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Abstract. This article reviews some recent advances in testing for serial corre-

lation, provides Stata code for implementation and illustrates its application to

market risk forecast evaluation. The classical and widely used Portamenteau tests

and their data-driven versions are the focus of this article. These tests are simple

to implement for two reasons: first, the researcher does not need to specify the or-

der of the autocorrelation tested, since the test automatically chooses this number;

second, its asymptotic null distribution is chi-square with one degree of freedom,

so there is no need of using a bootstrap procedure to estimate the critical val-

ues. We illustrate the wide applicability of the methodology with applications to

forecast evaluation for market risk measures, such as Value-at-Risk and Expected

Shortfall.
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1. Introduction

Testing for serial correlation has held a central role in time series analysis since its in-

ception (see the early contributions by Yule (1926) and Quenouille (1947)). Despite the
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many proposals and variations since the seminal contribution of Box and Pierce (1970),

still the so-called Portmanteau tests are the most widely used. In its simplest form, the

employed statistic is just the sample size times the sum of the first p squared sample

autocorrelations, which is compared with critical values from a chi-square distribution

with p degrees of freedom (with a correction if the test is applied to residuals). The basic

Box-Pierce statistic has been slightly modified to improve its finite sample performance,

see Davies et al. (1977), Ljung and Box (1978), Davies and Newbold (1979) or Li and

McLeod (1981). The properties of the classical Box-Pierce tests have been extensive-

ly studied in the literature; see e.g. the monograph by Li (2004) for a review of this

literature. Much of the theoretical literature on Box-Pierce tests was developed under

the independence assumption, and hence is generally invalid when applied to dependent

data (the asymptotic size of the test is different from the nominal level); see Newbold

(1980) or more recently Francq et al. (2005) for valid tests. This limitation of classical

Box-Pierce tests is by now well understood. This paper focuses on another limitation of

Classical Box-Pierce tests: the selection of the employed number of autocorrelations is

arbitrary. We review the contribution of Escanciano and Lobato (2009), who proposed

a data-driven Portmanteau statistic where the number of correlations is not fixed but

selected automatically from the data. In this paper, we give a synthesis of this method-

ology, introduce new general assumptions for its validity, review new applications in risk

management and provide Stata code for its implementation.

2. Automatic Portmanteau Tests: A Synthesis

Given a strictly stationary process {Yt}t∈Z with E[Y 2
t ] <∞ and µ = E[Yt], define the

autocovariance of order j as

γj = Cov(Yt, Yt−j) = E[(Yt − µ)(Yt−j − µ)], for all j ≥ 0,

and the j − th order autocorrelation as ρj = γj/γ0. We aim to test the null hypothesis

H0 : ρj = 0, for all j ≥ 1,

against the fixed alternative hypotheses

HK
1 : ρj 6= 0, for some 1 ≤ j ≤ K, (1)

and some K ≥ 1.
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Suppose we observe data {Yt}nt=1. Then, γj can be consistently estimated by the

sample autocovariance

γ̂j =
1

(n− j)

n∑
t=1+j

(Yt − Y )(Yt−j − Y ), j = 0, ..., n− 1,

where Y is the sample mean, and also introduce ρ̂j = γ̂j/γ̂0 to denote the j − th order

sample autocorrelation.

The Box-Pierce Qp statistic (cf. Box and Pierce (1970)) is just

Qp = n

p∑
j=1

ρ̂2j ,

which is commonly implemented via the Ljung and Box (1978) modification

LBp = n(n+ 2)

p∑
j=1

(n− j)−1ρ̂2j . (2)

When {Yt}nt=1 are independent and identically distributed (iid), both Qp and LBp

converge to a chi-square distribution with p degrees of freedom, in short χ2
p. When

{Yt}nt=1 are serially dependent, like for example when Yt is a residual from a fitted

model, the asymptotic distribution of Qp or LBp is generally different from χ2
p and

depends on the data generating process in a complicated way, see for instance Francq

et al. (2005) and Delgado and Velasco (2011).

