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Abstract: Energy efficiency is one of the most important current challenges, and its impact at a global
level is considerable. To solve current challenges, it is critical that consumers are able to control their
energy consumption. In this paper, we propose using a time series of window-based entropy to detect
anomalies in the electricity consumption of a household when the pattern of consumption behavior
exhibits a change. We compare the accuracy of this approach with two machine learning approaches,
random forest and neural networks, and with a statistical approach, the ARIMA model. We study
whether these approaches detect the same anomalous periods. These different techniques have
been evaluated using a real dataset obtained from different households with different consumption
profiles from the Madrid Region. The entropy-based algorithm detects more days classified as
anomalous according to context information compared to the other algorithms. This approach has
the advantages that it does not require a training period and that it adapts dynamically to changes,
except in vacation periods when consumption drops drastically and requires some time for adapting
to the new situation.

Keywords: anomaly detection; behavior pattern; entropy; household electricity consumption; load
forecasting

1. Introduction

In recent years, the interest of people and governments in the energy sector has
increased. Society is becoming aware of the importance of environmental sustainability
and energy efficiency [1]. The integration of new technologies with power grids has
driven a transformation of the energy sector towards a decentralized smart grid. The
transition towards the use of smart grids has made it easier to obtain consumption data at
different scales. The analysis of this data can have different purposes such as predicting
consumption, obtaining consumption patterns, or detecting anomalies, and from this
analysis, recommendation systems can be implemented [2].

A household’s electricity consumption is influenced by external variables, such as sea-
son, weather, etc., and by internal variables, such as the routines and habits of the dwellers.
Additionally, it can be affected by unexpected situations for the dwellers of the household.
For example, the restrictions applied during the COVID-19 pandemic caused unexpected
socio-economic situations that influenced electricity consumption. The lockdown and
restrictions, and the corresponding increase in teleworking and homeschooling, triggered a
change in the power consumption profile [3,4].

Previous research [5-7] focused on electricity consumption at the national level and
studied the impact of the pandemic on electricity demand through forecasting tasks. Hora
et al. [8] evaluated different algorithms used in forecasting tasks of atypical consumption
behavior. The authors applied these algorithms to household electricity consumption
data influenced by the COVID-19 pandemic restrictions. Samara et al. [9] analyzed the
impact of the implementation of quarantine measures during the pandemic on electricity
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consumption in the city of Sharjah. The results show that consumption increased in the
residential sector and decreased in sectors such as industry and commerce.

In this work, we collect and analyze electricity consumption data from different
households in order to detect anomalies when the behavior pattern changes. By anomaly,
we mean a behavior pattern different from the usual, i.e., that does not conform to what
is expected or predictable. Our approach is based on the use of entropy. It is an iterative
approach, so it allows us to detect changes in the consumption behavior of a household
without the need for training. We study whether entropy is able to detect changes in
behavior patterns due to unexpected situations.

Entropy is used to detect anomalies in different areas. In previous work, we applied
entropy to geolocated traces [10,11]. The performance of the entropy was satisfactory, and
it was able to detect anomalies. Entropy is a measure of the uncertainty of a sequence of
symbols, and so the information of each symbol is inversely proportional to its probability.
One symbol is “predictable” if its probability is high. Applied to electricity consumption,
this means that if consumption varies unexpectedly, the symbols should not be predictable
and, therefore, the entropy value would change.

To evaluate the results obtained in this study we define two main research questions
that we answer in Section 6. The questions are as follows:

*  RQ-1: Does entropy detect anomalies in household electricity consumption?
*  RQ-2: Do the other approaches detect the same anomalies as entropy?

The remaining of the paper is structured as follows: Section 2 provides an overview of
the state of the art related to power consumption traces, power consumption forecasting,
and the use of entropy for detecting anomalies. Section 3 describes the methodology
followed in this study. Then, Section 4 includes a description of the dataset we collected
and the selection of the parameters and different approaches. The results obtained are
presented in Section 5. Finally, the conclusions of this paper and future work are presented
in Section 6.

2. State of the Art

In this section, we first mention the different methods to obtain electricity consumption
traces. Then, we review different works on household electricity consumption forecast-
ing. Later, we review other works that apply entropy in power consumption traces for
different purposes. Finally, we review some areas of application of anomaly detection in
electricity consumption.

2.1. Electricity Consumption Traces

Thanks to the rise of smart grids and their integration with new technologies, electricity
consumption datasets are becoming available. There are three ways to obtain these datasets:
traces provided by operators, traces provided by smart meters, and synthetic traces. These
datasets may or may not be publicly available and may be aggregated at different levels
(device, household, building, group of buildings, city, region, or country).

Table 1 collects different characteristics and the level of detail, aggregated at a house-
hold level (Agg.) or at an appliance level (App.), of various publicly available datasets. The
duration of the traces is diverse, ranging from days (e.g., REDD) [12] to several years (e.g.,
Tracebase) [13]. REDD [12] and UK-DALE [14] monitor the aggregate consumption of a
few households with a rather high sampling frequency.
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Table 1. Accessible electricity consumption datasets.

