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Abstract. Supply chains with returned products are receiving increasing at-

tention in the operations management community. The present paper studies a

capacitated facility location model with bidirectional flows and marginal value

of time for returned products. The distribution system consists of a single

supplier that provides one new product to a set of distribution centers (DCs),

which then ship to the final retailers. While at the retailers’ site, products

can be shipped back to the supplier for reprocessing. Each DC is capacitated

and handles stocks of new and/or returned product. The model is a nonlin-

ear mixed-integer program that optimizes DC location and allocation between

retailers and DCs. We show that it can be converted to a conic quadratic

program, which can be efficiently solved. Some valid inequalities are added to

the program to improve computational efficiency. We conclude by reporting

numerical experiments that reveal some interesting properties of the model.

Keywords. capacitated facility location model; conic quadratic program-

ming; valid inequalities; closed-loop supply chain

1. Introduction

In the increasingly competitive global manufacturing environment, the success
of a corporation depends on its ability to favorably manage its supply chains. A
supply chain includes all the components necessary to design, fabricate, distribute,
sell, support, use, and recycle (or dispose of) a product. Competitive and regulatory
pressures present new challenges in supply chain management. Consequently, green
supply chains, reverse supply chains, closed-loop supply chains, and sustainable
supply chains are getting more attention. In particular, supply chain managers are
interested in economically handling returned products by reusing them to obtain
numerous financial benefits (Blackburn et al. [8]).

Companies face time and cost trade-offs in the implementation of integrated sup-
ply chains. Time-varying prices of returned products, especially for time-sensitive
and short life-cycle products, complicate the problem. For example, consumer elec-
tronics products such as PCs can lose its value at rates of 1% per week (Guide and
Van Wassenhove [17]). In response, it would be preferable to shorten the flow time
of returned products in a reverse supply chain. This strategy results in more profits
from the salvage value of returned products by reentering them into the market
as quickly as possible. Meanwhile, batch processing of products to benefit from
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Figure 1. The structure of the three-tiered supply network.

economies of scale is also a recommended strategy but requires a slower flow time
supply chain. Thus, the time versus cost trade-off enters into planning.

We consider a three-tiered supply network: one supplier, some distribution cen-
ters (DCs) with capacity limitation, and retailers. The product can simultaneously
flow in two directions. The forward direction is the flow of the retailer’s order of the
product from the DC. In turn, the DCs get replenished from the supplier based on
the specified inventory policy. The reverse direction is the flow of returned products
from the retailers to the corresponding DCs and then back to the supplier to be
reprocessed. Note that the DCs can hold stocks of both new and returned products.
Figure 1 illustrates the structure of the three-tiered supply network.

The main contributions of this paper can be summarized as follows:

(1) It is the first model in closed-loop supply chain design to jointly consider
capacitated DCs, stochastic demands of new and returned products, risk
pooling to buffer random demands, savings from co-locating of forward
and reverse flows in the same DC, and value loss related to inventory and
transportation times.

(2) It employs a novel and powerful solution technique, the conic integer pro-
gramming approach, that is convenient for the model presented and many
others with similar nonlinear optimization forms.

(3) The convex hull of the feasible solutions is explored to add valid inequalities
that improve computational efficiency.

(4) From our computational studies we obtain interesting managerial insights.
For example, we show that the more time-sensitive the returned product is
the least costly is to retrieve salvage value. We also show the effects of value
loss related to inventory and transportation times, where a smaller or larger
optimal number of opened DCs is recommended depending on whether the
dominant factor is time spent in inventory or in transportation.

The remainder of the paper is organized as follows. In section 2, we present
a literature review on the integrated forward/reverse network design and the ca-
pacitated facility location problem. Section 3 develops a nonlinear mixed-integer
programming formulation of the supply chain. In section 4, the model is converted
into a conic quadratic mixed-integer program to be solved efficiently. Subsequently,
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some valid inequalities are developed to improve the computational efficiency of
the branch and cut algorithm and the quality of the solution. Next, in section
5 we explore the behavior of the supply chain under this optimization strategy
through computational experiments on real data. In the last section, we conclude
and discuss future research avenues.

2. Literature review

The integrated forward/reverse supply chain network design is an emerging re-
search topic. The interested reader can refer to the works of Guide and Van Wassen-
hove [17] and Akçalı et al. [3] for comprehensive reviews on closed-loop supply
chains. Below we briefly review some of the most relevant papers.

Sahyouni et al. [34] developed three generic uncapacitated integrated closed-
loop supply chain design models that minimize fixed locating and transportation
costs, while Lu and Bostel [24] presented a two-level uncapacitated location prob-
lem with three types of facilities that minimize fixed setup costs and transportation
costs. Ko and Evans [20] proposed a genetic algorithm-based heuristic to solve
a multi-period, two-echelon, multi-commodity, capacitated facility location model.
Üster et al. [42], Easwaran and Üster [12], and Easwaran and Üster [13] studied
multi-product closed-loop supply chain network design problems. The objective
was to locate collection centers and finite-capacity manufacturing facilities while
coordinating the forward and reverse flows in the network so as to minimize the
processing, transportation, and fixed location costs. Pishvaee et al. [30] developed
a bi-objective mixed integer program to minimize the total costs and maximize the
responsiveness of an integrated forward/reverse logistics network. Pishvaee et al.
[31] proposed a closed-loop supply chain network design model in a robust optimiza-
tion framework. Our work employs conic programming (Atamtürk et al. [4]) as the
solution approach for our closed-loop supply chain network design model. Further,
a significant difference between our model and previous work is the integration of
capacitated facility location and inventory decisions in which facilities can accept
forward and/or returned products with the possibility of pooling forward inventory
for different retailer sites.

We have seen models in the literature that integrate location decisions with other
types of decisions in supply chains, such as transportation decisions, robustness
and reliability considerateness. Daskin [10], Langevin and Riopel [21], and Melo
et al. [25] provide good surveys on this subject. We are particularly interested
in models that combine location with inventory decisions. Shen et al. [39] and
Daskin et al. [11] studied the impact of inventory costs on location decisions in
a stochastic demand environment. Their model incorporates nonlinear working
inventory costs and nonlinear safety-stock inventory costs. Shen et al. [39] applied
a column generation technique whereas Daskin et al. [11] used Lagrangian relaxation
to solve this joint location-inventory model. During the last decade, scholars have
studied different versions of this problem by extending it to capacitated warehouses
(Ozsen et al. [29]), customer service considerations (Shen and Daskin [40]), multi-
commodities (Shen [36]), supply uncertainty (Qi and Shen [32]), profit maximization
(Shen [37]), disruptions (Qi et al. [33]), etc. The present paper can be considered a
novel extension of the integrated supply chain design problem since it is the first to
integrate reverse flows into a joint location-inventory model in which warehouses are
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assumed to be capacitated. For a summary of publications that study integrated
supply chain design problems we refer to Shen [38].

Capacity restrictions in the facility location problem are a natural extension
of the original problem and play a critical role. The capacitated facility location
problem (CFLP) and its variants are well studied in the literature. For a review,
please refer to the book of Mirchandani and Francis [27]. We note that most
solution algorithms for capacitated facility location problems are adaptations of
algorithms for uncapacitated problems. Therefore, heuristics such as Lagrangian
relaxation-based algorithms Holmberg et al. [18], Daskin et al. [11], Langevin and
Riopel [21], Sahyouni et al. [34], Lu and Bostel [24], Ozsen et al. [29], Liu et al.
[23], Benders decomposition-based solution approaches Üster et al. [42], Easwaran
and Üster [12, 13] and meta-heuristics such as genetic algorithm Ko and Evans [20],
tabu search Easwaran and Üster [12], memetic algorithm Pishvaee et al. [30] are
used extensively.

