
Degree in Computer Science Engineering
2020-2021

Bachelor Thesis

“Classification of Noise Sources in LIGO Gravitational
Wave Observations using Deep Neural Networks and

Model Explainability Analysis”

Alfredo María Núñez Herrero

Miguel Ángel Patricio Guisado
Antonio Berlanga de Jesús

Madrid, Spain, February 15th 2021

This work is licensed under Creative Commons Attribution – Non Commercial –
Non Derivatives

SUMMARY

This document uses state of the art image classification techniques to automate the de-
tection of noise sources in gravitational wave observations from the Laser Interferometer
Gravitational-Wave Observatory (LIGO). Additionally, it analyzes the resulting model us-
ing post-hoc local interpretation methodologies with the intent of defining possible paths
of improvement.

Keywords: XAI, explainable AI, deep learning, deep neural networks, LIGO, astron-
omy, gravitational waves, saliency maps and post-hoc local interpretation.

iii

DEDICATION

This project is dedicated to all the fantastic Computer Science Engineering professors
at the Universidad Carlos III de Madrid, specially to both my mentors Antonio Berlanga
de Jesús and Miguel Ángel Patricio Guisado. To my professional mentors Dr. Blerina
Gkotse, David Tow, Dr. Federico Ravotti, Michael Ritchson and Dr. Raheem Beyah.
Lastly, to my friends and family who have been an endless source of support while pur-
suing my degree, specially Daniel Sarmiento, Luis Muñoz del Pozo, María Nieto Petinal
and Nicolás Salomone Pérez the fearless and adventurous companions I met as a first year
student in 2013. Thank you for all your help.

v

CONTENTS

1. INTRODUCTION. 1

1.1. Contextualization. 1

1.2. Objectives. 2

1.3. Legal Framework. 2

1.3.1. Software. 2

1.3.2. Intellectual Property . 3

1.3.3. Data Privacy . 3

1.4. Socio-Economic Environment . 3

1.5. State of the Art . 4

1.5.1. Previous Work . 4

1.5.2. Methodologies . 4

1.6. Document Structure . 8

2. RESEARCH AND DEVELOPMENT. 9

2.1. Data . 9

2.2. Classification . 11

2.3. Post-hoc local interpretation. 15

3. RESULTS . 18

3.1. Classification . 18

3.2. Explainability Analysis . 20

3.2.1. Visualizations. 20

3.2.2. Analysis . 27

4. CONCLUSIONS AND FUTURE WORK . 33

4.1. Conclusions. 33

4.2. Future work . 34

5. BIBLIOGRAPHY . 35

vii

LIST OF FIGURES

1.1 Gravity Spy Architecture. Taken from [4]. 1

1.2 Illustration of Hubel and Wiesel’s experiment. Taken from [15]. 5

1.3 Example of LeNet-5 in action. Taken from [18] 5

1.4 Best error rates and neural network types for ILSVRC competition. Taken
from [20]. 6

1.5 Vanilla saliency. Taken from [24]. 7

1.6 Grad-CAM used in images containing multiple classes. Taken from [26]. 7

1.7 Comparison between SmoothGrad and Vanilla saliency. Taken from [27]. 8

2.1 Sample images for each class in the dataset. 9

2.2 Comparison between image from original dataset and image used for
model development. 10

2.3 Example of gravitational wave observation in different time spans. 11

2.4 Typical structure of convolutional neural network. Taken from [28]. . . . 11

2.5 Simplified example of convolutional filter operation. Taken from [29]. . . 12

2.6 Simplified example of pooling operations. Taken from [30]. 12

2.7 Train and validation accuracy for iterations 5 and 7 of Table 2.2. 14

2.8 Train and validation loss for iterations 5 and 7 of Table 2.2. 14

2.9 CAM architecture. Taken from [31]. 16

2.10 Grad-CAM architecture. Taken from [26]. 17

3.1 Model_0 accuracy and loss per epoch. 18

3.2 Model_1 accuracy and loss per epoch. 18

3.3 Model_2 accuracy and loss per epoch. 19

3.4 Visualizations of incorrect predictions for class Repeating_Blips and Model_0.
Predicted class is Blip. 20

3.5 Visualizations of incorrect predictions for class Low_Frequency_Burst
and Model_0. Predicted class is Low_Frequency_Lines. 21

3.6 Visualizations of incorrect predictions for class Low_Frequency_Lines
and Model_0. Predicted class is Low_Frequency_Burst. 21

ix

3.7 Visualizations of correct predictions for class Power_Line and Model_0. . 22

3.8 Visualizations of correct predictions for class Scratchy and Model_0. . . . 22

3.9 Visualizations of incorrect predictions for class Repeating_Blips and Model_1.
Predicted class is Blip. 23

3.10 Visualizations of incorrect predictions for class Low_Frequency_Lines
and Model_1. Predicted class is Low_Frequency_Burst. 23

3.11 Visualizations of correct predictions for class Power_Line and Model_1. . 24

3.12 Visualizations of correct predictions for class Scratchy and Model_1. . . . 24

3.13 Visualizations of incorrect predictions for class Low_Frequency_Burst
and Model_2. Predicted class is Low_Frequency_Lines. 25

3.14 Visualizations of incorrect predictions for class No_Glitch and Model_2.
Predicted class is Low_Frequency_Lines. 25

3.15 Visualizations of correct predictions for class Power_Line and Model_2. . 26

3.16 Visualizations of correct predictions for class Scratchy and Model_2. . . . 26

3.17 Comparison between instances of Low_Frequency_Burst and Low_Frequency_Lines. 28

3.18 Example of model focusing on background information. SmoothGrad
and Grad-CAM visualizations for pl_1 in Model_0 and Model_1. 29

3.19 Example of Smoothgrad visualization displaying high gradients in re-
gions similar to Blip class for No_Glitch instance. Model_2. Blip in-
stance (left), No_Glitch instance (middle), SmoothGrad visualization (right). 30

3.20 Scratchy weak vs strong signal and Grad-CAM visualizations for Model_0. 31

5.1 Model_0 architecture. .

5.2 Model_1 architecture. .

5.3 Model_2 architecture. .

x

LIST OF TABLES

2.1 Average class set proportions. 10

2.2 Most relevant model iterations. 13

2.3 Post-hoc local methods used in analysis. 15

3.1 Class pairs with highest number of errors per model. 27

3.2 Class names and accuracies of top performing classes selected for analy-
sis per model. 27

5.1 Dataset images per class per set. .

5.2 Dataset test, train and validation proportions per set (%).

5.3 Dataset test, train and validation proportions per class (%).

5.4 Model_0 accuracies per class. .

5.5 Model_1 accuracies per class. .

5.6 Model_2 accuracies per class. .

5.7 Overall costs .

5.8 Hardware costs .

5.9 Software costs .

5.10 Human resources costs .

xii

1. INTRODUCTION

1.1. Contextualization

In 2015, the Laser Interferometer Gavitational-Wave Observatory (LIGO) physically sensed
the undulations in space time caused by gravitational waves generated by two merg-
ing black holes 1.3 billion light-years away. A physical measurement to one of Albert
Eintein’s general theory of relativity predictions. One of humanity’s greatest scientific
achievements [1].

In order to make such an accomplishment, scientists needed an incredibly sensitive
system. The processes that generate gravitational waves can be extremely violent and
destructive, but by the time waves reach Earth, they are thousands of billions of times
smaller. As an example, the amount of space-time wobbling generated by the first grav-
itational waves detected at LIGO, was 1000 times smaller than the nucleus of an atom
[2].

With such a sensitive system, noise can easily be confused with gravitational-wave
signals. In order to be able to make valuable observations, it is important to identify and
differentiate noise sources. One of the best ways to do so is still the human eye. Therefore,
a citizen science project called Gravity Spy was started to help in this task. In the project,
citizens have the opportunity to learn to characterize and classify potentially new sources
of noise in the LIGO system [3].

The classifications made by citizens, are later processed and used to train a machine
learning algorithm integrated as part of the LIGO system [4] as shown in Figure 1.1.

Fig. 1.1. Gravity Spy Architecture. Taken from [4].

1

1.2. Objectives

The objectives of this project are two: First, develop a machine learning algorithm capable
of correctly classifying known types of noise sources in gravitational-wave signal obser-
vations. Second, to analyze the prediction capabilities of the model using post-hoc local
interpretation methods and define possible paths of improvement for the deep learning
black box model.

1.3. Legal Framework

The legal framework for this project includes software tools, data privacy, intellectual
property and legal implications of the implementation of the project.