Data Set Location Duration # Houses Sample Rate Type # Appliances
AMPds2 [15] CA 2 years 1 60s App. 21
ECO [16] CH 8 months 6 1s App./Agg. 6-10
GREEND [17] AU, IT 1 year 8 1s App. 9
REDD [12] Us 3-19 days 6 3s App. 9-24
1s Agg.
REFIT [18] GB 2 years 20 8s App./Agg. 9
Smart* [19] us 3 months 3 1s App./Agg. 29
SmartSim [20] synthetic 7 days N/A 1s App. 25
SynD [21] synthetic 180 days 1 02s App./Agg. 21
Tracebase [13] DE 1883 days 15 1s App. 158 in total
UK-DALE [14] GB 655 days 5 6s App- 5-54
1s Agg.

In contrast to real traces, synthetic traces allow for modeling the consumption behavior
pattern and studying the effect of different characteristics on consumption, such as the use
of appliances or the influence of the vacation periods on consumption. Synthetic traces are
often based on real traces; e.g., the power consumption model of the appliances presented
by Barker et al. [20] was based on data from the Smart* project [19].

2.2. Electricity Consumption Forecasting

Research works that focus on electricity forecasting are becoming more and more
frequent. At the same time, the use of machine learning models has also become important
in the electricity sector. It should be noted that the diversity of these investigations is wide
in the techniques applied, sampling frequency, and time span of the datasets. Besides, the
study is conditioned to the extension of the monitored area since the household electricity
consumption is influenced by external such as the habits of the dwellers [22].

Jogunola et al. [23] presented a hybrid architecture based on deep learning techniques
to predict the electricity consumption of commercial buildings and residential buildings.
Chou et al. [24] combined a decomposition method with a prediction algorithm; this
approach is applied to buildings with different functionalities located in different time
zones. Arvanitidis et al. [25] applied an artificial neural network (ANN) to the Greek
power system, taking into account temporal data, temperature, and historical data for
forecasting. There are also works on industry consumption forecasting. Leite Coelho da
Silva et al. [26] applied statistical approaches and ANN to industrial electricity consumption
in the Brazilian system.

Table 2 shows the input characteristics and models applied in some works on house-
hold electricity consumption forecasting.

Table 2. Techniques applied in the forecasting of household electricity consumption.

Reference Models ! Input Features
[27] MLR, RT, SVR, RNN, ARIMA calendar effects, historical data
[28] CNN-LSTM, LSTM, ARIMA, SVR
[29] probabilistic models calendar effects, historical data,
temperature
[30] LR, DT, DNN
RNN, LSTM, GRU temporal information
[31] CNN-LSTM, LR, DT, RE, MLP, LSTM, GRU calendar effects, household characteristics,
[22] LSTM weather features

! The abbreviations of the models are found in the glossary at the end of the paper.

The regression tree (RT), recurrent neural network (RNN), and support vector regres-
sion (SVR) techniques used in [27] obtain similar root mean squared error (RMSE) results,
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but statistical analysis shows that RT is significantly better. This paper studies the impact
of calendar effects on the prediction of consumption and concludes that calendar effects are
more important in the absence of historical load information.

Schirmer et al. [30] showed that the approaches that incorporate temporal data (RNN,
gated recurrent unit (GRU), and long short-term memory (LSTM)) are more accurate than
those that do not (linear regression (LR), DT, deep neural network (DNN)). Compared to
the reference model based on linear regression, the LSTM model reduces the mean absolute
error (MAE) by up to 26.7%.

Some research focuses on predictions considering meteorological factors. In [29],
the authors used outdoor temperature, while [22] took into account different weather
characteristics. Wang et al. [22] analyzed different users, and the results showed that
weather features increase prediction accuracy. Although this improvement depends on
behavior, if users are not susceptible to weather changes, the prediction will not be better.

Other papers propose novel approaches combining different techniques. The ap-
proaches presented in [28,31] combine convolutional neural network (CNN) and LSTM,
which outperform existing approaches. However, there are recent works that show that the
LSTM model can obtain good accuracy in this area [32-34].

2.3. Entropy

There are previous works that use entropy in power consumption traces for different
purposes. The objective of [35] is to predict electricity consumption, and entropy is used
to select the most important input features by a feature selection process (FSP). In [36],
outliers in electricity data are detected using an entropy-based approach, used to aggregate
data and remove repeated patterns. Kwac et al. [37] propose the use of entropy to capture
the variability of customer consumption and to study the daily consumption shape of
households. Their conclusion is that entropy could provide a measure of consumption to
design a recommendation system.

2.4. Anomalies in Electricity Consumption

The information obtained from anomaly detection in electricity consumption can be
used in different areas of application. It could be used to improve the privacy and security
of residents. In addition, if there has been no change in the pattern of user behavior, this
information can be used for the identification of an appliance failure, a sudden change in
the charging system, or fraud in the resident’s electrical system [38].

Electricity consumption data can lead to privacy leaks. Analysis of the data can reveal
sensitive information about the behavioral pattern of users, whether an appliance is on
or not, whether the dwellers of the household are away;, etc. [39]. Im et al. [40] proposed
a new method of electricity billing that preserves privacy while preserving data quality.
Guan et al. [41] proposed an efficient and privacy-preserving data aggregation scheme.

