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Abstract: We study two seminal approaches, developed by B. Simon and J. Kisyński, to the well-
posedness of the Schrödinger equation with a time-dependent Hamiltonian. In both cases, the
Hamiltonian is assumed to be semibounded from below and to have a constant form domain, but a
possibly non-constant operator domain. The problem is addressed in the abstract setting, without
assuming any specific functional expression for the Hamiltonian. The connection between the two
approaches is the relation between sesquilinear forms and the bounded linear operators representing
them. We provide a characterisation of the continuity and differentiability properties of form-valued
and operator-valued functions, which enables an extensive comparison between the two approaches
and their technical assumptions.
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1. Introduction

A quantum dynamical system is a first-order linear evolution equation on a separable,
complex Hilbert spaceH, where the evolution is determined by a family of densely defined,
self-adjoint operators {H(t)}t∈I , where I ⊂ R is an interval. This family of operators is
called the Hamiltonian of the system. To simplify the notation, it is denoted by H(t). In the
most general case, this represents the dynamics of a quantum system subjected to external
time-varying forces. The dynamics is given by the time-dependent (or non-autonomous)
Schrödinger equation:

d
dt

Ψ(t) = −iH(t)Ψ(t),

with some initial datum Ψ(s) = Ψ0.
Different from what happens in the autonomous case (i.e., H(t) = H), where the

existence and uniqueness of the solution are guaranteed by the celebrated Stone theorem
on one-parameter unitary groups [1–3], additional regularity conditions are required when
H(t) depends nontrivially on time. In particular, when dealing with unbounded Hamil-
tonians, the domain dom H(t) can possibly depend nontrivially on t. In such cases, even
by requiring the expression of the Hamiltonian to be reasonably “well-behaved” (e.g.,
continuously differentiable) as a function of time, the well-posedness of the problem above
is not ensured; standard methods such as product integrals or Dyson expansions cannot be
applied directly.

Singular potentials in the Schrödinger equation are a convenient way of analysing
different types of nontrivial boundary conditions. One example is point-like interactions,
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which model impurities. This has applications in physically relevant systems such as
propagation in quantum waveguides [4–6] or quantum dots [7]. Furthermore, recent re-
sults allowing for the numerical computation of the spectrum for nontrivial boundary
conditions [8,9] opened the possibility to control the state of a quantum system by mod-
ifying the boundary conditions. The latter has implications in the development of new
quantum technologies.

The problem of time-dependent Hamiltonians for the class of models H(t) = −∆ +
V(t), with ∆ being the Laplace operator on L2(Ω), Ω ⊂ Rn, and V(t) being a time-
dependent potential, has been studied extensively in the literature. However, these results
cannot be applied directly to treat the cases with non-constant boundary conditions, e.g., sin-
gular potentials, and one needs to rely on more abstract settings or take a case-by-case
approach. The situation where V(t) is a time-dependent singular potential has also been
considered [10–14], for example point (also called Dirac) interactions with a time-dependent
position or strength [15–17], possibly satisfying specific scaling properties [18,19]. In these
latter situations, the domains of the unbounded Hamiltonians H(t) depend explicitly on
the parameter t. Alternatively, one may consider the Laplace operator on a bounded region
with time-dependent boundary conditions. In such a case, the time dependence of the
operator is entirely encoded in its domain. Results in this direction have been found for
a quantum particle in a one-dimensional cavity with moving walls, which can be trans-
formed into a fixed-boundary problem [20–23]. More recently, time-dependent boundary
conditions in a graph-like manifold, potentially relevant in quantum control theory, have
been investigated [24,25].

From a mathematical point of view, the non-autonomous Schrödinger equation is a
first-order linear evolution problem in a Hilbert space with an unbounded generator that
depends on time, including the case in which its domain depends on time. The first one
addressing the problem in this abstract setting was T. Kato [26,27]. In this first approach,
he considered the operator domain dom H(t) to be constant and provided sufficient condi-
tions for the existence of solutions. Furthermore, J.L. Lions [28] addressed the existence
of solutions for problems of this type for the case in which the operator defining the dy-
namics, i.e., the Hamiltonian, is an elliptic differential operator with smooth coefficients.
K. Yosida [29,30] studied the case in which H(t) is positive and introduced a family of
approximations Hn(t) = H(t)(n−1 − H(t))−1, currently commonly known as Yosida’s
approximations. Even if his intention was to address the problem on which dom H(t) was
not constant, T. Kato noticed that Yosida’s original assumptions implied that dom H(t) had
to be constant; see the remark on page 429 in [30].

It was J. Kisyński [31] to be the first one to improve Yosida’s techniques in a way
allowing for time-varying domains. Independently, B. Simon [32] took an approach very
similar to that of J. Kisyński, albeit only considering the case in which the form domain
of the operator is constant; see Definition 5. In the case of strictly positive operators, the
form domain is the domain of the operator H(t)1/2 obtained by the functional calculus of
self-adjoint operators. There is also another work by T. Kato [33] addressing the problem for
time-dependent domains, and further refinements of this approach have been developed
over the years. A more recent work on the abstract non-autonomous Schrödinger problem
is [34]. The stability properties of time-dependent Hamiltonians have also been investigated
via non-standard analysis techniques [35] and, more recently, in [25], where sharper bounds
to the norms of the solutions obtained by B. Simon were found. Finally, let us point out that
many practical models use the nonlinear Schrödinger equation, i.e., they involve nonlinear
terms, and a certain energy law is preserved. For instance, there are some existing works
on the existence and uniqueness of solutions for certain nonlinear hyperbolic PDEs (with
no dissipation) [36], as well as the numerical approximation to these PDEs, such as [37–40].

The case of study of the research presented in this article is when H(t) is a family of
self-adjoint operators, uniformly bounded from below and with a constant form domain.
No other assumptions on the particular form of the operator were made. The problem
of the existence and uniqueness of the solutions was studied by B. Simon and J. Kisyński
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with similar approaches. B. Simon pointed out the relation between both approaches in his
book (see footnote 21 in [32], p. 56, and his remark after Theorem II.27). Referring to his
approach to the existence theorem (Theorem 4), he wrote ([32], pp. 58–59):

“[T]his theorem (in a slightly different form) is contained in the work of Kisyński [31].
[...] Yosida’s techniques are also behind Kisyński’s approach. [...] I discovered
Kisyński’s paper only after completing this proof myself and have not checked
carefully the differences, if any, in the details of the two proofs.”

The connection between both approaches is not immediate, and even the relation between
the necessary conditions taken is not completely obvious. To the best of our knowledge,
the details of this connection are yet to be thoroughly understood.

The aim of this work is to revise, in a common language, both approaches to the well-
posedness problem for the non-autonomous Schrödinger equation with a constant form do-
main and (possibly) non-constant operator domain and to clarify the connections between
them. The connection between J. Kisyński’s and B. Simon’s is subtle, and the relationship
between their approaches and the necessary conditions taken is not straightforward.

In showing the explicit relation between both approaches, we revise the state-of-the-art
of the problem. Since we did not assume any specific expression for the Hamiltonian H(t),
our work may also provide a useful reference for mathematical and theoretical physicists
interested in such problems. This may inspire, for example, new developments in the study
of quantum Hamiltonians with time-dependent boundary conditions. We applied our
results to a simple model with a point-like interaction whose strength depends on time.
The example shows explicitly the conditions imposed by B. Simon and J. Kisyński and
highlights the analogies and subtle differences between the approaches.

The paper is organised as follows. In Section 2, we study the regularity properties of
form-valued and operator-valued functions (Section 2.3). To do this, we recall first some
basic notions about operators and forms on a Hilbert space (Section 2.1) and we present the
canonical construction of the scale of Hilbert spaces associated with a semibounded self-
adjoint operator (Section 2.2). In Section 3, we introduce the non-autonomous Schrödinger
equation, both in its strong and weak formulation, for a Hamiltonian with a constant
form domain (Section 3.1). Then, we revise B. Simon’s (Section 3.2) and J. Kisyński’s
(Section 3.3) approaches to the well-posedness problem for the Schrödinger equation.
Finally, in Section 3.4, we analyse the relations between both approaches using the results
obtained in Section 2.

