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Abstract

This paper analyzes the exothermic reaction of an initially cold gaseous mixture flow-
ing with a moderately large Reynolds number along a cylindrical pipe with constant wall
temperature. An overall irreversible reaction with an Arrhenius rate having a large activa-
tion energy is used for the chemistry description. The flow is chemically frozen in the cold
entrance region, where the velocity evolves towards the Poiseuille profile as the gas temper-
ature increases towards the wall value, ushering in a reaction stage during which the rate of
heat transfer from the wall changes from positive to negative. The subsequent downstream
evolution of the flow depends critically on the competition between the heat released by the
chemical reaction and the heat-conduction losses to the wall, as measured by the Damkdhler
number 9, first introduced by Frank-Kamenetskii in his seminal analysis of thermal explo-
sions in cylindrical vessels. For values of & below the critical value 6 = 2 corresponding
to the quasi-steady explosion limit, heat losses to the wall keep the gas temperature close
to the wall value, so that the chemical reaction occurs slowly along the pipe in a flameless
mode, which is analyzed to give an implicit expression for the streamwise reactant distribu-
tion. By way of contrast, for § > 2 the slow reaction rates occur only in an initial ignition
region, which ends abruptly when very large reaction rates cause a temperature runaway;,
or thermal explosion, at a well-defined location, whose computation must account for the
temperature found at the end of the entrance region. The predictions of the large-activation
energy analyses, including ignition distances for 6 > 2 and flameless reactant consumption
rates for 0 < 2, show good agreement with numerical computations of the reactive pipe flow
for finite values of the activation energy.
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1. Introduction

The safe storage and transportation of reactant gas mixtures requires conditions that
ensure a negligibly small reaction rate, achieved in storage vessels and transport pipes by
lowering sufficiently the wall temperature. The seminal investigation of this problem is due
to Frank-Kamenetskii (FK) [1], who studied a reacting mixture undergoing an exothermic
chemical reaction in a centrally symmetric closed vessel with constant wall temperature.
His analysis employed an overall irreversible reaction with an Arrhenius rate having a large
activation energy, an appropriate model to represent the strong temperature dependence of
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the rate-controlling oxidation reactions in typical fuel-air mixtures [2, 3]. The resulting gas-
temperature distribution is seen to depend on the competition of the heat released by the
chemical reaction and the heat losses to the wall, characterized by the Damkohler number
0, defined as the ratio of the conduction time across the vessel to the relevant characteristic
time (i.e. the homogeneous thermal-explosion time at constant pressure) evaluated at the
wall temperature [3]. A slowly reacting flameless mode of combustion is found for values of §
below a critical value, when the heat losses to the wall are able to limit the temperature rise,
in such a way that the reaction rate does not change in order of magnitude from its near-wall
value. Since the overall heat-release rate is proportional to the volume of reacting gas while
the heat-loss rate to the wall is proportional to the wall surface, for a given wall temperature
there exists a limiting size, corresponding to a critical value of §, above which a slow reaction
cannot be maintained, and is replaced by a localized temperature runaway that leads to the
formation of a flame [4, 5]. More recent analyses of slowly reacting mixtures in closed vessels
have addressed additional aspects of the problem, including the effects of pressure increase
on the ignition time [6] and of buoyancy-induced motion on explosion limits [7-10].

The results of the FK analysis find direct application in connection with the safety storage
of reactant mixtures, defining critical sizes for thermal explosions in chemically reacting
systems. A related problem addressed here is that of reactant transportation in pipes,
analyzed previously in a simplified configuration [11]. Specifically, we consider below the
discharge of a reactant mixture stored in a cold vessel at temperature 7 through a pipe
whose wall temperature is kept at a constant temperature 7, > 717 with T — 1] ~ T..
The Damkohler number ¢ introduced by Frank-Kamenetskii for the analysis of thermal
explosions in cylindrical vessels emerges as the main governing parameter [11]. Our analysis
identifies the existence of an entrance region with negligible chemical reaction, where the gas
temperature increases from 77 towards 7 by heat conduction from the wall, immediately
followed by a region of incipient chemical reaction that governs the transition towards a
persistent slowly reacting mode of combustion for § < 2 or the development of a thermal
runaway for 6 > 2. Ignition events are analyzed to determine the explosion distance for
0 > 2, a computation that requires consideration of the upstream chemically frozen region
of temperature accommodation. Specific attention is given to near-critical conditions with
delayed ignition events. The development includes also an analytic description of the slowly
reacting mode of combustion established downstream the transition region in subcritical
configurations with § < 2.