3. Methodology

In general, energy consumption traces are not well labeled and only provide infor-
mation on the power consumed. This information is not sufficient to perform an analysis
of the consumption behavior pattern. It is important to know what information we have
about the household and the dwellers. For this work, we collected electricity consumption
traces provided by suppliers to their customers and also information about the households
and their dwellers in some households in the Madrid Region (Spain). The dataset used is
explained in detail in Section 4.

We applied different approaches to compare the results with the entropy-based ap-
proach. We wanted to know which mechanism was most suitable and if entropy performs
correctly to detect anomalies. These anomalies will indicate an unusual behavior or a
change in the behavior pattern that could be caused, for instance, by a vacation period
or a change of job. The dataset from some households covers the pandemic period, in-
cluding lockdown and restrictions, a situation that interferes with household electricity
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consumption since most people had their behavior pattern modified. We had the opportu-
nity to study whether the different algorithms detect unexpected situations, as is the case
of COVID-19.

3.1. Traditional Algorithms

One method to detect anomalies is the application of algorithms used for forecasting,
where machine learning models or statistical models are included. We refer to these models
as traditional algorithms. The objective is to predict values after a training period. The
expected result is that the real values and the predicted values match. However, if the
predicted value deviates from the real value, it can be thought that something unusual has
happened in that interval.

The first model we used was random forest (RF) [42]. To control the complexity of
the model, parameters that influence the tree construction can be adjusted [43]. Some
adjustments limit the depth of the tree or require a minimum number of points at a node to
continue splitting. The randomness of the tree is determined by the selection of the features
used at each node. Another important parameter is the number of trees used. The more
trees, the better, but that influences the performance of the model.

The second model we applied is long short-term memory (LSTM) [44], a type of
recurrent neural network (RNN). Building a neural network model is not trivial; one must
define the network architecture, the number of layers, and the number of units in each
layer, in addition to the activation functions.

The last approach we used was a statistical model based on time series, the auto-
regressive integrated moving average (ARIMA) model [45]. We defined the ARIMA (p, d,
q) model where p, d, and q are the degrees of the different components of the model: the
auto-regressive component, the integrated component, and the moving average component,
respectively.

To compare the performance of the different models, we used three common forecast-
ing metrics [46]. The first metric was RMSE. We normalized this error by dividing its value
by the mean of the test set, the normalized root mean squared error (NRMSE). Finally, we
used a measure of percentage error, the mean absolute percentage error (MAPE).

As described in Section 5, we analyzed the predicted and real values to differentiate
an anomalous day from a normal day.

3.2. Entropy

Electricity consumption has a certain degree of randomness because a person’s be-
havior is not periodic and is influenced by many factors such as occupation or habits.
Predictability [47] indicates how foreseeable a user’s behavior is; if the user has a repetitive
behavior, it is predictable, while if they have a more random behavior, it is not.

The predictability of a user can be measured by an information theory concept—
entropy [48]. A user can be commonly predictable, but then suddenly change its behavior;
this behavior results in a change in predictability and, consequently, a change in the value
of entropy. Entropy measures the uncertainty of a sequence of symbols, and its definition is
as follows:

H=— ) p(x)log,p(x) )
xeZ

where X is a discrete random variable whose values belong to an alphabet 2~ and
p(x) =Pr(X = x),Vx € 2 isits probability function, the probability mass function (PMF).
Usually, the probability of the symbol, p(x), is calculated as the ratio of the number of
occurrences of the symbol to the total length of the sequence. Since we are interested in
studying the entropy evolution, we calculate the entropy for each interval (2). We consider
from the beginning of the sequence of each interval, i, where the interval is the timestamp.

H(i) = — Y p(x,i)log, p(x,i) ¢)
xe
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4. Dataset and Parameter Selection

Before studying the results obtained, we describe the data used in this study and the
parameters we adjusted in the different approaches.

4.1. Data Collection

This case study focuses on electricity consumption from 8 households in the Madrid
Region (Spain) and on the information obtained about these households and their dwellers
(age range, occupation). The electricity consumption data provided by the consumers come
from the supplier that provides this information to the consumers. The information related
to the home is the zip code, the surface area in square meters, and the presence/absence
of different appliances, which are the ones that usually consume more energy or are used
more frequently.

The suppliers provide this information to the consumers on their websites. The
historical data that the consumer can usually access follow the same scheme: the electricity
consumption with its timestamp, the mode of generation of the reading (whether it is
real or estimated), and the CUPS of the consumer (i.e., the Universal Supply Point Code
in Spain).

We collected the data through a system developed by us. The system allows us to
collect data from different consumers. The system considers the existing invoice system
in Spain, which allows data collection from all of Spain. The objective is to obtain real
electricity consumption traces to process and analyze this data. The processing is in
accordance with the General Data Protection Regulation and complies with current data
protection regulations.

4.2. Data Description

Table 3 shows the lengths in days of the data for all the households. In all of them, the
sampling frequency is one sample per hour.

Table 3. Length of available data.

H1 H2 H3 H4 H5 He H7 HS8
Duration [days] 1359 1306 366 732 702 367 366 366

When analyzing consumption, it is necessary to take into account the energy consumed
in a year, the maximum per hour, and the average per hour in order to compare the
households and obtain conclusions. These values, in kWh, can be seen in Table 4.