2. Regularity of Operator-Valued and Form-Valued Functions
2.1. Operators and Forms on Hilbert Spaces

LetH be a complex, separable Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
In this work, we only considered operators T : dom T ⊂ H → H densely defined on H.
Self-adjoint operators semibounded from below are closely related to closed sesquilinear
forms; see for instance [41], Chapter VI, and [42], Section VIII.6. Throughout this work,
we observe the convention establishing that a sesquilinear form is anti-linear on its first
argument and linear on the second one. We only considered Hermitian sesquilinear forms
h : dom h× dom h→ C defined on dense subspaces of the Hilbert spaceH: i.e., dom h is a
dense subspace ofH.

For convenience, we state the following consequence of the Uniform Boundedness Principle.

Theorem 1. LetH be a Hilbert space, and let F be a family of bounded sesquilinear forms onH. If
for every Ψ, Φ ∈ H, the set {|h(Ψ, Φ)| : h ∈ F} is bounded, then the set:{

|h(Ψ, Φ)| : Ψ, Φ ∈ H, ‖Ψ‖ ≤ 1, ‖Φ‖ ≤ 1, h ∈ F
}

is bounded.
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Proof. For a fixed Ψ ∈ H, consider the family of bounded operators fromH to C:

TΨ = {Φ 7→ h(Ψ, Φ) : h ∈ F}.

By assumption, for every Ψ, Φ ∈ H, there is a constant KΨ,Φ > 0 such that |h(Ψ, Φ)| ≤ KΨ,Φ.
Therefore, by the Uniform Boundedness Principle, the set:

{|h(Ψ, Φ)| : Φ ∈ H, ‖Φ‖ ≤ 1, h ∈ F}

is bounded. Applying again the Uniform Boundedness Principle to the family of bounded
operators {Ψ 7→ h(Ψ, Φ) : Φ ∈ H, ‖Φ‖ ≤ 1, h ∈ F}, the result follows.

An important concept to relate sesquilinear forms with operators is the notion of
closed and semibounded quadratic form. Recall that a Hermitian sesquilinear form is said
to be semibounded if there exists m > 0 such that h(Φ, Φ) > −m‖Φ‖2 for all Φ ∈ dom h; in
such a case, m is its semibound.

Definition 1. Let h be a semibounded Hermitian sesquilinear form with dense domain dom h,
and let m be the semibound of h. We define the graph norm of the sesquilinear form h by:

‖Φ‖h :=
√
(1 + m)‖Φ‖2 + h(Φ, Φ), Φ ∈ dom h.

We say that h is closed if dom h is closed with respect to the graph norm ‖ · ‖h.

We recall next an important result; cf. [41], Section VI.2.

Theorem 2 (Representation theorem). Let h be a Hermitian, closed, semibounded sesquilinear
form with dense domain dom h ⊂ H. Then, there exists a unique, self-adjoint, semibounded
operator T with domain D and the same lower bound, such that:

(i) Φ ∈ D if and only if Φ ∈ dom h and there exists χ ∈ H such that:

h(Ψ, Φ) = 〈Ψ, χ〉, ∀Ψ ∈ dom h;

(ii) h(Ψ, Φ) = 〈Ψ, TΦ〉 for any Ψ ∈ dom h, Φ ∈ D;

(iii) D is a core for h, that is D‖·‖h = dom h.

Note that this theorem establishes a one-to-one correspondence between closed, semi-
bounded Hermitian sesquilinear forms and semibounded self-adjoint operators and moti-
vates the following definition.

Definition 2. Let h be a closed, semibounded, Hermitian sesquilinear form. The operator T given
in Theorem 2 is said to be the operator representing h. Conversely, h is called the sesquilinear form
represented by T.

2.2. Scales of Hilbert Spaces

The notion of scales of Hilbert spaces (also known as Gelfand triples) plays a central
role in this article. We review the basic ideas of the construction in this subsection. Details
and proofs of the following statements can be found for instance in [43], Ch. I.

Let H+ ⊂ H be a dense subspace of the Hilbert space H, and let 〈·, ·〉+ be an inner
product endowingH+ with the structure of a Hilbert space and such that the associated
norm, ‖ · ‖+, satisfies:

‖Φ‖ ≤ ‖Φ‖+, Φ ∈ H+.
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By the Riesz representation theorem, the restriction of the inner product ofH onH+ can
be represented using the inner product in H+, i.e., there exists an operator Ĵ : H → H+

such that:
〈Ψ, Φ〉 = 〈ĴΨ, Φ〉+, Ψ ∈ H, Φ ∈ H+.

This operator is injective and allows defining another inner product onH,

〈·, ·〉− := 〈Ĵ·, Ĵ·〉+.

LetH− be the completion ofH with respect to the norm ‖ · ‖− associated with 〈·, ·〉−. The
operator Ĵ can be extended by continuity to an isometric bijection J : H− → H+. The
spacesH,H± form the scale of Hilbert spacesH+ ⊂ H ⊂ H−.

Finally, since:

|〈Ψ, Φ〉| = |〈JΨ, Φ〉+| ≤ ‖JΨ‖+‖Φ‖+ = ‖Ψ‖−‖Φ‖+, Ψ ∈ H, Φ ∈ H+,

the inner product onH can be continuously extended to a pairing:

(·, ·) : H− ×H+ ∪H+ ×H− → C.

Note also that, by definition,

〈Ψ, Φ〉± = (Ψ, Ĵ
∓1

Φ), Ψ, Φ ∈ H±.

Let us introduce now the scale of Hilbert spaces associated with a sesquilinear form.
Let h : H+ × H+ → C be a Hermitian, strictly positive sesquilinear form such that
H+ is complete with respect to the norm induced by the inner product 〈·, ·〉+ := h(·, ·)
and satisfying:

‖Φ‖2 ≤ h(Φ, Φ), Φ ∈ H+.

The construction above can therefore be applied to define an associated scale of Hilbert
spacesH+ ⊂ H ⊂ H−.

Let H be the positive, self-adjoint operator representing h, that is,

〈Ψ, Φ〉+ = h(Ψ, Φ) = 〈Ψ, HΦ〉,

for all Ψ ∈ H+ and Φ ∈ dom H. Note that, if H is strictly positive, H−1 ∈ B(H) is
well defined and Ĵ = H−1. Therefore, the operators H, H−1 can be extended to H̃ =
J−1 ∈ B(H+,H−) and H̃−1 = J ∈ B(H−,H+). To simplify the notation, we denote
these extensions and the original operators by the same symbols, H and H−1. Note also
that, since H is self-adjoint and positive, then H±1/2 are well-defined and the following
identities hold:

H±1/2H± = H, H±1/2H = H∓

and
〈Ψ, Φ〉± = 〈H±1/2Ψ, H±1/2Φ〉,

for Φ, Ψ in the appropriate spaces.
This discussion leads to the following definition.

Definition 3. Let H be a Hilbert space with associated inner product 〈·, ·〉, H+ ⊂ H a dense
subspace, and let h : H+ ×H+ → C be a Hermitian, strictly positive, closed sesquilinear form.
Denote by H the strictly positive self-adjoint operator representing h (cf. Definition 2), and define
the inner products:

〈Ψ, Φ〉± = (Ψ, H±1Φ) Ψ, Φ ∈ H±,
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whereH− is the closure ofH with respect to the norm ‖ · ‖− induced by 〈·, ·〉−. The scale of Hilbert
spaces associated with h is the scale:

(H+, 〈·, ·〉+) ⊂ (H, 〈·, ·〉) ⊂ (H−, 〈·, ·〉−).

The scale of Hilbert spaces associated with a semibounded sesquilinear form h̃ with semibound m is
the scale associated with the strictly positive sesquilinear form h(Ψ, Φ) = h̃(Ψ, Φ) + m + 1.