1.3.1. Software

The software tools and platforms used in the development of the project are listed below:

• Google Cloud Platform: a suite of cloud computing services, operated by Google
LLC, that runs on the same infrastructure that Google uses internally for its end-user
products.

• Kaggle Kernels: a cloud-based workbench for data science and machine learning.
Operated by Kaggle, a subsidiary of Google LLC.

• TensorFlow: a free and open-source software library for machine learning devel-
oped by the Google Brain Team. Released under the Apache License 2.0.

• Keras: an open-source software library that provides a Python interface for artificial
neural networks. Initially developed by François Chollet and now maintained by the
open-source project contributors. Released under the MIT license.

• Tf-keras-vis: an open-source software library in Python used to visualize mdoels
developed using TensorFlow and Keras. Initially developed by Yasuhiro Kubota
and now maintained by the open-source project contributors. Released under the
MIT license.

• Python: an interpreted high-level general-purpose programming language. De-
signed by Guido van Rossum and developed and maintained by the Python Soft-
ware Foundation. Released under the Python Software Foundation License.

All the software tools used are appropriate for non-commercial research use and there-
fore for this project.

2

1.3.2. Intellectual Property

The intellectual property of this project belongs to the author, since it has been developed
individually without using information belonging to a private entity and without the inter-
vention of a public or private entity. Anyhow, it is encouraged to replicate and modify the
work of this project for non-commercial applications with the appropriate recognition to
the author.

1.3.3. Data Privacy

The dataset used in this project was made public in November 2018 [5] in the platform
Zenondo under the Creative Commons Attribution 4.0 International license.

1.4. Socio-Economic Environment

The immediate application of the techniques presented in this document, is to improve
the architecture of the Gravity Spy project as previously shown in Figure 1.1. The use of
post-hoc local methods could help them find why their image recognition model is under
performing an use the information in future development iterations.

Besides astrophysics research, the techniques used in this project can be applied in
multiple other areas. One of the areas is the judiciary system. As an example, in the
U.S., black-box algorithms are used in the judiciary system to evaluate the like hood of
recidivism. An example of this kind of systems is COMPAS [6]. These systems aim to
help judges evaluate cases. Post-hoc methods could help explaining the outputs produced
by the algorithm, increasing the trustworthiness and acceptance by the general public.

Another application is automated transportation systems. A clear example is au-
tonomous driving. Image recognition is an essential task for autonomous vehicles. The
methods used in this project could help assure correct decisions are being taken by the
vehicle.

Medical imaging is another area where interpretability methods are greatly valued.
Image processing and analysis are involved in diagnostic processes. The impact of algo-
rithm outputs in this area is inherently high, and the use of interpretability methods can
help lower the risk of performing an incorrect diagnosis.

Form the ethical point of view, Deep Neural Networks are being increasingly used
across all sectors in industry. Their use is automating processes and increasing organi-
zation’s efficiencies. As a consequence, deep neural networks are involved in decision-
making processes of progressively increasing risk. Their obscure logic and our incapacity
of examining their rationale, is increasing the public’s concern. This sentiment of distrust
is currently reflected in regulations such as the GDPR. The GDPR’s Article 15, requires
"meaningful information about the logic involved" in automated decision-making [7].

3

This means any organization using automated systems to make decisions, needs to also
provide a method capable of providing meaningful information about the logic involved
in making the decision, making interpretability necessary.

Overall interpretation methods can play a key role in the development of trustworthy
automated systems for high-stake applications.

1.5. State of the Art

1.5.1. Previous Work

The first objective of the project, classification of gravitational wave noise sources using
machine learning, has previously been attempted before using various machine learning
methodologies [8] [9] [10] [11] [12] [13]. As part of the first objective, the machine learn-
ing algorithm developed should have a competitive accuracy compared to latest attempts
in literature. But for the second objective, using visualization techniques to understand
the outputs of the model, no previous related work has been found applied to gravita-
tional waves. Therefore, in this case, no comparisons will be available to evaluate the
methodology presented in this project.

1.5.2. Methodologies

For the first objective, convolutional neural networks have been chosen to solve the image
recognition problem. For the second objective, Vanilla Saliency, SmoothGrad and Grad-
CAM have been chosen to carry the explainability analysis.

In order to explain the reasoning behind the selection of methodologies for this project,
it is necessary to give a contextual background of the problems attempted: image recog-
nition and post-hoc local interpretation.

Image Recognition Contextual Background

In 1959, David Hubel and Torsten Wiesel published a paper [14] which would set the
foundations of image recognition algorithms. In their publication, they demonstrated the
existance of simple and complex neurons in the primary visual cortex of a cat’s brain.
They also showed how visual processing begins with the recognition of simple structures
such as edges.

4

Fig. 1.2. Illustration of Hubel and Wiesel’s experiment. Taken
from [15].

Their work inspired future scientists to develop some of the first computer vision and
deep learning algorithms making use of convolutional filters, such as Neocognitron [16]
in 1980 and LeNet-5 [17] in 1989.

Fig. 1.3. Example of LeNet-5 in action. Taken
from [18]

In the following years, scientists attempted harder problems such as object and face
recognition with promising results. As the popularity of these problems grew, a way to
compare the performance of different computer vision techniques became necessary, and
a benchmark image dataset was developed to provide the same source of information for
different image recognition techniques.

In 2005 the PASCAL VOC challenge offered a dataset containing approximately
20,000 images and 20 object classes. Annual competitions were scheduled to study which
where the best performing techniques. Following the footsteps of the PASCAL VOC chal-

5

lenge, in 2010 the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [19]
was established. The ILSVRC contained over a million images of 1000 different classes.

Fig. 1.4. Best error rates and neural network types for ILSVRC
competitions. Taken from [20].

In 2012 convolutional neural networks became the image classification technique of
choice after a team from the University of Toronto achieved an error rate of 16% at
ILSVRC, a drastic improvement compared to the rest of competitors. The next best com-
petitor’s error rate was of 26% [21]. After 2012, error rates were reduced to a few percent
and ILSVRC winners have always been convolutional neural networks as shown in Figure
1.4.

Post-hoc local interpretation using pixel attribution

In the last decade, deep neural networks have revolutionized the world of business and
technology. With the expansion of deep learning, one of the greatest challenges has been
to address the problem of interpretability. High-risk environments require proper under-
standing about how decisions are made by opaque deep neural networks. With the intent
to help address this problem, scientist have developed multiple techniques.

Interpretability techniques can be distinguished in two main categories: model-based
and post-hoc. Within post-hoc techniques, most of them can be categorized into prediction-
level and dataset-level interpretations, which can be referred to as local and global in-
terpretations respectively [22]. This document focuses on local interpretation methods,
specifically pixel attribution methods for convolutional neural networks.

In 2013, two publications presented the use of gradient-based pixel attribution meth-
ods in convolutional neural networks [23] [24]. As stated in [24], they presented "a novel
way to visualize the activity within the model. This reveals the features to be far from
random, uninterpretable patterns. Rather, they show many intuitively desirable proper-
ties such as compositionality, increasing invariance and class discrimination as we ascend
the layers." Also, the authors showed how the visualizations can "be used to debug prob-

6

lems with the model to obtain better results, for example improving on Krizhevsky et al.
(Krizhevskyet al., 2012) impressive ImageNet 2012 result.". Seeing what visualization
methods could do to extract information about the inner structure of convolutional neu-
ral networks, scientists started to build on top of the work published by M.D. Zeiler, R.
Fergus, K. Simonyan, A. Vedaldi and A. Zisserman.

Fig. 1.5. Vanilla saliency. Taken from [24].

In 2014, a publication by Springenberg et. al [25] presented an improved back-
propagation method "GuidedBackprop" for gradient-based pixel attribution methods like
Vanilla Saliency [24]. It avoided the propagation of negative gradients, reducing the noise
in the resulting map.

In 2016, a publication by Selvaraju et. al from the Georgia Institute of Technology
[26] presented a new visualization method called Gradient-weighted Class Activation
Mapping (Grad-CAM). The method solved multiple important problems previous visu-
alization methods were having. First, the method solved problems faced by the use of
backpropagation in gradient-based methods like Vanilla Saliency. By using the activation
map of the last convolutional layer, it didn’t have to propagate gradients all the way to
the input layer. Second, as a consequence of the first point, the method can be used for
any convolutional neural network model. As mentioned in the paper "In this work, we
proposed a novel class-discriminative localization technique for making any CNN-based
model more transparent by producing visual explanations.". Third, it performed well with
images containing multiple classes as shown in Figure 1.6.