Table 4. Description of household loads.

H1 H2 H3 H4 H5 He H7 H8

Annual [kWh] 2043 1527 1777 2461 2866 2983 3222 6506
Max hourly [kWh] 291 3.20 2.14 3.92 2.40 4.69 4.55 5.77
Mean hourly [kWh] 0.22 0.16 0.20 0.32 0.30 0.39 0.55 0.95

This dataset covers a period including the COVID-19 pandemic. For this reason, we
divide the consumption into two periods, the pre-pandemic period up to 14 March 2020
and the pandemic period. In most households, the average consumption was higher in the
pandemic period. Figure 1 shows the statistical interpretation of electricity consumption
for all households. This interpretation is shown in blue for the pre-pandemic period (up to
14 March 2020) and in pink for the period corresponding to the COVID-19 pandemic.
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Figure 1. Statistical interpretation of consumption data (a) H1, (b) H2, (c) H3, (d) H4, (e) H5, (f) H6,
(g) H7, and (h) HS.

These figures show the difference in consumption from one period to another. The load
distribution in the first five households (H1, H2, H3, H4, and H5) was quite similar, and
houses H7 and H8 were significantly different. Although it can be seen that consumption
tended to be higher in the COVID-19 period, household H7 followed a different trend, with
lower consumption.

In the following study, we focused on households H1 and H2 since we had a longer
trace duration, as we can see in Table 3, and the pattern of behavior was different, as shown
below in a more detailed study. In addition, more background information about these
households allowed us to perform a more in-depth analysis. For these reasons, from this
point on, we will focus on the analysis of these two households.
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Figure 2 show the total consumption of H1 and H2 during the whole period. The
vertical black line on March 14th marks the day when the state of alarm (strict lockdown)
was declared in Spain. This line divides the consumption into pre-pandemic and pan-
demic periods.
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Figure 2. Consumption of households (a) H1 and (b) H2.

Figure 3 shows the power consumption of H1 and H2, the total consumption of the
month, the total consumption of each day of the week, and the hourly consumption of a day.
In these figures, the month, day of the week, and time of day with the highest consumption
are shown in blue coloring.
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Figure 3. Average load curves. (a) H1 (monthly). (b) H1 (daily). (c) H1 (hourly). (d) H2 (monthly).
(e) H2 (daily). (f) H2 (hourly).

In both households, the month with less power consumption was August, but the
month with more consumption in H1 was January and in H2 was June. This explanation
lies in the presence of an air conditioner in H2, while H1 had no air conditioner. In H1,
consumption was evenly distributed among all days of the week, and consumption was
higher at midday. In H2, consumption on weekends was higher than during the labor days,
and in the daily consumption curve, we can observe that the peak occurred in the evening.
The dwellers of H2 had a full working day and ate away from home during the week.
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4.3. Data Analysis

In relation to the granularity of the dataset, the sampling frequency could be less
than one hour because our objective was to detect anomalous days. If the sampling
frequency was hourly, we obtained too many details of household consumption. We were
not interested in knowing the exact time of a peak of consumption, but we did want to
study whether the peak occurred in the morning or afternoon. The objective was to reduce
the number of samples without losing the information needed for the study. For this reason,
we re-sampled the consumption measurements by decreasing the sampling frequency.

We believe that this re-sampling should be automatic. One formal option is to cluster
the times of day using a clustering algorithm. In our case, we used the K-means algo-
rithm [49]. First, we obtained the optimal cluster number, the number of slots in which to
divide the hours of the day according to their consumption. Then, the K-means algorithm
clusters the hours of the day with similar consumptions. From the clusters obtained, we
re-sampled the electricity consumption data. To do this, we summed the data and divided
it by the number of hours. We decided to calculate the average since the length of periods
may not be the same.

4.4. Parameter Selection

As mentioned above, we used three different techniques. The selection of the pa-
rameters adjusted in this study is based on different analyses. For the first two models,
we defined the same input features to the algorithm: historical data (consumption of the
previous day), calendar with the holidays of the Madrid region, and temporal data (time,
day of the week, day of the month, and month).

4.4.1. Random Forest

There are several important parameters to consider in this algorithm. In Section 3 we
mentioned the parameters that we adjusted. We performed an analysis of the hyperparam-
eters using a grid search based on the out-of-bag (OOB) score. The best combination is
shown in Table 5.

Table 5. Adjusted parameters and OOB score.

OOB Score Max Depth Max Features Mmf amples Nl..lmber
eaf Estimators
0.4487 10 3 3 130
0.4486 10 3 3 125
0.4481 10 3 3 135
0.4479 10 3 3 85

However, in Figure 4, the OOB score versus the number of trees shows that the number
of estimators undergoes a trade-off with the performance. Therefore, we set the number of
estimators equal to 85, at which the score stabilized.
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100 125 150 175 200
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25 50

Figure 4. OOB score vs. number of estimators.

Finally, we set 85 trees, defined the maximum depth of a tree to 10, and set the
maximum of features to 3 (1/3 of the total input features). Finally, the minimum number of
samples in a node was 3.

4.4.2. Neural Networks

We used an LSTM network with 3 layers. The output layer had a single output since
the target variable is consumption and was interconnected with the 9 inputs through a
hidden layer.