The scale of Hilbert spaces associated with a semibounded self-adjoint operator will
be the scale of Hilbert spaces associated with the unique quadratic form representing it.

Let us end this subsection with a useful result on families of scales of Hilbert spaces
sharing a common domainH+.

Theorem 3. LetH+ be a dense subset of a Hilbert spaceH, and let 〈·, ·〉+,1 and 〈·, ·〉+,2 be inner
products that give rise to the scales of Hilbert spaces:

(H+, 〈·, ·〉+,i) ⊂ H ⊂ (H−, 〈·, ·〉−,i), i = 1, 2.

Denote by ‖ · ‖±,i the norm onH±, and let c > 0. The following statements are equivalent:

(i) For all Φ ∈ H+, c−1‖Φ‖+,1 ≤ ‖Φ‖+,2 ≤ c‖Φ‖+,1;
(ii) For all Φ ∈ H−, c−1‖Φ‖−,1 ≤ ‖Φ‖−,2 ≤ c‖Φ‖−,1.

Proof. Let Ai be the strictly positive self-adjoint operator with domainH+ such that:

〈Ψ, Φ〉+,i = 〈AiΨ, AiΦ〉, i = 1, 2.

By the closed graph theorem, the operator defined by T := A1 A−1
2 is a bounded operator

onH; therefore, given Φ ∈ H+,

‖Φ‖+,1 = ‖A1 A−1
2 A2Φ‖ ≤ ‖T‖‖A2Φ‖ = ‖T‖‖Φ‖+,2.

Analogously, one can obtain ‖Ψ‖+,2 ≤ ‖T−1‖‖Ψ‖+,1 for Ψ ∈ H+.
Using the adjoint of T, T† = A−1

2 A1, one can prove similar inequalities for the norms
‖ · ‖−,i, i = 1, 2:

‖Φ‖−,1 ≤ ‖T−†‖‖Φ‖−,2, ‖Φ‖−,2 ≤ ‖T†‖‖Φ‖−,1. (1)

If (i) holds, one has:

‖TΦ‖ = ‖A−1
2 Φ‖+,1 ≤ c‖A−1

2 Φ‖+,2 = c‖Φ‖.

Similarly, it follows that ‖T−1‖ ≤ c, and therefore, ‖T±†‖ = ‖T±1‖ ≤ c. By Equation (1),
(ii) follows.

The other implication, i.e., (ii) implies (i), is proven analogously.

2.3. Regularity of Operator-Valued and Form-Valued Functions

In the statement of the following results,H+ is a Hilbert space with norm ‖ · ‖+ and
inner product 〈·, ·〉+, not necessarily part of a scale of Hilbert spaces. We use this notation
to ease the reading, as later we use these results in the case thatH+ is part of a scale. Let
I ⊂ R be a real interval, and let V = {vt}t∈I be a family of bounded sesquilinear forms on
H+. The aim of this subsection is to investigate the relationship between the regularity
of the functions t ∈ I 7→ vt(Ψ, Φ) ∈ C for Ψ, Φ ∈ H+ fixed and the regularity of the
form-valued functions t ∈ I 7→ vt ∈ V . Let us first introduce some technical lemmas.

Lemma 1. Let F be an equicontinuous family of functions from a Hilbert spaceH+ to C. Then,
the function f : Φ ∈ H+ 7→ supF∈F |F(Φ)| ∈ C is continuous.



Mathematics 2022, 10, 218 7 of 20

Proof. Let Φ, Φ0 ∈ H+. It holds that:

sup
F∈F
|F(Φ)| = sup

F∈F
[|F(Φ)| − |F(Φ0)|+ |F(Φ0)|]

≤ sup
F∈F

[|F(Φ)| − |F(Φ0)|] + sup
F∈F
|F(Φ0)|,

Combining this inequality with the one obtained interchanging the roles of Φ and Φ0, it
follows that: ∣∣∣∣∣sup

F∈F
|F(Φ)| − sup

F∈F
|F(Φ0)|

∣∣∣∣∣ ≤ sup
F∈F

∣∣∣∣|F(Φ)| − |F(Φ0)|
∣∣∣∣.

Therefore, one has:

| f (Φ)− f (Φ0)| =
∣∣∣∣∣sup
F∈F
|F(Φ)| − sup

F∈F
|F(Φ0)|

∣∣∣∣∣ ≤ sup
F∈F

∣∣∣∣|F(Φ)| − |F(Φ0)|
∣∣∣∣.

From this inequality and the equicontinuity of F , the result follows.

Lemma 2. For every t ∈ I ⊂ R, let vt : H+ × H+ → C be a bounded sesquilinear form.
Let t0 ∈ I, and suppose that limt→t0 vt(Ψ, Φ) exists for every Ψ, Φ ∈ H+. Then, there is a
neighbourhood Bt0 of t0 and a constant K such that:

|vt(Ψ, Φ)| ≤ K‖Ψ‖+‖Φ‖+, ∀Ψ, Φ ∈ H+, ∀t ∈ Bt0 .

Moreover, L(Ψ, Φ) = limt→t0 vt(Ψ, Φ) defines a bounded sesquilinear form onH+ with:

|L(Ψ, Φ)| ≤ K‖Ψ‖+‖Φ‖+.

Proof. For every Ψ, Φ ∈ H+, the existence of limt→t0 vt(Ψ, Φ) implies that there is a
neighbourhood Bt0 of t0 and a constant KΨ,Φ > 0 such that, for t ∈ Bt0 , we have |vt(Ψ, Φ)| ≤
KΨ,Φ. Therefore, by Theorem 1, there is K > 0 such that, for every t ∈ Bt0 and every
Ψ, Φ ∈ H+,

|vt(Ψ, Φ)| ≤ K‖Ψ‖+‖Φ‖+.

It is straightforward to check that L(Ψ, Φ) is a sesquilinear form, and since the previous
bound holds independently of t ∈ Bt0 , it follows that |L(Ψ, Φ)| ≤ K‖Ψ‖+‖Φ‖+.

Lemma 3. For each t ∈ I ⊂ R, let vt : H+ ×H+ be a bounded sesquilinear form such that
limt→t0 vt(Ψ, Φ) exists for every Ψ, Φ ∈ H+, and denote by L the bounded sesquilinear form
defined by L(Ψ, Φ) = limt→t0 vt(Ψ, Φ). Then:

lim
t→t0

sup
Ψ,Φ∈H+\{0}

|vt(Ψ, Φ)− L(Ψ, Φ)|
‖Φ‖+‖Ψ‖+

= 0.

Proof. Fix Ψ0, Φ0 ∈ H+ such that ‖Ψ0‖+ ≤ 1 and ‖Φ0‖+ ≤ 1, and denote by Bt0 the
neighbourhood of Lemma 2. By the definition of the limit, for any ε > 0, there exists δ such
that, defining Bt0(δ) := {t ∈ I : |t− t0| < δ} ⊂ Bt0 , for t ∈ Bt0(δ):

|vt(Ψ0, Φ0)− L(Ψ0, Φ0)| <
ε

2
.

Therefore, for t ∈ Bt0(δ),

|vt(Ψ0, Φ)− L(Ψ0, Φ)| ≤ sup
t∈Bt0 (δ)

|vt(Ψ0, Φ−Φ0)− L(Ψ0, Φ−Φ0)|+
ε

2
. (2)
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Consider the function fΦ0 : H+ → [0, ∞) defined by:

fΦ0(Φ) := sup
t∈Bt0 (δ)

|vt(Ψ0, Φ−Φ0)− L(Ψ0, Φ−Φ0)|.