2. Formulation

Consider a gaseous reactant mixture with initial temperature, density, and reactant mass
fraction 77}, p), and Y, discharging from a storage vessel along a pipe of radius a whose
wall temperature is kept at a fixed value 7, > T]. As in Frank-Kamenetskii’s work [1], our
analysis considers an overall Arrhenius reaction, with the mass of reactant consumed per
unit volume per unit time m given by

/g = K(T')Y, = Bexp|—E/(RT')]Y, (1)



where p', T', and Y, represent the density, temperature and reactant mass fraction. The
temperature-dependent reaction-rate constant

k = Bexp[-E/(RT")] = Bexp[—E/(RT;)] exp[3(1" — T;)/T", (2)

includes a frequency factor B and an activation energy F/, with R denoting the universal gas
constant. The characteristic activation temperature E/R is assumed to be large compared
with the wall temperature, resulting in a temperature-sensitive rate constant that changes
from its wall value Bexp[—FE/(RT")] by a factor of order unity when 7" — T, ~ RT??/E =
T!/B < T., where RT?/E is the so-called FK temperature and 8 = E/(RT!) > 1 is
the nondimensional activation energy. A direct consequence of this strong temperature
dependence is that, for initially cold mixtures with 7, — T} ~ T., the case considered here,
the chemical reaction is effectively frozen in the storage vessel.

In this overall-reaction model the heat-release rate of the reaction per unit volume is given
by qr, where ¢ denotes the amount of heat released per unit mass of reactant consumed.
Correspondingly, the time t. needed for the heat-release rate of the chemical reaction—
evaluated at 7, with the initial reactant mass fraction Y,—to increase the enthalpy by an
amount ¢,T"/f3, proportional to the FK temperature RT/?/E, is given by

1

"~ aBB e[ E/(RT)] @

where a = (qY,)/(¢,7) is the dimensionless temperature rise, based on 77, for constant-
pressure adiabatic combustion, with ¢, representing the specific heat at constant pressure,
taken as constant for simplicity. In relevant combustion applications the parameter o takes
values that are of the order of, although typically larger than, unity. The chemical time t,
defined in (3) can be compared with the characteristic heat-conduction time across the pipe

t. = a'2/DTa (4)
where Dr is the thermal diffusivity evaluated at 77, to define the FK parameter
§ = t/t. = (a*/Dr)afBexp[—E/(RT,)], (5)

a Damkohler number characterizing the slowly reacting mode of combustion of enclosed
reactant mixtures, with the value ¢ = 2 identifying the explosion limit in cylindrical vessels
[1-3].

The discharge is assumed to occur at low Mach numbers, resulting in spatial pressure
differences in the pipe that are small compared with the vessel pressure, so that the equation
of state can be written in the simplified form p"I" = p/T7. A convenient characteristic value
for the streamwise flow velocity U = G/(p,ma?) can be defined from the known mass flow
rate G by using the density p = p/T]/T. evaluated at 7" = T!. This velocity defines the
Peclet number of the pipe flow Pe = Ua/Dy, comparable in magnitude to the associated
Reynolds number Re = Pe/Pr, with Pr denoting the order-unity Prandtl number of the
gaseous mixture. The following analysis pertains to configurations with moderately large
values of the Reynolds number Re ~ Pe in the range 10 < Re < 2000, for which the flow in
the pipe is stable and slender, with a characteristic streamwise development length ¢ = Pea



much larger than the pipe radius a. The resulting steady laminar flow can be analyzed in
the boundary-layer approximation by integrating

%(pu) + %%(mv) =0 (6)
pu% + pv% = —DP(x)+ ?% (rT”%) (7)
pug—z + pvaa—zj = %% (rT"?—Z) + %pY exp|B(T —1)/T] (8)
it = e (1S - Svenlar /1l )

for x > 0 and 0 < r < 1 supplemented with the equation of state
pT =1 (10)
and subject to the initial conditions
r=0: v-T1,=T-T,=Y—-1=0 (11)

at the pipe entrance, and the boundary conditions

ou or oYy

E—U—E—E—O at T—O (12)
and 9y

uzva—le:O at r=1 (13)

for x > 0, as corresponds to axially symmetric flow bounded by a non-permeable constant-
temperature wall with non-slip flow.