Both uncapacitated and capacitated supply chain design solution algorithms
share the same problem: the subproblems generated are still intractable or only
near-optimal solutions can be obtained. Therefore, some scholars have dedicated to
the study of the cutting plane method, which explores the polyhedral convex hull of
the feasible solutions and constructs valid inequalities to combine with the branch
and bound or branch and cut algorithm. Normally, it can dramatically improve the
efficiency of these algorithms. The cutting plane method for solving uncapacitated
facility location problems has been studied since Cornuejols et al. [9]. At the end
of 1980s, it was extended to solve the capacitated facility location problem (Leung
and Magnanti [22]).

Valid inequalities have been used in the literature to improve the efficiency and
quality of the models’ solutions. Some of the most used valid inequalities are: clique
inequalities (Leung and Magnanti [22]), odd cycle inequalities (Leung and Magnanti
[22], Klose [19]), submodular inequalities (Aardal et al. [2], Klose [19]), (k, I, S,
I) inequalities (Aardal et al. [2]), flow cover inequalities (Aardal et al. [2], Aardal
[1], Klose [19]), knapsack cover inequalities, effective capacity inequalities, combi-
natorial inequalities (Aardal et al. [2], Aardal [1]), single depot inequalities (Aardal
[1]), lifted cover inequalities (Klose [19]), and extended polymatroid inequalities
(Atamtürk et al. [4]). Some of them are facets for the capacitated facility location
problems. Some other valid inequalities are incorporated into Lagrangian-relaxation
based methods to tighten the feasible region for capacitated facility location prob-
lems (Klose [19], Miranda and Garrido [26]). The present article adds extended
polymatroid inequalities to tighten the feasible region of a conic quadratic mixed-
integer program.

3. Problem formulation

There are three types of distribution centers in the network: forward (new prod-
ucts), reverse (returned products), and joint DCs (both new and returned prod-
ucts). We determine the DC locations among potential sites and the assignment of
retailers to the DCs. The objective is to minimize the fixed charges of locating the
distribution centers, working inventory costs, transportation costs, and the value
loss of returned products.

To benefit from the risk pooling strategy, inventories are not kept at the retail-
ers’ sites but at the DCs. The DCs can fill retailer demand and can store returned
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products temporarily. An approximation to the (Q,R) model with Type-I service
(Ozsen et al. [29]) is used for managing the stock of new products. The inventory
policy followed by the return products is an approximation of the EOQ since not
always the EOQ formula will provide the optimal quantity (the system is capaci-
tated).

To exploit economies of scale in transportation costs, returned products will be
shipped back to the supplier for reprocessing after a predetermined quantity at the
DCs is reached. At the same time, getting returned products back to the market
quickly will bring more profit. Blackburn et al. [8] investigated reverse supply
chains for commercial returns (in particular, products returned by customers for
any reason within 90 days of sale). In a real example, for $1000 worth of product
returns nearly half the product value (> 45%) is lost in the return process by
waiting for the product to be reprocessed. Indeed, a returned consumer product
could wait in excess of 3.5 months before it is sent to disposition in a real case. Thus,
we analyze the trade-off between efficiency and responsive costs when designing a
forward/reverse supply chain network.

Before proposing the model, some important assumptions are followed. First of
all, customer demands are Poisson distributed. Thus, variances of daily demand and
returns are identical to the means of daily demand (μF

i ) and returns (μR
i ), respec-

tively, for each retailer i. Further, demands at the retailers are uncorrelated over
time and across retailers. Demand of returned products is independent from new
product’s demand. The model also assumes that there is sufficient transportation
capacity but controls capacity at each DC. Tables 1, 2, and 3 define the variables
and parameters.

Table 1. Sets.

I Set of retailers indexed by i
J Set of candidate DC sites indexed by j

Table 2. Decision variables per each DC j.

XF
j 1, if candidate location j is selected as a forward DC, and 0 otherwise

XR
j 1, if candidate location j is selected as a reverse DC, and 0 otherwise

XC
j 1, if candidate location j is selected as a joint DC, and 0 otherwise

Y F
ij 1, if demand of new products of retailer i ∈ I is served by DC j, and 0 otherwise

Y R
ij 1, if returned products of retailer i ∈ I is collected by DC j, and 0 otherwise

YR
j = (Y R

1j , ..., Y
R
Ij )

T

QF
j , Q

R
j Shipment quantity of new and returned products at DC j
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Table 3. Inputs.

Cj Capacity of DC j, j ∈ J
μF
i , μ

R
i Mean (daily) volumes of new and returned products at retailer i

fF
j , fR

j Fixed (yearly) costs of locating a DC for forward/reverse flow at DC j
FF
j , FR

j Fixed costs of placing an order of new and returned products at DC j
gFj , g

R
j Fixed transportation costs between supplier and DC j for new and returned products

aFj , a
R
j Cost per unit to ship between DC j and the supplier for new and returned products

dij Cost per unit to ship between DC j and retailer i in forward/reverse flows
SC
j Fixed location cost savings at joint DC j

WIFj (·) The total annual cost of working inventory at forward DC j
WIRj (·) The total annual cost of working inventory at reverse DC j
β Weight factor associated with the transportation cost in forward/reverse flows
θ Weight factor associated with the inventory cost in forward/reverse flows
W Weight factor associated with loss in value of returned products
γ Returned products’ (daily) marginal value of time
α Desired percentage of retailers orders satisfied
zα Standard normal deviate such that P (z ≤ zα) = α
h Inventory holding cost per unit of products per year for each DC
Lj Lead time in days at a DC j
χ Number of days in a year

In summary, model (P) is:

min
X,Y

Z =
∑
j∈J

⎧⎨
⎩fF

j XF
j +

∑
i∈I

βχdijμ
F
i Y

F
ij + θhzα

√
Lj

∑
i∈I

μF
i Y

F
ij +WIFj (DF

j , Q
F
j )

⎫⎬
⎭

+
∑
j∈J

{
fR
j XR

j +
∑
i∈I

βχdijμ
R
i Y

R
ij +WIRj (DR

j , Q
R
j )

}
−
∑
j∈J

SC
j XC

j

+ W
∑
j∈J

R(YR
j , QR

j ), (1)

s.t.
∑
j∈J

Y F
ij = 1,

∑
j∈J

Y R
ij = 1, ∀i ∈ I, (2)

Y F
ij ≤ XF

j , Y R
ij ≤ XR

j , ∀i ∈ I, ∀j ∈ J, (3)

XC
j ≤ XF

j , XC
j ≤ XR

j , ∀j ∈ J, (4)

QF
j + zα

√
Lj

∑
i∈I

μF
i Y

F
ij + Lj

∑
i∈I

μF
i Y

F
ij +QR

j ≤ Cj , ∀j ∈ J, (5)

QF
j , Q

R
j ≥ 0, ∀j ∈ J, (6)

XF
j , XR

j , XC
j ∈ {0, 1} , ∀j ∈ J, (7)

Y F
ij , Y

R
ij ∈ {0, 1} , ∀i ∈ I, ∀j ∈ J. (8)
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where,

WIFj (DF
j , Q

F
j ) =

⎧⎨
⎩ FF

j

DF
j

QF
j

+ β(gFj + aFj Q
F
j )

DF
j

QF
j

+
θh

2
QF

j , ∀j ∈ J, QF
j > 0,

0, QF
j = 0.

(9)

WIRj (DR
j , Q

R
j ) =

⎧⎨
⎩ FR

j

DR
j

QR
j

+ β(gRj + aRj Q
R
j )

DR
j

QR
j

+
θh

2
QR

j , ∀j ∈ J, QR
j > 0,

0, QR
j = 0.

(10)

DF
j = χ

∑
i∈I

μF
i Y

F
ij , D

R
j = χ

∑
i∈I

μR
i Y

R
ij , ∀j ∈ J.

The objective function (1) consists of four parts: cost of forward flows, cost of
reverse flows, savings from co-location of forward and reverse DCs, and the time
value of returned products.