By Lemma 2, the family of functions {Φ 7→ vt(Ψ0, Φ−Φ0)− L(Ψ0, Φ−Φ0) : t ∈ Bt0(δ)}
is equicontinuous, and therefore, Lemma 1 implies that fΦ0 is a continuous map. This
implies that fΦ0 is also weakly continuous, and therefore, UΦ0 := f−1

Φ0
({x ∈ R : |x| < ε/2})

is an open neighbourhood of Φ0 in the weak topology of H+. By Equation (2) and the
definition of UΦ0 , for every Φ ∈ UΦ0 and every t ∈ Bt0(δ),

|vt(Ψ0, Φ)− L(Ψ0, Φ)| ≤ ε.

That is, for every Ψ0, Φ0 ∈ H+, ‖Φ0‖+ ≤ 1, and ε > 0, there is δ and a neighbourhood of
Φ0 in the weak topology, UΦ0 , such that, for every Φ ∈ UΦ0 and |t− t0| < δ,

|vt(Ψ0, Φ)− L(Ψ0, Φ)| < ε.

The family {UΦ : ‖Φ‖+ ≤ 1, Φ ∈ H+} is an open covering of the closed unit ball onH+,
and by the weak compacity of the unit ball, there is a finite subcovering {Un}N

n=1. It follows
that, for every Un, 1 ≤ n ≤ N, there is δn such that, for Φ ∈ Un and |t− t0| < δn:

|vt(Ψ0, Φ)− L(Ψ0, Φ)| ≤ ε.

Therefore, for |t− t0| < minn δn and every Φ ∈ H+ with ‖Φ‖+ ≤ 1, one has:

|vt(Ψ0, Φ)− L(Ψ0, Φ)| ≤ ε.

Repeating the argument for Ψ yields that the limit is uniform on Ψ, Φ in the closed unit
ball, from which the result follows.

We can now prove the main results of this subsection.

Proposition 1. For t ∈ I ⊂ R, let vt : H+ ×H+ → C be a family of bounded sesquilinear
forms. Then:

(i) If, for every Ψ, Φ ∈ H+, the map t 7→ vt(Ψ, Φ) is continuous, then:

lim
t→t0

sup
Ψ,Φ∈H+\{0}

|vt(Ψ, Φ)− vt0(Ψ, Φ)|
‖Φ‖+‖Ψ‖+

= 0.

If, in addition, I is compact, there exists M > 0 such that |vt(Ψ, Φ)| ≤ M‖Ψ‖+‖Φ‖+ for
every t ∈ I and every Ψ, Φ ∈ H+;

(ii) If, for every Ψ, Φ ∈ H+, the map t 7→ vt(Ψ, Φ) is differentiable, then:

lim
t→t0

sup
Ψ,Φ∈H+\{0}

1
‖Φ‖+‖Ψ‖+

∣∣∣∣vt(Ψ, Φ)− vt0(Ψ, Φ)

t− t0
− v̇t0(Ψ, Φ)

∣∣∣∣ = 0,

where v̇t(Ψ, Φ) denotes the derivative of t 7→ vt(Ψ, Φ). If, in addition, I is compact and t 7→
v̇t(Ψ, Φ) is continuous for every Ψ, Φ, there is M > 0 such that |v̇t(Ψ, Φ)| < M‖Ψ‖+‖Φ‖+
for every t ∈ I.

Proof. By Lemma 3, the continuity of t 7→ vt(Ψ, Φ) for each Ψ, Φ ∈ H+ implies:

lim
t→t0

sup
Ψ,Φ∈H+\{0}

|vt(Ψ, Φ)− vt0(Ψ, Φ)|
‖Φ‖+‖Ψ‖+

= 0,
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and its differentiability implies:

lim
t→t0

sup
Ψ,Φ∈H+\{0}

1
‖Φ‖+‖Ψ‖+

∣∣∣∣vt(Ψ, Φ)− vt0(Ψ, Φ)

t− t0
− v̇t0(Ψ, Φ)

∣∣∣∣ = 0.

The uniform bound in (i) follows from Lemma 2 and the compacity of I, while the uniform
bound in (ii) follows applying Lemma 2 and the continuity of t 7→ v̇t(Ψ, Φ).

Given a scale of Hilbert spacesH+ ⊂ H ⊂ H−, by the Riesz representation theorem,
any bounded sesquilinear form v : H+×H+ → C can be associated with a unique operator
V ∈ B(H+,H−) defined by v(Ψ, Φ) = (Ψ, VΦ). Let us now transfer the previous results
for form-valued functions to the operator-valued functions t ∈ I 7→ Vt ∈ B(H+,H−). For
convenience, we denote by ‖ · ‖±,∓ the operator norm in B(H±,H∓).

Proposition 2. LetH+ ⊂ H ⊂ H− be a scale of Hilbert spaces and I ⊂ R compact. For t ∈ I, let
vt : H+ ×H+ → C be a family of Hermitian, bounded, sesquilinear forms and V(t) : H+ → H−
be defined as the unique operators such that (Ψ, V(t)Φ) = vt(Ψ, Φ) for all Ψ, Φ ∈ H+. Then:

(i) For every t ∈ I, the operator norm of V(t) ∈ B(H+,H−) satisfies:

‖V(t)‖+,− = sup
Ψ,Φ∈H+\{0}

|vt(Ψ, Φ)|
‖Ψ‖+‖Φ‖+

.

If, in addition, the map t 7→ vt(Ψ, Φ) is continuously differentiable for every Ψ, Φ ∈ H+, then:

(ii) The map t 7→ V(t) is continuous with respect to the ‖ · ‖+,− norm, and the family {V(t)}t∈I
is uniformly bounded;

(iii) The derivative d
dt V(t) exists in the ‖ · ‖+,−-norm sense, and it is uniformly bounded, that is

there is a constant K such that for every t ∈ I,∥∥∥∥ d
dt

V(t)
∥∥∥∥
+,−
≤ K.

Proof. By the definition of the operator norm, one has that:

‖V(t)‖+,− = sup
Φ∈H+\{0}

‖V(t)Φ‖−
‖Φ‖+

= sup
Φ∈H+\{0}
Ψ∈H−\{0}

|〈Ψ, V(t)Φ〉−|
‖Ψ‖−‖Φ‖+

,

where we used the equality ‖ξ‖− = supΨ 6=0
|〈Ψ,ξ〉− |
‖Ψ‖− , which holds for any ξ ∈ H−.

Using the isomorphism J : H− → H+ and the pairing (·, ·) associated with the scale
of Hilbert spacesH+ ⊂ H ⊂ H− (cf. Section 2.2), the previous equation can be written as:

‖V(t)‖+,− = sup
Φ∈H+\{0}
Ψ∈H−\{0}

|(JΨ, V(t)Φ)|
‖Ψ‖−‖Φ‖+

= sup
Ψ,Φ∈H+\{0}

|(Ψ, V(t)Φ)|
‖Ψ‖+‖Φ‖+

,

where we used the fact that J is an isometric bijection fromH− toH+. By the definition of
V(t), we therefore have:

‖V(t)‖+,− = sup
Ψ,Φ∈H+\{0}

|vt(Ψ, Φ)|
‖Ψ‖+‖Φ‖+

,

which proves (i). Property (ii) follows immediately from Proposition 1 and (i).
To prove (iii), note that, by Lemma 2, v̇t(Ψ, Φ) := d

dt vt(Ψ, Φ) defines a bounded
sesquilinear form in H+. Let V̇(t) be the unique operator in B(H+,H−) such that
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(Ψ, V̇(t)Φ) = v̇t(Ψ, Φ) for every Ψ, Φ ∈ H+. We claim that V̇(t) = d
dt V(t) in the norm

sense of B(H+,H−), that is,

lim
t→t0

∥∥∥∥V(t)−V(t0)

t− t0
− V̇(t0)

∥∥∥∥
+,−

= 0.

By (i), this is equivalent to:

lim
t→t0

sup
Ψ,Φ∈H+

‖Ψ‖+=1=‖Φ‖+

∣∣∣∣vt(Ψ, Φ)− vt0(Ψ, Φ)

t− t0
− v̇t0(Ψ, Φ)

∣∣∣∣ = 0,

which holds by Proposition 1(ii), as does the uniform bound.