In this section we provide a synthesis of the automatic Portmanteau test methodology

suggested in Escanciano and Lobato (2009), thereby extending the methodology to other

situations. The main ingredients of the methodology are: (1) the following asymptotic

results for individual autocorrelations, for j = 1, ..., d, where d is a fixed upper bound,

√
n
(
ρ̂j − ρj

) D−→ N(0, τj), (3)

for a positive asymptotic variance τj > 0, with1

τ̂ j
P−→ τj ; (4)

and (2) a data-driven construction of p given below. For iid observations τj = 1, and

trivially we can take τ̂ j = 1, but in other more general settings with weak dependence

1. In this paper we use
D−→ and

P−→ to denote convergence in distribution and in probability, respec-

tively.
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or estimation effects we will have an unknown τj 6= 1 that needs to be estimated. Our

definitions of Portmanteau tests allow for general cases. Define

Q∗p = n

p∑
j=1

ρ̃2j ,

where ρ̃j = ρ̂j/
√
τ̂ j is called a Generalized Autocorrelation here. Then, the Automatic

Portmanteau test is given by

AQ = Q∗p̃ (5)

where

p̃ = min{p : 1 ≤ p ≤ d;Lp ≥ Lh, h = 1, 2..., d},

with

Lp = Q∗p − π(p, n, q),

π(p, n, q) is a penalty term that takes the form

π(p, n, q) =

 p log n, if max1≤j≤d
√
n
∣∣ρ̃j∣∣ ≤ √q log n,

2p, if max1≤j≤d
√
n
∣∣ρ̃j∣∣ > √q log n,

(6)

and q = 2.4. The penalty term in (6) has been proposed by Inglot and Ledwina (2006a)

for testing the goodness of fit for a distribution. The value of q = 2.4 is motivated

from extensive simulation evidence in Inglot and Ledwina (2006b) and Escanciano and

Lobato (2009). The value of q = 0 corresponds to the Akaike Information Criterion

(AIC), see Akaike (1974). The value of q =∞ corresponds to the Bayesian Information

Criterion (BIC), see Schwarz et al. (1978). In the context of testing for serial correlation,

it is known that AIC is good in detecting non-zero correlations at long lags, at the cost

of leading to size distortions. In contrast, BIC controls the size accurately and is good

for detecting non-zero correlations at short lags. As shown empirically in Figures 1 and

2 in Escanciano and Lobato (2009), the choice of q = 2.4 provides a “switching effect” in

which one combines the advantages of the two selection rules involved (AIC and BIC).

Thus, we recommend q = 2.4 in applications. The upper bound d does not affect the

asymptotic null distribution of the test, although it may have an impact on power if it is

chosen too small. The finite sample performance of the automatic tests is not sensitive

to the choice of d for moderate and large values of this parameter, as shown in Table

5 of Escanciano and Lobato (2009) and Table 6 of Escanciano et al. (2013). Extensive

simulation experience suggests that the choice of d equals to the closest integer around
√
n performs well in practice.
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Theorem 1: Under the null hypothesis, (3) and (4), AQ
D−→ χ2

1.

This Theorem justifies the rejection region

AQ > χ2
1,1−α,

where χ2
1,1−α is the (1 − α)−quantile of the χ2

1. The following Theorem shows the

consistency of the test.

Theorem 2: Assume ρ̂j
P−→ ρj for j = 1, ..., d, and let (4) hold. Then, the test based

on AQ is consistent against HK
1 , for K ≤ d.

Note that joint convergence of the vector of autocorrelations is not needed, in contrast to

much of the literature. Thus, the methodology of this paper does not require estimation

of large dimensional asymptotic variances.

The proofs of both theorems follow from straightforward modification of those in Es-

canciano and Lobato (2009), and hence they are omitted.

Remark 1. The methodology can be applied to any setting where (3) and (4)

can be established. This includes raw data or residuals from any model. There is an

extensive literature proving conditions such as (3) and (4) under different assumptions,

see examples below.

Remark 2. The reason for the χ2
1 limiting distribution of the Automatic Portmanteau

test is that under the null hypothesis limn→∞ P (p̃ = 1) = 1. Heuristically, under the

null Q∗p is small, and π(p, n, q) increases in p, so the optimal choice selected is the lowest

dimensionality p = 1 with high probability.

3. Applications To Risk Management

We illustrate the general applicability of the methodology with new applications in risk

management. There is a very extensive literature on the quantification of market risk for

derivative pricing, for portfolio choice and for risk management purposes. In particular,

this literature has long been interested in the evaluation of market risk forecasts, the so-

called backtests, see Jorion (2006) and Christoffersen (2009) for comprehensive reviews.

A leading market risk measure has been the Value at Risk (V aR), and more recently
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Expected Shortfall (ES). V aR summarizes the worst loss over a target horizon that will

not be exceeded at a given level of confidence called coverage level. ES is the expected

value of losses beyond a given level of confidence.2 We review popular backtests for

V aR and ES and derive automatic versions using the general methodology above.