Fig. 1.6. Grad-CAM used in images
containing multiple classes. Taken

from [26].

7

In 2017, a publication by Smilkov et. al [27] showed it is possible to compute sharper
saliency maps in two ways. From the paper "First, averaging maps made from many small
perturbations of a given image seems to have a significant smoothing effect. Second, that
effect can be enhanced further by training on data that has been perturbed with random
noise". By adding noise to the data, the method improves the resulting map at a higher
computational cost.

Fig. 1.7. Comparison between SmoothGrad and
Vanilla saliency. Taken from [27].

Multiple additional methods were developed in following years, but this project is
focusing on the methods mentioned previously, Vanilla Saliency, SmoothGrad and Grad-
CAM. The methods have been chosen due to their extensive popularity and reasonable
computational cost.

1.6. Document Structure

This document is structured in four main areas: introduction, research and development,
results and conclusions and future work. First, the introduction provides all the contex-
tual information necessary to understand in detail the project. Second, the research and
development explains the journey from the beginning of the project until the final results.
It is divided in two areas, model development and explainability analysis. Third, the re-
sults show which are the models chosen for analysis and their performance, as well as the
results of using post-hoc pixel attribution methods to analyze the models. Finally, the last
section summarizes the main lessons learned in the project and also sets possible paths to
continue and improve this project.

8

2. RESEARCH AND DEVELOPMENT

2.1. Data

Fig. 2.1. Sample images for each class in the dataset.

9

The original dataset was published in Zenodo [5] at the same time as the publication by
Zevin et. al [4] which presented for the first time the Gravity Spy project.

TABLE 2.1. AVERAGE CLASS SET PROPORTIONS.

Set Name Average size
Train 14.69
Test 70.21
Validation 15.09

Table 5.1 shows the total number of images is 7966 across 22 different classes. The
proportion images per set and class are displayed in 5.2 5.3. Table 5.2 shoes the difference
between class image proportions in the dataset. The difference is considerable, with a
minimum of 0.53% of total images for the Wandering_Line class and a maximum of
22.86% of images for the Blip class. This disproportion is expected to be reflected in the
model’s performance.

Table 2.1 contains information about set proportions. Train, test and validation sets
are balanced across the whole dataset and also individually in each class. Table 2.1 shows
the average proportions for all classes is approximately 15% for test and validation sets
and 70% for the train set.

The images from the original dataset have been modified to be used in the model
development. Original images include three dimensional information. Figure 2.2 shows
differences between an original image and the images used to train the model. The title,
axis and legend are removed from the image.

Fig. 2.2. Comparison between image from original dataset and image
used for model development.

The dataset contains four versions of gravitational wave observations. The versions
differ only in the observation time from 0.5 to 4 seconds. Figure 2.3 shows an example of
each of the four versions for the same gravitational wave observation. An example of im-
age name is "L1_TbHPjqgaIB_spectrogram_4.0.png". The observation time is included
as part of the name.

10

Fig. 2.3. Example of gravitational wave observation in different time spans.

2.2. Classification

As mentioned previously, convolutional neural networks are the type of Artificial Neural
Network chosen to carry the classification task. Image classification can be performed
with traditional neural networks, but the computational costs are usually extremely high.
convolutional neural networks change this, by offering a significantly more computation-
ally friendly alternative. Convolutional neural networks are more efficient than traditional
neural networks (e.g. Multilayer Perceptron) in image classification tasks, because im-
age’s pixels aren’t directly connected to dense layers, but first undergo a processing stage.
The processing stage is part of the convolutional neural network and it is usually com-
posed by two types of layers, the convolutional and pooling layers.

Fig. 2.4. Typical structure of convolutional neural network. Taken from [28].

Figure 2.4 shows a typical structure for a convolutional neural network. The convo-
lutional layers, by applying matrix operations to pixels, reduce the number of inputs later
used in dense layers. The pooling layers also reduce the information pushed forward, by
calculating a single value from the output returned by convolutional filters. Together, they
reduce the number of inputs for dense layers, which are finally trained to perform the
classification task.

11

Fig. 2.5. Simplified example of convolutional filter operation. Taken from
[29].

Figure 2.5 shows a simplified example of how convolutional filters slide across the
image and return feature maps. The calculation performed is represented in the following
equation.

ActivationMap = Input ∗ Filter =
columns∑︂

y=0

rows∑︂
x=0

Inputx−p,y−q ∗ Filterx,y (2.1)

After the convolutional layer comes the pooling layer. Figure 2.6 shows an example
of the two most common operation performed in the pooling layer. The concept is similar,
the operation is performed across the matrix producing a smaller matrix in dimension.

Fig. 2.6. Simplified example of
pooling operations. Taken

from [30]

Finally, after a variable number of convolution and pooling layers, the result is flat-
tened into a one dimensional array, which is fed into the fully connected layers as de-
scribed in Figure 2.4.

Now having gone over the characteristic details of convolutional neural networks’
structure, the focus will shift towards the development of the model for this project.

Initially, at the beginning of the iterative process, the model was designed without fol-
lowing any concrete guidelines besides the structure mentioned above. Parameters such
as the number of convolutional and pooling layers, padding methods, the number of fil-
ters per layer, the stride of kernels, activation functions and the pooling operations were
undefined. Some of the parameters, like the stride of kernels, activation functions and

12

padding methods, have remained constant during the iterative development of the project.
First, strides were set to 1 for convolutional kernels and 2 for pooling kernels in the three
dimensions (height, width and channels) for all layers. Second, pooling kernel sizes are
set to 2 for all dimensions. Third, the padding strategy is set to zero padding. Fourth,
ReLU activation functions are used in convolution and dense layers to not propagate neg-
ative values. Fifth and last, at the end of the network, two fully connected layers. The first
one followed by a ReLU activation function and the second one followed by a softmax
activation function for normalization.

With these base parameters defined and constant, the iterative process started with
the variables number of convolutional and pooling layers, number of convolution kernels
per layer, and convolutional kernel sizes per layer. Table 2.2 shows the most relevant
iterations of the process.

TABLE 2.2. MOST RELEVANT MODEL ITERATIONS.

iter_numa num_c_p_layb num_conv_kc conv_k_sized t_acce

1 2 (5,10) (20,20) 0.2314
2 2 (25,50) (20,20) 0.2314
3 2 (25,50) (20,40) 0.2314
4 3 (25,50,100) (20,20,20) 0.2314
5 3 (25,50,100) (20,30,40) 0.2314
6 3 (25,50,100) (21,31,41) 0.8964
7 3 (25,50,100) (9,15,21) 0.9117
8 3 (5,5,5) (3,3,3) 0.8970
9 2 (5,5) (3,3) 0.9201

10 1 (5) (3) 0.9242
a Iteration number.
b Number of convolution and pooling layers.
c Number of convolution kernels per layer. Displayed inside parenthesis in order.
d Convolution kernel sizes. Displayed inside parenthesis in order. Same size for

both dimensions.
e Test accuracy.

Initially, as shown in Table 2.2, the network was composed of two convolutional and
pooling layers, with a convolutional kernel for both of 20x20. The number of filters
doubled from 5 to 10 between layers. The accuracy of the model was low but above a
random response. Being 22 classes, a random model should have an accuracy of 4.55%,
and the model achieved an accuracy of 23.14%, which is 5 times higher. Therefore, the
model was learning to discriminate between classes.

In an attempt to improve the model, future iterations tried increasing the complexity
of the model by progressively increasing the number of filters per layer, the size of con-
volutional kernels and the number of layers. Curiously, for these attempts, not only did

13

the test accuracy not increase, but it also remained constant. It is still unclear the reason
behind achieving exactly the same accuracy using different models.

The turning point during development, came when using odd sizes for convolutional
filters. Note the similarity between iteration number 5 and 6. Slightly modifying the sizes
of convolutional kernels resulted in an increase of 66 percentage points. For comparison,
Figure 2.2 and 2.2 show the accuracy and loss per epoch for iterations 5 and 7 of Table
2.2.

The use of even kernel sizes in convolutional layers is not recommended, because it
goes against the purpose of convolutions. Convolutions are supposed to extract informa-
tion from a source pixel and its neighbours. Therefore, the size of the kernel must be odd
to maintain a symmetrical number of pixels in each direction from the source pixel. This
was the cause of the model’s poor performance.

Fig. 2.7. Train and validation accuracy for iterations 5 and 7 of Table 2.2.