The first part sums the costs of handling new products including the fixed charge
of locating forward DCs, the DC-to-retailer shipping costs, the safety stock costs to
ensure customer satisfaction, and the working inventory cost. The working inven-
tory cost of new products is formulated as equation (9) which is the sum of the fixed
costs for handling orders, the DC-to-supplier shipping costs, and the average order
holding costs per year. The detailed explanation of equation (9) can be referred to
Shen et al. [39].

The second part of the objective contains the costs of the reverse flows. Except
for the safety stock costs, it has the same cost components as the first part of
the objective. The working inventory cost of returned products is represented as
equation (10). We suppose that the return rates of used products are constant
among different retailers and are integrated in the definition of DR

j . Geyer et al.
[15] provide a discussion of calculating return rates in practical settings.

The third part of the objective represents the fixed cost savings created by the
co-location of forward and reverse DCs at the same site. Note that normally the
cost saving must be less than the minimum of the fixed charges of forward and
reverse DCs. We, therefore, assume that SC

j ≤ min{fF
j , fR

j } (Sahyouni et al. [34]).

The fourth part concerns the time value of returned products. R(YR
j , QR

j ) is the
total average value loss of returned product per year and it is related to returned
product’s marginal value of time. Derivation of the formula of R(YR

j , QR
j ) is given

at the end of this section.
Constraints (2) ensure that each retailer is served by exactly one DC. Constraints

(3) state that a retailer can only be assigned to an open DCs. Constraints (4)
stipulate that if a DC is assigned to serve both forward and reverse flows, i.e. a joint
DC, then it acts as not only a forward DC but a reverse DC as well. Consequently,
cost savings occur. Note that forward (reverse) DCs refer to stand-alone forward
(reverse) DCs and forward (reverse) facilities at joint DCs throughout the rest of this
paper. Constraints (5) are the capacity restrictions of each DC j (further described
in the next paragraph.) Constraints (6) are nonnegative constraints. Constraints
(7) and (8) are standard integrality constraints.

Ozsen et al. [29] point out that the capacity of a DC must withstand the worse-
case scenario because the amount of space the warehouse needs is proportional
to peak inventory. In particular, this happens when there is no demand of new
products and no shipment of returned products during the replenishment lead time.
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Thus, the capacity constraints can be formulated as:

QF
j + zα

√
Lj

∑
i∈I

′

μF
i + Lj

∑
i∈I

′

μF
i +QR

j ≤ Cj , ∀j ∈ J,

where I
′

is set of retailers served by DC j. The first and fourth terms represent the
order quantity of new products and returned products, respectively. The second
term is the safety stock under the assumption of Normal demands and it covers
stock-outs that occur with a probability of α or less. Note that zα is a standard
Normal deviate such that P (z ≤ zα) = α. The third term is the average demand
during lead times. We could tighten the right hand side of this capacity constraint
by multiplying Cj by (XF

j +XR
j −XC

j ) for the cases in which XC
j ≥ XF

j +XR
j − 1.

This alternative formulation does not provide significantly better results for our
experiments.

Derivation of the average value loss of returned product
We start the derivation by defining the average value loss of returned product

associated with inventory times at DC j to build lot QR
j per year for a linear decay

rate (Rinv(Q
R
j )). An exponential decay rate could also be used but, as shown in

Appendix A, a linear decay rate is a good enough approximation.
Based on Blackburn et al. [8], the daily marginal value of time (MVT), denoted

by γ, can be represented by the slopes of the lines in Figure 2. The greater γ is the
more sensitive the price of returned products is to time. The average value loss of
returned product associated with inventory times at DC j, denoted by Rinv(Q

R
j ),

can be defined in a similar way as we calculate inventory holding cost of returned
products in a lot sizing problem. Since, on average, there will be χQR

j /2 returned
product of inventory on hand per year, the average value loss of returned products
per year is defined as:

Rinv(Q
R
j ) =

γV χ

2
QR

j , (11)

where V is the initial price of returned products.

Figure 2. Time value of product returns [8]
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To completely define the average values loss of returned product we need to add
the value loss related to transportation times of returned products to the average
value loss function associated to building up Qj at DC j. For a linear decay rate, we
define the average amount of returned product in transportation per year associated

to DC j as
∑

i∈I(
dij+aR

j

k
)χμR

i Y
R
ij , where k is the daily transportation cost per unit

returned product and so
dij+aR

j

k
represents the time spent by a returned product in

transportation from retailer i to DC j and from DC j back to the supplier. Thus,
we define the total average value loss per year as

R(YR
j , QR

j ) = Rinv(Q
R
j ) +Rtr(Y

R
j ) = γV

(
χQR

j

2
+
∑
i∈I

(
dij + aRj

k
)χμR

i Y
R
ij

)
. (12)

4. Model properties and reformulation

The problem is modeled as a nonlinear mixed-integer program, which, in general,
its optimal solutions are very hard to find in a reasonable amount of time. However,
we note that our model could be identified as a novel version of the family of joint
location-inventory models first time introduced by Shen et al. [39]. From Atamtürk
et al. [4] we can define an equivalent conic quadratic mixed-integer program that
will be directly solved via commercial optimization packages. Further, Atamtürk
et al. [4] suggest that some cuts can be beneficial valid inequalities for models of
the mentioned family. In the current work, we show how the polymatroid cuts are
beneficial for our specific model.

Definition 1. A conic quadratic mixed-integer program (CQMIP) is an optimiza-
tion problem of the form:

min c′x

s.t. ‖ Aix+ bi ‖2 ≤ d′ix+ ei, i = 1, . . . , p,

where x ∈ Z
n × R

m, c ∈ R
(n+m), Ai ∈ R

ni×(n+m), bi ∈ R
ni , di ∈ R

(n+m), ei ∈ R,
‖ · ‖2 is the Euclidean norm, and all parameters are rational.

The following proposition provides an equivalent CQMIP formulation of problem
(P).

Proposition 1. Problem (P) is equivalent to the following (CQMIP):
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min
X,Y

ZS =
∑
j∈J

{
fF
j XF

j + θhzαωj +
∑
i∈I

β(dij + aFj )χμ
F
i Y

F
ij +

θh

2
uj

}

+
∑
j∈J

{
fR
j XR

j +
∑
i∈I

β̄(dij + aRj )χμ
R
i Y

R
ij +

WγV χ+ θh

2
vj

}
−
∑
j∈J

SC
j XC

j ,

s.t.
∑
j∈J

Y F
ij = 1,

∑
j∈J

Y R
ij = 1, ∀i ∈ I, (13)

Y F
ij ≤ XF

j , Y R
ij ≤ XR

j , ∀i ∈ I, ∀j ∈ J, (14)

XC
j ≤ XF

j , XC
j ≤ XR

j , ∀j ∈ J, (15)

ω2
j ≥ Lj

∑
i∈I

μF
i (Y

F
ij )

2, ∀j ∈ J, (16)

1

2
(uj +QF

j )
2 ≥ HF

j χ
∑
i∈I

μF
i (Y

F
ij )

2 +
3

2
(QF

j )
2 +

1

2
u2
j , ∀j ∈ J, (17)

1

2
(vj +QR

j )
2 ≥ HR

j χ
∑
i∈I

μR
i (Y

R
ij )

2 +
3

2
(QR

j )
2 +

1

2
v2j , ∀j ∈ J, (18)

QF
j + zαωj + Lj

∑
i∈I

μF
i Y

F
ij +QR

j ≤ Cj , ∀j ∈ J, (19)

ωj , uj, vj , Q
F
j , Q

R
j ≥ 0, ∀j ∈ J, (20)

XF
j , XR

j , XC
j , Y F

ij , Y
R
ij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J, (21)

where β̄ = β +WγV/k, HF
j =

2(FF
j + βgFj )

θh
and HR

j =
2(FR

j + βgRj )

WγV χ+ θh
.