In the formulation the axial and radial coordinates z’ and r’ are scaled with ¢ = Pea
and a according to x = 2’ /¢ and r = r’/a, while their associated velocity components u" and
v" are scaled with U and Dr/a to give u = «'/U and v = v'/(Dr/a), respectively. With
the scale selected for the axial velocity, its initial uniform value v, = G/(p,ma*) becomes
u, /U = pl/p, = T, when expressed in dimensionless form, as shown in (11). The reactant
mass fraction Y, is normalized with its initial value Y, to give Y = Y,./Y,, and the temperature
and density are scaled with 7! and p to give the nondimensional variables 7' = T"/T" and
p = p'/p.. The unknown streamwise pressure gradient P;(x), to be determined as part of
the integration, has been scaled with its characteristic value p,U?/{. Its presence in pipe
flow ensures mass-flux conservation. Besides the Prandtl number Pr, the Lewis number
Le, and the assumed exponent ¢ for the power-law temperature dependence of the transport
coefficients, the problem depends on four nondimensional parameters, namely, the activation
energy = E/(RT)), the heat-release parameter a = (qY,)/(c,1), the Damkdhler number
9, and the initial-to-wall temperature ratio 7; = 717/T, < 1. The analysis below considers
the simplified solution that arises for moderately large values of § with a ~ 1, § ~ 1, and
1-T, ~ 1.



3. Sample numerical results

Figure 1 shows results of numerical integrations of (6)—(13) for ¢ = 0.7, Pr = 0.7,
Le =1.0, 6 =10, « = 5, and T; = 0.5. A standard Crank-Nicholson method [13] was used
to advance the fluid variables in the streamwise direction whereas a collocation technique [14]
was used for the radial discretization of the corresponding operators at each axial station.
For stability, a modified backward Euler method was used for the initial steps. Typical values
of the step size were Az = 10~ for the initial steps and Az = 1072 after 4 or 5 iterations.
Computations with both finer and coarser grids were performed to ensure that the results
were independent of the grid size.

The plots in Fig. 1 show the evolution along the axis of the temperature T'(z,0), reactant
mass fraction Y (x,0), and reduced reaction rate w(z,0) = Y exp[3(T'—1)/T] for two different
values of 6 = (1.0,5.0), along with the corresponding radial profiles of axial velocity at
different streamwise locations. The two Damkohler numbers are selected as representative
of subcritical and supercritical ignition events. In both cases, the integrations reveal the
existence of an initial chemically frozen region, with exponentially small values of w < 1,
where the gas temperature increases as a result of the heat transferred from the wall, while
the reactant mass fraction does not change significantly. Because of the associated decrease
in density, the velocity is seen to increase as its profile evolves from the initial uniform
distribution v = T} towards a parabolic distribution u = 2(1 — r?).

While the initial evolution is nearly identical for both values of 9, the subsequent down-
stream evolution is very different. Thus, for 6 = 1.0 the reaction rate w increases to a
maximum value of order unity, leading to the establishment of a slowly reacting mode of com-
bustion with 7T'(x,0)—1 ~ S—1 and small reactant consumption rates w/(af) ~ 1/(af) < 1.
By way of contrast, for 6 = 5, the reaction rate continues to increase to very large values,
leading to a rapid temperature increase at a well defined ignition location x ~ 1.32, where
the reactant is rapidly depleted as the temperature reaches its peak value. In the equilib-
rium region found farther downstream the temperature decreases as a consequence of heat
losses to the wall, eventually approaching the wall value 7" = 1 for > 1. Following the
criterion used in ignition studies in homogeneous systems, the inflection point of the curve
T(x,0), marked with a cross in Fig. 1, can be used as a definition of the ignition distance in
these computations; other criteria, such as the location of the peak temperature, would give
essentially the same results in the limit 5 > 1.