Let Rt denote the revenue of a bank at time t, and let Ωt−1 denote the risk manager’s

information at time t−1, which contains lagged values of Rt and possibly lagged values of

other variables, say Xt. That is, Ωt−1 = {Xt−1, Xt−2, ...;Rt−1, Rt−2, ...}. Let G(·,Ωt−1)

denote the conditional cumulative distribution function (cdf) of Rt given Ωt−1, i.e.

G(·,Ωt−1) = Pr (Rt ≤ ·|Ωt−1) . Assume G(·,Ωt−1) is continuous. Let α ∈ [0, 1] denote

the coverage level. The α-level V aR is defined as the quantity V aRt(α) such that

Pr (Rt ≤ −V aRt(α)|Ωt−1) = α. (7)

That is, the −V aRt(α) is the α− th percentile of the conditional distribution G,

V aRt(α) = −G−1(α,Ωt−1) = − inf {y : G(y,Ωt−1) ≥ α} .

Define the α-violation or hit at time t as

ht(α) = 1(Rt ≤ −V aRt(α)),

where 1(·) denotes the indicator function. That is, the violation takes the value one

if the loss at time t is larger than or equal to V aRt(α), and it is zero otherwise. An

implication of (7) is that violations are Bernoulli variables with mean α, and moreover,

centered violations are a martingale difference sequence (mds) for each α ∈ [0, 1], i.e.

E [ht(α)− α|Ωt−1] = 0 for each α ∈ [0, 1].

This restriction has been the basis for the extensive literature on backtesting V aR. Two

of its main implications, the zero mean property of the hit sequence {ht(α)−α}∞t=1 and

its uncorrelation led to the unconditional and conditional backtests of Kupiec (1995)

and Christoffersen (1998), respectively, which are the most widely used backtests. More

recently, Berkowitz et al. (2011) have proposed the Box-Pierce-type test for V aR

CV aR(p) = n

p∑
j=1

ρ̂2j ,

with ρ̂j = γ̂j/γ̂0 and γ̂j = 1/(n − j)
∑n
t=1+j(ĥt(α) − α)(ĥt−j(α) − α), and where

{ĥt(α) = Rt ≤ −V̂ aRt(α)}nt=1, for an estimator of the V aR, V̂ aRt(α). An automatic

2. Other names for ES are Conditional VaR, Average VaR, tail VaR or expected tail loss.
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version of the test statistic in Berkowitz et al. (2011) can be computed following the

algorithm above with τj = 1. This test is only valid when there is no estimation effects.

If T is the in-sample size for estimation and n is the out-of-sample size used for forecast

evaluation, the precise condition for no estimation effects in backtesting VaR and ES

is that both T → ∞ and n → ∞ at a rate such that n/T → 0 (i.e. the in-sample

size is much larger than the out-of-sample size). More generally, Escanciano and Olmo

(2010) provided primitive conditions for the convergences (3) and (4) to hold in a general

setting where there is estimating effects from estimating V aR. When estimation effects

are present τj no longer equals 1, but Escanciano and Olmo (2010) provide suitable

estimators τ̂ j satisfying (4). Let ACV aR denote the Automatic Portmanteau version of

CV aR(p).

More recently there has been a move in the banking sector towards ES as a suitable

measure of market risk that is able to capture “tail risk” (the risk coming from very big

losses). ES is defined as the conditional expected loss given that the loss is larger than

V aRt(α), that is,

ESt(α) = E [−Rt|Ωt−1,−Rt > V aRt(α)] . (8)

Definition of a conditional probability and a change of variables yield a useful represen-

tation of ESt(α) in terms of V aRt(α),

ESt(α) =
1

α

α∫
0

V aRt(u)du. (9)

Unlike V aRt(α), which only contains information on one quantile level α, ESt(α) con-

tains information from the whole left tail, by integrating all V aRs from 0 to α. In

analogy with (9), we define the cumulative violation process,

Ht(α) =
1

α

α∫
0

ht(u)du.

Since ht(u) has mean u, by Fubini’s Theorem Ht(α) has mean 1/α
∫ α
0
udu = α/2.

Moreover, again by Fubini’s Theorem, the mds property of the class {ht(α) − α : α ∈

[0, 1]}∞t=1 is preserved by integration, which means that {Ht(α)−α/2}∞t=1 is also a mds.