Proof. A conic transformation is employed to linearize the objective of problem (P)
in order to convert it into a CQMIP model. First, three sets of auxiliary variables
ωj, uj and vj are introduced, which satisfy the following inequalities:

ωj ≥

√
Lj

∑
i∈I

μF
i Y

F
ij , (22)

θh

2
uj ≥ (FF

j + βgFj )
DF

j

QF
j

+
θh

2
QF

j , (23)

(
WγV χ

2
+

θh

2

)
vj ≥ (FR

j + βgRj )
DR

j

QR
j

+

(
WγV χ

2
+

θh

2

)
QR

j . (24)

Recall Y 2
ij = Yij if Yij is a binary variable, so we transform the above inequalities

as follows:
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ω2
j ≥ Lj

∑
i∈I

μF
i (Y

F
ij )

2,

1

2
(uj +QF

j )
2 ≥

2(FF
j + βgFj )

θh
χ
∑
i∈I

μF
i (Y

F
ij )

2 +
3

2
(QF

j )
2 +

1

2
u2
j ,

1

2
(vj +QR

j )
2 ≥

2(FR
j + βgRj )

WγV χ+ θh
χ
∑
i∈I

μR
i (Y

R
ij )

2 +
3

2
(QR

j )
2 +

1

2
v2j .

Then, the objective of problem (P) is reformulated as:

∑
j∈J

{
fF
j XF

j + θhzαωj +
∑
i∈I

β(dij + aFj )χμ
F
i Y

F
ij +

θh

2
uj

}

+
∑
j∈J

{
fR
j XR

j +
∑
i∈I

β̄(dij + aRj )χμ
R
i Y

R
ij +

WγV χ+ θh

2
vj

}
−
∑
j∈J

SC
j XC

j .

The set of capacity constraints (5) is linearized by substituting the nonlinear
term by zαωj obtaining the set of constraints (19).

The rest of constraints of problem (P) remain untransformed since they are
linear. �

Extremal extended polymatroid inequalities:

Utilizing submodularity, the conic quadratic constraints (16) ∼ (18) lead to a
class of valid inequalities that can improve the performance of the solution algo-
rithm. Before presenting the results, some definitions are introduced. To simplify
the notation, we drop the superscripts F and R in this subsection.

Definition 2. A set function f : 2N → R is submodular if f(S) + f(T ) ≥ f(S ∪
T ) + f(S ∩ T ) for all S, T ∈ N .

Definition 3. (Schrijver [35]) The polyhedron associated with the submodular
function f on N :

EPf :=
{
π ∈ RN | π(S) ≤ f(S)for each S ⊆ N

}
is called the extended polymatroid associated with f if f(φ) = 0 where π(S) =∑

i∈S πi.

Definition 4. (Atamtürk and Narayanan [5]) The inequalities associated with the
extended polymatroid of f , πx ≤ w, π ∈ EPf are called extended polymatroid in-
equalities. When the inequalities are defined by the extreme points of the extended
polymatroid EPf , they are called extremal extended polymatroid inequalities of
Qf .

Proposition 2. Let Qf denote the lower convex envelope of the sets of solutions
which satisfy constraints (16), i.e.

Qf = conv

⎧⎨
⎩(Yj , ωj) ∈ {0, 1}|I| ×R : ωj ≥ f(S) =

√
Lj

∑
i∈S

μi ∀S ⊆ I

⎫⎬
⎭ .

Then, the inequality
∑

i∈I πiYij ≤ ωj is valid for Qf ,
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where πi =
√
Lj

∑
i∈S(i) μi −

√
Lj

∑
i∈S(i−1) μi ∈ EPf , S = {i | Yij = 1}, and

S(i) = {(1), (2), · · · , (i)}, 1 ≤ i ≤ |I| for some permutation.
This valid inequality is an extremal extended polymatroid inequality.

Proof. See Appendix B. �

A similar result can be derived for the set of constraints (17) and (18).

Proposition 3. Let Qu denote the lower convex envelope of the sets of solutions
which satisfy constraints (17) and (18), i.e.,

Qu = conv

{
(Yj , uj, Qj) ∈ {0, 1}|I| ×R2 :

1

2
(uj +Qj)

2 ≥ Hjχ
∑
i∈I

μi(Yij)
2 +

3

2
(Qj)

2 +
1

2
u2
j

}
,

Then,
∑

i∈I πiYij ≤ uj+Qj is a valid inequality for Qu where πi =

√
8Hjχ

∑
i∈S(i)

μi−

√
8Hjχ

∑
i∈S(i−1)

μi, S = {i | Yij = 1}, and S(i) = {(1), (2), · · · , (i)},1 ≤ i ≤ |I|

for some permutation. This valid inequality is an extremal extended polymatroid

inequality of Qu = conv

{
(Yj , uj) ∈ {0, 1}|I| ×R :

1

2
u2
j ≥ 4Hjχ

∑
i∈I

μi(Yij)
2

}
.

Proof. See Appendix B. �

To find these valid inequalities, we introduce the concept of separation problem.

Definition 5. The separation problem associated with a combinatorial optimiza-
tion problem is the problem: Given x∗ ∈ Rn, is x∗ ∈ conv(X)? If not, find an
inequality πx ≤ π0 satisfied by all points in X , but violated by the point x∗.

The separation problem for the extremal extended polymatroid inequality can
be computed by a greedy algorithm described in Edmonds [14] and Atamtürk and
Narayanan [5].

The greedy algorithm will find valid extremal extended polymatroid inequali-
ties of the types described in Propositions 2 and 3 and we will add them to our
formulation to speed up the solution process.

5. Computational experiments

In this section, we perform computational experiments to test the model and
check how the addition of valid inequalities can speed up the computation. We start
by varying the inventory and transportation weights (Table 5) without adding valid
inequalities. The subsequent analysis studies the effect of the valid inequalities over
a range of different DC capacity values (Tables 6, 7, and 8). The second subsection
is devoted exclusively to evaluating the impact of the DC capacities (Table 9).
We continue by studying the impact of marginal value of time of returned products
(Table 11, 12 and 13), and the trade-off between inventory and value loss of returned
products (Figures 3, 4, 5, 6, and 7).

All experiments are based on two data sets from the 1990 U.S. Census described
in Daskin [10]: a 49-city data set and an 88-city data set. The first data set reports
the demand of each of the lower 48 U.S. state capitals plus Washington D.C. The
second data set adds to the first data set the 50 largest U.S. cities eliminating
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duplicates. Multiple papers on location-inventory models with stochastic demand
have based their experiments on the following modifications of these data sets (Shen
et al. [39], Daskin et al. [11], Atamtürk et al. [4], etc.). For the first data set, the
mean demand of new products is obtained by dividing the first group of demand
data by 100 and the fixed forward facility location costs are obtained by dividing the
facility location costs by 100. For the second data set, the mean demand is obtained
by dividing the first group of demand data by 1000 and the fixed forward facility
location costs are obtained as in the first data set. The mean quantity of returned
products is calculated by multiplying the return rate with the second group demand
data from each data set. The return rate is identical among all retailers. The fixed
reverse facility location costs are equal to the fixed forward facility location costs.
Each retailer location is also a candidate DC location. The cost savings of joint DCs
are set to 0.2min(fF

j , fR
j ) in all experiments. The capacities of all DCs are equal

to each other for the same experiment. The parameter values and descriptions of
this model are listed in Table 4.

We directly employ these data in all the experiments except for Tables 6, 7, and
8 that are build to show computational performance. In these tables we report
the average of ten random instances per row. In turn, each instance is generated
by adding noise to some of the main parameters defined above. In particular, we
multiply the values of the mean demand, standard deviation, and fixed costs by
(1+ ε) where ε is drawn from a uniform [-0.1, 0.1].

Table 4. The parameters of the model.