4. The chemically frozen entrance region

As discussed above, the flow in the tube includes an entrance development region of
characteristic length ¢ = Pe a, corresponding to values of x of order unity, where the velocity
profile evolves from an initial uniform profile v = T} to a Poiseuille profile u = 2(1 — r?)
while the temperature evolves from the initial value T' = T; < 1 to the wall value T" = 1.
As a consequence of the exponential temperature dependence of the reaction rate discussed
earlier, the chemical reaction can be entirely neglected as long as 1 — 7T > 57!, so that the
reactant mass fraction remains equal to its initial value Y = 1 in this entrance region, as can
be seen by integrating the chemically frozen version of (9) with initial condition Y = 1 at
x = 0 and boundary conditions 0Y/dr = 0 at r = 0 and r = 1. The associated distributions
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Figure 1: The variation with axial distance of T'(x,0), Y (z,0), and w(z,0) = Y exp[S(T — 1)/T] obtained
by numerical integration of (6)—(13) with o = 0.7, Pr = 0.7, Le = 1.0, 8 = 10, a = 5, and T; = 0.5 for
d = 1.0 (squares) and § = 5.0 (plain curves); the bottom plots show the axial velocity profiles at five different
locations « = (0,0.5,1.0,1.5,2.0). The cross on the temperature curve for § = 5.0 indicates the location of
the inflection point, used in the numerical integrations to characterize the ignition distance.



of uw and T are obtained by integration of (6)—(8) with the initial and boundary conditions
given in (11)—(13); the chemical reaction being discarded in (8). The solution depends on
the initial temperature T, and on the transport description through the values of o and Pr,
with the realistic values 0 = 0.7 and Pr = 0.7 selected in the integrations reported below,
as is appropriate for fuel-air gas mixtures [12].

The resulting chemically frozen, low-Mach-number laminar gas flow has been treated in
the past [15-17] to assess effects of variable gas properties on the friction coefficient and heat-
transfer rate, including recent efforts to characterize the solution for extreme values of 7} [18].
These previous analyses, which extended to variable density the classical constant-density
entry—flow results [19], did not consider specifically the asymptotic behavior of the solution
for values of x moderately larger than unity, where the temperature differences from the wall
value and of the velocity from the Poiseuille distribution become small. This asymptotic
behavior is needed in reacting flows for the analysis of the initiation of the reaction as the
temperature increases to near-wall values such that 1 — 7T ~ $~!. In this region of incipient
chemical reaction, located downstream from the entrance region, the heat-transfer rate from
the wall changes from positive to negative as a result of the chemical heat release. As seen in
Fig. 1, depending on the conditions, the temperature either continues to increase, leading to
a thermal runaway at a finite distance downstream, or reaches a maximum value 7'—1 ~ 371
corresponding to a quasisteady balance between the heat released by the chemical reaction
and the heat losses to the walls.

The asymptotic temperature distribution for the non-reacting gaseous pipe flow at z > 1
is given by

r-1=-C eXP(—)\%f/Q) eXp(—)\17’2/2)L(A1—2)/4()\17’2)> (14)
as can be obtained by using separation of variables in
0 10 0
21 —7r*) (T —1) = == |r—(T -1 1
(=@ =1 = 15 [ =) (15)

derived by linearizing (8) for T'— 1 <« 1 with u ~ 2(1 — r?) and v ~ 0. Here L\ ,_g)/ is
the Laguerre polynomial of order (A; — 2)/4, with the value of A; = 2.704 determined as
the smallest root of the equation L\_2y/4(A) = 0 associated with the condition 7" = 1 at
r = 1. The factor C' is an unknown positive constant of order unity that must be obtained
from the numerical integration of the entrance flow, giving the results shown in Fig. 2. The
plot shows the variation with T, of C' and (2/)2)In C; the latter is to be employed later in
evaluating the ignition distance through (24).