To select the number of neurons in the hidden layer, we calculated the RMSE from
1 neuron to 25 neurons and selected the model with the best performance. Figure 5 shows
the RMSE of each model. We set the number of units to 4 since from this value; the error
does not decrease significantly while the model performance degrades.

260

240

N N
=] N
s S

=
@
S

RMSE (Wh)

160

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of units in the hidden layer
Figure 5. RMSE vs. number of units.

4.4.3. ARIMA

In the ARIMA model, we defined the three parameters p, d, and q. The first step was
to determine whether consumption was stationary or not. If it is, the parameter d would be
0. To this end, we applied the Augmented Dickey Fuller (ADF) test [50], a test of statistical
significance. The null hypothesis assumes that the time series is a non-stationary series. We
obtained a p-value equal to 6.140 x 107°. As this is lower than the significance level, we
rejected the null hypothesis and assumed that the series was stationary and d was 0.
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To identify the remaining two parameters, p and q, we observed the auto correlation
function (ACF) and partial auto correlation function (PACF) figures, respectively, as shown
in Figure 6.
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Figure 6. (a) ACF graph, (b) PACF graph.

According to the obtained correlations, we tentatively identified both parameters at 4,
and verified this by comparing the AIC values obtained for the different models. We used
an ARIMA model (4, 0, 4).

We applied the same tests to H2 to obtain the parameter values. Table 6 shows the
adjusted parameters for both households.

Table 6. Adjusted parameters of households H1 and H2.

RF LSTM ARIMA
Number of Max Min Number of
Estimators Max Depth Features Samples Units p d !
Leaf
H1 85 10 3 3 4 4 0 4
H2 85 10 2 3 4 4 0 4
4.5. Entropy

As mentioned in Section 3, the probability of a symbol is calculated as the number
of occurrences divided by the length of the sequence. In our sequence of symbols, the
length of the alphabet was large because the range of power consumption values was
very extensive. Two values with an insignificant difference, such as one watt-hour, are
considered to be completely different values. For this reason, before calculating the entropy
value, the first step was to discretize the values to increase the accuracy of the entropy. We
decided that this clustering should be dynamic, so we used the K-means algorithm with
10 clusters to define the consumption intervals.

Furthermore, we found another issue. The definition of entropy encompasses an
infinite series of symbols, so a symbol at the end of this sequence has no impact on the
global value of entropy because the past history has a lot of weight in the summation
of Equation (2). The blue line in Figure 7 shows this behavior. There came a time when
entropy variations were negligible, and the entropy value tended to be almost constant.
Therefore, the entropy did not detect any different behaviors. An anomalous behavior
would have to be very long to have an influence on the entropy. To solve this issue, we took
into account the most recent past in each interval.
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Figure 7. Entropy of household H1.

We calculated the entropy value within a sliding window, in which we only considered
the last symbols of the sequence. We defined different window sizes, short enough to
detect changes in user predictability and consumption, but large enough to add some
past memory.

Figure 7 shows the entropy evolution of H1 with different window sizes. The window
ranged from 4 weeks, which corresponds to the brown line, to 24 weeks (orange line). If
the window size was small, the entropy variations were more significant because there
were few samples, and any unexpected events would be reflected. From this point on, we
considered a 6-week window to perform the calculations, as we believe it is an average
timeframe and is long enough to detect changes in consumption.

5. Results and Discussion

In this section, we discuss the results obtained using traditional algorithms and using
the entropy-based approach. The first step is to apply the different approaches to a period
prior to COVID-19, specifically, the period corresponding to the year 2019-2020. To study
periods of the same length in both houses, we considered one year before 14 March 2020.

5.1. Traditional Algorithms

With the RF and LSTM models, the first step was to divide the dataset into a training
part and a test part—the training part from September 2017 to March 2019 and the test
part until March 2020. The split corresponds to 60% and 40%, respectively. We tested
with different training sizes, and 60—40 detected the most anomalous days. Then, we
transformed the data to obtain an input matrix to the algorithm with the required features,
target variable, and consumption in each interval. The next step was to create the model and
fit it with the training data. Once both models were created and adjusted, we performed
the consumption forecasting.

The main purpose was to obtain the days in which the prediction did not match the real
data. We were interested in knowing the intervals in which the prediction was not correct.
If the predicted value differed from the true value, we would think that something unusual
was happening. We calculated the difference in absolute value between the predicted
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values and the true values. Next, we needed to set a threshold on this difference to separate
the abnormal days from the normal days. The distribution of discrepancies between the
actual and predicted values from the RF algorithm in H1 were concentrated in values below
200 Wh.

The number of days considered anomalous depends on the set limit; the number of
days decreases as the limit is increased. In addition, to set this limit, we had to take into
account the average consumption of the household, so this limit was different for each one.
According to the graphs, we believe that it is a good estimate to establish the limit in the
average consumption of this interval.

However, if we only look at this difference, we consider too many days as anomalous
that, for us, would not be anomalous. Therefore, this criterion is not enough. Additionally,
we studied the slope of consumption in each interval, since we were interested in the trend
of consumption. We set the following criterion: the difference between the consumption in
each interval with respect to the previous interval must follow the same trend; it must be
increasing or decreasing in real values and predicted values. If they do not follow the same
trend, it may indicate that something strange has happened.