Parameter Value Description
h 1 Inventory holding cost per unit of products per year for each DC
α 97.5% Service level
zα 1.96 Standard normal deviate such that P (z ≤ zα) = α
FF
j , FR

j 10 Fixed order costs
gFj , g

R
j 10 Fixed transportation costs between the DCs and supplier

aFj , a
R
j 5 Per unit shipment costs between the DCs and supplier

Lj 1 Lead time in days
χ 1 Number of days worked in a year
W 1 Weight factor associated with loss in value of returned products
γ 10% Marginal value of time of returned products
Return rate 40%
V 1 Initial price of returned products
k 100 Daily transportation cost per unit returned product

The computational experiments are conducted on HP 380 G7 server running the
CentOS5.4 operating system. We used the MIQCP solver of CPLEX 12.1, which
solves CQMIP relaxations at the nodes of the branch-and-bound tree, with CPLEX
heuristics turned off.

5.1. Computational performance of the algorithm. In this section, we con-
firm the validity of the model and the efficiency of the algorithm. In Table 5, we
report the results of numerical experiments carried out over different values of θ and
β (the second and third columns, respectively). Note that the quantity of returned
products is less than the demand of new products as defined in both data sets. The
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Table 5. Performance of the model without adding valid inequal-
ities, time limits=3600s

Num.
cities

θ β Total
cost

DCsF DCsR DCsC CPU
time (s)

GAP(%)Nodes

49 0.10 0.0010 122663.26 10 2 2 371.99 0.0099 27138
49 0.10 0.0020 161920.12 10 2 2 11.33 0.0094 1930
49 0.10 0.0030 192657.53 13 3 3 1.82 0.0039 46
49 0.10 0.0040 216988.24 15 3 3 1.24 0.0036 40
49 0.10 0.0050 239955.55 16 3 3 1.20 0.0000 33
49 0.20 0.0020 163068.68 10 2 2 26.23 0.0097 4366
49 0.50 0.0050 244652.01 15 3 3 1.51 0.0075 40
49 1.00 0.0050 249012.60 15 3 3 1.12 0.0032 28
49 2.00 0.0050 256340.58 15 3 3 0.99 0.0047 35
49 5.00 0.0050 274761.25 15 3 3 1.20 0.0091 81

88 0.10 0.0010 24545.54 10 9 9 9.98 0.0000 121
88 0.10 0.0020 33869.69 12 10 10 8.38 0.0054 148
88 0.10 0.0030 41693.04 15 11 11 9.35 0.0058 146
88 0.10 0.0040 47569.63 22 11 11 3.96 0.0087 45
88 0.10 0.0050 52248.90 23 15 14 3.05 0.0024 21
88 0.20 0.0020 34542.68 11 10 10 9.24 0.0098 296
88 0.50 0.0050 55268.35 22 14 14 6.99 0.0099 321
88 1.00 0.0050 57923.66 22 13 13 18.16 0.0100 1500
88∗ 2.00 0.0050 62222.82 21 13 13 136.71 0.0100 11338
88∗ 5.00 0.0050 72004.29 17 12 12 3601.80 0.0792 126865

*: For related computational experiments, see Table 6 and 7.

capacities of the DCs are set to 31000 and 7700 for the 49-city and 88-city data
sets, respectively. They are 1.05 times the maximum daily demand of new prod-
ucts. Total costs are listed in the fourth column. DC usage is shown in the next
three columns, by displaying the number of forward DCs, reverse DCs and joint
DCs, respectively (labeled DCsF , DCsR and DCsC). The algorithm’s performance
is measured in terms of CPU time, the gap between the upper and lower bounds,
and the number of nodes searched.

From Table 5, we observe that:

• Total costs increase when weight factors (θ or β) increase.
• More forward/reverse DCs are opened if unit transportation cost is expen-
sive (larger β). In contrast, some forward/reverse DCs are closed due to
the fact that holding cost becomes expensive (larger θ).

• In most cases, joint DCs are preferred due to cost savings but we can find
some cases in which the numbers of reverse DCs and joint DCs are different
due to capacity restrictions.

• Computational times have an increasing trend when we increase the value
of θ while they decrease when β increases.

Finally, we present Tables 6, 7, and 8 to confirm the computational benefits of
the extremal extended polymatroid inequalities. In these tables, “C” reports the
capacities of the DCs, “CPU time” reports the average running time, and “Nodes”
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the average number of nodes in branch and bound tree. The last three columns
report the number of valid inequalities added to the root node of the corresponding
branch and bound tree. “W”, “U” and “V” are the average number of extremal
extended polymatroid inequalities generated based on constraints (17), (18), and
(16), respectively. Note that the valid inequalities contribute to finding the optimal
solution in less time. For these experiments, the optimality gap is set to CPLEX’s
default optimal gap at 0.01%. Even in instances where the optimal solutions cannot
be found in the time limit specified, adding the valid inequalities improves the
quality of the solutions by providing a solution closer to the optimal (smaller %
GAP).

Table 6. The comparison between instances with and without
the valid equalities, 88-city, W=1, θ = 2, β = 0.005, time lim-
its=3600s.

CPLEX CPLEX+CUTS
C CPU

time (s)
Nodes GAP

(%)
CPU
time (s)

Nodes GAP
(%)

W U V

10000 123.98 8548 0.0100 50.81 2912 0.0100 43 13 2
9000 130.12 9431 0.0100 43.99 2549 0.0100 31 10 0
8000 758.97 53770 0.0100 73.70 5048 0.0100 36 10 0
7900 624.83 48511 0.0100 90.38 6910 0.0100 26 9 0
7800 378.02 30033 0.0100 173.04 13994 0.0100 34 10 0
7700 152.83 11338 0.0100 53.07 2713 0.0100 32 12 1

Table 7. The comparison between the instances with and with-
out the valid equalities, 88-city, W=1, θ = 5, β = 0.005, time
limits=3600s.

CPLEX CPLEX+CUTS
C CPU

time (s)
Nodes GAP

(%)
CPU
time (s)

Nodes GAP
(%)

W U V

10000 3602.39 123846 0.2067 1417.73 58577 0.0100 61 28 8
9000 3602.02 123682 0.1269 369.69 13229 0.0100 56 15 8
8000 3602.19 118435 0.2454 780.19 27418 0.0100 52 16 4
7900 – 3 – 1381.11 59816 0.0100 44 14 4
7800 – 6 – 785.52 28430 0.0100 53 21 5
7700 3601.80 118520 0.0855 667.01 30314 0.0100 80 33 13

– means do not find any feasible solution within the time limits

5.2. The impact of DC capacity. In this section, we study the effect of DC
capacity on both the number of open DCs and the operations at the DCs, as
illustrated in Table 9. From this table, we see that if we tighten the capacities the
number of forward DCs increases and more DCs are utilized at capacity.

The impact of DC capacity on order sizes at joint DCs is summarized in the
following property:



16 A CAPACITATED FACILITY LOCATION MODEL WITH BIDIRECTIONAL FLOWS

Table 8. The comparison between the instances with and with-
out the valid equalities, 88-city, W=1, θ = 10, β = 0.005, time
limits=3600s.

CPLEX CPLEX+CUTS
C CPU

time (s)
Nodes GAP

(%)
CPU
time (s)

Nodes GAP
(%)

W U V

10000 3601.61 42141 0.8330 3601.33 55875 0.1584 107 53 25
9000 3601.54 41320 0.9515 2898.96 47697 0.0100 108 56 37
8000 3601.44 51072 0.9232 3601.51 42392 0.1007 108 61 25
7900 3601.51 47565 0.9614 3601.22 34153 0.1365 118 52 33
7800 3601.63 44235 0.8668 3601.56 52347 0.1216 121 62 37
7700 – 4 – 3601.51 48237 0.0543 109 67 33

– means do not find any feasible solution within the time limits

Property 1. Given a joint DC j,
(a) If capacity at DC j is binding, the optimal order quantities of new products

(QF∗
j ) and returned products (QR∗

j ) are either

• strictly less than the corresponding EOQ quantities;
• or, equal to the corresponding EOQ quantities.

