, measured as average relative
error (left) and average residuals (right), as a function of the radiance threshold, measured in
W/m2·sr·cm−1.

5. Experimental Results: Reduced Number of Filters

In what we have discussed so far, the radiance of the six filters of the multispectral
system has been used to retrieve temperature and column density values. This is the
natural procedure, since, in principle, the more spectral information we have, the better
our results will be. However, there are several reasons why it could be advantageous to
base the retrieval on a smaller number of bands; for instance, to avoid spectral regions
with larger uncertainty (e.g., those more influenced by the presence of atmospheric CO2),
or to discard bands that may have co-registration errors with the others, due to lack of
flame stability, or bands that could be saturated or close to saturation. And of course, the
possibility of a system that uses fewer bands is of interest in itself, because it would be
cheaper and more simple.

5.1. Measurements with a Reduced Number of Filters: Standard Flame

Two possibilities have been studied: using the first four filters (thus discarding infor-
mation from filters 5 and 6, the most affected by atmospheric CO2, see Figure 5) and using
only filters 1 and 3 (corresponding to the regions with larger signal and no contribution
from CO). The retrieved temperature and column density maps, in all cases, have a visual
appearance similar to those obtained with the six filters. Hyperspectral vs. multispectral
scatterplots are also very similar for six and four filters, showing that discarding filters 5
and 6 does not cause a significant loss of information. However, appreciable differences
appear in the case of two filters. This can be seen for the standard flame in stoichiomet-
ric conditions by comparing Figure 13 with Figure 7: temperatures retrieved with two
filters tend to be somewhat lower than hyperspectral temperatures (instead of somewhat
larger, as temperatures retrieved with six filters), and the L3th threshold causes now a
sharp threshold in temperatures; however, correlation is similar, and even better for the
zero-threshold case. In contrast, the correlation for column densities is much worse, and
for the zero-threshold case there is a large cluster of pixels with Q values near the top of
the range, that is, 5000 ppm·m. These values are clearly wrong but could probably assume
better values if the range of Q for the pre-calculated would be increased.

The average of relative errors and the average of relative residuals, as a function of the
threshold for the stoichiometric standard flame, can be seen in Figure 14. The comparison
with results for six filters, in Figure 8, shows nearly no difference when using four filters.
Using two filters, the results for Q are worse, but the results for T are similar if measured
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by the ARR, and even slightly better if measured by the ARE, at least for the large values
of L3th. Similar behavior is found for the non-stoichiometric cases in the standard flame
(not shown).

Figure 13. Scatterplots of hyperspectral vs. multispectral retrieved values of T (top row) and Q
(bottom row) for the stoichiometric (φ = 1) standard flame, using only filters 1 and 3 for retrieval.
Each point corresponds to a pixel, with no threshold radiance (left column) and with threshold
L3th = 4 W/m2·sr·cm−1 (right column).

Figure 14. Evolution of the discrepancies between hyperspectral and multispectral temperatures (black circles) and column
densities (blue squares), measured as average relative error and average residuals, for the standard stoichiometric flame, as
a function of the radiance threshold, measured in W/m2·sr·cm−1. Left: values retrieved with four filters. Right: values
retrieved with two filters.
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5.2. Measurements with a Reduced Number of Filters: Bunsen Burner

The effects of reducing the number of spectral channels in the Bunsen flame measure-
ments are similar to those already exposed for the standard flame. The main differences
appear when only two filters are used, as shown in Figure 15. With the radiance threshold
L3th temperatures are hardly affected, whereas correlation for column densities is much
worse. With no radiance threshold, column densities show a large cluster of pixels with
obviously wrong values near the top of the range of pre-calculated spectra. This is the same
effect found in the standard flame, although here the top of the range is Q = 2500 ppm·m.

The averages of relative errors and relative residuals using four filters (Figure 16) have
also values very similar to those found using six filters (Figure 12). Using only two filters
causes a large degradation of the ARE for Q and a small one for T, whereas changes in the
ARR are small.