In summary, we establish that in order to consider a day as anomalous, both conditions
must be met: the first one is that the difference between the true value and predicted value
must differ more than the average consumption; the second one is that the trend of each
reading must be different in the actual values and the predicted values.

With these criteria, in H1, the RF detected 27 anomalous days; the neural network
model, 27; and the ARIMA model, 37. From the union of all these anomalous days, there
were 15 detected by the three algorithms and another 15 detected by two of them.

In H2, the RF detected 19 anomalous days; LSTM, 32; and ARIMA, 39. If we look at
the errors obtained in the predictions, the RF was the model with the lowest error. In this
case, 11 anomalies were detected by the three approaches and 12 by two of them.

5.2. Our Approach

To obtain the anomalous days, we studied the evolution of entropy. In Figure 8, we
observe the evolution of entropy in both households. In the entropy of H1, we can observe
three sudden drops that correspond to the summer periods during the month of August.
These variations can be visualized in their consumption (Figure 2a). H1 presents a more
repetitive trend in electricity consumption and entropy evolution.

We obtained the difference of entropy in each interval with respect to the previous
value, and we ordered the values obtained in descending order—the greater the difference,
the greater the change. In Figure 9, we see the days ordered according to the entropy
difference from the rarest day to the least rare day, or most “normal” day, in H1.

We needed to set a threshold at which we considered the days as anomalous or
normal. To establish the threshold, we fit two trend lines, a linear trend and a logarithmic
trend—both lines can be seen in Figure 9 in dashed gray. The intersection point between
both lines was the threshold to differentiate the anomalous days. In this case, the threshold
was 37.

We obtained the date corresponding to the anomalous days and made a classification
from the most anomalous day to the least anomalous (or most normal). We then made
a more detailed analysis of the anomalies detected and compared the results with the
anomalies obtained by the different approaches.
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Figure 8. Entropy of households (a) H1 and (b) H2.
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Figure 9. Days ordered by entropy value.

5.3. Comparison and Discussion

We studied the anomalies detected by each algorithm and compared the results
obtained. We differentiated between anomalies detected by entropy alone and anomalies
detected by the entropy and one or more of the alternative approaches.

5.3.1. Household H1

Table 7 shows the anomalies of H1 detected by entropy and by one or more of the
implemented algorithms. The days are sorted from the most anomalous to the least
anomalous, according to the classification of anomalous days obtained by the entropy
approach. The last column, “ground truth”, indicates whether the dates detected as
anomalous were actually rare or unusual, according to the dwellers.

The percentage of days detecting entropy, which is also detected by each of the different
approaches, were as follows: 43% (RF), 38% (LSTM), and 49% (ARIMA). The different
approaches may not detect the same days, but they do detect adjacent days that correspond
to anomalous periods. Only three anomalies detected by the different techniques were not
really anomalous periods.
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Table 7. Anomalous Days of Household H1.

Entropy Entropy Ranking RF LSTM ARIMA “Ground Truth”
31 March 2019 2 31 March 2019 31 March 2019 yes
24 July 2019 3 24 July 2019 24 July 2019 24 July 2019 yes
7 March 2020 4 9 March 2020 7 March 2020 7 March 2020 yes
26 March 2019 6 21 March 2019
1 April 2019 7 3 April 2019 3 April 2019 2 April 2019 yes
13 October 2019 10 13 October 2019 yes
30 March 2019 12 28 March 2019 yes
1 December 2019 13 1 December 2019 1 December 2019 1 December 2019 yes
15 September 2019 15 15 September 2019 15 September 2019 yes
24 December 2019 17 25 December 2019 29 December 2019 yes
22 December 2019 18 25 December 2019 yes
26 October 2019 19 26 October 2019 26 October 2019 26 October 2019 yes
11 September 2019 20 9 September 2019 yes
8 July 2019 21 7 July 2019 8 July 2019

21 February 2020 22 23 February 2020 23 February 2020
29 June 2019 24 25 June 2019 yes
8 September 2019 25 8 September 2019 8 September 2019 8 September 2019 yes
7 September 2019 27 7 September 2019 7 September 2019 7 September 2019 yes
5 April 2019 30 9 April 2019 8 April 2019 yes
12 December 2019 33 10 December 2019 yes
13 September 2019 34 13 September 2019 13 September 2019 13 September 2019 yes
3 November 2019 36 3 November 2019 6 November 2019 6 November 2019 yes
31 December 2019 37 31 December 2019 1 January 2020 yes

The days detected only by the entropy-based approach corresponded to the vacation
period and the following days, specifically the days in August and September. These
days correspond to the sudden change in entropy. The entropy approach does not adapt
immediately since the holiday period is long and continues to flag days as anomalous until
it adjusts again.

Traditional algorithms detect and learn the pattern of consumption behavior. In H1,
during the month of August, these algorithms did not mark any days as anomalous because
it learned from previous years, and the vacation pattern was quite periodic.

5.3.2. Household H2

As in H1, we compared the anomalies detected by the different approaches. The
anomalies detected in H2 are shown in Table 8.