3. Existence of Dynamics
3.1. Quantum Dynamics and Sesquilinear Forms

We begin this section with some definitions.

Definition 4. Let I ⊂ R be a compact interval, and let H(t), t ∈ I, be a time-dependent Hamilto-
nian. The (strong) Schrödinger equation is the linear evolution equation:

d
dt

Ψ(t) = −iH(t)Ψ(t).

Despite this equation being a linear ordinary differential equation, the existence and
uniqueness of solutions is not guaranteed in the most general case of a time-dependent
Hamiltonian with a time-varying domain. Notice that it is implicitly imposing to the
solutions that Ψ(t) ∈ dom H(t) for all values of t. This condition makes it hard to construct
explicit sequences that approximate them.

As stated in the Introduction, we consider the case of a time-dependent Hamiltonian
with a constant form domain.

Definition 5. Let I ⊂ R be a compact interval andH+ a dense subspace ofH, and let H(t), t ∈ I,
be a family of self-adjoint operators on H such that, for any t ∈ I, the operator H(t) is densely
defined on dom H(t). We say that H(t), t ∈ I, is a time-dependent Hamiltonian with constant
form domainH+ if:

(i) There is m > 0 such that 〈Φ, H(t)Φ〉 ≥ −m‖Φ‖2, for every Φ ∈ dom H(t) and t ∈ I;
(ii) For any t ∈ I, the domain of the Hermitian sesquilinear form ht associated with H(t) (cf.

Theorem 2) isH+.

For the case in which the closed sesquilinear forms associated with H(t) via Theorem 2
have a constant domain, one can define a weak version of the Schrödinger equation.

Definition 6. Let I ⊂ R be a compact interval, and let H(t), t ∈ I, be a time-dependent Hamilto-
nian with constant form domainH+. For t ∈ I, let ht be the sesquilinear form uniquely associated
with the self-adjoint operator H(t). The weak Schrödinger equation is the linear evolution equation:

d
dt
〈Φ, Ψ(t)〉 = −iht(Φ, Ψ(t)), for every Φ ∈ H+.

The strong Schrödinger equation is the usual Schrödinger equation. We use the
adjective strong when we want to emphasise the difference with the weak Schrödinger
equation. It is immediate to prove that solutions of the strong Schrödinger equation are
also solutions of the weak Schrödinger equation when the latter is defined.

The solutions of the initial-value problems for the weak and strong Schrödinger
equations are given in terms of what are known as unitary propagators.
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Definition 7. A unitary propagator is a two-parameter family of unitary operators U(t, s),
s, t ∈ R, satisfying:

(i) U(t, s)U(s, r) = U(t, r);
(ii) U(t, t) = I;
(iii) U(t, s) is jointly strongly continuous in t and s.

Definition 8. We say that the strong (weak) Schrödinger equation is solvable if there exists a
unitary propagator U(t, s), t, s ∈ R, such that, for any Ψ ∈ dom H(s) (Ψ ∈ H+), the equation
with initial value Ψ at time s ∈ R admits the curve Ψ(t) := U(t, s)Ψ as its unique solution.

Following the discussion in Section 2.2, given a time-dependent Hamiltonian H(t),
t ∈ I, with constant form domainH+, for each fixed time t, we can associate H(t) with a
scale of Hilbert spaces:

(H+, 〈·, ·〉+,t) ⊂ (H, 〈·, ·〉) ⊂ (H−t , 〈·, ·〉−,t),

where 〈Ψ, Φ〉±,t := 〈(H(t) + m + 1)±1/2Ψ, (H(t) + m + 1)±1/2Φ〉, and H−t denotes the
closure of H with respect to the norm defined by ‖Φ‖2

−,t := 〈Φ, Φ〉−,t. We denote H+
t =

(H+, 〈·, ·〉+,t), and with a slight abuse of notation, we use the symbol H−t to represent
the Hilbert space (H−t , 〈·, ·〉−,t). We denote by (·, ·)t : H+

t ×H
−
t ∪ H

−
t ×H

+
t → C the

canonical pairings. The unbounded operators H(t) with a constant form domain can be
continuously extended to bounded operators H̃(t) : H+

t → H
−
t . When they are defined,

the inverse operators, H(t)−1 ∈ B(H), can be extended to bounded operators fromH−t to
H+

t , which coincide with H̃(t)−1. As already done in Section 2.2, in order to simplify the
notation, we drop the tilde, denoting the extensions and the original operators with the
same symbols. We also denote by ‖ · ‖±,∓,t the norm in B(H±t ,H∓t ).

Scales of Hilbert spaces are the key objects needed to prove the main results in both
J. Kisyński’s and B. Simon’s seminal works, which we shall discuss in the next subsections.

3.2. B. Simon’s Approach

Let us now introduce the main ideas used by B. Simon in [32]. The following assump-
tions for proving the existence of dynamics were made.

Assumption 1. Let H0 be a positive operator on a Hilbert space, and let H+ ⊂ H ⊂ H− be its
associated scale of Hilbert spaces. For 0 ≤ t ≤ T, let H(t) be a family of bounded operators from
H+ to H− such that (Ψ, H(t)Φ) = (H(t)Ψ, Φ) for all Ψ, Φ ∈ H+. We assume that there is
C > 0 independent of t such that:

(S1) C−1(H0 + 1) ≤ H(t) ≤ C(H0 + 1);
(S2) B(t) = d

dt H(t)−1 exists in the sense of the norm ofH and satisfying:

‖H(t)1/2B(t)H(t)1/2‖ ≤ C.

The approach by B. Simon defines the Hamiltonian of the system through a family
of operators from H+ to H−. This simplifies some usual problems for the existence of
quantum dynamics. On the one hand, a self-adjoint extension of H(t), as an unbounded
operator onH, is fixed (see [32], Lemma II.6). On the other hand, it simplifies the problem
raised by the time dependence of dom H(t). Having a common domain as operators from
H+ toH− sidesteps some of the technical difficulties that appear in this case.

Under these hypothesis, B. Simon proved the existence of dynamics in [32], Appendix II.7.

Theorem 4 ([32], Thm. II.27). Let H(t) satisfy Assumption 1. Then, for any Φ0 ∈ H+, there is
a unique function Φ(t) ∈ H+ such that:

(i) Φ(t) is continuous in theH+ weak topology, i.e., for all Ψ ∈ H−, t 7→ 〈Ψ, Φ(t)〉 is continuous;
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(ii) For any Ψ ∈ H+, Φ(t) solves the weak Schrödinger equation (cf. Definition 6) with initial
condition Φ0:

d
dt
〈Ψ, Φ(t)〉 = −i(Ψ, H(t)Φ(t)), Φ(0) = Φ0.

Moreover:

(iii) lim
t→t0

∥∥∥∥Φ(t)−Φ(t0)

t− t0
+ iH(t0)Φ(t0)

∥∥∥∥
−
= 0;

(iv) ‖Φ(t)‖ = ‖Φ0‖;
(v) Φ(t) is ‖ · ‖-continuous.

Thus, the map U(t, s) : Φ(s) ∈ H+ 7→ Φ(t) ∈ H+ is unitary on H and can be extended to a
unitary propagator.

The proof of B. Simon is based on K. Yosida’s idea ([30], pp. 425–429), whose original
theorem only applies to the case in which dom H(t) does not depend on t. The proof is
based on the introduction of an approximating family of Hamiltonians Hn(t) = H(t)(1 +
n−1H(t))−1, which can be seen as a bounded operator in B(H−); the existence of unitary
propagators Un(t, s) for Hn(t) is provided by a Dyson expansion. Using these propagators,
for any Φ0 ∈ H+, approximated solutions Φn(t) = Un(t, s)Φ0 for the dynamical equation
for H(t) are constructed, and it is shown that Assumption 1 ensures that {Φn(t)}n∈N ⊂ H+

has a convergent subsequence, whose limit satisfies the properties of the theorem.