5. Slowly reacting flow

The exponential temperature decay (14) is modified as the chemical reaction begins to
have a significant effect, which occurs when the temperature drop from the wall value 1 — T
decreases to values of order 3! across most of the pipe section. The condition 1 — T = 37!
evaluated with use made of the temperature drop along the axis 1 —T'(z,0) = Cexp(—\iz/2)
given in (14) provides

zq = (2/A]) In(CB), (16)
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Figure 2: The factor C for the asymptotic temperature distribution (14) found at the end of the chemically
frozen entrance region, obtained numerically by fitting (14) to the results of integrations of (6)—(8) with
the initial and boundary conditions given in (11)—(13) and with the chemical reaction neglected in (8). The
plot also shows the associated value of (2/A?)1InC = 0.2741In C, which carries in (24) the dependence of the
ignition distance on the initial temperature.

as an expression for the downstream location z; where the reaction becomes important,
marking the end of the chemically frozen flow. The following region of incipient chemical
reaction, where T—1 ~ u—2(1—r?) ~ v ~ p—1 ~ 71 < 1, can be described in terms of the
translated coordinate & = x — x4 and the rescaled temperature increment 6 = 3(7" —1T.) /Ty,
reducing the problem to the integration of

00 10 ( 00
— g2 _ = 0
201 =r )8:% ror (Tar) Yoo (1)
oY 1 0 (oY 1
201 =r >8:Z° Ler Or (T 87‘) aﬁYée (18)

with initial conditions
0 + exp(—Ai2/2) exp(=M7?/2) Ly —gya(Mr?) =Y —1=0 as & — —o0 (19)
and boundary conditions

g0 Y oY
E:gzo at r=20 and HZEZU at r=1. (20)

The initial conditions for integration of (17) and (18), given in (19), are obtained by matching
with the solution found in the entrance region at intermediate distances 1 < =z < xy4,
corresponding to large negative values of the translated coordinate & = x — x4, represented
by the limit £ — —oo in (19). In particular, the initial temperature distribution is obtained
by writing the temperature profile (14) in terms of & = x — x4 with use made of (16). The
Frank-Kamenetskii linearization exp[3(T —1)/T] = exp|f/(1+6/3)] ~ ¢’ has been employed
in writing the reaction rate in (17) and (18), as it is appropriate in the limit 8 > 1 with
6~ 1.



6. The first reaction stage

The analysis of the chemical reaction at distances £ = © — x4 ~ 1 determines whether
the solution undergoes a thermal runaway, as occurs for supercritical cases with 6 > 2, or
whether the flow evolves into a quasisteady slow mode of combustion that persists farther
downstream, as occurs for § < 2. In this transition region x ~ 1 with # ~ 1 the change in
reactant mass fraction is small, of order 1 — Y ~ (a8)™! < 1, as follows from (18), so that
the problem reduces to the integration of

2(1 — TQ)ae Lo ( 69) + 6ef (21)

o ror \or

subject to the initial and boundary conditions given above in (19) and (20). Selected results
of computations are shown in Fig. 3. In the integrations, a low-storage standard RKW3
method [20] was used for advancing in & with a variable step size with minimum value Az =
1073, The pseudospectral technique [14] used previously in integrating (6)—(13) was employed
for the radial discretization of (21). The integration was initiated with the temperature
profile given in (19) evaluated at a selected negative value of & and the results were found
to be independent of the selection for values of the initial location smaller than —1.
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Figure 3: The temperature evolution obtained by integration of (21) with the initial and boundary conditions
given in (19) and (20) for different values of §, including the evolution with distance of the temperature

along the axis 6(%,0) for subcritical and supercritical cases along with selected temperature profiles for § = 5
[ = (0,0.999,4.999,9.299,9.678,9.686,9.687)] and § = 10 [Z = (0,2.010,4.826,5.933,6.028,6.032,6.033)].

For subcritical cases with § < 2 the temperature evolves towards the steady distribution

0 m{ 2/(1+/1-6/2) } (22

14 (0/2)[r/(14+ /1 —10/2)]?