Fig. 2.8. Train and validation loss for iterations 5 and 7 of Table 2.2.

From there on, further modifications increasing the complexity of the model didn’t
produce significant performance improvements. But it was possible to improve in the
opposite direction. Reducing the pattern complexity recognizable by the model. Using
smaller convolutional kernels and less layers proved to be more effective.

This makes sense, since the geometric complexity of gravitational wave observations
isn’t great, and as a result, smaller geometric patterns recognized in shallow layers of
the network, play a greater role in this classification problem than higher complex patters
learnt in deeper layers. Overall this classification problem is easier than the typical (e.g.
facial recognition). It lacks factors which other more complicated problems have. Factors

14

like highly complex geometrical elements (e.g. human faces), perspective, lighting, poor
image quality, similar backgrounds, etc.

2.3. Post-hoc local interpretation

Once the classification model was developed, the development of the model explainabil-
ity analysis comes next. Due to the nature of convolutional neural networks, the use of
model-based methods isn’t possible. Therefore, the focus is on post-hoc methods, specif-
ically pixel attribution methods. They can be categorized as: model agnostic and non
model agnostic methods. Model agnostic methods are methods applicable to any model
independently their structure, and non model agnostic methods are only applicable to
models with a specific structure. The methods used in this project are non-model agnos-
tic, and are displayed in Table 2.3.

TABLE 2.3. POST-HOC LOCAL METHODS USED IN ANALYSIS.

Name Type
Vanilla Saliency Gradient-based saliency map
SmoothGrad Gradient-based saliency map
Grad-CAM Class activation map

The idea is to visualize saliency maps using the methods shown in Table 2.3 for some
of the classes with the lowest and highest error rates. Their comparison should give some
insight on how well is the model performing, and help define ways to improve it. A
detailed explanation on how the methods work is provided below.

First, Vanilla saliency. It is one of the first and most simple methods. The method,
developed by Simonyan et. al [23], makes use of vanilla backpropagation, which is nor-
mally used for adjusting network weights by calculating the gradients of the loss function
w.r.t to weights. In Vanilla Saliency is different, the gradient of the output class w.r.t.
input pixels is calculated. In other words, the rate in which pixels change the probability
of the output class.

The mathematical expressions below show how vanilla backpropagation propagates
gradients through Rectified Linear Units (ReLus). Equation 2.2 is the forward pass
through a ReLU function. It turns all negative value to zeros. Equation 2.3 is the back-
ward pass in vanilla backpropagation. It takes into account the values previously passed
forward, and the places zeros where negative values used to be in the forward pass.

f l+1
i = relu(f l

i) = max(f l
i , 0) (2.2)

Rl
i = (f l

i > 0) · Rl+1
i ,where Rl+1

i =
∂ f out

∂ f l+1
i

(2.3)

15

Using Equation 2.3, Vanilla Saliency propagates the gradients of the classification
score all the way to the input features.

Second, SmoothGrad. It is a method of reducing noise in saliency map calculations,
by averaging out multiple saliency calculations of the same image with slight random
changes in pixel values. The averaged result of the individual saliency calculations, pro-
duces a visualization which highlights better the most influential pixels of the input image.
Since the operation is an average of multiple saliency maps, the calculation is the same as
vanilla saliency.

Third, Grad-CAM. To understand how Grad-CAM works, first a previously proposed
method by Zhou et. al [31] called CAM needs to be explained. Grad-CAM is a general-
ization of CAM.

Fig. 2.9. CAM architecture. Taken from [31].

The paper authors first explain how convolutional layers have a remarkable ability to
localize objects, and how that precious information is lost when the last convolutional
layer is flattened and connected to a fully connected layer. In order to take advantage
of this localization information for visualization purposes, the authors use a modified
network architecture as shown in Figure 2.9. This architecture, instead of connecting the
last convolutional layer into a fully connected layer, it performs Global Average Pooling
(GAP) and afterwards a simple linear weighted operation. As Equation 2.4 shows, GAP
is the average of all the values in a feature map.

Once the weights of the last fully connected layer are trained, they represent the in-
fluence of each feature map in the classification. Lastly, the values in feature maps are
multiplied by the trained weights as shown Equation 2.6, producing a heatmap maintain-
ing the localization information stored in feature maps. Equation 2.5 shows the network’s
score function, which is the same as the one used to calculate the heat map in Equation
2.6.

Fk =
∑︂
x,y

fk(x, y) (2.4)

16

S c =
∑︂

k

wc
kFk =

∑︂
x,y

∑︂
k

wc
k fk(x, y) (2.5)

Mc(x, y) =
∑︂

k

wc
k fk(x, y) (2.6)

One of the drawbacks of CAM is the use of a different architecture, which is less accu-
rate than standard convolutional neural network architectures. Grad-CAM was designed
to fix this problem. The proposed method by Selvaraju et. al [26] is a generalization of
CAM to any convolutional neural network architecture. The authors realized the infor-
mation contained in the weights of the final layer in CAM is equivalent to the gradients
of the output class w.r.t the last feature map weights, which can be calculated using back-
propagation. The Grad-CAM architecture is as shown in Figure 2.9.

Fig. 2.10. Grad-CAM architecture. Taken from [26].

To calculate a saliency map with Grad-CAM, firstly the class activations before the
softmax function have to be set to zero besides the target class. Secodly, the gradients of
the class w.r.t the target rectified feature maps have to be calculated. It doesn’t necessarily
have to be the last convolutional layer. Thirdly, the gradients are global average pooled
to obtain weights as shown in Equation 2.7. Lastly, the weighted combination of feature
maps is calculated and passed through a ReLU to only display the positive contributions
as shown in Equation 2.8.

αc
k =

1
Z

∑︂
i

∑︂
j

∂yc

∂Ak
i j

(2.7)

Lc
Grad−CAM = ReLU(

∑︂
k

αc
kAk) (2.8)

Altogether, the methods explained in this section will help analyze the positive and
negative classifications in the network using the Gravity Spy dataset and identify points
of improvement.

17

3. RESULTS

3.1. Classification

As seen in Table 2.2 the best performing model is the model with a single layer, three
filters of size 5x5. The complete structure of the model is shown in Figure 5.1. Although
this is the best performing model, the explainability analysis will be run with three dif-
ferent models Model_0, Model_1 and Model_2 to study how model depth affects visual-
izations. Therefore this section will explain the results for the three models. The models
correspond to the iterations 8, 9 and 10 shown in Table 2.2.

Figures 3.1 3.2 and 3.3 show the weight optimization process during training. All the
models converge successfully and the validation and test accuracies remain considerably
similar, which is a sign the model is not overfitting.

Initially the training epochs were set to 20, to allow sufficient time for models to
reach their maximum accuracies and even overfit. After using odd size convolutional
filters, models were converging faster than previous iterations and the training epochs
were reduced to the half. Reducing the training epochs avoided overfitting.

Note the use of dropout layers is common to regulate the network and prevent overfit-
ting, but in this case limiting the number of training epochs was sufficient. Also, since the
use of dropout layers didn’t affect the performance of the model significantly, in the end
they weren’t included.

Fig. 3.1. Model_0 accuracy and loss per epoch.

Fig. 3.2. Model_1 accuracy and loss per epoch.

18

Fig. 3.3. Model_2 accuracy and loss per epoch.

Regarding image classes, Tables 5.4, 5.5 and 5.6 show the accuracy of the model per
class. Some of the worst predicted classes for the best performing model, Model_0, are
the class Paired_Doves and Wandering_Line with an accuracy of 13% and 39% respec-
tively. Also, Table 5.1 shows how the classes Wandering_Line and Paired_Doves have the
least number of records in the dataset. Together they only sum 69 records, which is less
than the number of records of 90% of the remaining classes in the database and 0.086%
of the overall records in the dataset. There is small margin for improvement if the model
doesn’t have enough images to train.

Looking in the opposite direction, we find classes such as Blip and Koi_Fish. To-
gether they contain more than 30% of all the dataset records. Curiously they don’t hold
the highest positions regarding accuracy. Table 5.4 show us they are in 6th and 5th po-
sition, which is the same as their average position across all three models. Contrarily to
the Wandering_Line and Paired_Doves classes, due to the high number of images, the
accuracies of Blip and Koi_Fish could be improved by processing the data. Processing
the data might make the task easier for the models and improve their accuracies, but it
doesn’t necessarily mean it will improve its performance in a real case scenario.