In H2, approximately 55% of the anomalous periods shown in Table 8 were actually
anomalous, according to the dwellers. The remaining periods correspond to apparently
normal days. Specifically, 25% of the days detected as anomalous by the ARIMA model
coincided with weekends, detecting these periods as “abnormal” when they should have
been normal. In H1, the same did not happen because the behavior pattern was similar all
week, while in H2, a difference was observed during the weekends. The percentages of
anomalous days detected by the entropy, which were also detected by each of the other
approaches, were as follows: 30% (RF), 46% (LSTM), and 49% (ARIMA).

As we might expect, when we compared the anomalies detected in both households,
there was no relationship between them since H1 and H2 had a different pattern of con-
sumption behavior. For example, H1 had a more repetitive and constant behavior than H2.
There were three periods detected by both households that corresponded to the end of the
academic year (end of June), the beginning of the school year (beginning of September),
and the beginning of the Christmas vacations.
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Table 8. Anomalous days of household H2.

Entropy Entropy Ranking RF LSTM ARIMA “Ground Truth”
1 March 2020 1 27 February 2020 yes
1 May 2019 3 5 May 2019 5 May 2019 yes
26 June 2019 5 26 June 2019 yes
26 October 2019 6 22 October 2019
29 August 2019 8 29 August 2019 29 August 2019 29 August 2019 yes
21 December 2019 10 17 December 2019 yes
16 February 2020 11 17 February 2020 17 February 2020
21 July 2019 12 21 July 2019 21 July 2019 22 July 2019
19 January 2020 14 19 January 2020 19 January 2020 20 January 2020
8 September 2019 16 8 September 2019
23 August 2019 17 25 August 2019 25 August 2019 yes
12 July 2019 18 12 July 2019 11 July 2019
9 November 2019 19 9 November 2019 9 November 2019 10 November 2019
14 August 2019 20 13 August 2019 13 August 2019 yes
1 September 2019 21 1 September 2019 yes
30 August 2019 22 30 August 2019 yes
25 June 2019 25 21 June 2019 21 June 2019 yes
21 August 2019 26 21 August 2019 yes
16 October 2019 27 19 October 2019 19 October 2019 19 October 2019
12 January 2020 28 13 January 2020 13 January 2020
20 August 2019 29 20 August 2019 20 August 2019 20 August 2019 yes
29 June 2019 31 29 June 2019 29 June 2019
29 September 2019 34 28 September 2019
18 August 2019 37 19 August 2019 19 August 2019 19 August 2019 yes

5.4. Pandemic Period

We applied the same methodology to the pandemic period from March 2020 to March
2021. We expected the traditional algorithms to detect more anomalous days due to the
change in routine of the dwellers and, nevertheless, in H1, the algorithms detected very
few days as anomalous compared to the previous results. This means that, at first, we
could assume that COVID-19 had a large impact on household electricity consumption,
but depended on the dwellers.

In H2, the opposite occurred. The LSTM model, for example, detected 48 anomalies
concentrated in the last months of 2020 and the beginning of 2021. If we look at the
consumption of H2 in Figure 2b, it is evident that it did not follow the same pattern as in
previous years.

In this year, in H1 and H2, the vacation period away from home was longer; therefore,
about 50% of the days were detected as anomalous by the entropy approach corresponding
to August and September. The same happened in the pre-COVID period in H1.

Another conclusion we obtained was that during the total lockdown, from the begin-
ning (March 15th) to mid-June, the entropy approach did not detect any day as anomalous
since all the days were similar—there was no difference in the pattern of behavior in the
days of the week. Of the 37 anomalies, only 3 days coincided with the total lockdown in
H1 and 2 days in H2.

Finally, if we look at Figure 8, we can observe an increase in entropy in the 2020 period,
corresponding to the pandemic, with respect to previous years. This increase is evident
and means that something strange happened during these months. This change indicates
that consumers changed their power consumption habits considerably.

5.5. Other Households

In this section, we analyze and discuss the results obtained in the remaining house-
holds, H3 through H8. In this case, we have not divided the consumption into two different
periods because we did not have enough data to make accurate predictions. We performed
this analysis separately for households H1 and H2. The monitored period started almost
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simultaneously in houses H3 to H8, a few months or days before the start of the pandemic;
for this reason, we decided to perform the training with 60% of the final data. Therefore,
the period concerning the total lockdown was part of the test period.

Table 9 shows the number of anomalous days that the entropy approach detects and
the percentage of these days, which is also detected by each other approach (RF, LSTM,
and ARIMA).

Table 9. Anomalous days of households.

H3 H4 H5 Heé H7 HS8
Number of
days 18 32 34 22 12 13
Entropy
RF 11% 66% 62% 0% 25% 15%
LSTM 11% 66% 53% 5% 58% 15%
ARIMA 11% 69% 47% 14% 33% 15%

Entropy detects a higher number of anomalies in households H4 and H5 because the
period monitored in both households was twice as long as in the remaining households. In
addition, in these households, the percentage of days detected by the entropy approach
and by another approach was higher—in all six cases, almost exceeding 50%.

In the case of households H3, H6, and HS, the percentage did not exceed 15%, which
means that the anomalies detected using the entropy were not detected by the other
approaches. It should be noted that RF in H6 did not detect any anomaly.