9



corresponding to the cylindrical FK problem

1d (A0 g AOnc, _
-~ (r - ) = =", =E(0) = (1) = 0. (23)

The associated temperature along the axis 0(z,0) is seen to approach 6(z,0) = 21n[2/(1 +
1—10/2)] for x > 1, with the limiting value 6(z,0) = 2In2 reached for the critical case
d=2.

On the other hand, for 6 > 2 the transition stage ends with a thermal runaway at a finite
downstream location Z; = x; — x4 ~ 1. An interesting finding of the numerical integrations of
the ignition problem (21), illustrated in the transient histories on the left-hand side of Fig. 3,
is that the thermal runaway occurs at the axis for values of § in the range 2 < § < 6.68,
whereas for § 2, 6.68 the thermal runaway occurs in an increasingly thinner annular reacting
layer at an intermediate radius, not far from the wall, while the gas in the center is still cold.
A similar behavior was identified in [6] in connection with the transient ignition history in
spherical containers.

Figure 4: The variation with § > 2 of the thermal-runaway distance &; = x; — x4, with the dashed curve
representing the near-critical asymptotic result (32).

The resulting thermal-runaway location Z;, a decreasing function of ¢, is shown in Fig. 4.
The ignition distance computed here differs by a factor of order unity from that computed
earlier in [11], where integrations of (21) were started with an initially uniform gas tem-
perature, equal to the wall value. The present analysis, accounting for the presence of the
reaction-free entry region, provides a prediction for the distance from the entrance of the
pipe x} at which ignition occurs, given in nondimensional form z; = «}/[G/(7p, Dr)] by

e = 2a(T1, B) + 24(0) = (2/A) InC + (2/X)) In B + &, (24)

10



written with use made of (16). As can be seen, the value of z; results from the addition
of three separate terms that carry the influence of T, 3, and ¢, respectively. The first and
third terms are given in Figs. 2 and 4, respectively, whereas the second term can be readily
evaluated using 2/\? ~ (0.274.

7. Ignition for near-critical conditions § — 2 < 1

For 0 < 0 — 2 <« 1 the thermal runaway occurs at very large distances Z; > 1. As can
be inferred from the results for 6 = 2.01 shown on the right-hand side of Fig. 3, for these
near-critical conditions the ignition history includes a relatively short initial period & ~ 1,
where the temperature increases to approach the critical FK profile fyc = 2In[2/(1 + r?)]
corresponding to 6 = 2, followed by a long quasi-steady evolution for & ~ (§ —2)7%/2 > 1
with 6 — 21n[2/(1 4+ 7%)] ~ (§ — 2)}/? < 1 which ends with a thermal runaway. This second
stage can be investigated in terms of the asymptotically small parameter ¢ = §/2 — 1 to
determine the resulting value of &, ~ e~ /2 > 1.

The development begins by writing (21) in terms of the rescaled coordinate ¢ = /23
and the off-equilibrium temperature departure § — 21n[2/(1 + r?)] = £/20(¢, r) to give

00 81/2 0 00 8 1/2
21— =2 () L % [1qe)e® 1], 25
(1=r)e o€ r or (7“ 87") (14 1r2)2 (1+e)e ] (25)
Introducing the expansion © = ©; + /20, + - -- and collecting terms of order £'/? leads to
19 [ 00, 80, 90,
e =0; Sl=0atr=0 and ©,=0atr=1, (2
r&r(rar)—i_(ljw"?)? 0; o Oatr=0 and ©;=0atr =1, (26)
which can be integrated to give
1—1?
= (& ——. 2
o= F(e) L, 7

The unknown function F'(§), carrying the streamwise dependence of the off-equilibrium tem-
perature departure, can be obtained from the problem arising at order ¢

10 ( 00 80, _ 00, B B B
ror (T 8r)+(1+r2)2_Q(§’r)’ o =0atr=0 and ©y=0atr=1, (28)
where ,
— wd_F_ 8 1 1—r? 2
C= ¢ (1+72)? Haliee) P (29)

Existence of solutions to the inhomogeneous problem (28) requires that fol QML —rHr/(1+
r?)dr = 0, providing the ordinary differential problem

1dF 1+ (F/2)%
2dé 17—12In4’

where the initial condition F'(0) = —oo follows from matching with the upstream region
Z ~ 1 of rapid temperature increase. The solution

_ § m
F_2tan<17—121n4 2 (81)

F(0) = —oo, (30)

11



diverges as £ — & = (17 — 12In4)7, as corresponds to a thermal-runaway distance

(17 — 121n4)v/27
(6 —2)1/2

iy = V2%, = ~ 1.62(6 —2)"12 (32)
This asymptotic prediction is shown as a dashed curve in Fig. 4.