Regarding the architecture of the model, using a smaller number of layers has proved
to be more effective than deeper networks. As previously mentioned, not having to deal
with factors like perspective, complex patterns, similar backgrounds and lighting varia-
tions in this problem probably allows the model to discriminate between classes using
simple patterns, which can be learned in early convolutional layers.

Note although the best performing model only has one convolutional and pooling
layer, it doesn’t less computationally costly. Comparing Figures 5.1, 5.2 and 5.3 the
number of parameter in Model_0 is more than 4 times larger than Model_1 and more than
18 times larger than Model_2. Performing less convolutions, requires a higher number of
inputs in the fully connected layer. Therefore, if computational costs are included in the
performance measure, Model_1 would be a better performing model than Model_0.

Overall the development of the convolutional neural network has been a success. The
most accurate model has a testing accuracy of 92.42%, which is 88 percentage points
more accurate than random selection for 22 classes.

19

3.2. Explainability Analysis

3.2.1. Visualizations

Model_0

Fig. 3.4. Visualizations of incorrect predictions for class Repeating_Blips and Model_0.
Predicted class is Blip.

20

Fig. 3.5. Visualizations of incorrect predictions for class Low_Frequency_Burst and
Model_0. Predicted class is Low_Frequency_Lines.

Fig. 3.6. Visualizations of incorrect predictions for class Low_Frequency_Lines and
Model_0. Predicted class is Low_Frequency_Burst.

21

Fig. 3.7. Visualizations of correct predictions for class
Power_Line and Model_0.

Fig. 3.8. Visualizations of correct predictions for class
Scratchy and Model_0.

22

Model_1

Fig. 3.9. Visualizations of incorrect predictions for class Repeating_Blips and Model_1.
Predicted class is Blip.

Fig. 3.10. Visualizations of incorrect predictions for class Low_Frequency_Lines and
Model_1. Predicted class is Low_Frequency_Burst.

23

Fig. 3.11. Visualizations of correct predictions for class
Power_Line and Model_1.

Fig. 3.12. Visualizations of correct predictions for class
Scratchy and Model_1.

24

Model_2

Fig. 3.13. Visualizations of incorrect predictions for class Low_Frequency_Burst and
Model_2. Predicted class is Low_Frequency_Lines.

Fig. 3.14. Visualizations of incorrect predictions for class No_Glitch and Model_2.
Predicted class is Low_Frequency_Lines.

25

Fig. 3.15. Visualizations of correct predictions for class
Power_Line and Model_2.

Fig. 3.16. Visualizations of correct predictions for class
Scratchy and Model_2.

26

3.2.2. Analysis

As mentioned before, this section is going to analyze three convolutional neural networks
with a similar structure but different depth. The reason behind this decision, is deeper
structures should be able to recognize patterns of higher complexity and might produce
different visualizations.

For each of the models, some of the top most confused classes will be analyzed using
pixel attribution methods. Table 3.1 shows a summary of the target classes for each of the
models. For each of the models and confused classes, five images are selected where the
model made the same mistake. The analysis will start with the incorrect cases for each
model and afterwards continue with the correct cases for all models.

TABLE 3.1. CLASS PAIRS WITH HIGHEST NUMBER OF ERRORS
PER MODEL.

Model Name Truth Prediction Frequency
Model_0 Repeating_Blips Blip 35
Model_0 Low_Frequency_Burst Low_Frequency_Lines 18
Model_1 Repeating_Blips Blip 31
Model_1 Low_Frequency_Lines Low_Frequency_Burst 23
Model_2 No_Glitch Low_Frequency_Lines 47
Model_2 Low_Frequency_Burst Low_Frequency_Lines 29

For the best performing models, the errors seem to be consistent between the classes
Repeating_Blips and Blips and Low_Frequency_Lines and Low_Frequency_Burst. The
latter seems to be a bidirectional relation, with the model confusing the classes inter-
changeably.

For the opposite scenario, the best performing classes, the selection has been the same
for the three models for consistency and to appreciate differences regarding network depth
and pattern recognition complexity. As shown in Table 3.2, the accuracy for the selected
classes remains high across models, which makes them proper candidates for analysis.

TABLE 3.2. CLASS NAMES AND ACCURACIES OF TOP
PERFORMING CLASSES SELECTED FOR ANALYSIS PER

MODEL.

Model Name Class Name Accuracy
Model_0 Power_Line 1
Model_0 Scratchy 1
Model_1 Power_Line 1
Model_1 Scratchy 0.98
Model_2 Power_Line 1
Model_2 Scratchy 0.93

27

Notice how the classes with the highest amount of errors are very similar between
Model_0 and Model_1. This similarity should be useful during analysis when making
comparisons.

Figures 3.4 to 3.16 contain five rows and four columns or five rows and seven columns
depending on the type of image. Each row contains visualizations for a single image. For
the incorrectly predicted images, visualizations are calculated for both the correct and
incorrectly predicted classes. Contrarily, for the correctly predicted images the visualiza-
tions are calculated for only one class. The prediction errors are the ones shown in Table
3.2.

Figure 3.4 shows visualizations calculated for Repeating_Blips class images incor-
rectly predicted as Blip. Without looking at the visualizations, it is easy to suspect which
could be the reason behind the errors, since the class in question is a repetition of the Blip
class, which is the one being incorrectly predicted. The model is having a hard time to
differentiate between an image with a single pattern and an image with repeated patterns.
Some images contain patters more easily recognizable than others. An example would be
image rb_4 and rb_2. The former image’s signal is much weaker than the latter. Clearly,
the strength of the signal is a limiting factor to be taken into account. The weaker the sig-
nal is, the higher the probability of the model getting confused. Especially, considering
how a lack of signal would belong to the class No_Glitch. Therefore, for 21 out of the 22
classes, the model is exposed to an additional risk, the confusion between weak signals
and instances of the class No_Glitch.

Note how the Grad-CAM visualizations differ greatly between the predicted and true
classes. In the the true class, the gradients of background pixels are higher. The true
class isn’t the one selected by the model, therefore it has a lower confidence level than the
predicted class. Additionally, this case is stronger in the images rb_0, rb_1 and rb_4, and
not in rb_2 and rb_3. One aspect these images have in common, is the signal strength.
Images rb_0, rb_1 and rb_4 have a weaker signal than rb_2 and rb_3. Both observations
could be indicating the model needs a stronger signal strength to identify multiple blips,
than single blips. Which is problematic, knowing a single Blip is contained in a multiple
Blip instance. Also, image rb_2 is interesting. Although it contains two blips of similar
dimensions, only one of them is reflected in the gradients.

Fig. 3.17. Comparison between instances of Low_Frequency_Burst and
Low_Frequency_Lines.

28

For comparison, Figure 3.9 shows visualizations for the same images but for Model_1
instead of Model_0. Model_1 also had this class pair as the most confusing. The differ-
ence in errors for this pair of classes between models is low, and the overall accuracy for
this class in Model_1 is only 1% higher than in Model_0. Comparing Figures 3.9 and
3.4, the main difference is in SmoothGrad visualizations. In general, background pixels
have higher gradients. Focusing on the background pixels doesn’t seem to have negative
effects for the Repeating_Blips class predictions, but rather the opposite, since both the
class pair and the overall class accuracy increased.

Figure 3.5 contains visualizations for instances of the class Low_Frequency_Burst,
which have been incorrectly classified as the class Low_Frequency_Lines by Model_0.
Figure 3.17 shows a comparison between two instances of both classes. Both classes have
a similar structure, and it is expected to find this pair between the ones the model finds
more confusing.

Fig. 3.18. Example of model focusing on background information. SmoothGrad and
Grad-CAM visualizations for pl_1 in Model_0 and Model_1.

Figure 3.5 Grad-CAM visualizations show a similar behavior to Figure 3.4. The
instances with a weak signal seem to set a higher focus on background information.
Figure 3.18 shows an example. The model could be deriving the prediction informa-
tion from the background of the image. It is probable this behavior is characteristic
of images containing weak signals and not of specific classes. Also, the model isn’t
behaving as expected, because it is classifying images with weak signals/low informa-
tion as Low_Frequency_Lines, when it should classify them as No_Glitch, the specific
class for images without signals. The cause of this problem might be in the data. As
an example, in Figure 3.5, lfb_1 should belong to the No_Glitch class instead of the
Low_Frequency_Burst class. Since Gravity Spy is a citizen science project, images could
be miss classified by collaborators and the model might be learning to accept No_Glitch
instances as part of other classes. Cleaning the data before training the model would be a
way to see if this is indeed a problem.