(b) If capacity at DC j is not binding, the optimal order quantities are the corre-
sponding EOQ quantities:

QF∗
j = QF

j EOQ =

√
2(FF

j + βgFj )D
F
j

θh
,

QR∗
j = QR

j EOQ =

√
2(FR

j + βgRj )D
R
j

θh+WγV χ
.

Proof. See Appendix B for proof. �

5.3. The impact of returned products’ marginal value of time. Returned
products’ marginal value of time is associated with the degree of time sensitivity
of the product’s price. If we consider it along with DC capacity it leads to distinct
characterizations of DC location decisions. Table 11 shows the impacts of γ with
k = 500. To emphasize the impacts of returned products’ inventory, we also report
some results with different return rates and k = ∞, which simulates the cases when
transportation times are ignored (Tables 12 and 13). The marginal value of time,
γ, in the experiments is set to 1%, 10%, 30%, 50%, 70%, and 90%. The columns
labeled “CostF” and “CostR” list the costs associated with the forward and reverse
flows, respectively. Table 10 lists the parameters of the experiments. From the
experiments, we find that γ has different impact on the results with and without
the considerations of loss values associated with transportation times. We find that:

(1) Fewer reverse DCs are needed for highly time-sensitive returned products
(higher γ) when transportation times are neglected. Intuitively, storage
time of time-sensitive returned products has been reduced in order to re-
trieve more salvage value of them. This implies more shipments with smaller
quantity so the storage space needed decreases. On the contrary, more re-
verse DCs are build for higher γ if transportation times are part of the
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Table 9. The impact of the capacity of the DCs (θ = 0.1 and
β = 0.001).

Num. Capacity Total cost DCsF DCsR DCsC

1 50000 23594 9 (0) 9 (0) 9 (0)
2 20000 23594 9 (0) 9 (0) 9 (0)
3 15000 23594 9 (0) 9 (0) 9 (0)
4 14000 23618 9 (1) 9 (1) 9 (1)
5 13000 23794 9 (1) 9 (1) 9 (1)
6 12000 23980 10 (1) 9 (1) 9 (1)
7 11000 24038 10 (1) 9 (1) 9 (1)
8 10000 24144 10 (1) 9 (1) 9 (1)
9 9000 24221 10 (2) 9 (1) 9 (1)
10 8000 24327 10 (2) 9 (1) 9 (1)
11 7900 24367 10 (2) 9 (1) 9 (1)
12 7800 24427 10 (2) 9 (1) 9 (1)
13 7700 24546 10 (2) 9 (1) 9 (1)

The numbers in brackets in the last three columns indicate how many of the DCs
opened have binding capacities.

value loss function. This is because having more DCs reduces transporta-
tion times.

(2) Returned products impact the forward DCs in number and location. While
more forward DCs are constructed in the case of non-negligible transporta-
tion times (Table 11) if the product is more time-sensitive, fewer forward
DCs are constructed in the case of negligible transportation times and
highly time-sensitive returned products (Table 13). Even if the number
of forward DCs is identical, the locations of some forward DCs are differ-
ent. For instance, in Table 12 a DC is opened in Atlanta as a forward DC
in experiment 2 while Charlotte is constructed in experiment 3 and Atlanta
is closed. Similar results are also observed in reverse DCs. However, the
number of the stand-alone forward DCs increases for highly time-sensitive
returned products (the difference between the sixth column and the eighth
column) in Tables 12 and 13 to offset for the reduction of forward product
capacity created by the drop of the number of joint DCs. Similarly, the
number of stand-alone forward DCs decreases for higher γ in Table 11 to
offset for the increment of capacity created by the increase in the number
of joint DCs.

(3) Reverse flows impact forward flows’ decisions not only on facility location
but also on inventory management. In Table 13, it is interesting to note that
the forward flow costs slightly diminish for highly time-sensitive returned
products. This shows an opposite trend with the total costs and reverse
flow costs.

Figure 3 aims to describe the trade-off between working inventory costs and value
loss of returned products associated to inventory times. As shown, the working
inventory cost decreases while the loss in value increases in the range of (0, QR′

j ].

From the proof of property 2 (Appendix A), QR∗
j refers to the optimal shipment

quantity of returned products when considering the loss in value. Once taking the
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Table 10. The parameter values in the experiments shown in Ta-
bles 11, 12 and 13.

Parameter Value
W 10
θ 0.1
β 0.005
Capacity of DCs 7700

Table 11. Impact of returned products’ marginal time value (re-
turn rate = 60%, k = 500).

Num. γ (%) Total cost CostF CostR DCsF DCsR DCsC

1 1 55143 32033 25124 23 20 19
2 10 60212 32300 26970 23 23 23
3 30 68062 32298 28304 24 24 24
4 50 74858 32471 31280 24 28 24
5 70 80148 32595 34790 25 33 25
6 90 84663 32676 36367 25 35 25

Table 12. Impact of returned products’ marginal time value (re-
turn rate = 60%, k = ∞).

Num. γ (%) Total cost CostF CostR DCsF DCsR DCsC

1 1 54755 32033 25124 23 20 19
2 10 56489 32033 25521 23 17 16
3 30 58439 32033 26360 23 16 15
4 50 59751 32033 26940 23 13 12
5 70 60745 32033 27438 23 13 12
6 90 61605 32033 27863 23 13 12

Table 13. Impact of returned products’ marginal time value (re-
turn rate = 100%, k = ∞).

Num. γ (%) Total cost CostF CostR DCsF DCsR DCsC

1 1 60957 32412 31708 24 24 24
2 10 63351 32387 32639 24 24 24
3 30 66230 32376 33983 24 24 24
4 50 68176 32370 34876 23 21 21
5 70 69722 32349 35616 23 21 21
6 90 71054 32330 36320 23 20 20

loss in value of returned produces into account, QR∗
j must be less than QR′

j . This
leads to different decisions due to different priorities/preferences of the decision-
makers. It is therefore interesting to find the corresponding non-inferior solutions.

We vary the weight factor W , and plot the trade-off curves corresponding to
working inventory cost and value loss of returned products (Figures 4 and 5). Table
14 summarizes the parameters used in these experiments.
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Figure 3. Schematic diagram of the value loss in inventory and
the working inventory cost of returned products, where QR′

j de-
notes the optimal shipment quantity of returned products without
the consideration of the loss in value.

As shown in Figure 4, we find that more DCs are constructed if we try to reduce
the loss in value of returned products (or, in other words, we try to retrieve more
salvage value from returned products). While, Figure 5 shows the opposite results if
we ignore the transportation times between the retailers, the DCs, and the supplier.
As already observed in Tables 11 and 12, this implies that time in transportation
and time in inventory of returned products have opposed influences on supply chain
design decisions.

Table 14. The parameter values in the experiments shown in Fig-
ures 5 and 7.

Parameter Value
γ 50%
Return rate 80%
θ 0.1
β 0.005

Figures 6 and 7 report the trade-off curves between working inventory cost and
loss in value of returned products with different γ (i.e. returned products with dif-
ferent marginal values of time). According to the figures, given a fixed change of loss
in value, the change of working inventory cost of time-sensitive returned products
(higher γ) is smaller than that of time-insensitive ones (lower γ). Therefore, and
confirming our intuition, it makes more sense to salvage the value of time-sensitive
returned products. We also note that the working inventory costs in Figure 6 are
larger than those in Figure 7 (similarly, in Figures 4 and 5). This is due to the
influence of transportation times in the value loss function of the model behind
Figure 6. Since there is a major influence of transportation times, more DCs are
opened, and this implies that smaller amounts of returned product will be shipped
to each opened DC (QR

j ). Figure 3 shows that smaller QR
j leads to larger working

inventory costs.
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Figure 4. Trade-off curve between working inventory cost and
value loss of returned products (DC capacity=7700, k = 500).

Figure 5. Trade-off curve between working inventory cost and
value loss of returned products (DC capacity=7700, k = ∞).