6. Conclusions

In this work, we use different approaches to detect anomalies in the electricity con-
sumption of a household: two machine learning methods, a statistical approach, and an
entropy-based approach. In the entropy approach, we consider the last weeks using a
sliding window to study the predictability of users. The different approaches have been
tested on a real dataset obtained from different households in the Madrid Region, with
different load profiles.

Although we analyzed in detail the results obtained in two households, the conclusions
extracted in the remaining households were similar. Furthermore, although we used
data from the Madrid Region, we consider that the conclusions can be extrapolated to
other regions.

To evaluate whether we have fulfilled the objectives, we answer the research questions
proposed in Section 1:

*  RQ-1: Does entropy detect anomalies in household electricity consumption?

As mentioned in the previous section, entropy is able to help detect anomalous periods
in the consumption of a household. We studied the behavior pattern of two households with
different power consumption patterns, and in both of them, it detected anomalous periods.
In H1, only three anomalies detected by the different techniques were not real anomalies.
The days detected just by the entropy-based approach correspond to the vacation period
and the next days. In H2, around 55% of the anomalous periods detected by the different
techniques are real anomalies. In both households, during the total lockdown, using
entropy, we did not detect any day as anomalous since all the days were similar, and there
was no difference in the pattern of behavior in the days of the week.

*  RQ-2: Do the other approaches detect the same anomalies as entropy?

The other approaches also detected anomalies, sometimes not exactly the same anoma-
lous days as entropy, but adjacent days. This means that something happened in household
consumption, such as a weekend trip. A supplier with many customers could detect
anomalous periods in household electricity consumption, regardless of the exact day. The
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percentages of days detected using entropy, which were also detected by each of the other
approaches, were as follows: in H1, the percentage for RF was 43%, 38% for LSTM, and 49%
for ARIMA. In H2, the percentages were similar: 30% (RF), 46% (LSTM), and 49% (ARIMA).

The advantage of the entropy-based approach was the absence of a training phase,
which implies that the algorithm is able to detect anomalous behavior from the beginning.
However, it starts to obtain good results from the last 6 weeks onward, depending on the
size of the window. Thanks to the window, the entropy adapts dynamically to changes in
the consumption pattern, although it has certain limitations.

One limitation of the entropy approach is the adaptation to changes when consumption
changes significantly during a long period of time. This is the case of long-term vacations
when consumption is practically 0; in such situations, entropy does not adapt immediately.
On the other hand, if this vacation period is repeated periodically, traditional algorithms
do not classify these periods as anomalous. Machine learning techniques detect and learn
behavioral patterns dependent on temporal information, such as time or day of the week,
but the entropy does not take into account the temporal frequency of consumption.

The entropy mechanism allows the detection of anomalies in electricity consumption.
The user can then study the cause of these anomalies. If there has been no change in their
pattern of behavior, the anomaly may be due to a failure of an appliance or a sudden change
in tariffs. The user can take advantage of this information to change her habits and thus
reduce her power consumption and, therefore, the associated costs.

As future work, it would be interesting to apply this methodology to more households
and to expand the number of approaches implemented. Another alternative would be
to create a synthetic dataset from this dataset. Future work should compare the results
with a hybrid method, which can be selected from [51,52] and from the literature review
performed in [28].

Author Contributions: Conceptualization, C.C. and C.G.-R.; methodology, C.C. and C.G.-R.; soft-
ware, M.M.-G.; validation, M.M.-G., C.C. and C.G.-R,; formal analysis, C.C. and C.G.-R ; investigation,
M.M.-G.; data curation, M.M.-G.; writing—original draft preparation, M.M.-G.; writing—review and
editing, M.M.-G., C.C. and C.G.-R;; visualization, M.M.-G.; funding acquisition, C.C. and C.G.-R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Spanish Government under the research project “Enhancing
Communication Protocols with Machine Learning while Protecting Sensitive Data (COMPROMISE)”
(PID2020-113795RB-C32 MCIN/AEI/10.13039/501100011033).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Spanish Government under the research project
“Enhancing Communication Protocols with Machine Learning while Protecting Sensitive Data (COM-
PROMISE)” (PID2020-113795RB-C32 MCIN/AEI/10.13039,/501100011033) and the project MAGOS
(TEC2017-84197-C4-1-R), and by the Comunidad de Madrid (Spain) under the projects: CYNAMON
(P2018/TCS-4566), co-financed by the European Structural Funds (ESF and FEDER), and the Multian-
nual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M21), in the
context of the V PRICIT (Regional Programme of Research and Technological Innovation).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Energies 2022, 15, 1837 19 of 21

Abbreviations

The following abbreviations are used in this manuscript:

ARIMA  Auto-Regressive Integrated Moving Average

CNN Convolutional Neural Network
DNN Deep Neural Network

DT Decision Tree

GRU Gated Recurrent Unit

LR Linear Regression

LST™M Long Short-Term Memory

MAPE Mean Absolute Percentage Error

MLP Multi-Layer Perceptron

MLR Multiple Linear Regression

NRMSE Normalized Root Mean Squared Error

RF Random Forest

RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RT Regression Tree

SVR Support Vector Regression
Wh Watt Hour
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