3.3. J. Kisyński’s Approach

In [31], J. Kisyński studied the existence of solutions for the equation:

d
dt

Φ(t) = A(t)Φ(t), Φ(0) = Φ0, (3)

on a Banach space, with A(t) being an unbounded linear operator defined on a dense
domain dom A(t), which can depend on time. He first proved the existence of solutions
for the case in which dom A(t) is constant by using Yosida’s approximation; then, he
provided sufficient conditions for the existence of solutions in the more general case in
which dom A(t) does depend on t. These general results are finally applied to the case in
which A(t) = −iΛ(t), with Λ(t) being a positive, self-adjoint operator on a Hilbert space,
such that dom Λ(t)1/2 is independent of t ([31], Secs. 7 and 8).

In order to prove the existence of a unitary propagator for this case, J. Kisyński
assumed the following.

Assumption 2 ([31], Hyp. 7.1). Let H be a Hilbert space with inner product 〈·, ·〉, and let
H+ ⊂ H be a dense subspace:

(K1) For every t ∈ [0, T], 〈·, ·〉+,t is an inner product onH+ endowing it with the structure of a
Hilbert spaceH+

t , which is continuously contained onH;
(K2) For every t ∈ [0, T] and every Ψ, Φ ∈ H+, the function t 7→ 〈Ψ, Φ〉+,t is in Cn(0, T)

for n ≥ 1.

Under these hypotheses, for each t ∈ [0, T], J. Kisyński constructed the scale of
Hilbert spacesH+

t ⊂ H ⊂ H
−
t associated with 〈Ψ, Φ〉+,t (see [31], Lemmas 7.2–7.6). Then,

the following operators are defined (cf. [31], Lemmas 7.7–7.10).

Proposition 3. Under Assumption 2, for every t ∈ [0, T], the following statements hold:

(i) Define the domain:

D(Λ0) =
{

Φ ∈ H+ : sup{|〈Ψ, Φ〉+,t| : Ψ ∈ H+, ‖Ψ‖ = 1} < ∞
}

.
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Then, the equality:

〈Ψ, Λ0(t)Φ〉 = 〈Ψ, Φ〉+,t, Φ ∈ D(Λ0), Ψ ∈ H+,

defines a self-adjoint, positive unbounded operator onH;
(ii) Let Λ(t) be the closure of Λ0(t) onH−t ; then, Λ(t) is a self-adjoint, positive operator onH−t

with dom Λ(t) = H+. Moreover, Λ(t)−1 is the canonical isomorphism J : H−t → H
+
t (cf.

Section 2.2) for the scale of Hilbert spacesH+
t ⊂ H ⊂ H

−
t ;

(iii) Let D(Λ1) = {Φ ∈ D(Λ0) : Λ0Φ ∈ H+} and Λ1Φ = Λ0Φ for Φ ∈ D(Λ1). Then, Λ1
is a self-adjoint, positive unbounded operator onH+

t .

Finally, in [31], Sec. 8, J. Kisyński showed the following theorem on the existence of
unitary propagators. Starting his construction from a family of inner products (which are
sesquilinear forms), he constructed the associated scales of Hilbert spaces and then focused
on the operators representing these inner products. This approach has the same advantages
as B. Simon’s: the self-adjointness of the operators is guaranteed by the hermiticity of the
inner products and the representation theorem (see Theorem 2). Additionally, it sets the
problem on a constant (form) domainH+.

Theorem 5 ([31], Thm. 8.1). Under Assumption 2 with n ≥ 1, there is a unique unitary
propagator U(t, s) for the problem (3) such that:

(i) The continuous extension of U(t, s) to B(H−) is strongly continuous for s, t ∈ [0, T];
(ii) U(t, s)H+ = H+ and the restriction U(t, s) ∈ B(H+) is strongly continuous for s, t ∈ [0, T];
(iii) t, s 7→ U(t, s) is a strongly continuously differentiable function with values on B(H+,H−)

for t, s ∈ [0, T], and in this sense:

d
dt

U(t, s) = −iΛ(t)U(t, s) and
d
ds

U(t, s) = −iU(t, s)Λ(s).

Moreover, if Assumption 2 is satisfied with n ≥ 2, it also holds that:

(iv) U(t, s)D(Λ1(s)) = D(Λ1(t)) for t, s ∈ [0, T] and for s ∈ [0, T] and Φ ∈ D(Λ1(s)) fixed,
the function t 7→ U(t, s)Φ is continuously differentiable in [0, T] in the sense of H+, and
there, it satisfies:

d
dt

U(t, s)Φ = −iΛ1(t)U(t, s)Φ;

(v) U(t, s)D(Λ0(s)) = D(Λ0(t)) for t, s ∈ [0, T] and for s ∈ [0, T] and Φ ∈ D(Λ0(s)) fixed,
the function t 7→ U(t, s)Φ is continuously differentiable in [0, T] in the sense ofH, and there,
it satisfies:

d
dt

U(t, s)Φ = −iΛ0(t)U(t, s)Φ.

3.4. Relations between the Approaches of B. Simon and J. Kisyński

We start by examining the similarities between the two approaches. Even though the
starting point for each of them is apparently different, the tools they use are analogous.
The link allowing us to relate both approaches are the scales of Hilbert spaces. B. Simon
started its construction with the scale of Hilbert spaces associated with an operator H0,
H+ ⊂ H ⊂ H− and then considered the family of operators H(t) : H+ → H−. On the
other hand, J. Kisyński started from a family of inner products 〈·, ·〉+,t and built the scales
of Hilbert spaces H+

t ⊂ H ⊂ H
−
t associated with the sesquilinear forms 〈·, ·〉+,t and the

family of operators Λ(t) : H+ → H− representing them. Comparing Theorems 4 and 5, it
is clear that the role the family of operators H(t) plays in the approach by B. Simon is the
same that the family Λ(t) plays in J. Kisyński’s. Therefore, the problem addressed by them
is the same if ht(·, ·) := 〈·, ·〉+,t is the sesquilinear form associated with H(t). For the rest of
this section, we assume that this equality holds.
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Before further studying the relation between both approaches, let us briefly review
the assumptions B. Simon and J. Kisyński made to prove the existence of a unitary propa-
gator. There are two main ingredients playing a central role in their proofs: the regularity
of the generators H(t) and the uniform equivalence of the norms ‖ · ‖+,t :=

√
〈·, ·〉+,t,

i.e., c−1‖ · ‖+,t′ ≤ ‖ · ‖+,t ≤ c‖ · ‖+,t′ .
Although both of them use repeatedly the equivalence of the norms, neither B. Simon

nor J. Kisyński imposed it as an explicit assumption; still, the equivalence does follow from
their assumptions. Let us first examine how this uniform equivalence of the norms appears
in each of the approaches.

Proposition 4. Let H0, H(t) be as in Assumption 1; for Φ ∈ H+, define the norms:

‖Φ‖+,t :=
√
(Φ, H(t)Φ), ‖Φ‖0 :=

√
(Φ, (H0 + 1)Φ).

Then, (S1) holds if and only if the norms ‖ · ‖+,t are equivalent to ‖ · ‖0 uniformly on t ∈ [0, T].

Proof. It is enough to note that ‖Φ‖2
0 = (Φ, (H0 + 1)Φ) and ‖Φ‖2

+,t = (Φ, H(t)Φ). There-
fore, taking square roots in (S1), the uniform equivalence of the norms follows. Conversely,
taking squares on the uniform equivalence of the norms yields (S1).

Remark 1. Note that, since we have ‖ · ‖0 ∼ ‖ · ‖+,t with constant uniform on t, for any t0 ∈ [0, T],
there is K such that:

K−1‖ · ‖+,t0 ≤ ‖ · ‖+,t ≤ K‖ · ‖+,t0 ,

for every t ∈ [0, T].

Proposition 5. Let 〈·, ·〉+,t be inner products as in Assumption 2. Then, (K1) implies that,
for every t ∈ [0, T], the norms ‖ · ‖+,t are equivalent. If, moreover, t 7→ 〈·, ·〉+,t is in C1([0, T]),
then the equivalence of the norms is uniform on t.