All images, but specially images containing weak signals like lfb_1, for the Vanilla
and SmoothGrad visualizations have higher gradients at the middle of the image across
the vertical axis. This could be a result of the imbalance of class images in the dataset.
When an image doesn’t contain obvious information, high gradients are measured from
pixels which usually would contain signals in classes like Blip and Koi_Fish. As men-
tioned before, these classes contain more than 30% of the images in the dataset. There-

29

fore the model might be biased towards those classes. Anyhow, in case of existing a
bias towards these classes, it doesn’t seem to be a major drive in the predictions of
Low_Frequency_Burst instances. It is also curious how these possible "biases" are not
visible in the maps calculated using Grad-CAM. Since this technique is based not only
on gradients but also on class activations, the results "look" at the model from a different
perspective. From these two images, Grad-CAM seems to offer a better insight on why
the model might be making an error. Both Vanilla and SmoothGrad maps are very similar
with the gradients being slightly higher in the predicted class map. But Grad-CAM shows
a clearer difference. The activations for the true class are on the edges of the signal, while
for the predicted class cover the signal completely.

Figure 3.10 contains visualizations for the second most confusing class pair in Model_1,
Low_Frequency_Lines. The class is confused with the class Low_Frequency_Burst.
Previously, for Model_0 the same class pair but with the opposite relation was ana-
lyzed. Although it initially wasn’t between Model_0’s class pairs for analysis, in or-
der to make a comparison, Figure 3.6 contains Model_0’s visualizations for instances
of the Low_Frequency_Lines class. Three characteristics, previously mentioned in the
Low_Frequency_Burst analysis are also common for this class pair. First, gradient-based
maps display high values in the vertical central region of the image. Second, for Model_0,
Grad-CAM visualizations show high activation values for background information, when
no strong signals are present. Third, for Model_1, both Vanilla and SmoothGrad visu-
alizations show an increase in values for background information. Adding an additional
layer could be leading the model to focus more on the background information, indepen-
dently of the signal strength.

Figure 3.15 shows visualizations for Low_Frequency_Burst instances classified as
Low_Frequency_Lines by Model_2. Compared to both visualizations of the previous
models, the only difference detected is the lack of activation in Grad-CAM visualizations,
as if the model didn’t detect any patterns.

Fig. 3.19. Example of Smoothgrad visualization displaying high gradients in
regions similar to Blip class for No_Glitch instance. Model_2. Blip

instance (left), No_Glitch instance (middle), SmoothGrad visualization
(right).

Figure 3.14 and 3.19 shows visualizations for the class No_Glitch in Model_2. This
class is used to represent observations without a signal. The model confuses this class

30

with the class Low_Frequency_Lines, which visually is similar. Gradient-based saliency
maps have the shape of the most predominant class in the dataset, Blip. This might be an
indication of how the large number of images of the class Blip imbalance the dataset and
consequently the model’s predictions. Although no signals are present in the instance,
Vanilla and Smoothgrad maps show high gradient values for both the predicted and true
classes in the center of images.

Lastly, the analysis of the correctly predicted classes Scratchy and Power_Lines for
all the models. The results of visualizations are displayed in Figures 3.7 and 3.8 for
Model_0, 3.11 and 3.12 for Model_1 and 3.15 and 3.16 for Model_2. First of all, an
important note is how both classes are unique in their signal shapes. One one hand,
typical Power_Line instance signals have an elliptical shape almost at the center of the
image. It is a single occurrence and has a fixed location. On the other hand, Scratchy
signals usually have the same length as the image, are located in similar frequency ranges,
and are made of numerous small vertical lines. Both these classes are very characteristic
and no other classes are similar. An opposite example are Low_Frequency_Lines and
Low_Frequency_Bursts, which are very similar and the model doesn’t differentiate them
well.

Fig. 3.20. Scratchy weak vs strong signal and Grad-CAM visualizations for Model_0.

For Model_0, in Figures 3.7 and 3.8, it is visible how all the maps reflect portions of
the Scratchy patterns. Usually with better results for instances with strong signals, like
s_0. In Power_Line instances, visualizations show how the model is doing a good job at
detecting the signal. The maps usually don’t reflect only portions of the signal, but the
complete signal. For Model_1 and Model_2 in Figures 3.11, 3.12, 3.15 and 3.16 visual-
ization maps behave differently. Similarly to incorrectly predicted examples, background
information in the image seems to gain relevance. Also from Model_1 to Model_2 gradi-
ents increase while activations from Grad-CAM are smaller. Image s_0 is a good exam-
ple, it is possible to see how Vanilla and SmoothGrad gradients increase, specially from
Model_0 to Model_1 and Grad_CAM activations decrease, specially in from Model_1 to
Model_2.

Overall, Grad_CAM seems to align better with models accuracies than Vanilla and
SmoothGrad. For example for Scratchy instances, the higher number of convolutional
layers, the worse is the test class accuracy and less activated pixels are in Grad-CAM
visualizations. The visualizations match the performance of the model. With Vanilla and

31

SmoothGrad, it is harder to make an evaluation. This could be due to how Grad-CAM,
since it uses a ReLU function, it only displays positive contribution to classes, while
Vanilla and Smoothgrad, display more than positive contributions. Nevertheless, Vanilla
and SmoothGrad are still useful to "look" at the model from a different perspective.

32

4. CONCLUSIONS AND FUTURE WORK

4.1. Conclusions

All project objectives have been met. An image recognition model has been developed
using convolutional neural networks, the most accurate model has been analyzed using
gradient-based saliency maps and class activation maps varying the number of convo-
lutional and pooling layers, and possible paths of improvement have been defined for
following iterations. The main takeaways of the project are summarized below.

Firstly, during the development of the model, parameters such as the size of convo-
lutional kernels, and the number of convolutional and pooling layers have proven to be
crucial for achieving the best performance. The use of odd sized filters allows to encode
information regarding a pixel symmetrically during convolution operations. Reducing the
number of convolutional layers helps detect simple patterns, which seem to be more ef-
ficient for the model to differentiate between classes. Also shallow networks require a
higher computational cost when training the model, since the number of trainable param-
eters is larger.

Secondly, in the explainability analysis, multiple probable reasons have been found
that could be affecting the model’s performance. First, there seems to be a bias in the data
since the number of images per class has a high variance. The classes with most images, in
this case Blip, is reflected in Vanilla and SmoothGrad visualizations for images containing
weak signals or not signal at all such as in the No_Glitch class. This predisposition of
the model for predominant classes could be limiting the model’s maximum achievable
accuracy. Second, the number of layers in the model seem to increase the focus of the
model in background information. A pattern observable in all the post-hoc local methods
used. This observation could be related to why the model is more accurate as a shallow
network. Third, Grad-CAM was the technique most aligned with model class accuracies
while Vanilla and SmoothGrad were harder to interpret. Fourth, SmoothGrad consistently
produced more reliable results than Vanilla, but also had a higher computational cost,
since it requires multiple backpropagation passes. Fifth, the use of a single interpretation
technique might not be sufficient to analyze model results. Using more than one technique
of varying types is better than a single technique.

Lastly, it is important to note the interpretation methods used in this project are not
sufficient to confirm the logic followed by models in prediction tasks. Visualizations are
open to interpretation and help define tentative paths of improvement, but don’t guarantee
success.

33

4.2. Future work

Both the model and explainability analysis are improvable. The use of different explain-
ability techniques could be used to design a better analysis of the model. In this project
the focus has been set solely on post-hoc local methods, but besides existing multiple
additional gradient-based saliency map and class activation map methods, other methods
such as feature attribution methods could also be used to analyze an image recognition
model such as SHAP, LIME and DeepLIFT. Also, the techniques used are mainly local
interpretations, explaining single case scenarios. It would be beneficial to include tech-
niques capable of global interpretations to understand what global relationships has the
model learned.

Repeating the analysis with a cleaned database would also be interesting. Balancing
the number of images per class could help confirm if classes with a larger presence in
the data like Koi_Fish and Blip are negatively influencing the classification of other class
instances. Also waiting for the Gravity Spy project to publish a larger dataset, so the
number of instances in classes like Paired_Doves and Wandering_Line is larger and the
model has the necessary information to classify them correctly.

It would also be interesting to perform the analysis including the confidence of the
model for the top x classes in predictions. In this project it would had been used multiple
times, to have a better picture of which classes does the model consider as best candidates
for an specific image.