As noted earlier in connection with the homogeneous ignition problem [21], reactant
consumption, not accounted for in the ignition equation (21), would necessarily become
significant in configurations with sufficiently small values of § — 2, thereby modifying the re-
sult (32) as well as the thermal explosion limiting condition § = 2, with associated departures
d — 2 that can be anticipated to be of order 1/(af) < 1 [6].

8. Downstream flameless combustion for § < 2

For subcritical values of the Damkohler number § < 2 the temperature in the pipe
evolves towards the quasi-steady distribution (22) for moderately large values of Z. Most
of the reactant consumption, negligibly small in the entrance and transition regions, occurs
downstream, at distances of order a5¢, such that the rescaled coordinate X = (z —x4)/(Sa)
is of order unity, when (17) and (18) become

2 , 00 10 ( 08 )
a_ﬁ(l —-T )(‘)—X = ’r‘a’r’ <7’a/r) + Ye s (33)
oY af 0 oY
2z - i 0
2(1—r )8X Tordr (7’ 07“) Yoe’, (34)

to be solved with the boundary conditions given earlier. Equation (34) indicates that during
this second stage transverse diffusion of the reactant is so fast that its mass fraction remains
spatially uniform across the pipe at leading order, so that Y ~ Y (X) with errors of order
1/(af), while the temperature evolves in a quasi-steady manner as dictated by

1o (2

"o

) L Ve =0, (35)

the limiting form of (33) for fa > 1.
As can be inferred from (23), the solution to (35) subject to 90/0r = 0 at r = 0 and
0 =0 at r =1 is just given by

0—omw 2/(1++/1-6Y/2) (36)
L+ (Y /2)[r/(1++/1=8Y/2)]2

obtained by writing the FK temperature distribution (22) with § replaced by the instanta-
neous Damkohler number 6 Y. The evolution of Y (X) is given by

ay L, ]
d—X = —2A 5Ye TdT, Y(O) = 1, (37)

obtained by integrating (34) multiplied by r, with use made of the non-permeability condition
JY/Or = 0 at r = 1. Since the energy balance is quasi-steady, the surface integral in (37),

12



representing the overall rate of reactant consumption across the pipe, is proportional to the
rate of heat transfer to the wall, as can be seen by using (35) to write (37) in the alternative

form y Lo 06 06
1dY _
s | o ()= (5) - To-t (%)

involving the reduced heat-loss rate to the wall

- (glzl T+ \/?7—(57Y/2 (39

evaluated with use made of (36). Substituting (39) into (38) and integrating the resulting
separable equation finally yields

§X = (1—2)1/2— (1—£)1/2—1n [1_ (1_5Y/2)1/2] (40)

2 1—(1—08/2)"?

as an implicit representation for the reactant mass fraction as a function of the rescaled
streamwise distance X = (x — x4)/(af). The above expression applies for subcritical cases
with 6 < 2.

9. Accuracy of the analytical predictions

The leading-order asymptotic analyses given above provide predictions of ignition dis-
tances for 0 > 2 and of slow flameless reactant consumption for 4 < 2 that apply strictly in
the limit 8 > 1. It is therefore worthwhile to test the accuracy of these predictions for large
but finite values of [, by comparing the analytical results with numerical integrations of the
starting equations (6)—(13).

We begin by comparing in Fig. 5 the ignition distance predicted by the expression (24)
with that obtained numerically, with the inflection-point criterion employed to give a precise
definition of x; in the computations. A first set of computations, shown in the upper plot,
consider increasing values of § for a fixed value of 6 = 5. The accuracy of the asymptotic
results is seen to improve for increasing 3, yielding corresponding relative errors that decrease
in proportion to 37!, as expected from the ordering of the corrections in the asymptotic
description.