Proof. By (K1),H+
t is continuously embedded inH; that is, there is K > 0 such that:

‖Φ‖ ≤ K‖Φ‖+,t, ∀Φ ∈ H+
t .

Therefore, 〈·, ·〉+,t, as a Hermitian sesquilinear form densely defined on H, is strictly
positive, and there exists a self-adjoint, strictly positive operator A(t) : H+ → H such that:

〈Ψ, Φ〉+,t = 〈A(t)Ψ, A(t)Φ〉, (Ψ, Φ ∈ H+).

Since it is positive and self-adjoint, A(t)−1 : H → H+ is a bounded self-adjoint operator. By
the closed graph theorem, A(t′)A(t)−1 : H → H is a bounded operator, and for Φ ∈ H+:

‖Φ‖+,t′ = ‖A(t′)A(t)−1 A(t)Φ‖ ≤ Ct,t′‖A(t)Φ‖ = Ct,t′‖Φ‖+,t,

where Ct,t′ := ‖A(t′)A(t)−1‖.
The rest of the proof follows [31], Lemma 7.3, where it is proven using the Uniform

Boundedness Principle that the constant can be chosen independently of t and t′.

Corollary 1. Let 〈·, ·〉+,t, t ∈ [0, T], be inner products satisfying Assumption 2, and let H(t) be
the operator in B(H+,H−) such that 〈Ψ, Φ〉+,t = (Ψ, H(t)Φ) for every Ψ, Φ ∈ H+. Then, H(t)
satisfies (S1) of Assumption 1 with H0 = H(t0) for some t0 fixed.

Proof. Let ‖ · ‖+,t =
√
〈·, H(t)·〉. By Proposition 5, for any t, t0, we have:

K−1‖Φ‖+,t0 ≤ ‖Φ‖+,t ≤ K‖Φ‖+,t0 .
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For a fixed t0, define the norm ‖Φ‖0 :=
√
‖Φ‖2

+,t0
+ ‖Φ‖2. Let us show that ‖ · ‖0 is

equivalent to ‖ · ‖+,t. Since ‖Φ‖+,t0 ≤ ‖Φ‖0, it follows that ‖Φ‖+,t ≤ K‖Φ‖0. Furthermore,
since ‖Φ‖+,t ≥ ‖Φ‖,

K−2‖Φ‖2
0 ≤ K−2‖Φ‖2

+,t0
+ ‖Φ‖2 ≤ 2‖Φ‖2

+,t.

Hence, there is K̃ > 1 such that:

K̃−1‖Φ‖+,t ≤ ‖Φ‖0 ≤ K̃‖Φ‖+,t.

By Proposition 4, the preceding inequalities imply (S1).

Using the structure of the scales of Hilbert spaces, from the equivalence of the norms
‖ · ‖+,t, the equivalence of the norms ‖ · ‖−,t follows as well (see Theorem 3). This motivates
us to work with a reference norm ‖ · ‖± and use the uniform equivalence when a particular
‖ · ‖±,t is convenient. The most convenient choice is to take ‖ · ‖± = ‖ · ‖±,t0 for some
reference t0. We denote by 〈·, ·〉+ the inner product such that ‖ · ‖2

+ = 〈·, ·〉+ and by H±
the Hilbert space (H±, 〈·, ·〉±).

Let us study now the regularity of the generators H(t).

Proposition 6. Let H(t) be as in Assumption 1. Then, (S2) holds if and only if t 7→ H(t) is
differentiable in the sense of B(H+,H−) and, for every t ∈ [0, T],∥∥∥∥ d

dt
H(t)

∥∥∥∥
+,−
≤ C.

Proof. Note that, if (S2) holds,

‖B(t)‖−,+ = sup
Φ∈H−

‖B(t)Φ‖+
‖Φ‖−

≤ K sup
Ψ∈H

‖H(t)1/2B(t)H(t)1/2Ψ‖
‖Ψ‖ ≤ KC

where we used the equivalence of the norms ‖ · ‖±,t ∼ ‖ · ‖± (cf. Proposition 4) and the
assumption ‖H(t)1/2B(t)H(t)1/2‖ < C. Therefore, ‖B(t)‖−,+ < KC, so that B(t) can be
continuously extended to an operator in B(H−,H+).

Define the operator Tδ(t) = δ−1[H(t+ δ)−1−H(t)−1]− B(t) inB(H−,H+). It follows
that:

‖Tδ(t)‖−,+ = sup
Φ∈H−

‖Tδ(t)Φ‖+
‖Φ‖−

= ‖A1/2
0 Tδ(t)A1/2

0 ‖,

where A0 is the strictly positive self-adjoint operator such that ‖ · ‖± = ‖A±1/2
0 · ‖. Hence,

H(t)−1 is differentiable in the sense of ‖ · ‖−,+ if H(t)−1 is differentiable in the sense of ‖ · ‖.
By the product rule, this is equivalent to H(t) being differentiable in the sense of ‖ · ‖+,−.

Conversely, assume H(t) is differentiable in the sense of B(H+,H−). By the product
rule, H(t)−1 is differentiable in the sense of B(H−,H+). Denote by B(t) the derivative
of H(t)−1 in the sense of B(H−,H+), and consider again the operator Tδ(t) = δ−1[H(t +
δ)−1 − H(t)−1]− B(t). For Φ ∈ H, we have:

‖Tδ(t)Φ‖ ≤ ‖Tδ(t)Φ‖+ ≤ ‖Tδ(t)‖−,+‖Φ‖− ≤ ‖Tδ(t)‖−,+‖Φ‖.

Therefore, ‖Tδ(t)|H‖ ≤ ‖Tδ(t)‖−,+, and the differentiability of H(t)−1 in the sense of
B(H−,H+) implies the differentiability in the sense of B(H).

Finally,

H(t)1/2 d
dt

H(t)−1H(t)1/2 = H(t)−1/2 d
dt

H(t)H(t)−1/2,
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and it follows that ‖ d
dt H(t)‖+,−,t = ‖H(t)1/2B(t)H(t)1/2‖. The equivalence of the norms

‖ · ‖±,t ∼ ‖ · ‖± implies that ‖H(t)1/2B(t)H(t)1/2‖ is bounded uniformly on t if and only if
‖ d

dt H(t)‖+,− is bounded uniformly on t.

Remark 2. Note that, in proving Proposition 6, we also showed that:

(i) d
dt H(t)−1 exists in the sense of B(H) if and only if it exists in the sense of B(H−,H+),
which holds if and only if d

dt H(t) exists in the sense of B(H+,H−);
(ii) ‖H(t)1/2 d

dt H(t)−1H(t)1/2‖ = ‖H(t)−1/2 d
dt H(t)H(t)−1/2‖.

Proposition 7. Let 〈·, ·〉+,t be inner products as in Assumption 2, and let H(t) : H+ → H− be
the family of bounded operators defined by (Ψ, H(t)Φ) = 〈Ψ, Φ〉+. Then, (K2) implies that H(t)
is differentiable in the sense of B(H+,H−) and that there is C > 0 such that:∥∥∥∥ d

dt
H(t)

∥∥∥∥
+,−
≤ C.

Proof. This is Proposition 2(iii) applied to vt(Ψ, Φ) = 〈Ψ, Φ〉+, which is continuously
differentiable by assumption (see (K2)).

Corollary 1 and Propositions 6 and 7 yield immediately the following results showing
the connection between B. Simon’s and J. Kisyński’s approaches. First of all, J. Kisyński’s
assumptions imply B. Simon’s assumptions:

Theorem 6. Let 〈·, ·〉+,t be a family of inner products satisfying Assumption 2, and let H(t) :
H+ → H− be the family of bounded operators defined by (Ψ, H(t)Φ) = 〈Ψ, Φ〉+,t. Then,
the family H(t) satisfies Assumption 1 with H0 = H(t0) for some t0 ∈ [0, T].