The authors of Grad-CAM at the time of publication also proposed another method
called Guided Grad-CAM, which combines the use of Guided Backpropagation and Grad-
CAM. In their publication they show how this method achieves better results than Grad-
CAM. A future task would be to use this method and compare its results to the results
obtained with Grad-CAM in this project.

Other publications, like Shrikumar et. al [32] have shown how the gradient-based
saliency maps used in this project are limited by saturation and discontinuity problems.
Other techniques as the one proposed in [32] claim to overcome this limitations. Therefore
another future work task would be to include methods such as DeepLIFT to analyze how
avoiding these limitations affects the analysis.

Lastly, varying more the architecture of models. In this analysis, the only variable
parameter was the number of convolutional and pooling layers. Applying the analysis to a
larger variation of models, by modifying other parameters like activation functions, kernel
sizes and strides, pooling functions, higher number of layers, etc could help understand
which interpretation methods are more adequate in different scenarios.

34

5. BIBLIOGRAPHY

[1] B. P. Abbott et al., “Observation of gravitational waves from a binary black hole
merger,” Physical Review Letters, vol. 116, no. 6, Feb. 2016. doi: 10 . 1103 /
physrevlett.116.061102. [Online]. Available: http://dx.doi.org/10.
1103/PhysRevLett.116.061102.

[2] L. I. G.-W. Observatory. (). “What are gravitational waves?” [Online]. Available:
https://www.ligo.caltech.edu/page/what-are-gw.

[3] U. G. S. Administration. (). “Gravity spy,” [Online]. Available: https://www.
citizenscience.gov/catalog/368/#.

[4] M. Zevin et al., “Gravity spy: Integrating advanced ligo detector characterization,
machine learning, and citizen science,” Classical and Quantum Gravity, vol. 34,
no. 6, p. 064 003, Feb. 2017. doi: 10.1088/1361-6382/aa5cea. [Online]. Avail-
able: http://dx.doi.org/10.1088/1361-6382/aa5cea.

[5] S. Coughlin, Updated gravity spy data set, version v1.1.0, Zenodo, Nov. 2018. doi:
10.5281/zenodo.1476551. [Online]. Available: https://doi.org/10.5281/
zenodo.1476551.

[6] R. A. Smith. (). “Opening the lid on criminal sentencing software,” [Online]. Avail-
able: https : / / today . duke . edu / 2017 / 07 / opening - lid - criminal -
sentencing-software.

[7] (). “Gdpr article 15,” [Online]. Available: https://gdpr-info.eu/art-15-
gdpr/.

[8] S. Mukherjee, R. Obaid, and B. Matkarimov, “Classification of glitch waveforms
in gravitational wave detector characterization,” English, Journal of Physics: Con-
ference Series, vol. 243, 2010, Copyright: Copyright 2018 Elsevier B.V., All rights
reserved. doi: 10.1088/1742-6596/243/1/012006.

[9] S. RAMPONE, V. PIERRO, L. TROIANO, and I. M. PINTO, “Neural network
aided glitch-burst discrimination and glitch classification,” International Journal
of Modern Physics C, vol. 24, no. 11, p. 1 350 084, Oct. 2013. doi: 10.1142/
s0129183113500848. [Online]. Available: http://dx.doi.org/10.1142/
S0129183113500848.

[10] J. Powell, D. Trifirò, E. Cuoco, I. S. Heng, and M. Cavaglià, “Classification meth-
ods for noise transients in advanced gravitational-wave detectors,” Classical and
Quantum Gravity, vol. 32, no. 21, p. 215 012, Oct. 2015. doi: 10.1088/0264-
9381/32/21/215012. [Online]. Available: http://dx.doi.org/10.1088/
0264-9381/32/21/215012.

35

[11] J. Powell et al., “Classification methods for noise transients in advanced gravitational-
wave detectors ii: Performance tests on advanced ligo data,” Classical and Quan-
tum Gravity, vol. 34, no. 3, p. 034 002, Jan. 2017. doi: 10.1088/1361-6382/
34/3/034002. [Online]. Available: http://dx.doi.org/10.1088/1361-
6382/34/3/034002.

[12] N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and N. S. Philip, “Transient
classification in ligo data using difference boosting neural network,” Physical Re-
view D, vol. 95, no. 10, May 2017. doi: 10.1103/physrevd.95.104059. [On-
line]. Available: http://dx.doi.org/10.1103/PhysRevD.95.104059.

[13] M. Razzano and E. Cuoco, “Image-based deep learning for classification of noise
transients in gravitational wave detectors,” Classical and Quantum Gravity, vol. 35,
no. 9, p. 095 016, Apr. 2018. doi: 10.1088/1361-6382/aab793. [Online]. Avail-
able: http://dx.doi.org/10.1088/1361-6382/aab793.

[14] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s
striate cortex,” The Journal of physiology, Oct. 1959. doi: 10.1113/jphysiol.
1959.sp006308.

[15] D. Macêdo, “Enhancing deep learning performance using displaced rectifier linear
unit,” Ph.D. dissertation, Jul. 2017. doi: 10.13140/RG.2.2.23893.88807.

[16] F. K., “Neocognitron: A self organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position.,” Biological cybernetics, Jan.
1980. doi: 10.1007/BF00344251.

[17] Y. "LeCun et al., “"handwritten digit recognition: Applications of neural net chips
and automatic learning",” "IEEE Communication", "41–46", Nov. 1989.

[18] (). “Lenet-5, convolutional neural networks.,” [Online]. Available: http://yann.
lecun.com/exdb/lenet/.

[19] O. Russakovsky et al., Imagenet large scale visual recognition challenge, 2015.
arXiv: 1409.0575 [cs.CV].

[20] (). “Imagenet site,” [Online]. Available: https://image-net.org/.

[21] L. S. V. R. Challenge. (). “Large scale visual recognition challenge 2012 (ilsvrc2012),”
[Online]. Available: https://www.image- net.org/challenges/LSVRC/
2012/results.html.

[22] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Definitions,
methods, and applications in interpretable machine learning.,” Proceedings of the
National Academy of Sciences of the United States of America, 2019. doi: 10.
1073/pnas.1900654116.

[23] K. Simonyan, A. Vedaldi, and A. Zisserman, Deep inside convolutional networks:
Visualising image classification models and saliency maps, 2014. arXiv: 1312.
6034 [cs.CV].

36

[24] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks,
2013. arXiv: 1311.2901 [cs.CV].

[25] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for sim-
plicity: The all convolutional net, 2015. arXiv: 1412.6806 [cs.LG].

[26] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion,” International Journal of Computer Vision, vol. 128, no. 2, pp. 336–359,
Oct. 2019. doi: 10.1007/s11263-019-01228-7. [Online]. Available: http:
//dx.doi.org/10.1007/s11263-019-01228-7.

[27] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, Smoothgrad: Re-
moving noise by adding noise, 2017. arXiv: 1706.03825 [cs.LG].

[28] (). “Introduction to neural networks.,” [Online]. Available: https://edgeaiguru.
com/Introduction-to-Neural-Networks.

[29] (). “Convolutional neural networks (cnns) in tensorflow.,” [Online]. Available: https:
//nasirml.wordpress.com/2019/01/08/convnet-in-tensorflow.

[30] (). “Convolutional neural network demystified for a comprehensive learning with
industrial application, dynamic data assimilation - beating the uncertainties.,” [On-
line]. Available: https://www.intechopen.com/chapters/72480.

[31] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, Learning deep fea-
tures for discriminative localization, 2015. arXiv: 1512.04150 [cs.CV].

[32] A. Shrikumar, P. Greenside, and A. Kundaje, Learning important features through
propagating activation differences, 2019. arXiv: 1704.02685 [cs.CV].

37

APPENDIX I: SUPPORT FIGURES AND TABLES

TABLE 5.1. DATASET IMAGES PER CLASS PER SET.

Description Train Test Validation Total
1080Lines 50 229 49 328
1400Ripples 9 59 13 81
Air_Compressor 9 41 8 58
Blip 272 1274 275 1821
Chirp 10 41 9 60
Extremely_Loud 64 316 67 447
Helix 42 195 42 279
Koi_Fish 102 498 106 706
Light_Modulation 78 361 73 512
Low_Frequency_Burst 90 437 94 621
Low_Frequency_Lines 66 315 66 447
No_Glitch 21 107 22 150
None_of_the_Above 11 57 13 81
Paired_Doves 4 19 4 27
Power_Line 68 314 67 449
Repeating_Blips 37 185 41 263
Scattered_Light 67 308 68 443
Scratchy 50 237 50 337
Tomte 13 73 17 103
Violin_Mode 64 284 64 412
Wandering_Line 7 29 6 42
Whistle 45 208 46 299
Total 5587 1179 1200 7966

TABLE 5.2. DATASET TEST, TRAIN AND VALIDATION
PROPORTIONS PER SET (%).