6. Conclusions and future research

This paper studies the capacitated facility location problem with bidirectional
flows, which is starting to receive much attention in the literature. This model
minimizes the fixed location costs, the working inventory, and the transportation
costs. Moreover, we consider the loss in value of returned products when making
location decisions. We transform the model into a conic quadratic mixed integer
program. The model can be solved efficiently in most cases by using CPLEX.
Some valid inequalities are added to improve the efficiency of the branch and cut
algorithm and the quality of the solutions.

We perform an extensive computational study and observe the following inter-
esting results:

(1) Extremal extended polymatroid inequalities are computationally beneficial
for the formulation presented.

(2) DC capacity has impact on facility location decisions and inventory oper-
ations. The optimal order quantities of new/returned products at a joint
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γ
γ
γ
γ
γ

Figure 6. Trade-off curves for returned products with different
γ, capacity=7700, k = 500. Note that for small γ the corre-
sponding curve’s domain is smaller than that of larger values of
γ since the loss in value is defined as χγ

2 QR
j and QR

j is in the range

(0, EOQ value].

γ
γ
γ
γ
γ

Figure 7. Trade-off curves for returned products with different
γ, capacity=7700, k = ∞.

DC are the EOQ quantities, if DC capacity is non-binding, and below the
EOQ level if capacity is binding.

(3) Marginal value of time of returned products impacts the location and in-
ventory decisions not only of reverse facilities but also of forward facilities.
If the transportation times of returned products are negligible, fewer DCs
are constructed for highly time-sensitive returned products. However, the
reverse effect occurs when transportation times become longer.

(4) In order to retrieve more salvage value from returned products, it is neces-
sary to tolerate higher working inventory costs of returned products. How-
ever, for a fixed change of loss in value the respective working inventory
cost increment will be smaller for time-sensitive products than for time-
insensitive products. In addition, retrieving more salvage value might re-
sult in a smaller or larger optimal number of opened DCs, depending on
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whether inventory or transportation times of returned products have a ma-
jor influence. Thus, it is helpful to consider carefully the salvage value of
time-sensitive returned products when making location decisions.

We suggest some avenues of further research. First, this model can naturally be
extended to incorporate multiple products (Shen [36]). Second, it is interesting to
explore the impact of pricing on the design of the integrated network with returned
products (Shen [37]). Finally, other decisions, such as the vehicle routing decisions
for collecting returned products (e.g., Berger et al. [6] and Shen and Qi [41]), can
be integrated into the capacitated facility location problem.

7. APPENDIX

7.1. Appendix A. The linear decay rate is a good enough approximation
to define Rinv(Q

R
j )

We can define the average value loss of returned product associated with in-
ventory times (Rinv(Q

R
j )) to tightly approximate the well-studied case of returned

products with exponential price decay function. In this case

Price(t) = V e−γt,

where t denotes the time the unit is held at DC. This case is extensively used in
the literature to investigate the loss in value of returned products (Guide et al.
[16], Blackburn and Scudder [7]).

The salvage value of returned products (with batch size equal to QR
j ) can be

found by integrating over [0, QR
j ],
∫ QR

j

0 Price

(
QR

j − q

QR
j

χQR
j

DR
j

)
dq. Then, the loss

in value per batch equals V QR
j −

∫ QR
j

0
Price

(
QR

j − q

QR
j

χQR
j

DR
j

)
dq. Subsequently,

Rinv(Q
R
j ) can be determined multiplying by the number of shipments to the supplier

per year,
DR

j

QR
j

,

Rinv

(
QR

j

)
=

DR
j

QR
j

{
V QR

j −

∫ QR
j

0

Price

(
QR

j − q

QR
j

χQR
j

DR
j

)
dq

}

= V DR
j −

V (DR
j )

2

χγQR
j

⎛
⎜⎜⎝1− e

−
χγQR

j

DR
j

⎞
⎟⎟⎠ . (25)

It is intractable to find the optimal solution of the model due to the complexity

of the resulting Rinv(Q
R
j ). Therefore, we replace e

−χγQR
j

DR
j with its second-order

Taylor-series expansion

e
−
χγQR

j

DR
j ≈ 1−

χγQR
j

DR
j

+
χ2γ2(QR

j )
2

2(DR
j )

2
.
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Then, equation (25) can be approximated as follows:

Rinv(Q
R
j ) ≈ R̂inv(Q

R
j ) =

V χγ

2
QR

j . (26)

Let us define RIRj (QR
j ) = WIRj (DR

j , Q
R
j ) +W · Rinv(Q

R
j ), which represents the

sum of working inventory costs and value loss of returned products associated with
inventory. We next present the following property regarding this expression that is
studied experimentally in section 5.3.

Property 2. RIRj (QR
j ) is unimodal in QR

j .

Proof. See Appendix B. �

From the approximation in (26) we have that

RIRj (QR
j ) ≈ R̂I

R

j (Q
R
j ) = WIRj (DR

j , Q
R
j ) +W · R̂inv(Q

R
j ).

In order to examine the accuracy of the approximation, we define

ERR(QR
j ) = RIRj (QR

j )− R̂I
R

j (Q
R
j ) = W

(
Rinv(Q

R
j )− R̂inv(Q

R
j )
)
,

which measures the error between RIRj and its approximation, R̂I
R

j .

Property 3. ERR(QR
j ) is a concave function of QR

j .

Proof. See Appendix B. �

Owing to Property 3, the quantities of returned products with respect to the
maximal error, denoted by QR

j max, can be determined by using search algorithms
such as golden section method or bisection method. Since the optimal shipment
quantity of returned products with capacity constraints must be less than that
without consideration of capacity constraints, we also calculate the later one, de-
noted by QR∗

j . Due to Property 2, search algorithms are employed as well. Then,

QR
j = min

(
QR

j max, Q
R∗
j

)
is used to examine the accuracy of the approximation.

We perform 2,000,000 numerical experiments with the parameters drawn uni-
formly from the range given in Table 15. The values of QR

j max and QR∗
j are found

by bisection method. The results are summarized in Table 16 and Table 17, in

which we normalize the error by RIRj , err =
|ERR|

RIRj
, and by RR

j , err2 =
|ERR|

RR
j

,

respectively.

The results show that R̂I
R

j is a quite tight approximation of RIRj .
Note that equation (26) has the same form as equation (11). Therefore, we can

adopt equation (11) to approximate the loss in value of returned products associated
with inventory times.

7.2. Appendix B: Proofs.
Proof of PROPERTY 1
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Table 15. Parameter intervals for numerical experiments.

Parameter Interval Parameter Interval
FR
j [5, 15] V [1, 10]
gRj [5, 15] χ [1,10]
aRj [1, 10] γ [1,10]
h [1, 5] θ [0.01,1]
W [0.1, 100] β [0.001,0.1]
DR

j [1, 1000000]

Table 16. Statistical results for numerical experiments of err.

err (%) number of experiments percentage
<0.01 291,687 29.2%
<0.02 513,487 51.3%
<0.05 854,207 85.4%
<0.1 951,443 95.1%
<0.2 1,000,000 100%

average error=0.031%, maximal error=0.126%, minimal error=0.0054%

Table 17. Statistical results for numerical experiments of err2.

err (%) number of experiments percentage
<0.01 235,898 23.6%
<0.02 331,440 33.1%
<0.05 712,973 71.3%
<0.1 904,566 90.5%
<0.2 952,496 95.2%
<0.5 984,736 98.5%
<1.0 1,000,000 100%

average error=0.090%, maximal error=0.993%, minimal error=0%

Proof. The shipment quantities of new and returned products can be obtained
exogenously by solving the following program:

Wj(D
F
j , D

R
j ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min FF
j

DF
j

QF
j

+ β
(
gFj + aFj Q

F
j

) DF
j

QF
j

+ θ
hQF

j

2
+ θhzα

√
Lj

DF
j

χ

+FR
j

DR
j

QR
j

+ β
(
gRj + aRj Q

R
j

) DR
j

QR
j

+
θh+WγV χ

2
QR

j ,

s.t. QF
j + zα

√
Lj

DF
j

χ
+ Lj

DF
j

χ
+QR

j ≤ Cj ,

QF
j , Q

R
j ≥ 0.