For computational purposes, it is convenient to define ut = G(Rt,Ωt−1). Using that
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ht(u) = 1(Rt ≤ −V aRt(u)) = 1(ut ≤ u), we obtain

Ht(α) =
1

α

α∫
0

1(ut ≤ u)du

=
1

α
(α− ut)1(ut ≤ α). (10)

Like violations, cumulative violations are distribution-free, since {ut}∞t=1 comprises a

sample of iid U [0, 1] variables (see Rosenblatt (1952)). Cumulative violations have been

recently introduced in Du and Escanciano (2017). The variables {ut}∞t=1 necessary to

construct {Ht(α)}∞t=1 are generally unknown, since the distribution of the data G is

unknown. In practice, researchers and risk managers specify a parametric conditional

distribution G(·,Ωt−1, θ0), where θ0 is some unknown parameter in Θ ⊂ Rp, and proceed

to estimate θ0 before producing V aR/ES forecasts. Popular choices for distributions

G(·,Ωt−1, θ0) are those derived from location-scale models with Student’s t distributions,

but other choices can be certainly entertained in our setting. With the parametric model

at hand, we can define the “generalized errors”

ut(θ0) = G(Rt,Ωt−1, θ0)

and the associated cumulative violations

Ht(α, θ0) =
1

α
(α− ut(θ0))1(ut(θ0) ≤ α).

Very much like for V aRs, the arguments above provide a theoretical justification for

backtesting ES by checking whether {Ht(α, θ0) − α/2}∞t=1 have zero mean (uncondi-

tional ES backtest) and whether {Ht(α, θ0)−α/2}∞t=1 are uncorrelated (conditional ES

backtest).

Let θ̂ be an estimator of θ0 and construct residuals

ût = G(Rt,Ωt−1, θ̂),

and estimated cumulative violations

Ĥt(α) =
1

α
(α− ût)1(ût ≤ α).

Then, we obtain

γ̂j =
1

n− j

n∑
t=1+j

(Ĥt(α)− α/2)(Ĥt−j(α)− α/2) and ρ̂j =
γ̂j
γ̂0
.
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Du and Escanciano (2017) construct the Box-Pierce test statistic

CES(p) = n

p∑
j=1

ρ̂2j , (11)

and derive its asymptotic null distribution. In particular, they establish conditions for

(3) and (4) to hold and provide expressions for the corresponding τ̂ j . Let ACES denote

the Automatic Portmanteau version of CES(p).

Compared to the existing backtests, these automatic backtests select p from the data,

and only require estimation of marginal asymptotic variances of marginal correlations

to obtain known limiting distributions.

4. Stata Implementation

We introduce the dbptest command to implement the automatic portmanteau test (5).

Notice that τj = 1 for iid observations, as well as backtesting V aR and ES without

estimation effects.

We also provide a Stata command rtau to estimate τj for more general cases, including

martingale difference sequence as in Escanciano and Lobato (2009), as well as backtests

for V aR and ES with estimation effects as in Escanciano and Olmo (2010) and Du and

Escanciano (2017), respectively.

4.1 Syntax

Automatic Q Test

dbptest varname
[
if
] [

in
] [

, mu(#) q(#) tauvector(matname) nlags(#)
]

Estimating τj

rtau varname
[
if
] [

in
]
, nlags(#) seriestype(type)

[
cl(#) nobs(#)

]

4.2 Options

Automatic Q Test

mu(#) specifies the mean of the variable tested. The default is the variable’s sample

mean.
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q(#) is some fixed positive number to control the switching effect between AIC and

BIC. The default value is 2.4.

tauvector(matname) specifies a column vector containing variances of the autocorre-

lations. The default is a vector of 1’s.

nlags(#) specifies the maximum number of lags of autocorrelations. The default is

the closest integer around
√
n, where n is the number of observations. If it is larger

than the dimension of tauvector, it will be replaced by the dimension of tauvector.

Estimating τj

nlags(#) specifies the number of lags of autocorrelations.

seriestype(type) specifies one of the following three types: mds, var and es.

seriestype(mds) specifies varname to be a martingale difference sequence as in

Escanciano and Lobato (2009).

seriestype(var) corresponds to backtesting V aR. varname assumes an AR(1)-

GARCH(1,1) model with student-t innovations, when deriving the estimation effects.

seriestype(es) corresponds to backtesting ES. varname assumes an AR(1)-GARCH(1,1)

model with student-t innovations, when deriving the estimation effects.

cl(#) specifies the coverage level of V aR and ES. The default is 0.05.

nobs(#) specifies the in-sample size when backtesting V aR and ES.

4.3 Remarks

One needs to tsset the data before using dbptest and rtau.