Figure 15. Scatterplots of hyperspectral vs. multispectral retrieved values of T (top row) and Q
(bottom row) for the Bunsen flame, using only filters 1 and 3 for retrieval. Each point corresponds
to a pixel, with no radiance threshold (left column) and with threshold L3th = 4 W/m2·sr·cm−1

(right column).
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Figure 16. Evolution of the discrepancies between hyperspectral and multispectral temperatures (black circles) and column
densities (blue squares), measured as average relative error and average residuals, for the Bunsen flame, as a function of
the radiance threshold, measured in W/m2·sr·cm−1. Left: values retrieved with four filters. Right: values retrieved with
two filters.

6. Summary, Conclusions & Future Work

Hyperspectral imaging in the mid-IR is capable of providing spatially resolved accu-
rate measurements of flame temperature (T), as well as column densities (Q) for the main
chemical species present, but it has the disadvantage of requiring expensive instrumenta-
tion and complex processing. In this work, these two problems have been approached by
using a multispectral system built with a camera that operates in the mid-IR and has six
channels defined by interference filters, and by proposing a fast method of retrieval of T
and QCO2 based on the pre-calculation of emission spectra, simulated line-by-line using
the HITEMP2010 spectroscopic database, which are compared to the experimental multi-
spectral measurements. This approach overcomes the difficulty that unknown emissivity
poses to thermography of flames, because simulation of spectra effectively parametrizes
the spectral emissivity of the flames as a function of T and QCO2 .

The results have been systematically compared with those of the hyperspectral method
for a standard flame of well-known composition and temperature, studied in previous
works, and for an ordinary Bunsen flame. In each case, two benchmarks have been calcu-
lated to quantify the agreement of the multispectral temperatures and column densities
with the hyperspectral values: the average of relative errors (ARE) and the average of
relative residuals (ARR) of the values estimated by means of a linear regression.

The degree of agreement has been found to depend strongly on the level of radiometric
signal of the flame, but for levels of radiance that correspond to T & 1300 K in the standard
flame, ARE in temperature is ∼5%, whereas the ARR is ∼2.5% and can be as low as nearly
∼1% for larger levels of radiance. Results in the Bunsen flame are comparable, although
overall radiance levels are smaller, because maximum temperatures and, especially, column
densities have lower values.

For all the cases studied it has been found that agreement with the hyperspectral
results is much better for temperatures than for column densities. This is to be expected,
since measurement in emission mode is always more sensitive to temperatures than to
concentrations. An unexpected result, however, has been that the multispectral method
has proven more robust than the hyperspectral method, with fewer pixels with obviously
wrong values in the regions of low radiance levels.

One of the main findings of this work is that values of T retrieved with only four,
or even two filters, are nearly as accurate as those obtained with the full multispectral
information of the six filters. Values of Q, on the other hand, are not affected by using
four filters instead of six, but are clearly worse when using only two. The feasibility of
accurate bi-spectral thermometry in flames is a very promising result, because a bi-spectral
system could be implemented without the need for moving parts using two detectors with
independent optics, or possibly dual-band detectors. The ability to measure temperature
and CO2 column density with only two spectral channels opens also the possibility to
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use other channels to measure other chemical species; in particular, CO and unburned
hydrocarbons, which have emission lines in the mid-IR. This can be very useful to estimate
combustion efficiency, a critical parameter in many industrial applications.

A critical factor that has limited the performance of both the multispectral and the
hyperspectral methods has been flame stability, in particular for the less energetic regions,
that are also more easily affected by air drafts. The regular flame flickering can be dealt with,
thanks to the specific processing developed in [16], but since hyperspectral measurements
take typically a few minutes, it is essential that the flame does not change its dynamics
during that period of time. An advantage of multispectral measurements is that they can be
much faster, but in our case they have taken a similar time because the filter wheel position
and the integration time were changed manually. There is thus room for improvement by
automating this process; this could reduce the measurement time to ∼1 s or even less and
would increase accuracy for regions outside the flame core.
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