Description Train Test Validation Total
1080Lines 4.24 4.1 4.08 4.12
1400Ripples 0.76 1.06 1.08 1.02
Air_Compressor 0.76 0.73 0.67 0.73
Blip 23.07 22.8 22.92 22.86
Chirp 0.85 0.73 0.75 0.75
Extremely_Loud 5.43 5.66 5.58 5.61
Helix 3.56 3.49 3.5 3.5
Koi_Fish 8.65 8.91 8.83 8.86
Light_Modulation 6.62 6.46 6.08 6.43
Low_Frequency_Burst 7.63 7.82 7.83 7.8
Low_Frequency_Lines 5.6 5.64 5.5 5.61
No_Glitch 1.78 1.92 1.83 1.88
None_of_the_Above 0.93 1.02 1.08 1.02
Paired_Doves 0.34 0.34 0.33 0.34
Power_Line 5.77 5.62 5.58 5.64
Repeating_Blips 3.14 3.31 3.42 3.3
Scattered_Light 5.68 5.51 5.67 5.56
Scratchy 4.24 4.24 4.17 4.23
Tomte 1.1 1.31 1.42 1.29
Violin_Mode 5.43 5.08 5.33 5.17
Wandering_Line 0.59 0.52 0.5 0.53
Whistle 3.82 3.72 3.83 3.75
Total 100 100 100 100

TABLE 5.3. DATASET TEST, TRAIN AND VALIDATION
PROPORTIONS PER CLASS (%).

Description Train Test Validation Total
1080Lines 15.24 69.82 14.94 100
1400Ripples 11.11 72.84 16.05 100
Air_Compressor 15.52 70.69 13.79 100
Blip 14.94 69.96 15.1 100
Chirp 16.67 68.33 15 100
Extremely_Loud 14.32 70.69 14.99 100
Helix 15.05 69.89 15.05 100
Koi_Fish 14.45 70.54 15.01 100
Light_Modulation 15.23 70.51 14.26 100
Low_Frequency_Burst 14.49 70.37 15.14 100
Low_Frequency_Lines 14.77 70.47 14.77 100
No_Glitch 14 71.33 14.67 100
None_of_the_Above 13.58 70.37 16.05 100
Paired_Doves 14.81 70.37 14.81 100
Power_Line 15.14 69.93 14.92 100
Repeating_Blips 14.07 70.34 15.59 100
Scattered_Light 15.12 69.53 15.35 100
Scratchy 14.84 70.33 14.84 100
Tomte 12.62 70.87 16.5 100
Violin_Mode 15.53 68.93 15.53 100
Wandering_Line 16.67 69.05 14.29 100
Whistle 15.05 69.57 15.38 100
Total 14.8 70.14 15.06 100

Fig. 5.1. Model_0 architecture.

Fig. 5.2. Model_1 architecture.

Fig. 5.3. Model_2 architecture.

TABLE 5.4. MODEL_0 ACCURACIES PER CLASS.

Class Name Incorrect Correct Total Accuracy
1080Lines 13 187 200 0.94
1400Ripples 2 34 36 0.94
Air_Compressor 5 31 36 0.86
Blip 44 1048 1092 0.96
Chirp 2 38 40 0.95
Extremely_Loud 3 253 256 0.99
Helix 2 166 168 0.99
Koi_Fish 14 394 408 0.97
Light_Modulation 32 280 312 0.9
Low_Frequency_Burst 45 315 360 0.88
Low_Frequency_Lines 25 239 264 0.91
No_Glitch 10 74 84 0.88
None_of_the_Above 22 22 44 0.5
Paired_Doves 14 2 16 0.13
Power_Line 1 271 272 1
Repeating_Blips 51 97 148 0.66
Scattered_Light 19 249 268 0.93
Scratchy 1 199 200 1
Tomte 5 47 52 0.9
Violin_Mode 13 243 256 0.95
Wandering_Line 17 11 28 0.39
Whistle 18 162 180 0.9
Total 358 4362 4720 0.9242

TABLE 5.5. MODEL_1 ACCURACIES PER CLASS.

Class Name Incorrect Correct Total Accuracy
1080Lines 13 187 200 0.94
1400Ripples 1 35 36 0.97
Air_Compressor 4 32 36 0.89
Blip 29 1063 1092 0.97
Chirp 1 39 40 0.98
Extremely_Loud 6 250 256 0.98
Helix 1 167 168 0.99
Koi_Fish 23 385 408 0.94
Light_Modulation 41 271 312 0.87
Low_Frequency_Burst 38 322 360 0.89
Low_Frequency_Lines 27 237 264 0.9
No_Glitch 28 56 84 0.67
None_of_the_Above 16 28 44 0.64
Paired_Doves 10 6 16 0.38
Power_Line 1 271 272 1
Repeating_Blips 48 100 148 0.68
Scattered_Light 22 246 268 0.92
Scratchy 5 195 200 0.98
Tomte 8 44 52 0.85
Violin_Mode 17 239 256 0.93
Wandering_Line 16 12 28 0.43
Whistle 22 158 180 0.88
Total 377 4343 4720 0.9201

TABLE 5.6. MODEL_2 ACCURACIES PER CLASS.

Class Name Incorrect Correct Total Accuracy
1080Lines 15 185 200 0.93
1400Ripples 4 32 36 0.89
Air_Compressor 4 32 36 0.89
Blip 66 1026 1092 0.94
Chirp 8 32 40 0.8
Extremely_Loud 50 206 256 0.8
Helix 7 161 168 0.96
Koi_Fish 11 397 408 0.97
Light_Modulation 18 294 312 0.94
Low_Frequency_Burst 63 297 360 0.83
Low_Frequency_Lines 17 247 264 0.94
No_Glitch 59 25 84 0.3
None_of_the_Above 24 20 44 0.45
Paired_Doves 16 0 16 0
Power_Line 1 271 272 1
Repeating_Blips 32 116 148 0.78
Scattered_Light 16 252 268 0.94
Scratchy 15 185 200 0.93
Tomte 6 46 52 0.88
Violin_Mode 14 242 256 0.95
Wandering_Line 12 16 28 0.57
Whistle 28 152 180 0.84
Total 486 4234 4720 0.8970

APPENDIX II: PROJECT BUDGET

This section consists of a detailed breakdown of the budget required to carry out the
project. For this project, the costs can be subdivided into three categories: software,
hardware and human resources. Note the final calculation is an estimation since concepts
such as the time value of money, costs associated to aid offered by mentors and multiple
exchange rates are not being taken into consideration.

To calculate the associated amortization costs, the formula displayed below is used.
The table below displays a summary of all project costs.

AmortizationCost = PurchasePrice ∗
UsagePeriod

AmortizationPeriod
(5.1)

TABLE 5.7. OVERALL COSTS

Category Cost
Hardware 305.55€
Software 252.00€
Human Resources 5802.00€
Total 6359.55€

Hardware

The hardware costs have been mainly the use of a personal laptop. The table below
displays the total hardware costs.

TABLE 5.8. HARDWARE COSTS

Description Purchase
Price

Usage Period
(m)

Amortization
Period (m)

Cost

Laptop 1099.99€ 10 36 305.55€
Total 305.55€

Software

Since most of the software used is open-source, the software-related costs are the smallest.

TABLE 5.9. SOFTWARE COSTS

Description Purchase
Price

Usage Period
(m)

Amortization
Period (m)

Cost

Google Cloud 252€ 10 10 252€
Kaggle Kernel 0€ 10 10 0€
Open-source libraries 0€ 10 10 0€
Linux OS 0€ 10 36 0€
Total 252.00€

Human Resources

Human resources are the largest expenditure. The latest salary is used as a reference to
calculate the hourly rate.

TABLE 5.10. HUMAN RESOURCES COSTS

Hours per
week

Number of
Weeks

Hourly
rate

Cost

7.5 40 19.34€ 5802.00€
Total 5802.00€

	Introduction
	Contextualization
	Objectives
	Legal Framework
	Software
	Intellectual Property
	Data Privacy

	Socio-Economic Environment
	State of the Art
	Previous Work
	Methodologies

	Document Structure

	Research and Development
	Data
	Classification
	Post-hoc local interpretation

	Results
	Classification
	Explainability Analysis
	Visualizations
	Analysis

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