A second set of computations, for a fixed value of § = 32, considers ignition histories
for different values of 4. The results are shown in the bottom plot of Fig. 5. As can be
seen, the accuracy of the prediction degrades as the ignition distance increases for smaller
values of §. The observed departures are attributable to the effect of reactant consumption,
neglected in our leading-order analysis, which becomes more noticeable for longer residence
times, slowing down the reaction rate and leading to values of x; that are larger than those
predicted by (24). Incorporation of these reactant-consumption effects in the asymptotic
analysis would require consideration of corrections of order 57!, following the methodology
developed earlier for the homogeneous problem [21].

According to the asymptotic results, in the flameless mode of combustion established in
the pipe for 6 < 2 the resulting reactant mass fraction, uniform across the pipe, decreases

13



Figure 5: The ignition distance for T; = 0.5 obtained with the inflection-point criterion from numerical
integrations of (6)—(13) for ¢ = 0.7, Pr = 0.7, Le = 1.0, and o = 5 (circles) and evaluated with the
asymptotic prediction (24) (solid lines). The upper plot shows the variation of a; with S for 6 = 5.0 while
the lower plot shows the variation of x; with § for 5 = 32.

slowly with X = (x —z4)/(Ba) as dictated by (40), whereas the temperature increment from
the wall value T'— 1 ~ 37! follows the quasi-steady distribution (36), with a corresponding
value at the axis given by

T(x,0)=1+2""In [2/ (1 + m)} : (41)

These predictions are shown in Fig. 6 along with numerical results for § = 10 and § =
(0.5,1.0), the latter shown as solid curves. As can be seen, the dashed curves representing
the analytical results fall on top of the solid curves from x ~ 1 all the way to the reactant
depletion region, located at x ~ 50 for 6 = 1 and at x ~ 100 for 6 = 0.5. The degree of
agreement achieved is truly remarkable, indicating that the leading-order results developed
here are sufficiently accurate to describe reactant consumption in flameless combustion in
pipes for large but finite values of [.
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Figure 6: The solid curves represent the evolution of the temperature and reactant mass fraction along the
axis obtained by numerical integration of (6)—(13) with ¢ = 0.7, Pr = 0.7, Le = 1.0, 8 = 10, a = 5,
and T; = 0.5 for two different subcritical values of §, whereas the dashed curves are the predicted value of
Y, obtained by evaluating (40) with use made of X = (x — z4)/(B8a) and (16), and of the accompanying
temperature along the axis, determined from (41).

10. Concluding remarks

The flow of an initially cold reactant mixture in a hot cylindrical pipe at moderately large
values of the Reynolds number has been analyzed in the limit of large activation energies.
The flow includes an entrance region where the gas temperature adapts to the wall value,
followed by a shorter region of incipient reaction where the flow evolves to give either a
rapid thermal runaway leading to the generation of a flame or a quasi-steady flameless mode
of combustion that persists downstream along the pipe. Appropriate rescaled problems
have been formulated and analyzed in the different regions, leading to predictions for the
ignition distance in supercritical cases and for the slow downstream reactant consumption
encountered in subcritical cases. While the present analysis pertains only to the classical one-
step Arrhenius heat-release description underlying the FK theory, future studies of flameless
combustion in pipes incorporating realistic chemistry are clearly worth pursuing, using for
instance reduced chemical-kinetic mechanisms, an approach that has been found to be useful
in developing analytical predictions of explosion limits for hydrogen-oxygen systems [22,
23]. Also, extensions of the analysis to address more general boundary conditions for the
temperature at the wall could be attempted, for instance by consideration of a Newtonian
heat—exchange law, as done previously for thermal explosions in closed vessels [3]. Effects
of buoyancy-induced motion are also worth exploring, including modifications to the critical
value 0 = 2 arising from enhanced heat-transfer rates, which could be described for small
Rayleigh numbers using a perturbation analysis similar to that performed recently in [10].
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