Because Wj(D
F
j , D

R
j ) is convex, we apply KKT conditions and obtain the equa-

tions:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(FF

j + βgFj )D
F
j

(QF
j )

2
+

hθ

2
+ λj = 0,

−
(FR

j + βgRj )D
R
j

(QR
j )

2
+

hθ +WγV χ

2
+ λj = 0,

λ

⎛
⎝QF

j + Lj

DF
j

χ
+ zα

√
Lj

DF
j

χ
+QR

j − Cj

⎞
⎠ = 0,

QF
j , Q

R
j , λ ≥ 0,

where λj is a nonnegative Lagrangian multiplier. If the capacity constraint is
strictly satisfied, then λj=0 and the shipment quantities of new and returned prod-
ucts can be determine by the economic order quantities of them, i.e.,

QF
j =

√
2(FF

j + βgFj )D
F
j

hθ
,

QR
j =

√
2(FR

j + βgRj )D
R
j

hθ +WγV χ
.

If the capacity constraint is binding, then λj ≥ 0 and the shipment quantities of
new and returned products are:

QF
j =

√
2(FF

j + βgFj )D
F
j

hθ + 2λj

,

QR
j =

√
2(FR

j + βgRj )D
R
j

hθ +WγV χ+ 2λj

.

Note that both of them are less than the respective economic order quantities if
λj > 0 or are equal to the economic order quantities if λj = 0. �

Proof of Proposition 2

Proof. f(S) =
√
Ljμ(S), where μ(S) =

∑
i∈S μi, is a submodular function due to

its concavity based on the following result studied in Nemhauser and Wolsey [28]
and Shen et al. [39]:

A set function f : 2N → R defined by f(S) = g(a(S)), where g(·) is concave and
a(S) is the sum of the components of a ∈ RN

+ on S ⊆ N , is submodular.

Hence, πi =
√
Ljμ(S(i)) −

√
Ljμ(S(i−1)) is an extreme point of the extended

polymatriod EPf based on Edmonds [14]. That is, πi ∈ EPf . Therefore, π(S) ≤
f(S) ≤ ωj , which completes the proof. �

Proof of Proposition 3

Proof. Let uj = uj + Qj , from constraints (17) and (23) we obtain the following
relaxed form of constraints (17)

u2
j ≥

4(Fj + βgj)

θh
Dj + 3(Qj)

2 + u2
j

≥
4(Fj + βgj)

θh
Dj + 3(Qj)

2 +

(
2(Fj + βgj)

θh

Dj

Qj

+Qj

)2

. (27)
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Taking the derivative of the right-hand side of the above inequality with respect
to Qj , we obtain

6Qj + 2

(
1−

2Dj(Fj + βgj)

hθ(Qj)2

)(
Qj +

2Dj(Fj + βgj)

hθQj

)
= 0.

Solving for Qj, we obtain Qj =

√
(Fj + βgj)Dj

hθ
. Substituting this into the

inequality (27) we obtain the following relaxed constraint

u2
j ≥

4(Fj + βgj)

θh
Dj + 3(Qj)

2 + u2
j

≥
4(Fj + βgj)

θh
Dj + 3(Qj)

2 +

(
2(Fj + βgj)

θh

Dj

Qj

+Qj

)2

≥
4(Fj + βgj)

θh
Dj +

12(Fj + βgj)

θh
Dj

=
16(Fj + βgj)

θh
Dj .

According to Proposition 2, we can get a valid inequality (that is also an extremal
extended polymatroid inequality),

∑
i∈I πiYij ≤ uj + Qj , for the lower convex

envelope of the relaxed constraint, that is

Qu = conv

{
(Yj , uj) ∈ {0, 1}|I| ×R :

1

2
u2
j ≥ 4Hjχ

∑
i∈I

μi(Yij)
2

}
, where πi =

√
8Hjχ

∑
i∈S(i)

μi−

√
8Hjχ

∑
i∈S(i−1)

μi.

Note that the suggested inequality is also valid for Qu of constraints (17), where

Qu = conv

{
(Yj , uj, Qj) ∈ {0, 1}|I| ×R2 :

1

2
(uj +Qj)

2 ≥ Hjχ
∑
i∈I

μi(Yij)
2 +

3

2
(Qj)

2 +
1

2
u2
j

}
.

The same proof can be derived for constraints (18) and (24).
�

Proof of PROPERTY 2

Proof. RIRj is the sum of a concave function (Rinv(Q
R
j )) and a convex function

(WIRj (DR
j , Q

R
j )). The second-order derivative of RIRj with respect to QR

j is:

∂2RIRj
∂(QR

j )
2

=
1

χγ(QR
j )

3

{
−2DR

j

[
DR

j VW − (FR
j + βgRj )χγ

]

+e
−
χγ

DR
j

QR
j

VW
[
2(DR

j )
2 + 2DR

j Q
R
j χγ + (QR

j )
2χ2γ2

]
⎫⎪⎬
⎪⎭ . (28)

We cannot determine whether it is positive or not. As such, RIRj is neither
convex nor concave.
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Let QR∗
j denotes QR

j such that

∂RIRj
∂QR

j

=
1

2χγ(QR
j )

2

⎧⎪⎨
⎪⎩−2e

−
γχ

DR
j

QR
j

DR
j VW (DR

j +QR
j χγ)

+
[
2(DR

j )
2VW − 2DR

j (F
R
j + βgRj )χγ + h(QR

j )
2χγθ

]}
= 0.

Substituting QR∗
j into equation (28), we find

∂2RIRj
∂(QR

j )
2
|QR

j
=QR∗

j
=

1

χγ(QR∗
j )3

⎧⎪⎨
⎪⎩h(QR∗

j )2χγθ − 2e
−
γχ

DR
j

QR∗
j

DR
j VW (DR

j +QR∗
j χγ)

+e
−
χγ

DR
j

QR∗
j

VW
[
2(DR

j )
2 + 2DR

j Q
R∗
j χγ + (QR∗

j )2χ2γ2
]
⎫⎪⎬
⎪⎭

=
1

χγ(QR∗
j )3

⎧⎪⎨
⎪⎩h(QR∗

j )2χγθ + e
−
χγ

DR
j

QR∗
j

VW (QR∗
j )2χ2γ2

⎫⎪⎬
⎪⎭ ≥ 0.

It shows that RIRj (QR
j ) is unimodal in QR

j and QR∗
j is global minimum. �

Proof of PROPERTY 3

Proof. Taking the first- and second-order derivative of Rinv(Q
R
j ) with respect to

QR
j , we can show that Rinv(Q

R
j ) is an increasing and concave function of QR

j .

dRinv(Q
R
j )

dQR
j

=
V (DR

j )
2e

−
QR

j γχ

DR
j

(QR
j )

2γχ

⎛
⎜⎜⎝e

QR
j γχ

DR
j − 1−

QR
j γχ

DR
j

⎞
⎟⎟⎠ > 0.

d2Rinv(Q
R
j )

d(QR
j )

2
=

V e
−
γχQR

j

DR
j

(QR
j )

3γχ

⎡
⎢⎢⎣−2(DR

j )
2

⎛
⎜⎜⎝−1 + e

γχQR
j

DR
j

⎞
⎟⎟⎠+ 2DR

j Q
R
j γχ+ (QR

j )
2γ2χ2

⎤
⎥⎥⎦

=
2(DR

j )
2V e

−
γχQR

j

DR
j

(QR
j )

3γχ

⎛
⎜⎜⎝−e

γχQR
j

DR
j + 1 +

QR
j γχ

DR
j

+
(QR

j )
2γ2χ2

2(DR
j )

2

⎞
⎟⎟⎠ < 0

and R̂inv(Q
R
j ) is linear. Therefore, ERR(QR

j ) is a concave function of QR
j . �
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