Automatic Q Test

dbptest implements a data-driven Box-Pierce test for serial correlations. The test

automatically chooses the order of autocorrelations. The command reports not only the

usual outputs of Box-Pierce test as wntestq, i.e., the Q statistics and the corresponding

P-value, but also the automatic number of lags chosen.

Estimating τj

rtau estimates the asymptotic variances of autocorrelations when necessary. This in-

cludes
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(1) martingale difference sequence data;

(2) backtesting ES and V aR with estimation effects.

Only when var or es is specified, cl(#) and nobs(#) are required.

4.4 Saved results

Automatic Q Test

Scalars

r(stat) Q statistic r(p) probability value

r(lag) the number of lag(s)

Estimating τj

Matrix

e(tau) variances of autocorrelations

4.5 Example

To illustrate the usage of the two commands, we consider the DAX Index return data

from January 1, 1997 to June 30, 2009 as in Du and Escanciano (2017). The in-sample

period is from January 1, 1997, to June 30, 2007. The out-of-sample period is from July

1, 2007, to June 30, 2009, which is the financial crisis period.

We use the in-sample data to estimate an AR(1)-GARCH(1,1) model with student’s

t innovations. After getting the estimates for ut, ht(α), Ht(α) using the out-of-sample

data, we implement the conditional backtests for V aR and ES using the new dbptest

command.

Without Estimation Effects

Here we carry out the automatic portmanteau test (5) without considering the estima-

tion effects, i.e. τj = 1.

. dbptest H, mu(0.05)

Automatic Portmanteau test for serial correlation

Variable: H

Portmanteau (Q) statistic = 2.8417

Prob > chi2(1) = 0.0918
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The number of lag(s) (from 1 to 23) = 1

The displayed results are for cumulative violations at 10% risk level, i.e. Ht(0.1).

Under the correct model specification, we have E[Ht(α)] = α/2, so we set mu to be

0.05. We get an AQ statistic of 2.8417 and a P-value of 0.0918. Hence, the ES model

is rejected at 10% significance level. It also reports the number of lag(s) chosen, which

is 1 in this case.

Likewise, we carry out the conditional backtest for V aR using ht(α). Following the

rule-of-thumb that the coverage level for ES is twice (or approximately twice) that of

V aR, We examine the autocorrelations of ht(0.05).

. dbptest h,mu(0.05)

Automatic Portmanteau test for serial correlation

Variable: h

Portmanteau (Q) statistic = 0.7972

Prob > chi2(1) = 0.3719

The number of lag(s) (from 1 to 23) = 1

We now get an AQ statistic of 0.7972 and a P-value of 0.3719, we fail to reject the

V aR model.

With Estimation Effects

To take the estimation effects into account, we use the command rtau to estimate τj

first before we run the dbptest command.

. rtau lret, nlags(15) seriestype(es) cl(0.1) nobs(2658)

Asymptotic Variances of Autocorrelations

Order Tau for ES

1 1.0027636

2 1.0192228

3 1.0192343

4 1.004399

5 1.0030891

6 1.0021455
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7 1.0137747

8 1.0016341

9 1.0094143

10 1.0012676

11 1.0011319

12 1.0080588

13 1.0077699

14 1.0033674

15 1.0017961

. mat Tau_ES = e(tau)

. dbptest H, mu(0.05) tauvector(Tau_ES)

Automatic Portmanteau test for serial correlation

Variable: H

Portmanteau (Q) statistic = 2.8338

Prob > chi2(1) = 0.0923

The number of lag(s) (from 1 to 15) = 1

. rtau lret, nlags(15) seriestype(var) cl(0.05) nobs(2658)

Asymptotic Variances of Autocorrelations

Order Tau for VaR

1 1.01014

2 1.0029985

3 1.0023986

4 1.0023737

5 1.0027832

6 1.0021056

7 1.001556

8 1.0014201

9 1.0011457

10 1.0009844

11 1.001431

12 1.0013224

13 1.0013889

14 1.0009824

15 1.0011676
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. mat Tau_VaR = e(tau)

. dbptest h, mu(0.05) tauvector(Tau_VaR)

Automatic Portmanteau test for serial correlation

Variable: h

Portmanteau (Q) statistic = 0.7892

Prob > chi2(1) = 0.3743

The number of lag(s) (from 1 to 15) = 1

Notice that the in-sample size here is 2658. The AQ test statistics for ES and V aR

here are slightly lower than those without estimation effects. The tests conclusions

remain the same, although the P-values are slightly bigger than before.

�
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