Proof. By (K1), H(t) are strictly positive. By Corollary 1, (S1) holds. Proposition 7 implies
that H(t) is differentiable in the norm sense of B(H+,H−), with ‖ d

dt H(t)‖+,− < C, and by
Proposition 6, this implies (S2).

Remark 3. Note that the regularity obtained for H(t) is higher than required by (S2): not only is
t 7→ H(t) differentiable, but it is also continuously differentiable. This is implied by Proposition 2
and the fact that t 7→ 〈·, ·〉+,t is continuously differentiable. However, this point is crucial since,
without the derivative d

dt 〈·, ·〉+,t being continuous, the uniform bound for d
dt H(t)−1 would not

be recovered.

The converse implication (i.e., B. Simon’s assumptions imply J. Kisyński’s) also holds
under the additional requirement of the continuity of d

dt H(t)−1.

Theorem 7. Let H0, H(t) be operators as in Assumption 1. If H(t) satisfies Assumption 1 and
t ∈ [0, T] 7→ B(t) = d

dt H(t)−1 ∈ B(H) is continuous, then 〈·, ·〉+,t := (·, H(t)·) defines a
family of inner products onH+ satisfying Assumption 2 with n = 1.

Proof. From Assumption 1, H+ is a dense subspace of H. Moreover, 〈·, ·〉0 := (·, (H0 +
1)·) endows H+ with the structure of a Hilbert space topologically embedded in H. By
assumption, 〈·, ·〉+,t := (·, H(t)·) defines a family of inner products on H+, and by (S1),
they induce onH+ topologies that are equivalent to the one induced by 〈·, ·〉0. Therefore,
(H+, 〈·, ·〉+,t) are Hilbert spaces topologically embedded inH, and (K1) holds.

By Proposition 6, (S2) implies that H(t) is differentiable inB(H+,H−). By Proposition 2,
this implies that the limit:

lim
t→t0

sup
Ψ,Φ∈H+

‖Ψ‖+=1=‖Φ‖+

〈Ψ, Φ〉+,t − 〈Ψ, Φ〉+,t0

t− t0
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exists, which clearly implies that for every Ψ, Φ ∈ H+ fixed, t 7→ 〈Ψ, Φ〉+,t is differentiable.
Moreover, if H(t) is continuously differentiable in B(H+,H−), so is the map t 7→ 〈Ψ, Φ〉+,t
for every Ψ, Φ ∈ H+.

3.5. Example: Particle in a Circle with a Point-Like Interaction

Consider the Hamiltonian of a free particle moving in the circle with a point-like inter-
action. We consider the case in which the strength of the point-like interaction varies with
time and use the methods developed in the previous section to give necessary conditions
for the existence of the solution of the non-autonomous Schrödinger equation.

As Hilbert spaceH, we consider the space of the square integrable function on the in-
terval [0, 2π]. The Hamiltonian is given by the Laplace operator on the self-adjoint domain:

Dα = {Φ ∈ H2([0, 2π]) : Φ(0) = Φ(2π); Φ′(0)−Φ′(2π) = αΦ(0)},

where Hk([0, 2π]) stands for the Sobolev space of order k. Each value of α determines a
different self-adjoint extension. We consider the non-autonomous problem in which α is
a function of time. Notice that the time dependence of the operator does not appear in
its functional form, but only at the boundary condition. The family of closed sesquilinear
forms associated with this family of self-adjoint operators is:

hα(Φ, Ψ) = 〈Φ′(x), Ψ′(x)〉+ αΦ(0)Ψ(0)

with domain dom hα = {Φ ∈ H1([0, 2π]) : Φ(0) = Φ(2π)}; we refer to [44–46] for
further details.

To find the family of operators H(t) : H+ → H−, we need the trace operator. The trace
operator, γ, is the operator that maps a function to its boundary values. It is well-defined,
continuous on H1([0, 2π]), and surjective; cf. [47]. Now, notice that the domains of the
forms do not depend on the parameter α, and the family of self-adjoint operators defined
above has constant form domain H+ := {Φ ∈ H1([0, 2π]) : Φ(0) = Φ(2π)}, which is
a closed subspace of H1([0, 2π]) because the trace operator is continuous on H1([0, 2π]).
The boundary term of the sesquilinear form above can be expressed using the trace operator
and the paring (·, ·) in the scale of Hilbert spaces as:

αΦ(0)Ψ(0) = (Φ, αγ†γΨ),

where γ† is the adjoint operator with respect to the pairing. Hence, the family of time-
dependent operators H(t) : H+ → H− becomes:

H(t) = ∆̄ + α(t)γ†γ,

where ∆̄ is the continuous extension of the Laplacian, ∆, toH+.
It is well known that ha is semibounded from below with a bound that depends

continuously on α; cf. [44]. It can be proven that (S1) holds as long as supt∈[0,T] |α(t)| < M.
Proposition 6 establishes that (S2) holds if the derivative of the operators H(t) in the sense
of B(H+,H−) exists for all t ∈ [0, T] and is uniformly bounded, i.e., for any α : [0, T]→ R
continuous with the bounded derivative. Theorem 4 shows that for any such α, a unique
solution of the weak Schrödinger equation exists. The same result is obtained under the
Assumptions (K1) and (K2). Condition (K1) is satisfied by construction, and (K2) is satisfied
for n if and only if α : [0, T] → R is in Cn[0, T]. Notice that for n > 1 and since [0, T] is
compact, both the function α and its derivative are bounded in the interval. Theorem 5
also establishes that a unique solution of the weak Schrödinger equation exists. One has to
require, however, the stronger condition of the continuous differentiability of the function α.
If α ∈ C2[0, T], then Theorem 5 establishes that strong solutions of the Schrödinger equation
exist, i.e., solutions of the Schrödinger equation in the usual sense.
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4. Conclusions

In this article, after carefully revising the two seminal approaches of J. Kisyński
and B. Simon to the well-posedness of the Schrödinger problem associated with a time-
varying Hamiltonian, we compared the assumptions at the roots of their results by using
Hilbert scales as our primary tool. We studied the relation between one-parameter families
of sesquilinear forms and operators representing them. In particular, we studied the
connection between their respective continuity and differentiability properties. Theses
results, presented in Section 2, have their own interest and allow comparing the approaches
presented in Section 3.

Non-continuous Hamiltonians, in the sense described in the article, cannot lead to
physically meaningful examples in a context with time-dependent domains, i.e., time-
dependent boundary conditions. In this context, it is important from the physical point
of view to have good characterisations of the well posedness of the Schrödinger equa-
tion. The comparison between the approaches manifests that the conditions imposed by
J. Kisyński are easier to check as it is easier to check the continuity/differentiability proper-
ties of functions (K2) than the existence of uniform relative bounds for the operators (S1),
and we provided proof that the latter implies the former.

J. Kisyński gave necessary conditions for the existence of solutions of the non-autonomous
Schrödinger equation for the case in which dom H(t)1/2 has a nontrivial dependence in
time. This situation cannot be tackled by the framework proposed by B. Simon. In the
case of a constant form domain, the necessary conditions imposed by J. Kisyński are more
restrictive, as he required the continuity of the first derivatives, as opposed to B. Simon,
who just required uniformly bounded derivatives. However, B. Simon only gave necessary
conditions to find solutions of the weak Schrödinger equation and was able to prove the
continuity of the solutions, but not differentiability in the sense ofH. However, the weak
Schrödinger equation was not as physically meaningful as the strong Schrödinger equation.
J. Kisyński’s extra regularity conditions allowed him to prove not only the differentiability
of the solutions in the sense of H, but also in the sense of H+. These imply that these
solutions are solutions of the strong Schrödinger equation.

The analysis presented in this article was devoted to the linear Schrödinger equation
and the techniques used originated in the theory of linear operators in Banach and Hilbert
spaces. Whether these techniques can be applied to treat also the nonlinear Schrödinger
equation is an interesting perspective.
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